qlge_main.c 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int qlge_irq_type = MSIX_IRQ;
  67. module_param(qlge_irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static int qlge_mpi_coredump;
  70. module_param(qlge_mpi_coredump, int, 0);
  71. MODULE_PARM_DESC(qlge_mpi_coredump,
  72. "Option to enable MPI firmware dump. "
  73. "Default is OFF - Do Not allocate memory. ");
  74. static int qlge_force_coredump;
  75. module_param(qlge_force_coredump, int, 0);
  76. MODULE_PARM_DESC(qlge_force_coredump,
  77. "Option to allow force of firmware core dump. "
  78. "Default is OFF - Do not allow.");
  79. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  80. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  81. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  82. /* required last entry */
  83. {0,}
  84. };
  85. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  86. /* This hardware semaphore causes exclusive access to
  87. * resources shared between the NIC driver, MPI firmware,
  88. * FCOE firmware and the FC driver.
  89. */
  90. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  91. {
  92. u32 sem_bits = 0;
  93. switch (sem_mask) {
  94. case SEM_XGMAC0_MASK:
  95. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  96. break;
  97. case SEM_XGMAC1_MASK:
  98. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  99. break;
  100. case SEM_ICB_MASK:
  101. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  102. break;
  103. case SEM_MAC_ADDR_MASK:
  104. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  105. break;
  106. case SEM_FLASH_MASK:
  107. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  108. break;
  109. case SEM_PROBE_MASK:
  110. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  111. break;
  112. case SEM_RT_IDX_MASK:
  113. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  114. break;
  115. case SEM_PROC_REG_MASK:
  116. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  117. break;
  118. default:
  119. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  120. return -EINVAL;
  121. }
  122. ql_write32(qdev, SEM, sem_bits | sem_mask);
  123. return !(ql_read32(qdev, SEM) & sem_bits);
  124. }
  125. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. unsigned int wait_count = 30;
  128. do {
  129. if (!ql_sem_trylock(qdev, sem_mask))
  130. return 0;
  131. udelay(100);
  132. } while (--wait_count);
  133. return -ETIMEDOUT;
  134. }
  135. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  136. {
  137. ql_write32(qdev, SEM, sem_mask);
  138. ql_read32(qdev, SEM); /* flush */
  139. }
  140. /* This function waits for a specific bit to come ready
  141. * in a given register. It is used mostly by the initialize
  142. * process, but is also used in kernel thread API such as
  143. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  144. */
  145. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  146. {
  147. u32 temp;
  148. int count = UDELAY_COUNT;
  149. while (count) {
  150. temp = ql_read32(qdev, reg);
  151. /* check for errors */
  152. if (temp & err_bit) {
  153. netif_alert(qdev, probe, qdev->ndev,
  154. "register 0x%.08x access error, value = 0x%.08x!.\n",
  155. reg, temp);
  156. return -EIO;
  157. } else if (temp & bit)
  158. return 0;
  159. udelay(UDELAY_DELAY);
  160. count--;
  161. }
  162. netif_alert(qdev, probe, qdev->ndev,
  163. "Timed out waiting for reg %x to come ready.\n", reg);
  164. return -ETIMEDOUT;
  165. }
  166. /* The CFG register is used to download TX and RX control blocks
  167. * to the chip. This function waits for an operation to complete.
  168. */
  169. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  170. {
  171. int count = UDELAY_COUNT;
  172. u32 temp;
  173. while (count) {
  174. temp = ql_read32(qdev, CFG);
  175. if (temp & CFG_LE)
  176. return -EIO;
  177. if (!(temp & bit))
  178. return 0;
  179. udelay(UDELAY_DELAY);
  180. count--;
  181. }
  182. return -ETIMEDOUT;
  183. }
  184. /* Used to issue init control blocks to hw. Maps control block,
  185. * sets address, triggers download, waits for completion.
  186. */
  187. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  188. u16 q_id)
  189. {
  190. u64 map;
  191. int status = 0;
  192. int direction;
  193. u32 mask;
  194. u32 value;
  195. direction =
  196. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  197. PCI_DMA_FROMDEVICE;
  198. map = pci_map_single(qdev->pdev, ptr, size, direction);
  199. if (pci_dma_mapping_error(qdev->pdev, map)) {
  200. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  201. return -ENOMEM;
  202. }
  203. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  204. if (status)
  205. return status;
  206. status = ql_wait_cfg(qdev, bit);
  207. if (status) {
  208. netif_err(qdev, ifup, qdev->ndev,
  209. "Timed out waiting for CFG to come ready.\n");
  210. goto exit;
  211. }
  212. ql_write32(qdev, ICB_L, (u32) map);
  213. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  214. mask = CFG_Q_MASK | (bit << 16);
  215. value = bit | (q_id << CFG_Q_SHIFT);
  216. ql_write32(qdev, CFG, (mask | value));
  217. /*
  218. * Wait for the bit to clear after signaling hw.
  219. */
  220. status = ql_wait_cfg(qdev, bit);
  221. exit:
  222. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  223. pci_unmap_single(qdev->pdev, map, size, direction);
  224. return status;
  225. }
  226. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  227. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  228. u32 *value)
  229. {
  230. u32 offset = 0;
  231. int status;
  232. switch (type) {
  233. case MAC_ADDR_TYPE_MULTI_MAC:
  234. case MAC_ADDR_TYPE_CAM_MAC:
  235. {
  236. status =
  237. ql_wait_reg_rdy(qdev,
  238. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  239. if (status)
  240. goto exit;
  241. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  242. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  243. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  244. status =
  245. ql_wait_reg_rdy(qdev,
  246. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  247. if (status)
  248. goto exit;
  249. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  250. status =
  251. ql_wait_reg_rdy(qdev,
  252. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  253. if (status)
  254. goto exit;
  255. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  256. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  257. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  258. status =
  259. ql_wait_reg_rdy(qdev,
  260. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  261. if (status)
  262. goto exit;
  263. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  264. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  265. status =
  266. ql_wait_reg_rdy(qdev,
  267. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  268. if (status)
  269. goto exit;
  270. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  271. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  272. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  273. status =
  274. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  275. MAC_ADDR_MR, 0);
  276. if (status)
  277. goto exit;
  278. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  279. }
  280. break;
  281. }
  282. case MAC_ADDR_TYPE_VLAN:
  283. case MAC_ADDR_TYPE_MULTI_FLTR:
  284. default:
  285. netif_crit(qdev, ifup, qdev->ndev,
  286. "Address type %d not yet supported.\n", type);
  287. status = -EPERM;
  288. }
  289. exit:
  290. return status;
  291. }
  292. /* Set up a MAC, multicast or VLAN address for the
  293. * inbound frame matching.
  294. */
  295. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  296. u16 index)
  297. {
  298. u32 offset = 0;
  299. int status = 0;
  300. switch (type) {
  301. case MAC_ADDR_TYPE_MULTI_MAC:
  302. {
  303. u32 upper = (addr[0] << 8) | addr[1];
  304. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  305. (addr[4] << 8) | (addr[5]);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  312. (index << MAC_ADDR_IDX_SHIFT) |
  313. type | MAC_ADDR_E);
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  321. (index << MAC_ADDR_IDX_SHIFT) |
  322. type | MAC_ADDR_E);
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. break;
  330. }
  331. case MAC_ADDR_TYPE_CAM_MAC:
  332. {
  333. u32 cam_output;
  334. u32 upper = (addr[0] << 8) | addr[1];
  335. u32 lower =
  336. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  337. (addr[5]);
  338. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  339. "Adding %s address %pM at index %d in the CAM.\n",
  340. type == MAC_ADDR_TYPE_MULTI_MAC ?
  341. "MULTICAST" : "UNICAST",
  342. addr, index);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, lower);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. ql_write32(qdev, MAC_ADDR_DATA, upper);
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type); /* type */
  369. /* This field should also include the queue id
  370. and possibly the function id. Right now we hardcode
  371. the route field to NIC core.
  372. */
  373. cam_output = (CAM_OUT_ROUTE_NIC |
  374. (qdev->
  375. func << CAM_OUT_FUNC_SHIFT) |
  376. (0 << CAM_OUT_CQ_ID_SHIFT));
  377. if (qdev->vlgrp)
  378. cam_output |= CAM_OUT_RV;
  379. /* route to NIC core */
  380. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  381. break;
  382. }
  383. case MAC_ADDR_TYPE_VLAN:
  384. {
  385. u32 enable_bit = *((u32 *) &addr[0]);
  386. /* For VLAN, the addr actually holds a bit that
  387. * either enables or disables the vlan id we are
  388. * addressing. It's either MAC_ADDR_E on or off.
  389. * That's bit-27 we're talking about.
  390. */
  391. netif_info(qdev, ifup, qdev->ndev,
  392. "%s VLAN ID %d %s the CAM.\n",
  393. enable_bit ? "Adding" : "Removing",
  394. index,
  395. enable_bit ? "to" : "from");
  396. status =
  397. ql_wait_reg_rdy(qdev,
  398. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  399. if (status)
  400. goto exit;
  401. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  402. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  403. type | /* type */
  404. enable_bit); /* enable/disable */
  405. break;
  406. }
  407. case MAC_ADDR_TYPE_MULTI_FLTR:
  408. default:
  409. netif_crit(qdev, ifup, qdev->ndev,
  410. "Address type %d not yet supported.\n", type);
  411. status = -EPERM;
  412. }
  413. exit:
  414. return status;
  415. }
  416. /* Set or clear MAC address in hardware. We sometimes
  417. * have to clear it to prevent wrong frame routing
  418. * especially in a bonding environment.
  419. */
  420. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  421. {
  422. int status;
  423. char zero_mac_addr[ETH_ALEN];
  424. char *addr;
  425. if (set) {
  426. addr = &qdev->current_mac_addr[0];
  427. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  428. "Set Mac addr %pM\n", addr);
  429. } else {
  430. memset(zero_mac_addr, 0, ETH_ALEN);
  431. addr = &zero_mac_addr[0];
  432. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  433. "Clearing MAC address\n");
  434. }
  435. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  436. if (status)
  437. return status;
  438. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  439. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  440. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  441. if (status)
  442. netif_err(qdev, ifup, qdev->ndev,
  443. "Failed to init mac address.\n");
  444. return status;
  445. }
  446. void ql_link_on(struct ql_adapter *qdev)
  447. {
  448. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  449. netif_carrier_on(qdev->ndev);
  450. ql_set_mac_addr(qdev, 1);
  451. }
  452. void ql_link_off(struct ql_adapter *qdev)
  453. {
  454. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  455. netif_carrier_off(qdev->ndev);
  456. ql_set_mac_addr(qdev, 0);
  457. }
  458. /* Get a specific frame routing value from the CAM.
  459. * Used for debug and reg dump.
  460. */
  461. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  462. {
  463. int status = 0;
  464. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  465. if (status)
  466. goto exit;
  467. ql_write32(qdev, RT_IDX,
  468. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  469. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  470. if (status)
  471. goto exit;
  472. *value = ql_read32(qdev, RT_DATA);
  473. exit:
  474. return status;
  475. }
  476. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  477. * to route different frame types to various inbound queues. We send broadcast/
  478. * multicast/error frames to the default queue for slow handling,
  479. * and CAM hit/RSS frames to the fast handling queues.
  480. */
  481. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  482. int enable)
  483. {
  484. int status = -EINVAL; /* Return error if no mask match. */
  485. u32 value = 0;
  486. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  487. "%s %s mask %s the routing reg.\n",
  488. enable ? "Adding" : "Removing",
  489. index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
  490. index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
  491. index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
  492. index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
  493. index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
  494. index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
  495. index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
  496. index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
  497. index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
  498. index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
  499. index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
  500. index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
  501. index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
  502. index == RT_IDX_UNUSED013 ? "UNUSED13" :
  503. index == RT_IDX_UNUSED014 ? "UNUSED14" :
  504. index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
  505. "(Bad index != RT_IDX)",
  506. enable ? "to" : "from");
  507. switch (mask) {
  508. case RT_IDX_CAM_HIT:
  509. {
  510. value = RT_IDX_DST_CAM_Q | /* dest */
  511. RT_IDX_TYPE_NICQ | /* type */
  512. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  513. break;
  514. }
  515. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  516. {
  517. value = RT_IDX_DST_DFLT_Q | /* dest */
  518. RT_IDX_TYPE_NICQ | /* type */
  519. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  520. break;
  521. }
  522. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  523. {
  524. value = RT_IDX_DST_DFLT_Q | /* dest */
  525. RT_IDX_TYPE_NICQ | /* type */
  526. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  527. break;
  528. }
  529. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  530. {
  531. value = RT_IDX_DST_DFLT_Q | /* dest */
  532. RT_IDX_TYPE_NICQ | /* type */
  533. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  534. break;
  535. }
  536. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  537. {
  538. value = RT_IDX_DST_DFLT_Q | /* dest */
  539. RT_IDX_TYPE_NICQ | /* type */
  540. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  541. break;
  542. }
  543. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  544. {
  545. value = RT_IDX_DST_DFLT_Q | /* dest */
  546. RT_IDX_TYPE_NICQ | /* type */
  547. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  548. break;
  549. }
  550. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  551. {
  552. value = RT_IDX_DST_RSS | /* dest */
  553. RT_IDX_TYPE_NICQ | /* type */
  554. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  555. break;
  556. }
  557. case 0: /* Clear the E-bit on an entry. */
  558. {
  559. value = RT_IDX_DST_DFLT_Q | /* dest */
  560. RT_IDX_TYPE_NICQ | /* type */
  561. (index << RT_IDX_IDX_SHIFT);/* index */
  562. break;
  563. }
  564. default:
  565. netif_err(qdev, ifup, qdev->ndev,
  566. "Mask type %d not yet supported.\n", mask);
  567. status = -EPERM;
  568. goto exit;
  569. }
  570. if (value) {
  571. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  572. if (status)
  573. goto exit;
  574. value |= (enable ? RT_IDX_E : 0);
  575. ql_write32(qdev, RT_IDX, value);
  576. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  577. }
  578. exit:
  579. return status;
  580. }
  581. static void ql_enable_interrupts(struct ql_adapter *qdev)
  582. {
  583. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  584. }
  585. static void ql_disable_interrupts(struct ql_adapter *qdev)
  586. {
  587. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  588. }
  589. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  590. * Otherwise, we may have multiple outstanding workers and don't want to
  591. * enable until the last one finishes. In this case, the irq_cnt gets
  592. * incremented everytime we queue a worker and decremented everytime
  593. * a worker finishes. Once it hits zero we enable the interrupt.
  594. */
  595. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  596. {
  597. u32 var = 0;
  598. unsigned long hw_flags = 0;
  599. struct intr_context *ctx = qdev->intr_context + intr;
  600. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  601. /* Always enable if we're MSIX multi interrupts and
  602. * it's not the default (zeroeth) interrupt.
  603. */
  604. ql_write32(qdev, INTR_EN,
  605. ctx->intr_en_mask);
  606. var = ql_read32(qdev, STS);
  607. return var;
  608. }
  609. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  610. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  611. ql_write32(qdev, INTR_EN,
  612. ctx->intr_en_mask);
  613. var = ql_read32(qdev, STS);
  614. }
  615. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  616. return var;
  617. }
  618. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  619. {
  620. u32 var = 0;
  621. struct intr_context *ctx;
  622. /* HW disables for us if we're MSIX multi interrupts and
  623. * it's not the default (zeroeth) interrupt.
  624. */
  625. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  626. return 0;
  627. ctx = qdev->intr_context + intr;
  628. spin_lock(&qdev->hw_lock);
  629. if (!atomic_read(&ctx->irq_cnt)) {
  630. ql_write32(qdev, INTR_EN,
  631. ctx->intr_dis_mask);
  632. var = ql_read32(qdev, STS);
  633. }
  634. atomic_inc(&ctx->irq_cnt);
  635. spin_unlock(&qdev->hw_lock);
  636. return var;
  637. }
  638. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  639. {
  640. int i;
  641. for (i = 0; i < qdev->intr_count; i++) {
  642. /* The enable call does a atomic_dec_and_test
  643. * and enables only if the result is zero.
  644. * So we precharge it here.
  645. */
  646. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  647. i == 0))
  648. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  649. ql_enable_completion_interrupt(qdev, i);
  650. }
  651. }
  652. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  653. {
  654. int status, i;
  655. u16 csum = 0;
  656. __le16 *flash = (__le16 *)&qdev->flash;
  657. status = strncmp((char *)&qdev->flash, str, 4);
  658. if (status) {
  659. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  660. return status;
  661. }
  662. for (i = 0; i < size; i++)
  663. csum += le16_to_cpu(*flash++);
  664. if (csum)
  665. netif_err(qdev, ifup, qdev->ndev,
  666. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  667. return csum;
  668. }
  669. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  670. {
  671. int status = 0;
  672. /* wait for reg to come ready */
  673. status = ql_wait_reg_rdy(qdev,
  674. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  675. if (status)
  676. goto exit;
  677. /* set up for reg read */
  678. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  679. /* wait for reg to come ready */
  680. status = ql_wait_reg_rdy(qdev,
  681. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  682. if (status)
  683. goto exit;
  684. /* This data is stored on flash as an array of
  685. * __le32. Since ql_read32() returns cpu endian
  686. * we need to swap it back.
  687. */
  688. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  689. exit:
  690. return status;
  691. }
  692. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  693. {
  694. u32 i, size;
  695. int status;
  696. __le32 *p = (__le32 *)&qdev->flash;
  697. u32 offset;
  698. u8 mac_addr[6];
  699. /* Get flash offset for function and adjust
  700. * for dword access.
  701. */
  702. if (!qdev->port)
  703. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  704. else
  705. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  706. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  707. return -ETIMEDOUT;
  708. size = sizeof(struct flash_params_8000) / sizeof(u32);
  709. for (i = 0; i < size; i++, p++) {
  710. status = ql_read_flash_word(qdev, i+offset, p);
  711. if (status) {
  712. netif_err(qdev, ifup, qdev->ndev,
  713. "Error reading flash.\n");
  714. goto exit;
  715. }
  716. }
  717. status = ql_validate_flash(qdev,
  718. sizeof(struct flash_params_8000) / sizeof(u16),
  719. "8000");
  720. if (status) {
  721. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  722. status = -EINVAL;
  723. goto exit;
  724. }
  725. /* Extract either manufacturer or BOFM modified
  726. * MAC address.
  727. */
  728. if (qdev->flash.flash_params_8000.data_type1 == 2)
  729. memcpy(mac_addr,
  730. qdev->flash.flash_params_8000.mac_addr1,
  731. qdev->ndev->addr_len);
  732. else
  733. memcpy(mac_addr,
  734. qdev->flash.flash_params_8000.mac_addr,
  735. qdev->ndev->addr_len);
  736. if (!is_valid_ether_addr(mac_addr)) {
  737. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  738. status = -EINVAL;
  739. goto exit;
  740. }
  741. memcpy(qdev->ndev->dev_addr,
  742. mac_addr,
  743. qdev->ndev->addr_len);
  744. exit:
  745. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  746. return status;
  747. }
  748. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  749. {
  750. int i;
  751. int status;
  752. __le32 *p = (__le32 *)&qdev->flash;
  753. u32 offset = 0;
  754. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  755. /* Second function's parameters follow the first
  756. * function's.
  757. */
  758. if (qdev->port)
  759. offset = size;
  760. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  761. return -ETIMEDOUT;
  762. for (i = 0; i < size; i++, p++) {
  763. status = ql_read_flash_word(qdev, i+offset, p);
  764. if (status) {
  765. netif_err(qdev, ifup, qdev->ndev,
  766. "Error reading flash.\n");
  767. goto exit;
  768. }
  769. }
  770. status = ql_validate_flash(qdev,
  771. sizeof(struct flash_params_8012) / sizeof(u16),
  772. "8012");
  773. if (status) {
  774. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  775. status = -EINVAL;
  776. goto exit;
  777. }
  778. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  779. status = -EINVAL;
  780. goto exit;
  781. }
  782. memcpy(qdev->ndev->dev_addr,
  783. qdev->flash.flash_params_8012.mac_addr,
  784. qdev->ndev->addr_len);
  785. exit:
  786. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  787. return status;
  788. }
  789. /* xgmac register are located behind the xgmac_addr and xgmac_data
  790. * register pair. Each read/write requires us to wait for the ready
  791. * bit before reading/writing the data.
  792. */
  793. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  794. {
  795. int status;
  796. /* wait for reg to come ready */
  797. status = ql_wait_reg_rdy(qdev,
  798. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  799. if (status)
  800. return status;
  801. /* write the data to the data reg */
  802. ql_write32(qdev, XGMAC_DATA, data);
  803. /* trigger the write */
  804. ql_write32(qdev, XGMAC_ADDR, reg);
  805. return status;
  806. }
  807. /* xgmac register are located behind the xgmac_addr and xgmac_data
  808. * register pair. Each read/write requires us to wait for the ready
  809. * bit before reading/writing the data.
  810. */
  811. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  812. {
  813. int status = 0;
  814. /* wait for reg to come ready */
  815. status = ql_wait_reg_rdy(qdev,
  816. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  817. if (status)
  818. goto exit;
  819. /* set up for reg read */
  820. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  821. /* wait for reg to come ready */
  822. status = ql_wait_reg_rdy(qdev,
  823. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  824. if (status)
  825. goto exit;
  826. /* get the data */
  827. *data = ql_read32(qdev, XGMAC_DATA);
  828. exit:
  829. return status;
  830. }
  831. /* This is used for reading the 64-bit statistics regs. */
  832. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  833. {
  834. int status = 0;
  835. u32 hi = 0;
  836. u32 lo = 0;
  837. status = ql_read_xgmac_reg(qdev, reg, &lo);
  838. if (status)
  839. goto exit;
  840. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  841. if (status)
  842. goto exit;
  843. *data = (u64) lo | ((u64) hi << 32);
  844. exit:
  845. return status;
  846. }
  847. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  848. {
  849. int status;
  850. /*
  851. * Get MPI firmware version for driver banner
  852. * and ethool info.
  853. */
  854. status = ql_mb_about_fw(qdev);
  855. if (status)
  856. goto exit;
  857. status = ql_mb_get_fw_state(qdev);
  858. if (status)
  859. goto exit;
  860. /* Wake up a worker to get/set the TX/RX frame sizes. */
  861. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  862. exit:
  863. return status;
  864. }
  865. /* Take the MAC Core out of reset.
  866. * Enable statistics counting.
  867. * Take the transmitter/receiver out of reset.
  868. * This functionality may be done in the MPI firmware at a
  869. * later date.
  870. */
  871. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  872. {
  873. int status = 0;
  874. u32 data;
  875. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  876. /* Another function has the semaphore, so
  877. * wait for the port init bit to come ready.
  878. */
  879. netif_info(qdev, link, qdev->ndev,
  880. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  881. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  882. if (status) {
  883. netif_crit(qdev, link, qdev->ndev,
  884. "Port initialize timed out.\n");
  885. }
  886. return status;
  887. }
  888. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  889. /* Set the core reset. */
  890. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  891. if (status)
  892. goto end;
  893. data |= GLOBAL_CFG_RESET;
  894. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  895. if (status)
  896. goto end;
  897. /* Clear the core reset and turn on jumbo for receiver. */
  898. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  899. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  900. data |= GLOBAL_CFG_TX_STAT_EN;
  901. data |= GLOBAL_CFG_RX_STAT_EN;
  902. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  903. if (status)
  904. goto end;
  905. /* Enable transmitter, and clear it's reset. */
  906. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  907. if (status)
  908. goto end;
  909. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  910. data |= TX_CFG_EN; /* Enable the transmitter. */
  911. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  912. if (status)
  913. goto end;
  914. /* Enable receiver and clear it's reset. */
  915. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  916. if (status)
  917. goto end;
  918. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  919. data |= RX_CFG_EN; /* Enable the receiver. */
  920. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  921. if (status)
  922. goto end;
  923. /* Turn on jumbo. */
  924. status =
  925. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  926. if (status)
  927. goto end;
  928. status =
  929. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  930. if (status)
  931. goto end;
  932. /* Signal to the world that the port is enabled. */
  933. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  934. end:
  935. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  936. return status;
  937. }
  938. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  939. {
  940. return PAGE_SIZE << qdev->lbq_buf_order;
  941. }
  942. /* Get the next large buffer. */
  943. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  944. {
  945. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  946. rx_ring->lbq_curr_idx++;
  947. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  948. rx_ring->lbq_curr_idx = 0;
  949. rx_ring->lbq_free_cnt++;
  950. return lbq_desc;
  951. }
  952. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  953. struct rx_ring *rx_ring)
  954. {
  955. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  956. pci_dma_sync_single_for_cpu(qdev->pdev,
  957. pci_unmap_addr(lbq_desc, mapaddr),
  958. rx_ring->lbq_buf_size,
  959. PCI_DMA_FROMDEVICE);
  960. /* If it's the last chunk of our master page then
  961. * we unmap it.
  962. */
  963. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  964. == ql_lbq_block_size(qdev))
  965. pci_unmap_page(qdev->pdev,
  966. lbq_desc->p.pg_chunk.map,
  967. ql_lbq_block_size(qdev),
  968. PCI_DMA_FROMDEVICE);
  969. return lbq_desc;
  970. }
  971. /* Get the next small buffer. */
  972. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  973. {
  974. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  975. rx_ring->sbq_curr_idx++;
  976. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  977. rx_ring->sbq_curr_idx = 0;
  978. rx_ring->sbq_free_cnt++;
  979. return sbq_desc;
  980. }
  981. /* Update an rx ring index. */
  982. static void ql_update_cq(struct rx_ring *rx_ring)
  983. {
  984. rx_ring->cnsmr_idx++;
  985. rx_ring->curr_entry++;
  986. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  987. rx_ring->cnsmr_idx = 0;
  988. rx_ring->curr_entry = rx_ring->cq_base;
  989. }
  990. }
  991. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  992. {
  993. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  994. }
  995. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  996. struct bq_desc *lbq_desc)
  997. {
  998. if (!rx_ring->pg_chunk.page) {
  999. u64 map;
  1000. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  1001. GFP_ATOMIC,
  1002. qdev->lbq_buf_order);
  1003. if (unlikely(!rx_ring->pg_chunk.page)) {
  1004. netif_err(qdev, drv, qdev->ndev,
  1005. "page allocation failed.\n");
  1006. return -ENOMEM;
  1007. }
  1008. rx_ring->pg_chunk.offset = 0;
  1009. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1010. 0, ql_lbq_block_size(qdev),
  1011. PCI_DMA_FROMDEVICE);
  1012. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1013. __free_pages(rx_ring->pg_chunk.page,
  1014. qdev->lbq_buf_order);
  1015. netif_err(qdev, drv, qdev->ndev,
  1016. "PCI mapping failed.\n");
  1017. return -ENOMEM;
  1018. }
  1019. rx_ring->pg_chunk.map = map;
  1020. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1021. }
  1022. /* Copy the current master pg_chunk info
  1023. * to the current descriptor.
  1024. */
  1025. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1026. /* Adjust the master page chunk for next
  1027. * buffer get.
  1028. */
  1029. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1030. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1031. rx_ring->pg_chunk.page = NULL;
  1032. lbq_desc->p.pg_chunk.last_flag = 1;
  1033. } else {
  1034. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1035. get_page(rx_ring->pg_chunk.page);
  1036. lbq_desc->p.pg_chunk.last_flag = 0;
  1037. }
  1038. return 0;
  1039. }
  1040. /* Process (refill) a large buffer queue. */
  1041. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1042. {
  1043. u32 clean_idx = rx_ring->lbq_clean_idx;
  1044. u32 start_idx = clean_idx;
  1045. struct bq_desc *lbq_desc;
  1046. u64 map;
  1047. int i;
  1048. while (rx_ring->lbq_free_cnt > 32) {
  1049. for (i = 0; i < 16; i++) {
  1050. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1051. "lbq: try cleaning clean_idx = %d.\n",
  1052. clean_idx);
  1053. lbq_desc = &rx_ring->lbq[clean_idx];
  1054. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1055. netif_err(qdev, ifup, qdev->ndev,
  1056. "Could not get a page chunk.\n");
  1057. return;
  1058. }
  1059. map = lbq_desc->p.pg_chunk.map +
  1060. lbq_desc->p.pg_chunk.offset;
  1061. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1062. pci_unmap_len_set(lbq_desc, maplen,
  1063. rx_ring->lbq_buf_size);
  1064. *lbq_desc->addr = cpu_to_le64(map);
  1065. pci_dma_sync_single_for_device(qdev->pdev, map,
  1066. rx_ring->lbq_buf_size,
  1067. PCI_DMA_FROMDEVICE);
  1068. clean_idx++;
  1069. if (clean_idx == rx_ring->lbq_len)
  1070. clean_idx = 0;
  1071. }
  1072. rx_ring->lbq_clean_idx = clean_idx;
  1073. rx_ring->lbq_prod_idx += 16;
  1074. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1075. rx_ring->lbq_prod_idx = 0;
  1076. rx_ring->lbq_free_cnt -= 16;
  1077. }
  1078. if (start_idx != clean_idx) {
  1079. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1080. "lbq: updating prod idx = %d.\n",
  1081. rx_ring->lbq_prod_idx);
  1082. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1083. rx_ring->lbq_prod_idx_db_reg);
  1084. }
  1085. }
  1086. /* Process (refill) a small buffer queue. */
  1087. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1088. {
  1089. u32 clean_idx = rx_ring->sbq_clean_idx;
  1090. u32 start_idx = clean_idx;
  1091. struct bq_desc *sbq_desc;
  1092. u64 map;
  1093. int i;
  1094. while (rx_ring->sbq_free_cnt > 16) {
  1095. for (i = 0; i < 16; i++) {
  1096. sbq_desc = &rx_ring->sbq[clean_idx];
  1097. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1098. "sbq: try cleaning clean_idx = %d.\n",
  1099. clean_idx);
  1100. if (sbq_desc->p.skb == NULL) {
  1101. netif_printk(qdev, rx_status, KERN_DEBUG,
  1102. qdev->ndev,
  1103. "sbq: getting new skb for index %d.\n",
  1104. sbq_desc->index);
  1105. sbq_desc->p.skb =
  1106. netdev_alloc_skb(qdev->ndev,
  1107. SMALL_BUFFER_SIZE);
  1108. if (sbq_desc->p.skb == NULL) {
  1109. netif_err(qdev, probe, qdev->ndev,
  1110. "Couldn't get an skb.\n");
  1111. rx_ring->sbq_clean_idx = clean_idx;
  1112. return;
  1113. }
  1114. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1115. map = pci_map_single(qdev->pdev,
  1116. sbq_desc->p.skb->data,
  1117. rx_ring->sbq_buf_size,
  1118. PCI_DMA_FROMDEVICE);
  1119. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1120. netif_err(qdev, ifup, qdev->ndev,
  1121. "PCI mapping failed.\n");
  1122. rx_ring->sbq_clean_idx = clean_idx;
  1123. dev_kfree_skb_any(sbq_desc->p.skb);
  1124. sbq_desc->p.skb = NULL;
  1125. return;
  1126. }
  1127. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1128. pci_unmap_len_set(sbq_desc, maplen,
  1129. rx_ring->sbq_buf_size);
  1130. *sbq_desc->addr = cpu_to_le64(map);
  1131. }
  1132. clean_idx++;
  1133. if (clean_idx == rx_ring->sbq_len)
  1134. clean_idx = 0;
  1135. }
  1136. rx_ring->sbq_clean_idx = clean_idx;
  1137. rx_ring->sbq_prod_idx += 16;
  1138. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1139. rx_ring->sbq_prod_idx = 0;
  1140. rx_ring->sbq_free_cnt -= 16;
  1141. }
  1142. if (start_idx != clean_idx) {
  1143. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1144. "sbq: updating prod idx = %d.\n",
  1145. rx_ring->sbq_prod_idx);
  1146. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1147. rx_ring->sbq_prod_idx_db_reg);
  1148. }
  1149. }
  1150. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1151. struct rx_ring *rx_ring)
  1152. {
  1153. ql_update_sbq(qdev, rx_ring);
  1154. ql_update_lbq(qdev, rx_ring);
  1155. }
  1156. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1157. * fails at some stage, or from the interrupt when a tx completes.
  1158. */
  1159. static void ql_unmap_send(struct ql_adapter *qdev,
  1160. struct tx_ring_desc *tx_ring_desc, int mapped)
  1161. {
  1162. int i;
  1163. for (i = 0; i < mapped; i++) {
  1164. if (i == 0 || (i == 7 && mapped > 7)) {
  1165. /*
  1166. * Unmap the skb->data area, or the
  1167. * external sglist (AKA the Outbound
  1168. * Address List (OAL)).
  1169. * If its the zeroeth element, then it's
  1170. * the skb->data area. If it's the 7th
  1171. * element and there is more than 6 frags,
  1172. * then its an OAL.
  1173. */
  1174. if (i == 7) {
  1175. netif_printk(qdev, tx_done, KERN_DEBUG,
  1176. qdev->ndev,
  1177. "unmapping OAL area.\n");
  1178. }
  1179. pci_unmap_single(qdev->pdev,
  1180. pci_unmap_addr(&tx_ring_desc->map[i],
  1181. mapaddr),
  1182. pci_unmap_len(&tx_ring_desc->map[i],
  1183. maplen),
  1184. PCI_DMA_TODEVICE);
  1185. } else {
  1186. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1187. "unmapping frag %d.\n", i);
  1188. pci_unmap_page(qdev->pdev,
  1189. pci_unmap_addr(&tx_ring_desc->map[i],
  1190. mapaddr),
  1191. pci_unmap_len(&tx_ring_desc->map[i],
  1192. maplen), PCI_DMA_TODEVICE);
  1193. }
  1194. }
  1195. }
  1196. /* Map the buffers for this transmit. This will return
  1197. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1198. */
  1199. static int ql_map_send(struct ql_adapter *qdev,
  1200. struct ob_mac_iocb_req *mac_iocb_ptr,
  1201. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1202. {
  1203. int len = skb_headlen(skb);
  1204. dma_addr_t map;
  1205. int frag_idx, err, map_idx = 0;
  1206. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1207. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1208. if (frag_cnt) {
  1209. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1210. "frag_cnt = %d.\n", frag_cnt);
  1211. }
  1212. /*
  1213. * Map the skb buffer first.
  1214. */
  1215. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1216. err = pci_dma_mapping_error(qdev->pdev, map);
  1217. if (err) {
  1218. netif_err(qdev, tx_queued, qdev->ndev,
  1219. "PCI mapping failed with error: %d\n", err);
  1220. return NETDEV_TX_BUSY;
  1221. }
  1222. tbd->len = cpu_to_le32(len);
  1223. tbd->addr = cpu_to_le64(map);
  1224. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1225. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1226. map_idx++;
  1227. /*
  1228. * This loop fills the remainder of the 8 address descriptors
  1229. * in the IOCB. If there are more than 7 fragments, then the
  1230. * eighth address desc will point to an external list (OAL).
  1231. * When this happens, the remainder of the frags will be stored
  1232. * in this list.
  1233. */
  1234. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1235. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1236. tbd++;
  1237. if (frag_idx == 6 && frag_cnt > 7) {
  1238. /* Let's tack on an sglist.
  1239. * Our control block will now
  1240. * look like this:
  1241. * iocb->seg[0] = skb->data
  1242. * iocb->seg[1] = frag[0]
  1243. * iocb->seg[2] = frag[1]
  1244. * iocb->seg[3] = frag[2]
  1245. * iocb->seg[4] = frag[3]
  1246. * iocb->seg[5] = frag[4]
  1247. * iocb->seg[6] = frag[5]
  1248. * iocb->seg[7] = ptr to OAL (external sglist)
  1249. * oal->seg[0] = frag[6]
  1250. * oal->seg[1] = frag[7]
  1251. * oal->seg[2] = frag[8]
  1252. * oal->seg[3] = frag[9]
  1253. * oal->seg[4] = frag[10]
  1254. * etc...
  1255. */
  1256. /* Tack on the OAL in the eighth segment of IOCB. */
  1257. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1258. sizeof(struct oal),
  1259. PCI_DMA_TODEVICE);
  1260. err = pci_dma_mapping_error(qdev->pdev, map);
  1261. if (err) {
  1262. netif_err(qdev, tx_queued, qdev->ndev,
  1263. "PCI mapping outbound address list with error: %d\n",
  1264. err);
  1265. goto map_error;
  1266. }
  1267. tbd->addr = cpu_to_le64(map);
  1268. /*
  1269. * The length is the number of fragments
  1270. * that remain to be mapped times the length
  1271. * of our sglist (OAL).
  1272. */
  1273. tbd->len =
  1274. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1275. (frag_cnt - frag_idx)) | TX_DESC_C);
  1276. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1277. map);
  1278. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1279. sizeof(struct oal));
  1280. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1281. map_idx++;
  1282. }
  1283. map =
  1284. pci_map_page(qdev->pdev, frag->page,
  1285. frag->page_offset, frag->size,
  1286. PCI_DMA_TODEVICE);
  1287. err = pci_dma_mapping_error(qdev->pdev, map);
  1288. if (err) {
  1289. netif_err(qdev, tx_queued, qdev->ndev,
  1290. "PCI mapping frags failed with error: %d.\n",
  1291. err);
  1292. goto map_error;
  1293. }
  1294. tbd->addr = cpu_to_le64(map);
  1295. tbd->len = cpu_to_le32(frag->size);
  1296. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1297. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1298. frag->size);
  1299. }
  1300. /* Save the number of segments we've mapped. */
  1301. tx_ring_desc->map_cnt = map_idx;
  1302. /* Terminate the last segment. */
  1303. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1304. return NETDEV_TX_OK;
  1305. map_error:
  1306. /*
  1307. * If the first frag mapping failed, then i will be zero.
  1308. * This causes the unmap of the skb->data area. Otherwise
  1309. * we pass in the number of frags that mapped successfully
  1310. * so they can be umapped.
  1311. */
  1312. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1313. return NETDEV_TX_BUSY;
  1314. }
  1315. /* Process an inbound completion from an rx ring. */
  1316. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1317. struct rx_ring *rx_ring,
  1318. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1319. u32 length,
  1320. u16 vlan_id)
  1321. {
  1322. struct sk_buff *skb;
  1323. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1324. struct skb_frag_struct *rx_frag;
  1325. int nr_frags;
  1326. struct napi_struct *napi = &rx_ring->napi;
  1327. napi->dev = qdev->ndev;
  1328. skb = napi_get_frags(napi);
  1329. if (!skb) {
  1330. netif_err(qdev, drv, qdev->ndev,
  1331. "Couldn't get an skb, exiting.\n");
  1332. rx_ring->rx_dropped++;
  1333. put_page(lbq_desc->p.pg_chunk.page);
  1334. return;
  1335. }
  1336. prefetch(lbq_desc->p.pg_chunk.va);
  1337. rx_frag = skb_shinfo(skb)->frags;
  1338. nr_frags = skb_shinfo(skb)->nr_frags;
  1339. rx_frag += nr_frags;
  1340. rx_frag->page = lbq_desc->p.pg_chunk.page;
  1341. rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
  1342. rx_frag->size = length;
  1343. skb->len += length;
  1344. skb->data_len += length;
  1345. skb->truesize += length;
  1346. skb_shinfo(skb)->nr_frags++;
  1347. rx_ring->rx_packets++;
  1348. rx_ring->rx_bytes += length;
  1349. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1350. skb_record_rx_queue(skb, rx_ring->cq_id);
  1351. if (qdev->vlgrp && (vlan_id != 0xffff))
  1352. vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
  1353. else
  1354. napi_gro_frags(napi);
  1355. }
  1356. /* Process an inbound completion from an rx ring. */
  1357. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1358. struct rx_ring *rx_ring,
  1359. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1360. u32 length,
  1361. u16 vlan_id)
  1362. {
  1363. struct net_device *ndev = qdev->ndev;
  1364. struct sk_buff *skb = NULL;
  1365. void *addr;
  1366. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1367. struct napi_struct *napi = &rx_ring->napi;
  1368. skb = netdev_alloc_skb(ndev, length);
  1369. if (!skb) {
  1370. netif_err(qdev, drv, qdev->ndev,
  1371. "Couldn't get an skb, need to unwind!.\n");
  1372. rx_ring->rx_dropped++;
  1373. put_page(lbq_desc->p.pg_chunk.page);
  1374. return;
  1375. }
  1376. addr = lbq_desc->p.pg_chunk.va;
  1377. prefetch(addr);
  1378. /* Frame error, so drop the packet. */
  1379. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1380. netif_err(qdev, drv, qdev->ndev,
  1381. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1382. rx_ring->rx_errors++;
  1383. goto err_out;
  1384. }
  1385. /* The max framesize filter on this chip is set higher than
  1386. * MTU since FCoE uses 2k frames.
  1387. */
  1388. if (skb->len > ndev->mtu + ETH_HLEN) {
  1389. netif_err(qdev, drv, qdev->ndev,
  1390. "Segment too small, dropping.\n");
  1391. rx_ring->rx_dropped++;
  1392. goto err_out;
  1393. }
  1394. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1395. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1396. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1397. length);
  1398. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1399. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1400. length-ETH_HLEN);
  1401. skb->len += length-ETH_HLEN;
  1402. skb->data_len += length-ETH_HLEN;
  1403. skb->truesize += length-ETH_HLEN;
  1404. rx_ring->rx_packets++;
  1405. rx_ring->rx_bytes += skb->len;
  1406. skb->protocol = eth_type_trans(skb, ndev);
  1407. skb->ip_summed = CHECKSUM_NONE;
  1408. if (qdev->rx_csum &&
  1409. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1410. /* TCP frame. */
  1411. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1412. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1413. "TCP checksum done!\n");
  1414. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1415. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1416. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1417. /* Unfragmented ipv4 UDP frame. */
  1418. struct iphdr *iph = (struct iphdr *) skb->data;
  1419. if (!(iph->frag_off &
  1420. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1421. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1422. netif_printk(qdev, rx_status, KERN_DEBUG,
  1423. qdev->ndev,
  1424. "TCP checksum done!\n");
  1425. }
  1426. }
  1427. }
  1428. skb_record_rx_queue(skb, rx_ring->cq_id);
  1429. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1430. if (qdev->vlgrp && (vlan_id != 0xffff))
  1431. vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
  1432. else
  1433. napi_gro_receive(napi, skb);
  1434. } else {
  1435. if (qdev->vlgrp && (vlan_id != 0xffff))
  1436. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1437. else
  1438. netif_receive_skb(skb);
  1439. }
  1440. return;
  1441. err_out:
  1442. dev_kfree_skb_any(skb);
  1443. put_page(lbq_desc->p.pg_chunk.page);
  1444. }
  1445. /* Process an inbound completion from an rx ring. */
  1446. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1447. struct rx_ring *rx_ring,
  1448. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1449. u32 length,
  1450. u16 vlan_id)
  1451. {
  1452. struct net_device *ndev = qdev->ndev;
  1453. struct sk_buff *skb = NULL;
  1454. struct sk_buff *new_skb = NULL;
  1455. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1456. skb = sbq_desc->p.skb;
  1457. /* Allocate new_skb and copy */
  1458. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1459. if (new_skb == NULL) {
  1460. netif_err(qdev, probe, qdev->ndev,
  1461. "No skb available, drop the packet.\n");
  1462. rx_ring->rx_dropped++;
  1463. return;
  1464. }
  1465. skb_reserve(new_skb, NET_IP_ALIGN);
  1466. memcpy(skb_put(new_skb, length), skb->data, length);
  1467. skb = new_skb;
  1468. /* Frame error, so drop the packet. */
  1469. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1470. netif_err(qdev, drv, qdev->ndev,
  1471. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1472. dev_kfree_skb_any(skb);
  1473. rx_ring->rx_errors++;
  1474. return;
  1475. }
  1476. /* loopback self test for ethtool */
  1477. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1478. ql_check_lb_frame(qdev, skb);
  1479. dev_kfree_skb_any(skb);
  1480. return;
  1481. }
  1482. /* The max framesize filter on this chip is set higher than
  1483. * MTU since FCoE uses 2k frames.
  1484. */
  1485. if (skb->len > ndev->mtu + ETH_HLEN) {
  1486. dev_kfree_skb_any(skb);
  1487. rx_ring->rx_dropped++;
  1488. return;
  1489. }
  1490. prefetch(skb->data);
  1491. skb->dev = ndev;
  1492. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1493. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1494. "%s Multicast.\n",
  1495. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1496. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1497. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1498. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1499. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1500. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1501. }
  1502. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1503. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1504. "Promiscuous Packet.\n");
  1505. rx_ring->rx_packets++;
  1506. rx_ring->rx_bytes += skb->len;
  1507. skb->protocol = eth_type_trans(skb, ndev);
  1508. skb->ip_summed = CHECKSUM_NONE;
  1509. /* If rx checksum is on, and there are no
  1510. * csum or frame errors.
  1511. */
  1512. if (qdev->rx_csum &&
  1513. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1514. /* TCP frame. */
  1515. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1516. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1517. "TCP checksum done!\n");
  1518. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1519. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1520. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1521. /* Unfragmented ipv4 UDP frame. */
  1522. struct iphdr *iph = (struct iphdr *) skb->data;
  1523. if (!(iph->frag_off &
  1524. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1525. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1526. netif_printk(qdev, rx_status, KERN_DEBUG,
  1527. qdev->ndev,
  1528. "TCP checksum done!\n");
  1529. }
  1530. }
  1531. }
  1532. skb_record_rx_queue(skb, rx_ring->cq_id);
  1533. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1534. if (qdev->vlgrp && (vlan_id != 0xffff))
  1535. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1536. vlan_id, skb);
  1537. else
  1538. napi_gro_receive(&rx_ring->napi, skb);
  1539. } else {
  1540. if (qdev->vlgrp && (vlan_id != 0xffff))
  1541. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1542. else
  1543. netif_receive_skb(skb);
  1544. }
  1545. }
  1546. static void ql_realign_skb(struct sk_buff *skb, int len)
  1547. {
  1548. void *temp_addr = skb->data;
  1549. /* Undo the skb_reserve(skb,32) we did before
  1550. * giving to hardware, and realign data on
  1551. * a 2-byte boundary.
  1552. */
  1553. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1554. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1555. skb_copy_to_linear_data(skb, temp_addr,
  1556. (unsigned int)len);
  1557. }
  1558. /*
  1559. * This function builds an skb for the given inbound
  1560. * completion. It will be rewritten for readability in the near
  1561. * future, but for not it works well.
  1562. */
  1563. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1564. struct rx_ring *rx_ring,
  1565. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1566. {
  1567. struct bq_desc *lbq_desc;
  1568. struct bq_desc *sbq_desc;
  1569. struct sk_buff *skb = NULL;
  1570. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1571. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1572. /*
  1573. * Handle the header buffer if present.
  1574. */
  1575. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1576. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1577. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1578. "Header of %d bytes in small buffer.\n", hdr_len);
  1579. /*
  1580. * Headers fit nicely into a small buffer.
  1581. */
  1582. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1583. pci_unmap_single(qdev->pdev,
  1584. pci_unmap_addr(sbq_desc, mapaddr),
  1585. pci_unmap_len(sbq_desc, maplen),
  1586. PCI_DMA_FROMDEVICE);
  1587. skb = sbq_desc->p.skb;
  1588. ql_realign_skb(skb, hdr_len);
  1589. skb_put(skb, hdr_len);
  1590. sbq_desc->p.skb = NULL;
  1591. }
  1592. /*
  1593. * Handle the data buffer(s).
  1594. */
  1595. if (unlikely(!length)) { /* Is there data too? */
  1596. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1597. "No Data buffer in this packet.\n");
  1598. return skb;
  1599. }
  1600. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1601. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1602. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1603. "Headers in small, data of %d bytes in small, combine them.\n",
  1604. length);
  1605. /*
  1606. * Data is less than small buffer size so it's
  1607. * stuffed in a small buffer.
  1608. * For this case we append the data
  1609. * from the "data" small buffer to the "header" small
  1610. * buffer.
  1611. */
  1612. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1613. pci_dma_sync_single_for_cpu(qdev->pdev,
  1614. pci_unmap_addr
  1615. (sbq_desc, mapaddr),
  1616. pci_unmap_len
  1617. (sbq_desc, maplen),
  1618. PCI_DMA_FROMDEVICE);
  1619. memcpy(skb_put(skb, length),
  1620. sbq_desc->p.skb->data, length);
  1621. pci_dma_sync_single_for_device(qdev->pdev,
  1622. pci_unmap_addr
  1623. (sbq_desc,
  1624. mapaddr),
  1625. pci_unmap_len
  1626. (sbq_desc,
  1627. maplen),
  1628. PCI_DMA_FROMDEVICE);
  1629. } else {
  1630. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1631. "%d bytes in a single small buffer.\n",
  1632. length);
  1633. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1634. skb = sbq_desc->p.skb;
  1635. ql_realign_skb(skb, length);
  1636. skb_put(skb, length);
  1637. pci_unmap_single(qdev->pdev,
  1638. pci_unmap_addr(sbq_desc,
  1639. mapaddr),
  1640. pci_unmap_len(sbq_desc,
  1641. maplen),
  1642. PCI_DMA_FROMDEVICE);
  1643. sbq_desc->p.skb = NULL;
  1644. }
  1645. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1646. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1647. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1648. "Header in small, %d bytes in large. Chain large to small!\n",
  1649. length);
  1650. /*
  1651. * The data is in a single large buffer. We
  1652. * chain it to the header buffer's skb and let
  1653. * it rip.
  1654. */
  1655. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1656. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1657. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1658. lbq_desc->p.pg_chunk.offset, length);
  1659. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1660. lbq_desc->p.pg_chunk.offset,
  1661. length);
  1662. skb->len += length;
  1663. skb->data_len += length;
  1664. skb->truesize += length;
  1665. } else {
  1666. /*
  1667. * The headers and data are in a single large buffer. We
  1668. * copy it to a new skb and let it go. This can happen with
  1669. * jumbo mtu on a non-TCP/UDP frame.
  1670. */
  1671. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1672. skb = netdev_alloc_skb(qdev->ndev, length);
  1673. if (skb == NULL) {
  1674. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1675. "No skb available, drop the packet.\n");
  1676. return NULL;
  1677. }
  1678. pci_unmap_page(qdev->pdev,
  1679. pci_unmap_addr(lbq_desc,
  1680. mapaddr),
  1681. pci_unmap_len(lbq_desc, maplen),
  1682. PCI_DMA_FROMDEVICE);
  1683. skb_reserve(skb, NET_IP_ALIGN);
  1684. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1685. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1686. length);
  1687. skb_fill_page_desc(skb, 0,
  1688. lbq_desc->p.pg_chunk.page,
  1689. lbq_desc->p.pg_chunk.offset,
  1690. length);
  1691. skb->len += length;
  1692. skb->data_len += length;
  1693. skb->truesize += length;
  1694. length -= length;
  1695. __pskb_pull_tail(skb,
  1696. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1697. VLAN_ETH_HLEN : ETH_HLEN);
  1698. }
  1699. } else {
  1700. /*
  1701. * The data is in a chain of large buffers
  1702. * pointed to by a small buffer. We loop
  1703. * thru and chain them to the our small header
  1704. * buffer's skb.
  1705. * frags: There are 18 max frags and our small
  1706. * buffer will hold 32 of them. The thing is,
  1707. * we'll use 3 max for our 9000 byte jumbo
  1708. * frames. If the MTU goes up we could
  1709. * eventually be in trouble.
  1710. */
  1711. int size, i = 0;
  1712. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1713. pci_unmap_single(qdev->pdev,
  1714. pci_unmap_addr(sbq_desc, mapaddr),
  1715. pci_unmap_len(sbq_desc, maplen),
  1716. PCI_DMA_FROMDEVICE);
  1717. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1718. /*
  1719. * This is an non TCP/UDP IP frame, so
  1720. * the headers aren't split into a small
  1721. * buffer. We have to use the small buffer
  1722. * that contains our sg list as our skb to
  1723. * send upstairs. Copy the sg list here to
  1724. * a local buffer and use it to find the
  1725. * pages to chain.
  1726. */
  1727. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1728. "%d bytes of headers & data in chain of large.\n",
  1729. length);
  1730. skb = sbq_desc->p.skb;
  1731. sbq_desc->p.skb = NULL;
  1732. skb_reserve(skb, NET_IP_ALIGN);
  1733. }
  1734. while (length > 0) {
  1735. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1736. size = (length < rx_ring->lbq_buf_size) ? length :
  1737. rx_ring->lbq_buf_size;
  1738. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1739. "Adding page %d to skb for %d bytes.\n",
  1740. i, size);
  1741. skb_fill_page_desc(skb, i,
  1742. lbq_desc->p.pg_chunk.page,
  1743. lbq_desc->p.pg_chunk.offset,
  1744. size);
  1745. skb->len += size;
  1746. skb->data_len += size;
  1747. skb->truesize += size;
  1748. length -= size;
  1749. i++;
  1750. }
  1751. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1752. VLAN_ETH_HLEN : ETH_HLEN);
  1753. }
  1754. return skb;
  1755. }
  1756. /* Process an inbound completion from an rx ring. */
  1757. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1758. struct rx_ring *rx_ring,
  1759. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1760. u16 vlan_id)
  1761. {
  1762. struct net_device *ndev = qdev->ndev;
  1763. struct sk_buff *skb = NULL;
  1764. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1765. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1766. if (unlikely(!skb)) {
  1767. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1768. "No skb available, drop packet.\n");
  1769. rx_ring->rx_dropped++;
  1770. return;
  1771. }
  1772. /* Frame error, so drop the packet. */
  1773. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1774. netif_err(qdev, drv, qdev->ndev,
  1775. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1776. dev_kfree_skb_any(skb);
  1777. rx_ring->rx_errors++;
  1778. return;
  1779. }
  1780. /* The max framesize filter on this chip is set higher than
  1781. * MTU since FCoE uses 2k frames.
  1782. */
  1783. if (skb->len > ndev->mtu + ETH_HLEN) {
  1784. dev_kfree_skb_any(skb);
  1785. rx_ring->rx_dropped++;
  1786. return;
  1787. }
  1788. /* loopback self test for ethtool */
  1789. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1790. ql_check_lb_frame(qdev, skb);
  1791. dev_kfree_skb_any(skb);
  1792. return;
  1793. }
  1794. prefetch(skb->data);
  1795. skb->dev = ndev;
  1796. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1797. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1798. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1799. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1800. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1801. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1802. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1803. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1804. rx_ring->rx_multicast++;
  1805. }
  1806. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1807. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1808. "Promiscuous Packet.\n");
  1809. }
  1810. skb->protocol = eth_type_trans(skb, ndev);
  1811. skb->ip_summed = CHECKSUM_NONE;
  1812. /* If rx checksum is on, and there are no
  1813. * csum or frame errors.
  1814. */
  1815. if (qdev->rx_csum &&
  1816. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1817. /* TCP frame. */
  1818. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1819. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1820. "TCP checksum done!\n");
  1821. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1822. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1823. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1824. /* Unfragmented ipv4 UDP frame. */
  1825. struct iphdr *iph = (struct iphdr *) skb->data;
  1826. if (!(iph->frag_off &
  1827. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1828. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1829. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1830. "TCP checksum done!\n");
  1831. }
  1832. }
  1833. }
  1834. rx_ring->rx_packets++;
  1835. rx_ring->rx_bytes += skb->len;
  1836. skb_record_rx_queue(skb, rx_ring->cq_id);
  1837. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1838. if (qdev->vlgrp &&
  1839. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1840. (vlan_id != 0))
  1841. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1842. vlan_id, skb);
  1843. else
  1844. napi_gro_receive(&rx_ring->napi, skb);
  1845. } else {
  1846. if (qdev->vlgrp &&
  1847. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1848. (vlan_id != 0))
  1849. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1850. else
  1851. netif_receive_skb(skb);
  1852. }
  1853. }
  1854. /* Process an inbound completion from an rx ring. */
  1855. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1856. struct rx_ring *rx_ring,
  1857. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1858. {
  1859. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1860. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1861. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1862. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1863. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1864. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1865. /* The data and headers are split into
  1866. * separate buffers.
  1867. */
  1868. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1869. vlan_id);
  1870. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1871. /* The data fit in a single small buffer.
  1872. * Allocate a new skb, copy the data and
  1873. * return the buffer to the free pool.
  1874. */
  1875. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1876. length, vlan_id);
  1877. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1878. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1879. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1880. /* TCP packet in a page chunk that's been checksummed.
  1881. * Tack it on to our GRO skb and let it go.
  1882. */
  1883. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1884. length, vlan_id);
  1885. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1886. /* Non-TCP packet in a page chunk. Allocate an
  1887. * skb, tack it on frags, and send it up.
  1888. */
  1889. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1890. length, vlan_id);
  1891. } else {
  1892. /* Non-TCP/UDP large frames that span multiple buffers
  1893. * can be processed corrrectly by the split frame logic.
  1894. */
  1895. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1896. vlan_id);
  1897. }
  1898. return (unsigned long)length;
  1899. }
  1900. /* Process an outbound completion from an rx ring. */
  1901. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1902. struct ob_mac_iocb_rsp *mac_rsp)
  1903. {
  1904. struct tx_ring *tx_ring;
  1905. struct tx_ring_desc *tx_ring_desc;
  1906. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1907. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1908. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1909. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1910. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1911. tx_ring->tx_packets++;
  1912. dev_kfree_skb(tx_ring_desc->skb);
  1913. tx_ring_desc->skb = NULL;
  1914. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1915. OB_MAC_IOCB_RSP_S |
  1916. OB_MAC_IOCB_RSP_L |
  1917. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1918. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1919. netif_warn(qdev, tx_done, qdev->ndev,
  1920. "Total descriptor length did not match transfer length.\n");
  1921. }
  1922. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1923. netif_warn(qdev, tx_done, qdev->ndev,
  1924. "Frame too short to be valid, not sent.\n");
  1925. }
  1926. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1927. netif_warn(qdev, tx_done, qdev->ndev,
  1928. "Frame too long, but sent anyway.\n");
  1929. }
  1930. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1931. netif_warn(qdev, tx_done, qdev->ndev,
  1932. "PCI backplane error. Frame not sent.\n");
  1933. }
  1934. }
  1935. atomic_inc(&tx_ring->tx_count);
  1936. }
  1937. /* Fire up a handler to reset the MPI processor. */
  1938. void ql_queue_fw_error(struct ql_adapter *qdev)
  1939. {
  1940. ql_link_off(qdev);
  1941. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1942. }
  1943. void ql_queue_asic_error(struct ql_adapter *qdev)
  1944. {
  1945. ql_link_off(qdev);
  1946. ql_disable_interrupts(qdev);
  1947. /* Clear adapter up bit to signal the recovery
  1948. * process that it shouldn't kill the reset worker
  1949. * thread
  1950. */
  1951. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1952. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1953. }
  1954. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1955. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1956. {
  1957. switch (ib_ae_rsp->event) {
  1958. case MGMT_ERR_EVENT:
  1959. netif_err(qdev, rx_err, qdev->ndev,
  1960. "Management Processor Fatal Error.\n");
  1961. ql_queue_fw_error(qdev);
  1962. return;
  1963. case CAM_LOOKUP_ERR_EVENT:
  1964. netif_err(qdev, link, qdev->ndev,
  1965. "Multiple CAM hits lookup occurred.\n");
  1966. netif_err(qdev, drv, qdev->ndev,
  1967. "This event shouldn't occur.\n");
  1968. ql_queue_asic_error(qdev);
  1969. return;
  1970. case SOFT_ECC_ERROR_EVENT:
  1971. netif_err(qdev, rx_err, qdev->ndev,
  1972. "Soft ECC error detected.\n");
  1973. ql_queue_asic_error(qdev);
  1974. break;
  1975. case PCI_ERR_ANON_BUF_RD:
  1976. netif_err(qdev, rx_err, qdev->ndev,
  1977. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1978. ib_ae_rsp->q_id);
  1979. ql_queue_asic_error(qdev);
  1980. break;
  1981. default:
  1982. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  1983. ib_ae_rsp->event);
  1984. ql_queue_asic_error(qdev);
  1985. break;
  1986. }
  1987. }
  1988. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1989. {
  1990. struct ql_adapter *qdev = rx_ring->qdev;
  1991. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1992. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1993. int count = 0;
  1994. struct tx_ring *tx_ring;
  1995. /* While there are entries in the completion queue. */
  1996. while (prod != rx_ring->cnsmr_idx) {
  1997. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1998. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  1999. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2000. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  2001. rmb();
  2002. switch (net_rsp->opcode) {
  2003. case OPCODE_OB_MAC_TSO_IOCB:
  2004. case OPCODE_OB_MAC_IOCB:
  2005. ql_process_mac_tx_intr(qdev, net_rsp);
  2006. break;
  2007. default:
  2008. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2009. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2010. net_rsp->opcode);
  2011. }
  2012. count++;
  2013. ql_update_cq(rx_ring);
  2014. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2015. }
  2016. ql_write_cq_idx(rx_ring);
  2017. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2018. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  2019. net_rsp != NULL) {
  2020. if (atomic_read(&tx_ring->queue_stopped) &&
  2021. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2022. /*
  2023. * The queue got stopped because the tx_ring was full.
  2024. * Wake it up, because it's now at least 25% empty.
  2025. */
  2026. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2027. }
  2028. return count;
  2029. }
  2030. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2031. {
  2032. struct ql_adapter *qdev = rx_ring->qdev;
  2033. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2034. struct ql_net_rsp_iocb *net_rsp;
  2035. int count = 0;
  2036. /* While there are entries in the completion queue. */
  2037. while (prod != rx_ring->cnsmr_idx) {
  2038. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2039. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2040. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2041. net_rsp = rx_ring->curr_entry;
  2042. rmb();
  2043. switch (net_rsp->opcode) {
  2044. case OPCODE_IB_MAC_IOCB:
  2045. ql_process_mac_rx_intr(qdev, rx_ring,
  2046. (struct ib_mac_iocb_rsp *)
  2047. net_rsp);
  2048. break;
  2049. case OPCODE_IB_AE_IOCB:
  2050. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2051. net_rsp);
  2052. break;
  2053. default:
  2054. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2055. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2056. net_rsp->opcode);
  2057. break;
  2058. }
  2059. count++;
  2060. ql_update_cq(rx_ring);
  2061. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2062. if (count == budget)
  2063. break;
  2064. }
  2065. ql_update_buffer_queues(qdev, rx_ring);
  2066. ql_write_cq_idx(rx_ring);
  2067. return count;
  2068. }
  2069. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2070. {
  2071. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2072. struct ql_adapter *qdev = rx_ring->qdev;
  2073. struct rx_ring *trx_ring;
  2074. int i, work_done = 0;
  2075. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2076. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2077. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2078. /* Service the TX rings first. They start
  2079. * right after the RSS rings. */
  2080. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2081. trx_ring = &qdev->rx_ring[i];
  2082. /* If this TX completion ring belongs to this vector and
  2083. * it's not empty then service it.
  2084. */
  2085. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2086. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2087. trx_ring->cnsmr_idx)) {
  2088. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2089. "%s: Servicing TX completion ring %d.\n",
  2090. __func__, trx_ring->cq_id);
  2091. ql_clean_outbound_rx_ring(trx_ring);
  2092. }
  2093. }
  2094. /*
  2095. * Now service the RSS ring if it's active.
  2096. */
  2097. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2098. rx_ring->cnsmr_idx) {
  2099. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2100. "%s: Servicing RX completion ring %d.\n",
  2101. __func__, rx_ring->cq_id);
  2102. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2103. }
  2104. if (work_done < budget) {
  2105. napi_complete(napi);
  2106. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2107. }
  2108. return work_done;
  2109. }
  2110. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  2111. {
  2112. struct ql_adapter *qdev = netdev_priv(ndev);
  2113. qdev->vlgrp = grp;
  2114. if (grp) {
  2115. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2116. "Turning on VLAN in NIC_RCV_CFG.\n");
  2117. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2118. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2119. } else {
  2120. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2121. "Turning off VLAN in NIC_RCV_CFG.\n");
  2122. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2123. }
  2124. }
  2125. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2126. {
  2127. struct ql_adapter *qdev = netdev_priv(ndev);
  2128. u32 enable_bit = MAC_ADDR_E;
  2129. int status;
  2130. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2131. if (status)
  2132. return;
  2133. if (ql_set_mac_addr_reg
  2134. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2135. netif_err(qdev, ifup, qdev->ndev,
  2136. "Failed to init vlan address.\n");
  2137. }
  2138. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2139. }
  2140. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2141. {
  2142. struct ql_adapter *qdev = netdev_priv(ndev);
  2143. u32 enable_bit = 0;
  2144. int status;
  2145. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2146. if (status)
  2147. return;
  2148. if (ql_set_mac_addr_reg
  2149. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2150. netif_err(qdev, ifup, qdev->ndev,
  2151. "Failed to clear vlan address.\n");
  2152. }
  2153. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2154. }
  2155. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2156. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2157. {
  2158. struct rx_ring *rx_ring = dev_id;
  2159. napi_schedule(&rx_ring->napi);
  2160. return IRQ_HANDLED;
  2161. }
  2162. /* This handles a fatal error, MPI activity, and the default
  2163. * rx_ring in an MSI-X multiple vector environment.
  2164. * In MSI/Legacy environment it also process the rest of
  2165. * the rx_rings.
  2166. */
  2167. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2168. {
  2169. struct rx_ring *rx_ring = dev_id;
  2170. struct ql_adapter *qdev = rx_ring->qdev;
  2171. struct intr_context *intr_context = &qdev->intr_context[0];
  2172. u32 var;
  2173. int work_done = 0;
  2174. spin_lock(&qdev->hw_lock);
  2175. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2176. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2177. "Shared Interrupt, Not ours!\n");
  2178. spin_unlock(&qdev->hw_lock);
  2179. return IRQ_NONE;
  2180. }
  2181. spin_unlock(&qdev->hw_lock);
  2182. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2183. /*
  2184. * Check for fatal error.
  2185. */
  2186. if (var & STS_FE) {
  2187. ql_queue_asic_error(qdev);
  2188. netif_err(qdev, intr, qdev->ndev,
  2189. "Got fatal error, STS = %x.\n", var);
  2190. var = ql_read32(qdev, ERR_STS);
  2191. netif_err(qdev, intr, qdev->ndev,
  2192. "Resetting chip. Error Status Register = 0x%x\n", var);
  2193. return IRQ_HANDLED;
  2194. }
  2195. /*
  2196. * Check MPI processor activity.
  2197. */
  2198. if ((var & STS_PI) &&
  2199. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2200. /*
  2201. * We've got an async event or mailbox completion.
  2202. * Handle it and clear the source of the interrupt.
  2203. */
  2204. netif_err(qdev, intr, qdev->ndev,
  2205. "Got MPI processor interrupt.\n");
  2206. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2207. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2208. queue_delayed_work_on(smp_processor_id(),
  2209. qdev->workqueue, &qdev->mpi_work, 0);
  2210. work_done++;
  2211. }
  2212. /*
  2213. * Get the bit-mask that shows the active queues for this
  2214. * pass. Compare it to the queues that this irq services
  2215. * and call napi if there's a match.
  2216. */
  2217. var = ql_read32(qdev, ISR1);
  2218. if (var & intr_context->irq_mask) {
  2219. netif_info(qdev, intr, qdev->ndev,
  2220. "Waking handler for rx_ring[0].\n");
  2221. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2222. napi_schedule(&rx_ring->napi);
  2223. work_done++;
  2224. }
  2225. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2226. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2227. }
  2228. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2229. {
  2230. if (skb_is_gso(skb)) {
  2231. int err;
  2232. if (skb_header_cloned(skb)) {
  2233. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2234. if (err)
  2235. return err;
  2236. }
  2237. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2238. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2239. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2240. mac_iocb_ptr->total_hdrs_len =
  2241. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2242. mac_iocb_ptr->net_trans_offset =
  2243. cpu_to_le16(skb_network_offset(skb) |
  2244. skb_transport_offset(skb)
  2245. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2246. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2247. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2248. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2249. struct iphdr *iph = ip_hdr(skb);
  2250. iph->check = 0;
  2251. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2252. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2253. iph->daddr, 0,
  2254. IPPROTO_TCP,
  2255. 0);
  2256. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2257. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2258. tcp_hdr(skb)->check =
  2259. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2260. &ipv6_hdr(skb)->daddr,
  2261. 0, IPPROTO_TCP, 0);
  2262. }
  2263. return 1;
  2264. }
  2265. return 0;
  2266. }
  2267. static void ql_hw_csum_setup(struct sk_buff *skb,
  2268. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2269. {
  2270. int len;
  2271. struct iphdr *iph = ip_hdr(skb);
  2272. __sum16 *check;
  2273. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2274. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2275. mac_iocb_ptr->net_trans_offset =
  2276. cpu_to_le16(skb_network_offset(skb) |
  2277. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2278. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2279. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2280. if (likely(iph->protocol == IPPROTO_TCP)) {
  2281. check = &(tcp_hdr(skb)->check);
  2282. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2283. mac_iocb_ptr->total_hdrs_len =
  2284. cpu_to_le16(skb_transport_offset(skb) +
  2285. (tcp_hdr(skb)->doff << 2));
  2286. } else {
  2287. check = &(udp_hdr(skb)->check);
  2288. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2289. mac_iocb_ptr->total_hdrs_len =
  2290. cpu_to_le16(skb_transport_offset(skb) +
  2291. sizeof(struct udphdr));
  2292. }
  2293. *check = ~csum_tcpudp_magic(iph->saddr,
  2294. iph->daddr, len, iph->protocol, 0);
  2295. }
  2296. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2297. {
  2298. struct tx_ring_desc *tx_ring_desc;
  2299. struct ob_mac_iocb_req *mac_iocb_ptr;
  2300. struct ql_adapter *qdev = netdev_priv(ndev);
  2301. int tso;
  2302. struct tx_ring *tx_ring;
  2303. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2304. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2305. if (skb_padto(skb, ETH_ZLEN))
  2306. return NETDEV_TX_OK;
  2307. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2308. netif_info(qdev, tx_queued, qdev->ndev,
  2309. "%s: shutting down tx queue %d du to lack of resources.\n",
  2310. __func__, tx_ring_idx);
  2311. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2312. atomic_inc(&tx_ring->queue_stopped);
  2313. tx_ring->tx_errors++;
  2314. return NETDEV_TX_BUSY;
  2315. }
  2316. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2317. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2318. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2319. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2320. mac_iocb_ptr->tid = tx_ring_desc->index;
  2321. /* We use the upper 32-bits to store the tx queue for this IO.
  2322. * When we get the completion we can use it to establish the context.
  2323. */
  2324. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2325. tx_ring_desc->skb = skb;
  2326. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2327. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  2328. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2329. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2330. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2331. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2332. }
  2333. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2334. if (tso < 0) {
  2335. dev_kfree_skb_any(skb);
  2336. return NETDEV_TX_OK;
  2337. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2338. ql_hw_csum_setup(skb,
  2339. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2340. }
  2341. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2342. NETDEV_TX_OK) {
  2343. netif_err(qdev, tx_queued, qdev->ndev,
  2344. "Could not map the segments.\n");
  2345. tx_ring->tx_errors++;
  2346. return NETDEV_TX_BUSY;
  2347. }
  2348. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2349. tx_ring->prod_idx++;
  2350. if (tx_ring->prod_idx == tx_ring->wq_len)
  2351. tx_ring->prod_idx = 0;
  2352. wmb();
  2353. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2354. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2355. "tx queued, slot %d, len %d\n",
  2356. tx_ring->prod_idx, skb->len);
  2357. atomic_dec(&tx_ring->tx_count);
  2358. return NETDEV_TX_OK;
  2359. }
  2360. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2361. {
  2362. if (qdev->rx_ring_shadow_reg_area) {
  2363. pci_free_consistent(qdev->pdev,
  2364. PAGE_SIZE,
  2365. qdev->rx_ring_shadow_reg_area,
  2366. qdev->rx_ring_shadow_reg_dma);
  2367. qdev->rx_ring_shadow_reg_area = NULL;
  2368. }
  2369. if (qdev->tx_ring_shadow_reg_area) {
  2370. pci_free_consistent(qdev->pdev,
  2371. PAGE_SIZE,
  2372. qdev->tx_ring_shadow_reg_area,
  2373. qdev->tx_ring_shadow_reg_dma);
  2374. qdev->tx_ring_shadow_reg_area = NULL;
  2375. }
  2376. }
  2377. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2378. {
  2379. qdev->rx_ring_shadow_reg_area =
  2380. pci_alloc_consistent(qdev->pdev,
  2381. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2382. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2383. netif_err(qdev, ifup, qdev->ndev,
  2384. "Allocation of RX shadow space failed.\n");
  2385. return -ENOMEM;
  2386. }
  2387. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2388. qdev->tx_ring_shadow_reg_area =
  2389. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2390. &qdev->tx_ring_shadow_reg_dma);
  2391. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2392. netif_err(qdev, ifup, qdev->ndev,
  2393. "Allocation of TX shadow space failed.\n");
  2394. goto err_wqp_sh_area;
  2395. }
  2396. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2397. return 0;
  2398. err_wqp_sh_area:
  2399. pci_free_consistent(qdev->pdev,
  2400. PAGE_SIZE,
  2401. qdev->rx_ring_shadow_reg_area,
  2402. qdev->rx_ring_shadow_reg_dma);
  2403. return -ENOMEM;
  2404. }
  2405. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2406. {
  2407. struct tx_ring_desc *tx_ring_desc;
  2408. int i;
  2409. struct ob_mac_iocb_req *mac_iocb_ptr;
  2410. mac_iocb_ptr = tx_ring->wq_base;
  2411. tx_ring_desc = tx_ring->q;
  2412. for (i = 0; i < tx_ring->wq_len; i++) {
  2413. tx_ring_desc->index = i;
  2414. tx_ring_desc->skb = NULL;
  2415. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2416. mac_iocb_ptr++;
  2417. tx_ring_desc++;
  2418. }
  2419. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2420. atomic_set(&tx_ring->queue_stopped, 0);
  2421. }
  2422. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2423. struct tx_ring *tx_ring)
  2424. {
  2425. if (tx_ring->wq_base) {
  2426. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2427. tx_ring->wq_base, tx_ring->wq_base_dma);
  2428. tx_ring->wq_base = NULL;
  2429. }
  2430. kfree(tx_ring->q);
  2431. tx_ring->q = NULL;
  2432. }
  2433. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2434. struct tx_ring *tx_ring)
  2435. {
  2436. tx_ring->wq_base =
  2437. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2438. &tx_ring->wq_base_dma);
  2439. if ((tx_ring->wq_base == NULL) ||
  2440. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2441. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2442. return -ENOMEM;
  2443. }
  2444. tx_ring->q =
  2445. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2446. if (tx_ring->q == NULL)
  2447. goto err;
  2448. return 0;
  2449. err:
  2450. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2451. tx_ring->wq_base, tx_ring->wq_base_dma);
  2452. return -ENOMEM;
  2453. }
  2454. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2455. {
  2456. struct bq_desc *lbq_desc;
  2457. uint32_t curr_idx, clean_idx;
  2458. curr_idx = rx_ring->lbq_curr_idx;
  2459. clean_idx = rx_ring->lbq_clean_idx;
  2460. while (curr_idx != clean_idx) {
  2461. lbq_desc = &rx_ring->lbq[curr_idx];
  2462. if (lbq_desc->p.pg_chunk.last_flag) {
  2463. pci_unmap_page(qdev->pdev,
  2464. lbq_desc->p.pg_chunk.map,
  2465. ql_lbq_block_size(qdev),
  2466. PCI_DMA_FROMDEVICE);
  2467. lbq_desc->p.pg_chunk.last_flag = 0;
  2468. }
  2469. put_page(lbq_desc->p.pg_chunk.page);
  2470. lbq_desc->p.pg_chunk.page = NULL;
  2471. if (++curr_idx == rx_ring->lbq_len)
  2472. curr_idx = 0;
  2473. }
  2474. }
  2475. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2476. {
  2477. int i;
  2478. struct bq_desc *sbq_desc;
  2479. for (i = 0; i < rx_ring->sbq_len; i++) {
  2480. sbq_desc = &rx_ring->sbq[i];
  2481. if (sbq_desc == NULL) {
  2482. netif_err(qdev, ifup, qdev->ndev,
  2483. "sbq_desc %d is NULL.\n", i);
  2484. return;
  2485. }
  2486. if (sbq_desc->p.skb) {
  2487. pci_unmap_single(qdev->pdev,
  2488. pci_unmap_addr(sbq_desc, mapaddr),
  2489. pci_unmap_len(sbq_desc, maplen),
  2490. PCI_DMA_FROMDEVICE);
  2491. dev_kfree_skb(sbq_desc->p.skb);
  2492. sbq_desc->p.skb = NULL;
  2493. }
  2494. }
  2495. }
  2496. /* Free all large and small rx buffers associated
  2497. * with the completion queues for this device.
  2498. */
  2499. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2500. {
  2501. int i;
  2502. struct rx_ring *rx_ring;
  2503. for (i = 0; i < qdev->rx_ring_count; i++) {
  2504. rx_ring = &qdev->rx_ring[i];
  2505. if (rx_ring->lbq)
  2506. ql_free_lbq_buffers(qdev, rx_ring);
  2507. if (rx_ring->sbq)
  2508. ql_free_sbq_buffers(qdev, rx_ring);
  2509. }
  2510. }
  2511. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2512. {
  2513. struct rx_ring *rx_ring;
  2514. int i;
  2515. for (i = 0; i < qdev->rx_ring_count; i++) {
  2516. rx_ring = &qdev->rx_ring[i];
  2517. if (rx_ring->type != TX_Q)
  2518. ql_update_buffer_queues(qdev, rx_ring);
  2519. }
  2520. }
  2521. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2522. struct rx_ring *rx_ring)
  2523. {
  2524. int i;
  2525. struct bq_desc *lbq_desc;
  2526. __le64 *bq = rx_ring->lbq_base;
  2527. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2528. for (i = 0; i < rx_ring->lbq_len; i++) {
  2529. lbq_desc = &rx_ring->lbq[i];
  2530. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2531. lbq_desc->index = i;
  2532. lbq_desc->addr = bq;
  2533. bq++;
  2534. }
  2535. }
  2536. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2537. struct rx_ring *rx_ring)
  2538. {
  2539. int i;
  2540. struct bq_desc *sbq_desc;
  2541. __le64 *bq = rx_ring->sbq_base;
  2542. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2543. for (i = 0; i < rx_ring->sbq_len; i++) {
  2544. sbq_desc = &rx_ring->sbq[i];
  2545. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2546. sbq_desc->index = i;
  2547. sbq_desc->addr = bq;
  2548. bq++;
  2549. }
  2550. }
  2551. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2552. struct rx_ring *rx_ring)
  2553. {
  2554. /* Free the small buffer queue. */
  2555. if (rx_ring->sbq_base) {
  2556. pci_free_consistent(qdev->pdev,
  2557. rx_ring->sbq_size,
  2558. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2559. rx_ring->sbq_base = NULL;
  2560. }
  2561. /* Free the small buffer queue control blocks. */
  2562. kfree(rx_ring->sbq);
  2563. rx_ring->sbq = NULL;
  2564. /* Free the large buffer queue. */
  2565. if (rx_ring->lbq_base) {
  2566. pci_free_consistent(qdev->pdev,
  2567. rx_ring->lbq_size,
  2568. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2569. rx_ring->lbq_base = NULL;
  2570. }
  2571. /* Free the large buffer queue control blocks. */
  2572. kfree(rx_ring->lbq);
  2573. rx_ring->lbq = NULL;
  2574. /* Free the rx queue. */
  2575. if (rx_ring->cq_base) {
  2576. pci_free_consistent(qdev->pdev,
  2577. rx_ring->cq_size,
  2578. rx_ring->cq_base, rx_ring->cq_base_dma);
  2579. rx_ring->cq_base = NULL;
  2580. }
  2581. }
  2582. /* Allocate queues and buffers for this completions queue based
  2583. * on the values in the parameter structure. */
  2584. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2585. struct rx_ring *rx_ring)
  2586. {
  2587. /*
  2588. * Allocate the completion queue for this rx_ring.
  2589. */
  2590. rx_ring->cq_base =
  2591. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2592. &rx_ring->cq_base_dma);
  2593. if (rx_ring->cq_base == NULL) {
  2594. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2595. return -ENOMEM;
  2596. }
  2597. if (rx_ring->sbq_len) {
  2598. /*
  2599. * Allocate small buffer queue.
  2600. */
  2601. rx_ring->sbq_base =
  2602. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2603. &rx_ring->sbq_base_dma);
  2604. if (rx_ring->sbq_base == NULL) {
  2605. netif_err(qdev, ifup, qdev->ndev,
  2606. "Small buffer queue allocation failed.\n");
  2607. goto err_mem;
  2608. }
  2609. /*
  2610. * Allocate small buffer queue control blocks.
  2611. */
  2612. rx_ring->sbq =
  2613. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2614. GFP_KERNEL);
  2615. if (rx_ring->sbq == NULL) {
  2616. netif_err(qdev, ifup, qdev->ndev,
  2617. "Small buffer queue control block allocation failed.\n");
  2618. goto err_mem;
  2619. }
  2620. ql_init_sbq_ring(qdev, rx_ring);
  2621. }
  2622. if (rx_ring->lbq_len) {
  2623. /*
  2624. * Allocate large buffer queue.
  2625. */
  2626. rx_ring->lbq_base =
  2627. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2628. &rx_ring->lbq_base_dma);
  2629. if (rx_ring->lbq_base == NULL) {
  2630. netif_err(qdev, ifup, qdev->ndev,
  2631. "Large buffer queue allocation failed.\n");
  2632. goto err_mem;
  2633. }
  2634. /*
  2635. * Allocate large buffer queue control blocks.
  2636. */
  2637. rx_ring->lbq =
  2638. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2639. GFP_KERNEL);
  2640. if (rx_ring->lbq == NULL) {
  2641. netif_err(qdev, ifup, qdev->ndev,
  2642. "Large buffer queue control block allocation failed.\n");
  2643. goto err_mem;
  2644. }
  2645. ql_init_lbq_ring(qdev, rx_ring);
  2646. }
  2647. return 0;
  2648. err_mem:
  2649. ql_free_rx_resources(qdev, rx_ring);
  2650. return -ENOMEM;
  2651. }
  2652. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2653. {
  2654. struct tx_ring *tx_ring;
  2655. struct tx_ring_desc *tx_ring_desc;
  2656. int i, j;
  2657. /*
  2658. * Loop through all queues and free
  2659. * any resources.
  2660. */
  2661. for (j = 0; j < qdev->tx_ring_count; j++) {
  2662. tx_ring = &qdev->tx_ring[j];
  2663. for (i = 0; i < tx_ring->wq_len; i++) {
  2664. tx_ring_desc = &tx_ring->q[i];
  2665. if (tx_ring_desc && tx_ring_desc->skb) {
  2666. netif_err(qdev, ifdown, qdev->ndev,
  2667. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2668. tx_ring_desc->skb, j,
  2669. tx_ring_desc->index);
  2670. ql_unmap_send(qdev, tx_ring_desc,
  2671. tx_ring_desc->map_cnt);
  2672. dev_kfree_skb(tx_ring_desc->skb);
  2673. tx_ring_desc->skb = NULL;
  2674. }
  2675. }
  2676. }
  2677. }
  2678. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2679. {
  2680. int i;
  2681. for (i = 0; i < qdev->tx_ring_count; i++)
  2682. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2683. for (i = 0; i < qdev->rx_ring_count; i++)
  2684. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2685. ql_free_shadow_space(qdev);
  2686. }
  2687. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2688. {
  2689. int i;
  2690. /* Allocate space for our shadow registers and such. */
  2691. if (ql_alloc_shadow_space(qdev))
  2692. return -ENOMEM;
  2693. for (i = 0; i < qdev->rx_ring_count; i++) {
  2694. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2695. netif_err(qdev, ifup, qdev->ndev,
  2696. "RX resource allocation failed.\n");
  2697. goto err_mem;
  2698. }
  2699. }
  2700. /* Allocate tx queue resources */
  2701. for (i = 0; i < qdev->tx_ring_count; i++) {
  2702. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2703. netif_err(qdev, ifup, qdev->ndev,
  2704. "TX resource allocation failed.\n");
  2705. goto err_mem;
  2706. }
  2707. }
  2708. return 0;
  2709. err_mem:
  2710. ql_free_mem_resources(qdev);
  2711. return -ENOMEM;
  2712. }
  2713. /* Set up the rx ring control block and pass it to the chip.
  2714. * The control block is defined as
  2715. * "Completion Queue Initialization Control Block", or cqicb.
  2716. */
  2717. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2718. {
  2719. struct cqicb *cqicb = &rx_ring->cqicb;
  2720. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2721. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2722. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2723. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2724. void __iomem *doorbell_area =
  2725. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2726. int err = 0;
  2727. u16 bq_len;
  2728. u64 tmp;
  2729. __le64 *base_indirect_ptr;
  2730. int page_entries;
  2731. /* Set up the shadow registers for this ring. */
  2732. rx_ring->prod_idx_sh_reg = shadow_reg;
  2733. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2734. *rx_ring->prod_idx_sh_reg = 0;
  2735. shadow_reg += sizeof(u64);
  2736. shadow_reg_dma += sizeof(u64);
  2737. rx_ring->lbq_base_indirect = shadow_reg;
  2738. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2739. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2740. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2741. rx_ring->sbq_base_indirect = shadow_reg;
  2742. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2743. /* PCI doorbell mem area + 0x00 for consumer index register */
  2744. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2745. rx_ring->cnsmr_idx = 0;
  2746. rx_ring->curr_entry = rx_ring->cq_base;
  2747. /* PCI doorbell mem area + 0x04 for valid register */
  2748. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2749. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2750. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2751. /* PCI doorbell mem area + 0x1c */
  2752. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2753. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2754. cqicb->msix_vect = rx_ring->irq;
  2755. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2756. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2757. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2758. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2759. /*
  2760. * Set up the control block load flags.
  2761. */
  2762. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2763. FLAGS_LV | /* Load MSI-X vector */
  2764. FLAGS_LI; /* Load irq delay values */
  2765. if (rx_ring->lbq_len) {
  2766. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2767. tmp = (u64)rx_ring->lbq_base_dma;
  2768. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2769. page_entries = 0;
  2770. do {
  2771. *base_indirect_ptr = cpu_to_le64(tmp);
  2772. tmp += DB_PAGE_SIZE;
  2773. base_indirect_ptr++;
  2774. page_entries++;
  2775. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2776. cqicb->lbq_addr =
  2777. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2778. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2779. (u16) rx_ring->lbq_buf_size;
  2780. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2781. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2782. (u16) rx_ring->lbq_len;
  2783. cqicb->lbq_len = cpu_to_le16(bq_len);
  2784. rx_ring->lbq_prod_idx = 0;
  2785. rx_ring->lbq_curr_idx = 0;
  2786. rx_ring->lbq_clean_idx = 0;
  2787. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2788. }
  2789. if (rx_ring->sbq_len) {
  2790. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2791. tmp = (u64)rx_ring->sbq_base_dma;
  2792. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2793. page_entries = 0;
  2794. do {
  2795. *base_indirect_ptr = cpu_to_le64(tmp);
  2796. tmp += DB_PAGE_SIZE;
  2797. base_indirect_ptr++;
  2798. page_entries++;
  2799. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2800. cqicb->sbq_addr =
  2801. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2802. cqicb->sbq_buf_size =
  2803. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2804. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2805. (u16) rx_ring->sbq_len;
  2806. cqicb->sbq_len = cpu_to_le16(bq_len);
  2807. rx_ring->sbq_prod_idx = 0;
  2808. rx_ring->sbq_curr_idx = 0;
  2809. rx_ring->sbq_clean_idx = 0;
  2810. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2811. }
  2812. switch (rx_ring->type) {
  2813. case TX_Q:
  2814. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2815. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2816. break;
  2817. case RX_Q:
  2818. /* Inbound completion handling rx_rings run in
  2819. * separate NAPI contexts.
  2820. */
  2821. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2822. 64);
  2823. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2824. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2825. break;
  2826. default:
  2827. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2828. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2829. }
  2830. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2831. "Initializing rx work queue.\n");
  2832. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2833. CFG_LCQ, rx_ring->cq_id);
  2834. if (err) {
  2835. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2836. return err;
  2837. }
  2838. return err;
  2839. }
  2840. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2841. {
  2842. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2843. void __iomem *doorbell_area =
  2844. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2845. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2846. (tx_ring->wq_id * sizeof(u64));
  2847. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2848. (tx_ring->wq_id * sizeof(u64));
  2849. int err = 0;
  2850. /*
  2851. * Assign doorbell registers for this tx_ring.
  2852. */
  2853. /* TX PCI doorbell mem area for tx producer index */
  2854. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2855. tx_ring->prod_idx = 0;
  2856. /* TX PCI doorbell mem area + 0x04 */
  2857. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2858. /*
  2859. * Assign shadow registers for this tx_ring.
  2860. */
  2861. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2862. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2863. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2864. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2865. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2866. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2867. wqicb->rid = 0;
  2868. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2869. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2870. ql_init_tx_ring(qdev, tx_ring);
  2871. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2872. (u16) tx_ring->wq_id);
  2873. if (err) {
  2874. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2875. return err;
  2876. }
  2877. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2878. "Successfully loaded WQICB.\n");
  2879. return err;
  2880. }
  2881. static void ql_disable_msix(struct ql_adapter *qdev)
  2882. {
  2883. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2884. pci_disable_msix(qdev->pdev);
  2885. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2886. kfree(qdev->msi_x_entry);
  2887. qdev->msi_x_entry = NULL;
  2888. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2889. pci_disable_msi(qdev->pdev);
  2890. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2891. }
  2892. }
  2893. /* We start by trying to get the number of vectors
  2894. * stored in qdev->intr_count. If we don't get that
  2895. * many then we reduce the count and try again.
  2896. */
  2897. static void ql_enable_msix(struct ql_adapter *qdev)
  2898. {
  2899. int i, err;
  2900. /* Get the MSIX vectors. */
  2901. if (qlge_irq_type == MSIX_IRQ) {
  2902. /* Try to alloc space for the msix struct,
  2903. * if it fails then go to MSI/legacy.
  2904. */
  2905. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2906. sizeof(struct msix_entry),
  2907. GFP_KERNEL);
  2908. if (!qdev->msi_x_entry) {
  2909. qlge_irq_type = MSI_IRQ;
  2910. goto msi;
  2911. }
  2912. for (i = 0; i < qdev->intr_count; i++)
  2913. qdev->msi_x_entry[i].entry = i;
  2914. /* Loop to get our vectors. We start with
  2915. * what we want and settle for what we get.
  2916. */
  2917. do {
  2918. err = pci_enable_msix(qdev->pdev,
  2919. qdev->msi_x_entry, qdev->intr_count);
  2920. if (err > 0)
  2921. qdev->intr_count = err;
  2922. } while (err > 0);
  2923. if (err < 0) {
  2924. kfree(qdev->msi_x_entry);
  2925. qdev->msi_x_entry = NULL;
  2926. netif_warn(qdev, ifup, qdev->ndev,
  2927. "MSI-X Enable failed, trying MSI.\n");
  2928. qdev->intr_count = 1;
  2929. qlge_irq_type = MSI_IRQ;
  2930. } else if (err == 0) {
  2931. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2932. netif_info(qdev, ifup, qdev->ndev,
  2933. "MSI-X Enabled, got %d vectors.\n",
  2934. qdev->intr_count);
  2935. return;
  2936. }
  2937. }
  2938. msi:
  2939. qdev->intr_count = 1;
  2940. if (qlge_irq_type == MSI_IRQ) {
  2941. if (!pci_enable_msi(qdev->pdev)) {
  2942. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2943. netif_info(qdev, ifup, qdev->ndev,
  2944. "Running with MSI interrupts.\n");
  2945. return;
  2946. }
  2947. }
  2948. qlge_irq_type = LEG_IRQ;
  2949. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2950. "Running with legacy interrupts.\n");
  2951. }
  2952. /* Each vector services 1 RSS ring and and 1 or more
  2953. * TX completion rings. This function loops through
  2954. * the TX completion rings and assigns the vector that
  2955. * will service it. An example would be if there are
  2956. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2957. * This would mean that vector 0 would service RSS ring 0
  2958. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2959. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2960. */
  2961. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2962. {
  2963. int i, j, vect;
  2964. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2965. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2966. /* Assign irq vectors to TX rx_rings.*/
  2967. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2968. i < qdev->rx_ring_count; i++) {
  2969. if (j == tx_rings_per_vector) {
  2970. vect++;
  2971. j = 0;
  2972. }
  2973. qdev->rx_ring[i].irq = vect;
  2974. j++;
  2975. }
  2976. } else {
  2977. /* For single vector all rings have an irq
  2978. * of zero.
  2979. */
  2980. for (i = 0; i < qdev->rx_ring_count; i++)
  2981. qdev->rx_ring[i].irq = 0;
  2982. }
  2983. }
  2984. /* Set the interrupt mask for this vector. Each vector
  2985. * will service 1 RSS ring and 1 or more TX completion
  2986. * rings. This function sets up a bit mask per vector
  2987. * that indicates which rings it services.
  2988. */
  2989. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2990. {
  2991. int j, vect = ctx->intr;
  2992. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2993. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2994. /* Add the RSS ring serviced by this vector
  2995. * to the mask.
  2996. */
  2997. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2998. /* Add the TX ring(s) serviced by this vector
  2999. * to the mask. */
  3000. for (j = 0; j < tx_rings_per_vector; j++) {
  3001. ctx->irq_mask |=
  3002. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3003. (vect * tx_rings_per_vector) + j].cq_id);
  3004. }
  3005. } else {
  3006. /* For single vector we just shift each queue's
  3007. * ID into the mask.
  3008. */
  3009. for (j = 0; j < qdev->rx_ring_count; j++)
  3010. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3011. }
  3012. }
  3013. /*
  3014. * Here we build the intr_context structures based on
  3015. * our rx_ring count and intr vector count.
  3016. * The intr_context structure is used to hook each vector
  3017. * to possibly different handlers.
  3018. */
  3019. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3020. {
  3021. int i = 0;
  3022. struct intr_context *intr_context = &qdev->intr_context[0];
  3023. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3024. /* Each rx_ring has it's
  3025. * own intr_context since we have separate
  3026. * vectors for each queue.
  3027. */
  3028. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3029. qdev->rx_ring[i].irq = i;
  3030. intr_context->intr = i;
  3031. intr_context->qdev = qdev;
  3032. /* Set up this vector's bit-mask that indicates
  3033. * which queues it services.
  3034. */
  3035. ql_set_irq_mask(qdev, intr_context);
  3036. /*
  3037. * We set up each vectors enable/disable/read bits so
  3038. * there's no bit/mask calculations in the critical path.
  3039. */
  3040. intr_context->intr_en_mask =
  3041. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3042. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3043. | i;
  3044. intr_context->intr_dis_mask =
  3045. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3046. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3047. INTR_EN_IHD | i;
  3048. intr_context->intr_read_mask =
  3049. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3050. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3051. i;
  3052. if (i == 0) {
  3053. /* The first vector/queue handles
  3054. * broadcast/multicast, fatal errors,
  3055. * and firmware events. This in addition
  3056. * to normal inbound NAPI processing.
  3057. */
  3058. intr_context->handler = qlge_isr;
  3059. sprintf(intr_context->name, "%s-rx-%d",
  3060. qdev->ndev->name, i);
  3061. } else {
  3062. /*
  3063. * Inbound queues handle unicast frames only.
  3064. */
  3065. intr_context->handler = qlge_msix_rx_isr;
  3066. sprintf(intr_context->name, "%s-rx-%d",
  3067. qdev->ndev->name, i);
  3068. }
  3069. }
  3070. } else {
  3071. /*
  3072. * All rx_rings use the same intr_context since
  3073. * there is only one vector.
  3074. */
  3075. intr_context->intr = 0;
  3076. intr_context->qdev = qdev;
  3077. /*
  3078. * We set up each vectors enable/disable/read bits so
  3079. * there's no bit/mask calculations in the critical path.
  3080. */
  3081. intr_context->intr_en_mask =
  3082. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3083. intr_context->intr_dis_mask =
  3084. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3085. INTR_EN_TYPE_DISABLE;
  3086. intr_context->intr_read_mask =
  3087. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3088. /*
  3089. * Single interrupt means one handler for all rings.
  3090. */
  3091. intr_context->handler = qlge_isr;
  3092. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3093. /* Set up this vector's bit-mask that indicates
  3094. * which queues it services. In this case there is
  3095. * a single vector so it will service all RSS and
  3096. * TX completion rings.
  3097. */
  3098. ql_set_irq_mask(qdev, intr_context);
  3099. }
  3100. /* Tell the TX completion rings which MSIx vector
  3101. * they will be using.
  3102. */
  3103. ql_set_tx_vect(qdev);
  3104. }
  3105. static void ql_free_irq(struct ql_adapter *qdev)
  3106. {
  3107. int i;
  3108. struct intr_context *intr_context = &qdev->intr_context[0];
  3109. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3110. if (intr_context->hooked) {
  3111. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3112. free_irq(qdev->msi_x_entry[i].vector,
  3113. &qdev->rx_ring[i]);
  3114. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3115. "freeing msix interrupt %d.\n", i);
  3116. } else {
  3117. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3118. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3119. "freeing msi interrupt %d.\n", i);
  3120. }
  3121. }
  3122. }
  3123. ql_disable_msix(qdev);
  3124. }
  3125. static int ql_request_irq(struct ql_adapter *qdev)
  3126. {
  3127. int i;
  3128. int status = 0;
  3129. struct pci_dev *pdev = qdev->pdev;
  3130. struct intr_context *intr_context = &qdev->intr_context[0];
  3131. ql_resolve_queues_to_irqs(qdev);
  3132. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3133. atomic_set(&intr_context->irq_cnt, 0);
  3134. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3135. status = request_irq(qdev->msi_x_entry[i].vector,
  3136. intr_context->handler,
  3137. 0,
  3138. intr_context->name,
  3139. &qdev->rx_ring[i]);
  3140. if (status) {
  3141. netif_err(qdev, ifup, qdev->ndev,
  3142. "Failed request for MSIX interrupt %d.\n",
  3143. i);
  3144. goto err_irq;
  3145. } else {
  3146. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3147. "Hooked intr %d, queue type %s, with name %s.\n",
  3148. i,
  3149. qdev->rx_ring[i].type == DEFAULT_Q ?
  3150. "DEFAULT_Q" :
  3151. qdev->rx_ring[i].type == TX_Q ?
  3152. "TX_Q" :
  3153. qdev->rx_ring[i].type == RX_Q ?
  3154. "RX_Q" : "",
  3155. intr_context->name);
  3156. }
  3157. } else {
  3158. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3159. "trying msi or legacy interrupts.\n");
  3160. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3161. "%s: irq = %d.\n", __func__, pdev->irq);
  3162. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3163. "%s: context->name = %s.\n", __func__,
  3164. intr_context->name);
  3165. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3166. "%s: dev_id = 0x%p.\n", __func__,
  3167. &qdev->rx_ring[0]);
  3168. status =
  3169. request_irq(pdev->irq, qlge_isr,
  3170. test_bit(QL_MSI_ENABLED,
  3171. &qdev->
  3172. flags) ? 0 : IRQF_SHARED,
  3173. intr_context->name, &qdev->rx_ring[0]);
  3174. if (status)
  3175. goto err_irq;
  3176. netif_err(qdev, ifup, qdev->ndev,
  3177. "Hooked intr %d, queue type %s, with name %s.\n",
  3178. i,
  3179. qdev->rx_ring[0].type == DEFAULT_Q ?
  3180. "DEFAULT_Q" :
  3181. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3182. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3183. intr_context->name);
  3184. }
  3185. intr_context->hooked = 1;
  3186. }
  3187. return status;
  3188. err_irq:
  3189. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3190. ql_free_irq(qdev);
  3191. return status;
  3192. }
  3193. static int ql_start_rss(struct ql_adapter *qdev)
  3194. {
  3195. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3196. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  3197. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  3198. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  3199. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  3200. 0xbe, 0xac, 0x01, 0xfa};
  3201. struct ricb *ricb = &qdev->ricb;
  3202. int status = 0;
  3203. int i;
  3204. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3205. memset((void *)ricb, 0, sizeof(*ricb));
  3206. ricb->base_cq = RSS_L4K;
  3207. ricb->flags =
  3208. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3209. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3210. /*
  3211. * Fill out the Indirection Table.
  3212. */
  3213. for (i = 0; i < 1024; i++)
  3214. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3215. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3216. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3217. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
  3218. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3219. if (status) {
  3220. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3221. return status;
  3222. }
  3223. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3224. "Successfully loaded RICB.\n");
  3225. return status;
  3226. }
  3227. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3228. {
  3229. int i, status = 0;
  3230. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3231. if (status)
  3232. return status;
  3233. /* Clear all the entries in the routing table. */
  3234. for (i = 0; i < 16; i++) {
  3235. status = ql_set_routing_reg(qdev, i, 0, 0);
  3236. if (status) {
  3237. netif_err(qdev, ifup, qdev->ndev,
  3238. "Failed to init routing register for CAM packets.\n");
  3239. break;
  3240. }
  3241. }
  3242. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3243. return status;
  3244. }
  3245. /* Initialize the frame-to-queue routing. */
  3246. static int ql_route_initialize(struct ql_adapter *qdev)
  3247. {
  3248. int status = 0;
  3249. /* Clear all the entries in the routing table. */
  3250. status = ql_clear_routing_entries(qdev);
  3251. if (status)
  3252. return status;
  3253. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3254. if (status)
  3255. return status;
  3256. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  3257. if (status) {
  3258. netif_err(qdev, ifup, qdev->ndev,
  3259. "Failed to init routing register for error packets.\n");
  3260. goto exit;
  3261. }
  3262. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3263. if (status) {
  3264. netif_err(qdev, ifup, qdev->ndev,
  3265. "Failed to init routing register for broadcast packets.\n");
  3266. goto exit;
  3267. }
  3268. /* If we have more than one inbound queue, then turn on RSS in the
  3269. * routing block.
  3270. */
  3271. if (qdev->rss_ring_count > 1) {
  3272. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3273. RT_IDX_RSS_MATCH, 1);
  3274. if (status) {
  3275. netif_err(qdev, ifup, qdev->ndev,
  3276. "Failed to init routing register for MATCH RSS packets.\n");
  3277. goto exit;
  3278. }
  3279. }
  3280. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3281. RT_IDX_CAM_HIT, 1);
  3282. if (status)
  3283. netif_err(qdev, ifup, qdev->ndev,
  3284. "Failed to init routing register for CAM packets.\n");
  3285. exit:
  3286. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3287. return status;
  3288. }
  3289. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3290. {
  3291. int status, set;
  3292. /* If check if the link is up and use to
  3293. * determine if we are setting or clearing
  3294. * the MAC address in the CAM.
  3295. */
  3296. set = ql_read32(qdev, STS);
  3297. set &= qdev->port_link_up;
  3298. status = ql_set_mac_addr(qdev, set);
  3299. if (status) {
  3300. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3301. return status;
  3302. }
  3303. status = ql_route_initialize(qdev);
  3304. if (status)
  3305. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3306. return status;
  3307. }
  3308. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3309. {
  3310. u32 value, mask;
  3311. int i;
  3312. int status = 0;
  3313. /*
  3314. * Set up the System register to halt on errors.
  3315. */
  3316. value = SYS_EFE | SYS_FAE;
  3317. mask = value << 16;
  3318. ql_write32(qdev, SYS, mask | value);
  3319. /* Set the default queue, and VLAN behavior. */
  3320. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3321. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3322. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3323. /* Set the MPI interrupt to enabled. */
  3324. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3325. /* Enable the function, set pagesize, enable error checking. */
  3326. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3327. FSC_EC | FSC_VM_PAGE_4K;
  3328. value |= SPLT_SETTING;
  3329. /* Set/clear header splitting. */
  3330. mask = FSC_VM_PAGESIZE_MASK |
  3331. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3332. ql_write32(qdev, FSC, mask | value);
  3333. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3334. /* Set RX packet routing to use port/pci function on which the
  3335. * packet arrived on in addition to usual frame routing.
  3336. * This is helpful on bonding where both interfaces can have
  3337. * the same MAC address.
  3338. */
  3339. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3340. /* Reroute all packets to our Interface.
  3341. * They may have been routed to MPI firmware
  3342. * due to WOL.
  3343. */
  3344. value = ql_read32(qdev, MGMT_RCV_CFG);
  3345. value &= ~MGMT_RCV_CFG_RM;
  3346. mask = 0xffff0000;
  3347. /* Sticky reg needs clearing due to WOL. */
  3348. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3349. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3350. /* Default WOL is enable on Mezz cards */
  3351. if (qdev->pdev->subsystem_device == 0x0068 ||
  3352. qdev->pdev->subsystem_device == 0x0180)
  3353. qdev->wol = WAKE_MAGIC;
  3354. /* Start up the rx queues. */
  3355. for (i = 0; i < qdev->rx_ring_count; i++) {
  3356. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3357. if (status) {
  3358. netif_err(qdev, ifup, qdev->ndev,
  3359. "Failed to start rx ring[%d].\n", i);
  3360. return status;
  3361. }
  3362. }
  3363. /* If there is more than one inbound completion queue
  3364. * then download a RICB to configure RSS.
  3365. */
  3366. if (qdev->rss_ring_count > 1) {
  3367. status = ql_start_rss(qdev);
  3368. if (status) {
  3369. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3370. return status;
  3371. }
  3372. }
  3373. /* Start up the tx queues. */
  3374. for (i = 0; i < qdev->tx_ring_count; i++) {
  3375. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3376. if (status) {
  3377. netif_err(qdev, ifup, qdev->ndev,
  3378. "Failed to start tx ring[%d].\n", i);
  3379. return status;
  3380. }
  3381. }
  3382. /* Initialize the port and set the max framesize. */
  3383. status = qdev->nic_ops->port_initialize(qdev);
  3384. if (status)
  3385. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3386. /* Set up the MAC address and frame routing filter. */
  3387. status = ql_cam_route_initialize(qdev);
  3388. if (status) {
  3389. netif_err(qdev, ifup, qdev->ndev,
  3390. "Failed to init CAM/Routing tables.\n");
  3391. return status;
  3392. }
  3393. /* Start NAPI for the RSS queues. */
  3394. for (i = 0; i < qdev->rss_ring_count; i++) {
  3395. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3396. "Enabling NAPI for rx_ring[%d].\n", i);
  3397. napi_enable(&qdev->rx_ring[i].napi);
  3398. }
  3399. return status;
  3400. }
  3401. /* Issue soft reset to chip. */
  3402. static int ql_adapter_reset(struct ql_adapter *qdev)
  3403. {
  3404. u32 value;
  3405. int status = 0;
  3406. unsigned long end_jiffies;
  3407. /* Clear all the entries in the routing table. */
  3408. status = ql_clear_routing_entries(qdev);
  3409. if (status) {
  3410. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3411. return status;
  3412. }
  3413. end_jiffies = jiffies +
  3414. max((unsigned long)1, usecs_to_jiffies(30));
  3415. /* Stop management traffic. */
  3416. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3417. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3418. ql_wait_fifo_empty(qdev);
  3419. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3420. do {
  3421. value = ql_read32(qdev, RST_FO);
  3422. if ((value & RST_FO_FR) == 0)
  3423. break;
  3424. cpu_relax();
  3425. } while (time_before(jiffies, end_jiffies));
  3426. if (value & RST_FO_FR) {
  3427. netif_err(qdev, ifdown, qdev->ndev,
  3428. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3429. status = -ETIMEDOUT;
  3430. }
  3431. /* Resume management traffic. */
  3432. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3433. return status;
  3434. }
  3435. static void ql_display_dev_info(struct net_device *ndev)
  3436. {
  3437. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3438. netif_info(qdev, probe, qdev->ndev,
  3439. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3440. "XG Roll = %d, XG Rev = %d.\n",
  3441. qdev->func,
  3442. qdev->port,
  3443. qdev->chip_rev_id & 0x0000000f,
  3444. qdev->chip_rev_id >> 4 & 0x0000000f,
  3445. qdev->chip_rev_id >> 8 & 0x0000000f,
  3446. qdev->chip_rev_id >> 12 & 0x0000000f);
  3447. netif_info(qdev, probe, qdev->ndev,
  3448. "MAC address %pM\n", ndev->dev_addr);
  3449. }
  3450. int ql_wol(struct ql_adapter *qdev)
  3451. {
  3452. int status = 0;
  3453. u32 wol = MB_WOL_DISABLE;
  3454. /* The CAM is still intact after a reset, but if we
  3455. * are doing WOL, then we may need to program the
  3456. * routing regs. We would also need to issue the mailbox
  3457. * commands to instruct the MPI what to do per the ethtool
  3458. * settings.
  3459. */
  3460. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3461. WAKE_MCAST | WAKE_BCAST)) {
  3462. netif_err(qdev, ifdown, qdev->ndev,
  3463. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3464. qdev->wol);
  3465. return -EINVAL;
  3466. }
  3467. if (qdev->wol & WAKE_MAGIC) {
  3468. status = ql_mb_wol_set_magic(qdev, 1);
  3469. if (status) {
  3470. netif_err(qdev, ifdown, qdev->ndev,
  3471. "Failed to set magic packet on %s.\n",
  3472. qdev->ndev->name);
  3473. return status;
  3474. } else
  3475. netif_info(qdev, drv, qdev->ndev,
  3476. "Enabled magic packet successfully on %s.\n",
  3477. qdev->ndev->name);
  3478. wol |= MB_WOL_MAGIC_PKT;
  3479. }
  3480. if (qdev->wol) {
  3481. wol |= MB_WOL_MODE_ON;
  3482. status = ql_mb_wol_mode(qdev, wol);
  3483. netif_err(qdev, drv, qdev->ndev,
  3484. "WOL %s (wol code 0x%x) on %s\n",
  3485. (status == 0) ? "Sucessfully set" : "Failed",
  3486. wol, qdev->ndev->name);
  3487. }
  3488. return status;
  3489. }
  3490. static int ql_adapter_down(struct ql_adapter *qdev)
  3491. {
  3492. int i, status = 0;
  3493. ql_link_off(qdev);
  3494. /* Don't kill the reset worker thread if we
  3495. * are in the process of recovery.
  3496. */
  3497. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3498. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3499. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3500. cancel_delayed_work_sync(&qdev->mpi_work);
  3501. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3502. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3503. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3504. for (i = 0; i < qdev->rss_ring_count; i++)
  3505. napi_disable(&qdev->rx_ring[i].napi);
  3506. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3507. ql_disable_interrupts(qdev);
  3508. ql_tx_ring_clean(qdev);
  3509. /* Call netif_napi_del() from common point.
  3510. */
  3511. for (i = 0; i < qdev->rss_ring_count; i++)
  3512. netif_napi_del(&qdev->rx_ring[i].napi);
  3513. ql_free_rx_buffers(qdev);
  3514. status = ql_adapter_reset(qdev);
  3515. if (status)
  3516. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3517. qdev->func);
  3518. return status;
  3519. }
  3520. static int ql_adapter_up(struct ql_adapter *qdev)
  3521. {
  3522. int err = 0;
  3523. err = ql_adapter_initialize(qdev);
  3524. if (err) {
  3525. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3526. goto err_init;
  3527. }
  3528. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3529. ql_alloc_rx_buffers(qdev);
  3530. /* If the port is initialized and the
  3531. * link is up the turn on the carrier.
  3532. */
  3533. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3534. (ql_read32(qdev, STS) & qdev->port_link_up))
  3535. ql_link_on(qdev);
  3536. ql_enable_interrupts(qdev);
  3537. ql_enable_all_completion_interrupts(qdev);
  3538. netif_tx_start_all_queues(qdev->ndev);
  3539. return 0;
  3540. err_init:
  3541. ql_adapter_reset(qdev);
  3542. return err;
  3543. }
  3544. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3545. {
  3546. ql_free_mem_resources(qdev);
  3547. ql_free_irq(qdev);
  3548. }
  3549. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3550. {
  3551. int status = 0;
  3552. if (ql_alloc_mem_resources(qdev)) {
  3553. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3554. return -ENOMEM;
  3555. }
  3556. status = ql_request_irq(qdev);
  3557. return status;
  3558. }
  3559. static int qlge_close(struct net_device *ndev)
  3560. {
  3561. struct ql_adapter *qdev = netdev_priv(ndev);
  3562. /* If we hit pci_channel_io_perm_failure
  3563. * failure condition, then we already
  3564. * brought the adapter down.
  3565. */
  3566. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3567. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3568. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3569. return 0;
  3570. }
  3571. /*
  3572. * Wait for device to recover from a reset.
  3573. * (Rarely happens, but possible.)
  3574. */
  3575. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3576. msleep(1);
  3577. ql_adapter_down(qdev);
  3578. ql_release_adapter_resources(qdev);
  3579. return 0;
  3580. }
  3581. static int ql_configure_rings(struct ql_adapter *qdev)
  3582. {
  3583. int i;
  3584. struct rx_ring *rx_ring;
  3585. struct tx_ring *tx_ring;
  3586. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3587. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3588. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3589. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3590. /* In a perfect world we have one RSS ring for each CPU
  3591. * and each has it's own vector. To do that we ask for
  3592. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3593. * vector count to what we actually get. We then
  3594. * allocate an RSS ring for each.
  3595. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3596. */
  3597. qdev->intr_count = cpu_cnt;
  3598. ql_enable_msix(qdev);
  3599. /* Adjust the RSS ring count to the actual vector count. */
  3600. qdev->rss_ring_count = qdev->intr_count;
  3601. qdev->tx_ring_count = cpu_cnt;
  3602. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3603. for (i = 0; i < qdev->tx_ring_count; i++) {
  3604. tx_ring = &qdev->tx_ring[i];
  3605. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3606. tx_ring->qdev = qdev;
  3607. tx_ring->wq_id = i;
  3608. tx_ring->wq_len = qdev->tx_ring_size;
  3609. tx_ring->wq_size =
  3610. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3611. /*
  3612. * The completion queue ID for the tx rings start
  3613. * immediately after the rss rings.
  3614. */
  3615. tx_ring->cq_id = qdev->rss_ring_count + i;
  3616. }
  3617. for (i = 0; i < qdev->rx_ring_count; i++) {
  3618. rx_ring = &qdev->rx_ring[i];
  3619. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3620. rx_ring->qdev = qdev;
  3621. rx_ring->cq_id = i;
  3622. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3623. if (i < qdev->rss_ring_count) {
  3624. /*
  3625. * Inbound (RSS) queues.
  3626. */
  3627. rx_ring->cq_len = qdev->rx_ring_size;
  3628. rx_ring->cq_size =
  3629. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3630. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3631. rx_ring->lbq_size =
  3632. rx_ring->lbq_len * sizeof(__le64);
  3633. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3634. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3635. "lbq_buf_size %d, order = %d\n",
  3636. rx_ring->lbq_buf_size,
  3637. qdev->lbq_buf_order);
  3638. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3639. rx_ring->sbq_size =
  3640. rx_ring->sbq_len * sizeof(__le64);
  3641. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3642. rx_ring->type = RX_Q;
  3643. } else {
  3644. /*
  3645. * Outbound queue handles outbound completions only.
  3646. */
  3647. /* outbound cq is same size as tx_ring it services. */
  3648. rx_ring->cq_len = qdev->tx_ring_size;
  3649. rx_ring->cq_size =
  3650. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3651. rx_ring->lbq_len = 0;
  3652. rx_ring->lbq_size = 0;
  3653. rx_ring->lbq_buf_size = 0;
  3654. rx_ring->sbq_len = 0;
  3655. rx_ring->sbq_size = 0;
  3656. rx_ring->sbq_buf_size = 0;
  3657. rx_ring->type = TX_Q;
  3658. }
  3659. }
  3660. return 0;
  3661. }
  3662. static int qlge_open(struct net_device *ndev)
  3663. {
  3664. int err = 0;
  3665. struct ql_adapter *qdev = netdev_priv(ndev);
  3666. err = ql_adapter_reset(qdev);
  3667. if (err)
  3668. return err;
  3669. err = ql_configure_rings(qdev);
  3670. if (err)
  3671. return err;
  3672. err = ql_get_adapter_resources(qdev);
  3673. if (err)
  3674. goto error_up;
  3675. err = ql_adapter_up(qdev);
  3676. if (err)
  3677. goto error_up;
  3678. return err;
  3679. error_up:
  3680. ql_release_adapter_resources(qdev);
  3681. return err;
  3682. }
  3683. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3684. {
  3685. struct rx_ring *rx_ring;
  3686. int i, status;
  3687. u32 lbq_buf_len;
  3688. /* Wait for an oustanding reset to complete. */
  3689. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3690. int i = 3;
  3691. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3692. netif_err(qdev, ifup, qdev->ndev,
  3693. "Waiting for adapter UP...\n");
  3694. ssleep(1);
  3695. }
  3696. if (!i) {
  3697. netif_err(qdev, ifup, qdev->ndev,
  3698. "Timed out waiting for adapter UP\n");
  3699. return -ETIMEDOUT;
  3700. }
  3701. }
  3702. status = ql_adapter_down(qdev);
  3703. if (status)
  3704. goto error;
  3705. /* Get the new rx buffer size. */
  3706. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3707. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3708. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3709. for (i = 0; i < qdev->rss_ring_count; i++) {
  3710. rx_ring = &qdev->rx_ring[i];
  3711. /* Set the new size. */
  3712. rx_ring->lbq_buf_size = lbq_buf_len;
  3713. }
  3714. status = ql_adapter_up(qdev);
  3715. if (status)
  3716. goto error;
  3717. return status;
  3718. error:
  3719. netif_alert(qdev, ifup, qdev->ndev,
  3720. "Driver up/down cycle failed, closing device.\n");
  3721. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3722. dev_close(qdev->ndev);
  3723. return status;
  3724. }
  3725. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3726. {
  3727. struct ql_adapter *qdev = netdev_priv(ndev);
  3728. int status;
  3729. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3730. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3731. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3732. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3733. } else
  3734. return -EINVAL;
  3735. queue_delayed_work(qdev->workqueue,
  3736. &qdev->mpi_port_cfg_work, 3*HZ);
  3737. ndev->mtu = new_mtu;
  3738. if (!netif_running(qdev->ndev)) {
  3739. return 0;
  3740. }
  3741. status = ql_change_rx_buffers(qdev);
  3742. if (status) {
  3743. netif_err(qdev, ifup, qdev->ndev,
  3744. "Changing MTU failed.\n");
  3745. }
  3746. return status;
  3747. }
  3748. static struct net_device_stats *qlge_get_stats(struct net_device
  3749. *ndev)
  3750. {
  3751. struct ql_adapter *qdev = netdev_priv(ndev);
  3752. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3753. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3754. unsigned long pkts, mcast, dropped, errors, bytes;
  3755. int i;
  3756. /* Get RX stats. */
  3757. pkts = mcast = dropped = errors = bytes = 0;
  3758. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3759. pkts += rx_ring->rx_packets;
  3760. bytes += rx_ring->rx_bytes;
  3761. dropped += rx_ring->rx_dropped;
  3762. errors += rx_ring->rx_errors;
  3763. mcast += rx_ring->rx_multicast;
  3764. }
  3765. ndev->stats.rx_packets = pkts;
  3766. ndev->stats.rx_bytes = bytes;
  3767. ndev->stats.rx_dropped = dropped;
  3768. ndev->stats.rx_errors = errors;
  3769. ndev->stats.multicast = mcast;
  3770. /* Get TX stats. */
  3771. pkts = errors = bytes = 0;
  3772. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3773. pkts += tx_ring->tx_packets;
  3774. bytes += tx_ring->tx_bytes;
  3775. errors += tx_ring->tx_errors;
  3776. }
  3777. ndev->stats.tx_packets = pkts;
  3778. ndev->stats.tx_bytes = bytes;
  3779. ndev->stats.tx_errors = errors;
  3780. return &ndev->stats;
  3781. }
  3782. static void qlge_set_multicast_list(struct net_device *ndev)
  3783. {
  3784. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3785. struct dev_mc_list *mc_ptr;
  3786. int i, status;
  3787. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3788. if (status)
  3789. return;
  3790. /*
  3791. * Set or clear promiscuous mode if a
  3792. * transition is taking place.
  3793. */
  3794. if (ndev->flags & IFF_PROMISC) {
  3795. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3796. if (ql_set_routing_reg
  3797. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3798. netif_err(qdev, hw, qdev->ndev,
  3799. "Failed to set promiscous mode.\n");
  3800. } else {
  3801. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3802. }
  3803. }
  3804. } else {
  3805. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3806. if (ql_set_routing_reg
  3807. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3808. netif_err(qdev, hw, qdev->ndev,
  3809. "Failed to clear promiscous mode.\n");
  3810. } else {
  3811. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3812. }
  3813. }
  3814. }
  3815. /*
  3816. * Set or clear all multicast mode if a
  3817. * transition is taking place.
  3818. */
  3819. if ((ndev->flags & IFF_ALLMULTI) ||
  3820. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3821. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3822. if (ql_set_routing_reg
  3823. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3824. netif_err(qdev, hw, qdev->ndev,
  3825. "Failed to set all-multi mode.\n");
  3826. } else {
  3827. set_bit(QL_ALLMULTI, &qdev->flags);
  3828. }
  3829. }
  3830. } else {
  3831. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3832. if (ql_set_routing_reg
  3833. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3834. netif_err(qdev, hw, qdev->ndev,
  3835. "Failed to clear all-multi mode.\n");
  3836. } else {
  3837. clear_bit(QL_ALLMULTI, &qdev->flags);
  3838. }
  3839. }
  3840. }
  3841. if (!netdev_mc_empty(ndev)) {
  3842. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3843. if (status)
  3844. goto exit;
  3845. i = 0;
  3846. netdev_for_each_mc_addr(mc_ptr, ndev) {
  3847. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3848. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3849. netif_err(qdev, hw, qdev->ndev,
  3850. "Failed to loadmulticast address.\n");
  3851. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3852. goto exit;
  3853. }
  3854. i++;
  3855. }
  3856. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3857. if (ql_set_routing_reg
  3858. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3859. netif_err(qdev, hw, qdev->ndev,
  3860. "Failed to set multicast match mode.\n");
  3861. } else {
  3862. set_bit(QL_ALLMULTI, &qdev->flags);
  3863. }
  3864. }
  3865. exit:
  3866. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3867. }
  3868. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3869. {
  3870. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3871. struct sockaddr *addr = p;
  3872. int status;
  3873. if (!is_valid_ether_addr(addr->sa_data))
  3874. return -EADDRNOTAVAIL;
  3875. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3876. /* Update local copy of current mac address. */
  3877. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3878. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3879. if (status)
  3880. return status;
  3881. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3882. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3883. if (status)
  3884. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3885. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3886. return status;
  3887. }
  3888. static void qlge_tx_timeout(struct net_device *ndev)
  3889. {
  3890. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3891. ql_queue_asic_error(qdev);
  3892. }
  3893. static void ql_asic_reset_work(struct work_struct *work)
  3894. {
  3895. struct ql_adapter *qdev =
  3896. container_of(work, struct ql_adapter, asic_reset_work.work);
  3897. int status;
  3898. rtnl_lock();
  3899. status = ql_adapter_down(qdev);
  3900. if (status)
  3901. goto error;
  3902. status = ql_adapter_up(qdev);
  3903. if (status)
  3904. goto error;
  3905. /* Restore rx mode. */
  3906. clear_bit(QL_ALLMULTI, &qdev->flags);
  3907. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3908. qlge_set_multicast_list(qdev->ndev);
  3909. rtnl_unlock();
  3910. return;
  3911. error:
  3912. netif_alert(qdev, ifup, qdev->ndev,
  3913. "Driver up/down cycle failed, closing device\n");
  3914. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3915. dev_close(qdev->ndev);
  3916. rtnl_unlock();
  3917. }
  3918. static struct nic_operations qla8012_nic_ops = {
  3919. .get_flash = ql_get_8012_flash_params,
  3920. .port_initialize = ql_8012_port_initialize,
  3921. };
  3922. static struct nic_operations qla8000_nic_ops = {
  3923. .get_flash = ql_get_8000_flash_params,
  3924. .port_initialize = ql_8000_port_initialize,
  3925. };
  3926. /* Find the pcie function number for the other NIC
  3927. * on this chip. Since both NIC functions share a
  3928. * common firmware we have the lowest enabled function
  3929. * do any common work. Examples would be resetting
  3930. * after a fatal firmware error, or doing a firmware
  3931. * coredump.
  3932. */
  3933. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3934. {
  3935. int status = 0;
  3936. u32 temp;
  3937. u32 nic_func1, nic_func2;
  3938. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3939. &temp);
  3940. if (status)
  3941. return status;
  3942. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3943. MPI_TEST_NIC_FUNC_MASK);
  3944. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3945. MPI_TEST_NIC_FUNC_MASK);
  3946. if (qdev->func == nic_func1)
  3947. qdev->alt_func = nic_func2;
  3948. else if (qdev->func == nic_func2)
  3949. qdev->alt_func = nic_func1;
  3950. else
  3951. status = -EIO;
  3952. return status;
  3953. }
  3954. static int ql_get_board_info(struct ql_adapter *qdev)
  3955. {
  3956. int status;
  3957. qdev->func =
  3958. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3959. if (qdev->func > 3)
  3960. return -EIO;
  3961. status = ql_get_alt_pcie_func(qdev);
  3962. if (status)
  3963. return status;
  3964. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3965. if (qdev->port) {
  3966. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3967. qdev->port_link_up = STS_PL1;
  3968. qdev->port_init = STS_PI1;
  3969. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3970. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3971. } else {
  3972. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3973. qdev->port_link_up = STS_PL0;
  3974. qdev->port_init = STS_PI0;
  3975. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3976. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3977. }
  3978. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3979. qdev->device_id = qdev->pdev->device;
  3980. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3981. qdev->nic_ops = &qla8012_nic_ops;
  3982. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3983. qdev->nic_ops = &qla8000_nic_ops;
  3984. return status;
  3985. }
  3986. static void ql_release_all(struct pci_dev *pdev)
  3987. {
  3988. struct net_device *ndev = pci_get_drvdata(pdev);
  3989. struct ql_adapter *qdev = netdev_priv(ndev);
  3990. if (qdev->workqueue) {
  3991. destroy_workqueue(qdev->workqueue);
  3992. qdev->workqueue = NULL;
  3993. }
  3994. if (qdev->reg_base)
  3995. iounmap(qdev->reg_base);
  3996. if (qdev->doorbell_area)
  3997. iounmap(qdev->doorbell_area);
  3998. vfree(qdev->mpi_coredump);
  3999. pci_release_regions(pdev);
  4000. pci_set_drvdata(pdev, NULL);
  4001. }
  4002. static int __devinit ql_init_device(struct pci_dev *pdev,
  4003. struct net_device *ndev, int cards_found)
  4004. {
  4005. struct ql_adapter *qdev = netdev_priv(ndev);
  4006. int err = 0;
  4007. memset((void *)qdev, 0, sizeof(*qdev));
  4008. err = pci_enable_device(pdev);
  4009. if (err) {
  4010. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4011. return err;
  4012. }
  4013. qdev->ndev = ndev;
  4014. qdev->pdev = pdev;
  4015. pci_set_drvdata(pdev, ndev);
  4016. /* Set PCIe read request size */
  4017. err = pcie_set_readrq(pdev, 4096);
  4018. if (err) {
  4019. dev_err(&pdev->dev, "Set readrq failed.\n");
  4020. goto err_out1;
  4021. }
  4022. err = pci_request_regions(pdev, DRV_NAME);
  4023. if (err) {
  4024. dev_err(&pdev->dev, "PCI region request failed.\n");
  4025. return err;
  4026. }
  4027. pci_set_master(pdev);
  4028. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4029. set_bit(QL_DMA64, &qdev->flags);
  4030. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4031. } else {
  4032. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4033. if (!err)
  4034. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4035. }
  4036. if (err) {
  4037. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4038. goto err_out2;
  4039. }
  4040. /* Set PCIe reset type for EEH to fundamental. */
  4041. pdev->needs_freset = 1;
  4042. pci_save_state(pdev);
  4043. qdev->reg_base =
  4044. ioremap_nocache(pci_resource_start(pdev, 1),
  4045. pci_resource_len(pdev, 1));
  4046. if (!qdev->reg_base) {
  4047. dev_err(&pdev->dev, "Register mapping failed.\n");
  4048. err = -ENOMEM;
  4049. goto err_out2;
  4050. }
  4051. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4052. qdev->doorbell_area =
  4053. ioremap_nocache(pci_resource_start(pdev, 3),
  4054. pci_resource_len(pdev, 3));
  4055. if (!qdev->doorbell_area) {
  4056. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4057. err = -ENOMEM;
  4058. goto err_out2;
  4059. }
  4060. err = ql_get_board_info(qdev);
  4061. if (err) {
  4062. dev_err(&pdev->dev, "Register access failed.\n");
  4063. err = -EIO;
  4064. goto err_out2;
  4065. }
  4066. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4067. spin_lock_init(&qdev->hw_lock);
  4068. spin_lock_init(&qdev->stats_lock);
  4069. if (qlge_mpi_coredump) {
  4070. qdev->mpi_coredump =
  4071. vmalloc(sizeof(struct ql_mpi_coredump));
  4072. if (qdev->mpi_coredump == NULL) {
  4073. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4074. err = -ENOMEM;
  4075. goto err_out2;
  4076. }
  4077. if (qlge_force_coredump)
  4078. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4079. }
  4080. /* make sure the EEPROM is good */
  4081. err = qdev->nic_ops->get_flash(qdev);
  4082. if (err) {
  4083. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4084. goto err_out2;
  4085. }
  4086. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4087. /* Keep local copy of current mac address. */
  4088. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4089. /* Set up the default ring sizes. */
  4090. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4091. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4092. /* Set up the coalescing parameters. */
  4093. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4094. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4095. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4096. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4097. /*
  4098. * Set up the operating parameters.
  4099. */
  4100. qdev->rx_csum = 1;
  4101. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4102. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4103. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4104. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4105. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4106. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4107. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4108. init_completion(&qdev->ide_completion);
  4109. if (!cards_found) {
  4110. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4111. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4112. DRV_NAME, DRV_VERSION);
  4113. }
  4114. return 0;
  4115. err_out2:
  4116. ql_release_all(pdev);
  4117. err_out1:
  4118. pci_disable_device(pdev);
  4119. return err;
  4120. }
  4121. static const struct net_device_ops qlge_netdev_ops = {
  4122. .ndo_open = qlge_open,
  4123. .ndo_stop = qlge_close,
  4124. .ndo_start_xmit = qlge_send,
  4125. .ndo_change_mtu = qlge_change_mtu,
  4126. .ndo_get_stats = qlge_get_stats,
  4127. .ndo_set_multicast_list = qlge_set_multicast_list,
  4128. .ndo_set_mac_address = qlge_set_mac_address,
  4129. .ndo_validate_addr = eth_validate_addr,
  4130. .ndo_tx_timeout = qlge_tx_timeout,
  4131. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  4132. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4133. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4134. };
  4135. static void ql_timer(unsigned long data)
  4136. {
  4137. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4138. u32 var = 0;
  4139. var = ql_read32(qdev, STS);
  4140. if (pci_channel_offline(qdev->pdev)) {
  4141. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4142. return;
  4143. }
  4144. qdev->timer.expires = jiffies + (5*HZ);
  4145. add_timer(&qdev->timer);
  4146. }
  4147. static int __devinit qlge_probe(struct pci_dev *pdev,
  4148. const struct pci_device_id *pci_entry)
  4149. {
  4150. struct net_device *ndev = NULL;
  4151. struct ql_adapter *qdev = NULL;
  4152. static int cards_found = 0;
  4153. int err = 0;
  4154. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4155. min(MAX_CPUS, (int)num_online_cpus()));
  4156. if (!ndev)
  4157. return -ENOMEM;
  4158. err = ql_init_device(pdev, ndev, cards_found);
  4159. if (err < 0) {
  4160. free_netdev(ndev);
  4161. return err;
  4162. }
  4163. qdev = netdev_priv(ndev);
  4164. SET_NETDEV_DEV(ndev, &pdev->dev);
  4165. ndev->features = (0
  4166. | NETIF_F_IP_CSUM
  4167. | NETIF_F_SG
  4168. | NETIF_F_TSO
  4169. | NETIF_F_TSO6
  4170. | NETIF_F_TSO_ECN
  4171. | NETIF_F_HW_VLAN_TX
  4172. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  4173. ndev->features |= NETIF_F_GRO;
  4174. if (test_bit(QL_DMA64, &qdev->flags))
  4175. ndev->features |= NETIF_F_HIGHDMA;
  4176. /*
  4177. * Set up net_device structure.
  4178. */
  4179. ndev->tx_queue_len = qdev->tx_ring_size;
  4180. ndev->irq = pdev->irq;
  4181. ndev->netdev_ops = &qlge_netdev_ops;
  4182. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4183. ndev->watchdog_timeo = 10 * HZ;
  4184. err = register_netdev(ndev);
  4185. if (err) {
  4186. dev_err(&pdev->dev, "net device registration failed.\n");
  4187. ql_release_all(pdev);
  4188. pci_disable_device(pdev);
  4189. return err;
  4190. }
  4191. /* Start up the timer to trigger EEH if
  4192. * the bus goes dead
  4193. */
  4194. init_timer_deferrable(&qdev->timer);
  4195. qdev->timer.data = (unsigned long)qdev;
  4196. qdev->timer.function = ql_timer;
  4197. qdev->timer.expires = jiffies + (5*HZ);
  4198. add_timer(&qdev->timer);
  4199. ql_link_off(qdev);
  4200. ql_display_dev_info(ndev);
  4201. atomic_set(&qdev->lb_count, 0);
  4202. cards_found++;
  4203. return 0;
  4204. }
  4205. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4206. {
  4207. return qlge_send(skb, ndev);
  4208. }
  4209. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4210. {
  4211. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4212. }
  4213. static void __devexit qlge_remove(struct pci_dev *pdev)
  4214. {
  4215. struct net_device *ndev = pci_get_drvdata(pdev);
  4216. struct ql_adapter *qdev = netdev_priv(ndev);
  4217. del_timer_sync(&qdev->timer);
  4218. unregister_netdev(ndev);
  4219. ql_release_all(pdev);
  4220. pci_disable_device(pdev);
  4221. free_netdev(ndev);
  4222. }
  4223. /* Clean up resources without touching hardware. */
  4224. static void ql_eeh_close(struct net_device *ndev)
  4225. {
  4226. int i;
  4227. struct ql_adapter *qdev = netdev_priv(ndev);
  4228. if (netif_carrier_ok(ndev)) {
  4229. netif_carrier_off(ndev);
  4230. netif_stop_queue(ndev);
  4231. }
  4232. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  4233. cancel_delayed_work_sync(&qdev->asic_reset_work);
  4234. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  4235. cancel_delayed_work_sync(&qdev->mpi_work);
  4236. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  4237. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  4238. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  4239. for (i = 0; i < qdev->rss_ring_count; i++)
  4240. netif_napi_del(&qdev->rx_ring[i].napi);
  4241. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4242. ql_tx_ring_clean(qdev);
  4243. ql_free_rx_buffers(qdev);
  4244. ql_release_adapter_resources(qdev);
  4245. }
  4246. /*
  4247. * This callback is called by the PCI subsystem whenever
  4248. * a PCI bus error is detected.
  4249. */
  4250. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4251. enum pci_channel_state state)
  4252. {
  4253. struct net_device *ndev = pci_get_drvdata(pdev);
  4254. struct ql_adapter *qdev = netdev_priv(ndev);
  4255. switch (state) {
  4256. case pci_channel_io_normal:
  4257. return PCI_ERS_RESULT_CAN_RECOVER;
  4258. case pci_channel_io_frozen:
  4259. netif_device_detach(ndev);
  4260. if (netif_running(ndev))
  4261. ql_eeh_close(ndev);
  4262. pci_disable_device(pdev);
  4263. return PCI_ERS_RESULT_NEED_RESET;
  4264. case pci_channel_io_perm_failure:
  4265. dev_err(&pdev->dev,
  4266. "%s: pci_channel_io_perm_failure.\n", __func__);
  4267. ql_eeh_close(ndev);
  4268. set_bit(QL_EEH_FATAL, &qdev->flags);
  4269. return PCI_ERS_RESULT_DISCONNECT;
  4270. }
  4271. /* Request a slot reset. */
  4272. return PCI_ERS_RESULT_NEED_RESET;
  4273. }
  4274. /*
  4275. * This callback is called after the PCI buss has been reset.
  4276. * Basically, this tries to restart the card from scratch.
  4277. * This is a shortened version of the device probe/discovery code,
  4278. * it resembles the first-half of the () routine.
  4279. */
  4280. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4281. {
  4282. struct net_device *ndev = pci_get_drvdata(pdev);
  4283. struct ql_adapter *qdev = netdev_priv(ndev);
  4284. pdev->error_state = pci_channel_io_normal;
  4285. pci_restore_state(pdev);
  4286. if (pci_enable_device(pdev)) {
  4287. netif_err(qdev, ifup, qdev->ndev,
  4288. "Cannot re-enable PCI device after reset.\n");
  4289. return PCI_ERS_RESULT_DISCONNECT;
  4290. }
  4291. pci_set_master(pdev);
  4292. if (ql_adapter_reset(qdev)) {
  4293. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4294. set_bit(QL_EEH_FATAL, &qdev->flags);
  4295. return PCI_ERS_RESULT_DISCONNECT;
  4296. }
  4297. return PCI_ERS_RESULT_RECOVERED;
  4298. }
  4299. static void qlge_io_resume(struct pci_dev *pdev)
  4300. {
  4301. struct net_device *ndev = pci_get_drvdata(pdev);
  4302. struct ql_adapter *qdev = netdev_priv(ndev);
  4303. int err = 0;
  4304. if (netif_running(ndev)) {
  4305. err = qlge_open(ndev);
  4306. if (err) {
  4307. netif_err(qdev, ifup, qdev->ndev,
  4308. "Device initialization failed after reset.\n");
  4309. return;
  4310. }
  4311. } else {
  4312. netif_err(qdev, ifup, qdev->ndev,
  4313. "Device was not running prior to EEH.\n");
  4314. }
  4315. qdev->timer.expires = jiffies + (5*HZ);
  4316. add_timer(&qdev->timer);
  4317. netif_device_attach(ndev);
  4318. }
  4319. static struct pci_error_handlers qlge_err_handler = {
  4320. .error_detected = qlge_io_error_detected,
  4321. .slot_reset = qlge_io_slot_reset,
  4322. .resume = qlge_io_resume,
  4323. };
  4324. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4325. {
  4326. struct net_device *ndev = pci_get_drvdata(pdev);
  4327. struct ql_adapter *qdev = netdev_priv(ndev);
  4328. int err;
  4329. netif_device_detach(ndev);
  4330. del_timer_sync(&qdev->timer);
  4331. if (netif_running(ndev)) {
  4332. err = ql_adapter_down(qdev);
  4333. if (!err)
  4334. return err;
  4335. }
  4336. ql_wol(qdev);
  4337. err = pci_save_state(pdev);
  4338. if (err)
  4339. return err;
  4340. pci_disable_device(pdev);
  4341. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4342. return 0;
  4343. }
  4344. #ifdef CONFIG_PM
  4345. static int qlge_resume(struct pci_dev *pdev)
  4346. {
  4347. struct net_device *ndev = pci_get_drvdata(pdev);
  4348. struct ql_adapter *qdev = netdev_priv(ndev);
  4349. int err;
  4350. pci_set_power_state(pdev, PCI_D0);
  4351. pci_restore_state(pdev);
  4352. err = pci_enable_device(pdev);
  4353. if (err) {
  4354. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4355. return err;
  4356. }
  4357. pci_set_master(pdev);
  4358. pci_enable_wake(pdev, PCI_D3hot, 0);
  4359. pci_enable_wake(pdev, PCI_D3cold, 0);
  4360. if (netif_running(ndev)) {
  4361. err = ql_adapter_up(qdev);
  4362. if (err)
  4363. return err;
  4364. }
  4365. qdev->timer.expires = jiffies + (5*HZ);
  4366. add_timer(&qdev->timer);
  4367. netif_device_attach(ndev);
  4368. return 0;
  4369. }
  4370. #endif /* CONFIG_PM */
  4371. static void qlge_shutdown(struct pci_dev *pdev)
  4372. {
  4373. qlge_suspend(pdev, PMSG_SUSPEND);
  4374. }
  4375. static struct pci_driver qlge_driver = {
  4376. .name = DRV_NAME,
  4377. .id_table = qlge_pci_tbl,
  4378. .probe = qlge_probe,
  4379. .remove = __devexit_p(qlge_remove),
  4380. #ifdef CONFIG_PM
  4381. .suspend = qlge_suspend,
  4382. .resume = qlge_resume,
  4383. #endif
  4384. .shutdown = qlge_shutdown,
  4385. .err_handler = &qlge_err_handler
  4386. };
  4387. static int __init qlge_init_module(void)
  4388. {
  4389. return pci_register_driver(&qlge_driver);
  4390. }
  4391. static void __exit qlge_exit(void)
  4392. {
  4393. pci_unregister_driver(&qlge_driver);
  4394. }
  4395. module_init(qlge_init_module);
  4396. module_exit(qlge_exit);