qlge_dbg.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199
  1. #include "qlge.h"
  2. /* Read a NIC register from the alternate function. */
  3. static u32 ql_read_other_func_reg(struct ql_adapter *qdev,
  4. u32 reg)
  5. {
  6. u32 register_to_read;
  7. u32 reg_val;
  8. unsigned int status = 0;
  9. register_to_read = MPI_NIC_REG_BLOCK
  10. | MPI_NIC_READ
  11. | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
  12. | reg;
  13. status = ql_read_mpi_reg(qdev, register_to_read, &reg_val);
  14. if (status != 0)
  15. return 0xffffffff;
  16. return reg_val;
  17. }
  18. /* Write a NIC register from the alternate function. */
  19. static int ql_write_other_func_reg(struct ql_adapter *qdev,
  20. u32 reg, u32 reg_val)
  21. {
  22. u32 register_to_read;
  23. int status = 0;
  24. register_to_read = MPI_NIC_REG_BLOCK
  25. | MPI_NIC_READ
  26. | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
  27. | reg;
  28. status = ql_write_mpi_reg(qdev, register_to_read, reg_val);
  29. return status;
  30. }
  31. static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev, u32 reg,
  32. u32 bit, u32 err_bit)
  33. {
  34. u32 temp;
  35. int count = 10;
  36. while (count) {
  37. temp = ql_read_other_func_reg(qdev, reg);
  38. /* check for errors */
  39. if (temp & err_bit)
  40. return -1;
  41. else if (temp & bit)
  42. return 0;
  43. mdelay(10);
  44. count--;
  45. }
  46. return -1;
  47. }
  48. static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev, u32 reg,
  49. u32 *data)
  50. {
  51. int status;
  52. /* wait for reg to come ready */
  53. status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
  54. XG_SERDES_ADDR_RDY, 0);
  55. if (status)
  56. goto exit;
  57. /* set up for reg read */
  58. ql_write_other_func_reg(qdev, XG_SERDES_ADDR/4, reg | PROC_ADDR_R);
  59. /* wait for reg to come ready */
  60. status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
  61. XG_SERDES_ADDR_RDY, 0);
  62. if (status)
  63. goto exit;
  64. /* get the data */
  65. *data = ql_read_other_func_reg(qdev, (XG_SERDES_DATA / 4));
  66. exit:
  67. return status;
  68. }
  69. /* Read out the SERDES registers */
  70. static int ql_read_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 * data)
  71. {
  72. int status;
  73. /* wait for reg to come ready */
  74. status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
  75. if (status)
  76. goto exit;
  77. /* set up for reg read */
  78. ql_write32(qdev, XG_SERDES_ADDR, reg | PROC_ADDR_R);
  79. /* wait for reg to come ready */
  80. status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
  81. if (status)
  82. goto exit;
  83. /* get the data */
  84. *data = ql_read32(qdev, XG_SERDES_DATA);
  85. exit:
  86. return status;
  87. }
  88. static void ql_get_both_serdes(struct ql_adapter *qdev, u32 addr,
  89. u32 *direct_ptr, u32 *indirect_ptr,
  90. unsigned int direct_valid, unsigned int indirect_valid)
  91. {
  92. unsigned int status;
  93. status = 1;
  94. if (direct_valid)
  95. status = ql_read_serdes_reg(qdev, addr, direct_ptr);
  96. /* Dead fill any failures or invalids. */
  97. if (status)
  98. *direct_ptr = 0xDEADBEEF;
  99. status = 1;
  100. if (indirect_valid)
  101. status = ql_read_other_func_serdes_reg(
  102. qdev, addr, indirect_ptr);
  103. /* Dead fill any failures or invalids. */
  104. if (status)
  105. *indirect_ptr = 0xDEADBEEF;
  106. }
  107. static int ql_get_serdes_regs(struct ql_adapter *qdev,
  108. struct ql_mpi_coredump *mpi_coredump)
  109. {
  110. int status;
  111. unsigned int xfi_direct_valid, xfi_indirect_valid, xaui_direct_valid;
  112. unsigned int xaui_indirect_valid, i;
  113. u32 *direct_ptr, temp;
  114. u32 *indirect_ptr;
  115. xfi_direct_valid = xfi_indirect_valid = 0;
  116. xaui_direct_valid = xaui_indirect_valid = 1;
  117. /* The XAUI needs to be read out per port */
  118. if (qdev->func & 1) {
  119. /* We are NIC 2 */
  120. status = ql_read_other_func_serdes_reg(qdev,
  121. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  122. if (status)
  123. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  124. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  125. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  126. xaui_indirect_valid = 0;
  127. status = ql_read_serdes_reg(qdev,
  128. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  129. if (status)
  130. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  131. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  132. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  133. xaui_direct_valid = 0;
  134. } else {
  135. /* We are NIC 1 */
  136. status = ql_read_other_func_serdes_reg(qdev,
  137. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  138. if (status)
  139. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  140. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  141. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  142. xaui_indirect_valid = 0;
  143. status = ql_read_serdes_reg(qdev,
  144. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  145. if (status)
  146. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  147. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  148. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  149. xaui_direct_valid = 0;
  150. }
  151. /*
  152. * XFI register is shared so only need to read one
  153. * functions and then check the bits.
  154. */
  155. status = ql_read_serdes_reg(qdev, XG_SERDES_ADDR_STS, &temp);
  156. if (status)
  157. temp = 0;
  158. if ((temp & XG_SERDES_ADDR_XFI1_PWR_UP) ==
  159. XG_SERDES_ADDR_XFI1_PWR_UP) {
  160. /* now see if i'm NIC 1 or NIC 2 */
  161. if (qdev->func & 1)
  162. /* I'm NIC 2, so the indirect (NIC1) xfi is up. */
  163. xfi_indirect_valid = 1;
  164. else
  165. xfi_direct_valid = 1;
  166. }
  167. if ((temp & XG_SERDES_ADDR_XFI2_PWR_UP) ==
  168. XG_SERDES_ADDR_XFI2_PWR_UP) {
  169. /* now see if i'm NIC 1 or NIC 2 */
  170. if (qdev->func & 1)
  171. /* I'm NIC 2, so the indirect (NIC1) xfi is up. */
  172. xfi_direct_valid = 1;
  173. else
  174. xfi_indirect_valid = 1;
  175. }
  176. /* Get XAUI_AN register block. */
  177. if (qdev->func & 1) {
  178. /* Function 2 is direct */
  179. direct_ptr = mpi_coredump->serdes2_xaui_an;
  180. indirect_ptr = mpi_coredump->serdes_xaui_an;
  181. } else {
  182. /* Function 1 is direct */
  183. direct_ptr = mpi_coredump->serdes_xaui_an;
  184. indirect_ptr = mpi_coredump->serdes2_xaui_an;
  185. }
  186. for (i = 0; i <= 0x000000034; i += 4, direct_ptr++, indirect_ptr++)
  187. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  188. xaui_direct_valid, xaui_indirect_valid);
  189. /* Get XAUI_HSS_PCS register block. */
  190. if (qdev->func & 1) {
  191. direct_ptr =
  192. mpi_coredump->serdes2_xaui_hss_pcs;
  193. indirect_ptr =
  194. mpi_coredump->serdes_xaui_hss_pcs;
  195. } else {
  196. direct_ptr =
  197. mpi_coredump->serdes_xaui_hss_pcs;
  198. indirect_ptr =
  199. mpi_coredump->serdes2_xaui_hss_pcs;
  200. }
  201. for (i = 0x800; i <= 0x880; i += 4, direct_ptr++, indirect_ptr++)
  202. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  203. xaui_direct_valid, xaui_indirect_valid);
  204. /* Get XAUI_XFI_AN register block. */
  205. if (qdev->func & 1) {
  206. direct_ptr = mpi_coredump->serdes2_xfi_an;
  207. indirect_ptr = mpi_coredump->serdes_xfi_an;
  208. } else {
  209. direct_ptr = mpi_coredump->serdes_xfi_an;
  210. indirect_ptr = mpi_coredump->serdes2_xfi_an;
  211. }
  212. for (i = 0x1000; i <= 0x1034; i += 4, direct_ptr++, indirect_ptr++)
  213. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  214. xfi_direct_valid, xfi_indirect_valid);
  215. /* Get XAUI_XFI_TRAIN register block. */
  216. if (qdev->func & 1) {
  217. direct_ptr = mpi_coredump->serdes2_xfi_train;
  218. indirect_ptr =
  219. mpi_coredump->serdes_xfi_train;
  220. } else {
  221. direct_ptr = mpi_coredump->serdes_xfi_train;
  222. indirect_ptr =
  223. mpi_coredump->serdes2_xfi_train;
  224. }
  225. for (i = 0x1050; i <= 0x107c; i += 4, direct_ptr++, indirect_ptr++)
  226. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  227. xfi_direct_valid, xfi_indirect_valid);
  228. /* Get XAUI_XFI_HSS_PCS register block. */
  229. if (qdev->func & 1) {
  230. direct_ptr =
  231. mpi_coredump->serdes2_xfi_hss_pcs;
  232. indirect_ptr =
  233. mpi_coredump->serdes_xfi_hss_pcs;
  234. } else {
  235. direct_ptr =
  236. mpi_coredump->serdes_xfi_hss_pcs;
  237. indirect_ptr =
  238. mpi_coredump->serdes2_xfi_hss_pcs;
  239. }
  240. for (i = 0x1800; i <= 0x1838; i += 4, direct_ptr++, indirect_ptr++)
  241. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  242. xfi_direct_valid, xfi_indirect_valid);
  243. /* Get XAUI_XFI_HSS_TX register block. */
  244. if (qdev->func & 1) {
  245. direct_ptr =
  246. mpi_coredump->serdes2_xfi_hss_tx;
  247. indirect_ptr =
  248. mpi_coredump->serdes_xfi_hss_tx;
  249. } else {
  250. direct_ptr = mpi_coredump->serdes_xfi_hss_tx;
  251. indirect_ptr =
  252. mpi_coredump->serdes2_xfi_hss_tx;
  253. }
  254. for (i = 0x1c00; i <= 0x1c1f; i++, direct_ptr++, indirect_ptr++)
  255. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  256. xfi_direct_valid, xfi_indirect_valid);
  257. /* Get XAUI_XFI_HSS_RX register block. */
  258. if (qdev->func & 1) {
  259. direct_ptr =
  260. mpi_coredump->serdes2_xfi_hss_rx;
  261. indirect_ptr =
  262. mpi_coredump->serdes_xfi_hss_rx;
  263. } else {
  264. direct_ptr = mpi_coredump->serdes_xfi_hss_rx;
  265. indirect_ptr =
  266. mpi_coredump->serdes2_xfi_hss_rx;
  267. }
  268. for (i = 0x1c40; i <= 0x1c5f; i++, direct_ptr++, indirect_ptr++)
  269. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  270. xfi_direct_valid, xfi_indirect_valid);
  271. /* Get XAUI_XFI_HSS_PLL register block. */
  272. if (qdev->func & 1) {
  273. direct_ptr =
  274. mpi_coredump->serdes2_xfi_hss_pll;
  275. indirect_ptr =
  276. mpi_coredump->serdes_xfi_hss_pll;
  277. } else {
  278. direct_ptr =
  279. mpi_coredump->serdes_xfi_hss_pll;
  280. indirect_ptr =
  281. mpi_coredump->serdes2_xfi_hss_pll;
  282. }
  283. for (i = 0x1e00; i <= 0x1e1f; i++, direct_ptr++, indirect_ptr++)
  284. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  285. xfi_direct_valid, xfi_indirect_valid);
  286. return 0;
  287. }
  288. static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev, u32 reg,
  289. u32 *data)
  290. {
  291. int status = 0;
  292. /* wait for reg to come ready */
  293. status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
  294. XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  295. if (status)
  296. goto exit;
  297. /* set up for reg read */
  298. ql_write_other_func_reg(qdev, XGMAC_ADDR / 4, reg | XGMAC_ADDR_R);
  299. /* wait for reg to come ready */
  300. status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
  301. XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  302. if (status)
  303. goto exit;
  304. /* get the data */
  305. *data = ql_read_other_func_reg(qdev, XGMAC_DATA / 4);
  306. exit:
  307. return status;
  308. }
  309. /* Read the 400 xgmac control/statistics registers
  310. * skipping unused locations.
  311. */
  312. static int ql_get_xgmac_regs(struct ql_adapter *qdev, u32 * buf,
  313. unsigned int other_function)
  314. {
  315. int status = 0;
  316. int i;
  317. for (i = PAUSE_SRC_LO; i < XGMAC_REGISTER_END; i += 4, buf++) {
  318. /* We're reading 400 xgmac registers, but we filter out
  319. * serveral locations that are non-responsive to reads.
  320. */
  321. if ((i == 0x00000114) ||
  322. (i == 0x00000118) ||
  323. (i == 0x0000013c) ||
  324. (i == 0x00000140) ||
  325. (i > 0x00000150 && i < 0x000001fc) ||
  326. (i > 0x00000278 && i < 0x000002a0) ||
  327. (i > 0x000002c0 && i < 0x000002cf) ||
  328. (i > 0x000002dc && i < 0x000002f0) ||
  329. (i > 0x000003c8 && i < 0x00000400) ||
  330. (i > 0x00000400 && i < 0x00000410) ||
  331. (i > 0x00000410 && i < 0x00000420) ||
  332. (i > 0x00000420 && i < 0x00000430) ||
  333. (i > 0x00000430 && i < 0x00000440) ||
  334. (i > 0x00000440 && i < 0x00000450) ||
  335. (i > 0x00000450 && i < 0x00000500) ||
  336. (i > 0x0000054c && i < 0x00000568) ||
  337. (i > 0x000005c8 && i < 0x00000600)) {
  338. if (other_function)
  339. status =
  340. ql_read_other_func_xgmac_reg(qdev, i, buf);
  341. else
  342. status = ql_read_xgmac_reg(qdev, i, buf);
  343. if (status)
  344. *buf = 0xdeadbeef;
  345. break;
  346. }
  347. }
  348. return status;
  349. }
  350. static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf)
  351. {
  352. int status = 0;
  353. int i;
  354. for (i = 0; i < 8; i++, buf++) {
  355. ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
  356. *buf = ql_read32(qdev, NIC_ETS);
  357. }
  358. for (i = 0; i < 2; i++, buf++) {
  359. ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
  360. *buf = ql_read32(qdev, CNA_ETS);
  361. }
  362. return status;
  363. }
  364. static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf)
  365. {
  366. int i;
  367. for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
  368. ql_write32(qdev, INTR_EN,
  369. qdev->intr_context[i].intr_read_mask);
  370. *buf = ql_read32(qdev, INTR_EN);
  371. }
  372. }
  373. static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf)
  374. {
  375. int i, status;
  376. u32 value[3];
  377. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  378. if (status)
  379. return status;
  380. for (i = 0; i < 16; i++) {
  381. status = ql_get_mac_addr_reg(qdev,
  382. MAC_ADDR_TYPE_CAM_MAC, i, value);
  383. if (status) {
  384. netif_err(qdev, drv, qdev->ndev,
  385. "Failed read of mac index register.\n");
  386. goto err;
  387. }
  388. *buf++ = value[0]; /* lower MAC address */
  389. *buf++ = value[1]; /* upper MAC address */
  390. *buf++ = value[2]; /* output */
  391. }
  392. for (i = 0; i < 32; i++) {
  393. status = ql_get_mac_addr_reg(qdev,
  394. MAC_ADDR_TYPE_MULTI_MAC, i, value);
  395. if (status) {
  396. netif_err(qdev, drv, qdev->ndev,
  397. "Failed read of mac index register.\n");
  398. goto err;
  399. }
  400. *buf++ = value[0]; /* lower Mcast address */
  401. *buf++ = value[1]; /* upper Mcast address */
  402. }
  403. err:
  404. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  405. return status;
  406. }
  407. static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf)
  408. {
  409. int status;
  410. u32 value, i;
  411. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  412. if (status)
  413. return status;
  414. for (i = 0; i < 16; i++) {
  415. status = ql_get_routing_reg(qdev, i, &value);
  416. if (status) {
  417. netif_err(qdev, drv, qdev->ndev,
  418. "Failed read of routing index register.\n");
  419. goto err;
  420. } else {
  421. *buf++ = value;
  422. }
  423. }
  424. err:
  425. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  426. return status;
  427. }
  428. /* Read the MPI Processor shadow registers */
  429. static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf)
  430. {
  431. u32 i;
  432. int status;
  433. for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
  434. status = ql_write_mpi_reg(qdev, RISC_124,
  435. (SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
  436. if (status)
  437. goto end;
  438. status = ql_read_mpi_reg(qdev, RISC_127, buf);
  439. if (status)
  440. goto end;
  441. }
  442. end:
  443. return status;
  444. }
  445. /* Read the MPI Processor core registers */
  446. static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf,
  447. u32 offset, u32 count)
  448. {
  449. int i, status = 0;
  450. for (i = 0; i < count; i++, buf++) {
  451. status = ql_read_mpi_reg(qdev, offset + i, buf);
  452. if (status)
  453. return status;
  454. }
  455. return status;
  456. }
  457. /* Read the ASIC probe dump */
  458. static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
  459. u32 valid, u32 *buf)
  460. {
  461. u32 module, mux_sel, probe, lo_val, hi_val;
  462. for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
  463. if (!((valid >> module) & 1))
  464. continue;
  465. for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
  466. probe = clock
  467. | PRB_MX_ADDR_ARE
  468. | mux_sel
  469. | (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
  470. ql_write32(qdev, PRB_MX_ADDR, probe);
  471. lo_val = ql_read32(qdev, PRB_MX_DATA);
  472. if (mux_sel == 0) {
  473. *buf = probe;
  474. buf++;
  475. }
  476. probe |= PRB_MX_ADDR_UP;
  477. ql_write32(qdev, PRB_MX_ADDR, probe);
  478. hi_val = ql_read32(qdev, PRB_MX_DATA);
  479. *buf = lo_val;
  480. buf++;
  481. *buf = hi_val;
  482. buf++;
  483. }
  484. }
  485. return buf;
  486. }
  487. static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
  488. {
  489. /* First we have to enable the probe mux */
  490. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
  491. buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
  492. PRB_MX_ADDR_VALID_SYS_MOD, buf);
  493. buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
  494. PRB_MX_ADDR_VALID_PCI_MOD, buf);
  495. buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
  496. PRB_MX_ADDR_VALID_XGM_MOD, buf);
  497. buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
  498. PRB_MX_ADDR_VALID_FC_MOD, buf);
  499. return 0;
  500. }
  501. /* Read out the routing index registers */
  502. static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
  503. {
  504. int status;
  505. u32 type, index, index_max;
  506. u32 result_index;
  507. u32 result_data;
  508. u32 val;
  509. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  510. if (status)
  511. return status;
  512. for (type = 0; type < 4; type++) {
  513. if (type < 2)
  514. index_max = 8;
  515. else
  516. index_max = 16;
  517. for (index = 0; index < index_max; index++) {
  518. val = RT_IDX_RS
  519. | (type << RT_IDX_TYPE_SHIFT)
  520. | (index << RT_IDX_IDX_SHIFT);
  521. ql_write32(qdev, RT_IDX, val);
  522. result_index = 0;
  523. while ((result_index & RT_IDX_MR) == 0)
  524. result_index = ql_read32(qdev, RT_IDX);
  525. result_data = ql_read32(qdev, RT_DATA);
  526. *buf = type;
  527. buf++;
  528. *buf = index;
  529. buf++;
  530. *buf = result_index;
  531. buf++;
  532. *buf = result_data;
  533. buf++;
  534. }
  535. }
  536. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  537. return status;
  538. }
  539. /* Read out the MAC protocol registers */
  540. static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
  541. {
  542. u32 result_index, result_data;
  543. u32 type;
  544. u32 index;
  545. u32 offset;
  546. u32 val;
  547. u32 initial_val = MAC_ADDR_RS;
  548. u32 max_index;
  549. u32 max_offset;
  550. for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
  551. switch (type) {
  552. case 0: /* CAM */
  553. initial_val |= MAC_ADDR_ADR;
  554. max_index = MAC_ADDR_MAX_CAM_ENTRIES;
  555. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  556. break;
  557. case 1: /* Multicast MAC Address */
  558. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  559. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  560. break;
  561. case 2: /* VLAN filter mask */
  562. case 3: /* MC filter mask */
  563. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  564. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  565. break;
  566. case 4: /* FC MAC addresses */
  567. max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
  568. max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
  569. break;
  570. case 5: /* Mgmt MAC addresses */
  571. max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
  572. max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
  573. break;
  574. case 6: /* Mgmt VLAN addresses */
  575. max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
  576. max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
  577. break;
  578. case 7: /* Mgmt IPv4 address */
  579. max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
  580. max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
  581. break;
  582. case 8: /* Mgmt IPv6 address */
  583. max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
  584. max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
  585. break;
  586. case 9: /* Mgmt TCP/UDP Dest port */
  587. max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
  588. max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
  589. break;
  590. default:
  591. printk(KERN_ERR"Bad type!!! 0x%08x\n", type);
  592. max_index = 0;
  593. max_offset = 0;
  594. break;
  595. }
  596. for (index = 0; index < max_index; index++) {
  597. for (offset = 0; offset < max_offset; offset++) {
  598. val = initial_val
  599. | (type << MAC_ADDR_TYPE_SHIFT)
  600. | (index << MAC_ADDR_IDX_SHIFT)
  601. | (offset);
  602. ql_write32(qdev, MAC_ADDR_IDX, val);
  603. result_index = 0;
  604. while ((result_index & MAC_ADDR_MR) == 0) {
  605. result_index = ql_read32(qdev,
  606. MAC_ADDR_IDX);
  607. }
  608. result_data = ql_read32(qdev, MAC_ADDR_DATA);
  609. *buf = result_index;
  610. buf++;
  611. *buf = result_data;
  612. buf++;
  613. }
  614. }
  615. }
  616. }
  617. static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
  618. {
  619. u32 func_num, reg, reg_val;
  620. int status;
  621. for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
  622. reg = MPI_NIC_REG_BLOCK
  623. | (func_num << MPI_NIC_FUNCTION_SHIFT)
  624. | (SEM / 4);
  625. status = ql_read_mpi_reg(qdev, reg, &reg_val);
  626. *buf = reg_val;
  627. /* if the read failed then dead fill the element. */
  628. if (!status)
  629. *buf = 0xdeadbeef;
  630. buf++;
  631. }
  632. }
  633. /* Create a coredump segment header */
  634. static void ql_build_coredump_seg_header(
  635. struct mpi_coredump_segment_header *seg_hdr,
  636. u32 seg_number, u32 seg_size, u8 *desc)
  637. {
  638. memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
  639. seg_hdr->cookie = MPI_COREDUMP_COOKIE;
  640. seg_hdr->segNum = seg_number;
  641. seg_hdr->segSize = seg_size;
  642. memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
  643. }
  644. /*
  645. * This function should be called when a coredump / probedump
  646. * is to be extracted from the HBA. It is assumed there is a
  647. * qdev structure that contains the base address of the register
  648. * space for this function as well as a coredump structure that
  649. * will contain the dump.
  650. */
  651. int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
  652. {
  653. int status;
  654. int i;
  655. if (!mpi_coredump) {
  656. netif_err(qdev, drv, qdev->ndev, "No memory available.\n");
  657. return -ENOMEM;
  658. }
  659. /* Try to get the spinlock, but dont worry if
  660. * it isn't available. If the firmware died it
  661. * might be holding the sem.
  662. */
  663. ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
  664. status = ql_pause_mpi_risc(qdev);
  665. if (status) {
  666. netif_err(qdev, drv, qdev->ndev,
  667. "Failed RISC pause. Status = 0x%.08x\n", status);
  668. goto err;
  669. }
  670. /* Insert the global header */
  671. memset(&(mpi_coredump->mpi_global_header), 0,
  672. sizeof(struct mpi_coredump_global_header));
  673. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  674. mpi_coredump->mpi_global_header.headerSize =
  675. sizeof(struct mpi_coredump_global_header);
  676. mpi_coredump->mpi_global_header.imageSize =
  677. sizeof(struct ql_mpi_coredump);
  678. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  679. sizeof(mpi_coredump->mpi_global_header.idString));
  680. /* Get generic NIC reg dump */
  681. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  682. NIC1_CONTROL_SEG_NUM,
  683. sizeof(struct mpi_coredump_segment_header) +
  684. sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
  685. ql_build_coredump_seg_header(&mpi_coredump->nic2_regs_seg_hdr,
  686. NIC2_CONTROL_SEG_NUM,
  687. sizeof(struct mpi_coredump_segment_header) +
  688. sizeof(mpi_coredump->nic2_regs), "NIC2 Registers");
  689. /* Get XGMac registers. (Segment 18, Rev C. step 21) */
  690. ql_build_coredump_seg_header(&mpi_coredump->xgmac1_seg_hdr,
  691. NIC1_XGMAC_SEG_NUM,
  692. sizeof(struct mpi_coredump_segment_header) +
  693. sizeof(mpi_coredump->xgmac1), "NIC1 XGMac Registers");
  694. ql_build_coredump_seg_header(&mpi_coredump->xgmac2_seg_hdr,
  695. NIC2_XGMAC_SEG_NUM,
  696. sizeof(struct mpi_coredump_segment_header) +
  697. sizeof(mpi_coredump->xgmac2), "NIC2 XGMac Registers");
  698. if (qdev->func & 1) {
  699. /* Odd means our function is NIC 2 */
  700. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  701. mpi_coredump->nic2_regs[i] =
  702. ql_read32(qdev, i * sizeof(u32));
  703. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  704. mpi_coredump->nic_regs[i] =
  705. ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
  706. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 0);
  707. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 1);
  708. } else {
  709. /* Even means our function is NIC 1 */
  710. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  711. mpi_coredump->nic_regs[i] =
  712. ql_read32(qdev, i * sizeof(u32));
  713. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  714. mpi_coredump->nic2_regs[i] =
  715. ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
  716. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 0);
  717. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 1);
  718. }
  719. /* Rev C. Step 20a */
  720. ql_build_coredump_seg_header(&mpi_coredump->xaui_an_hdr,
  721. XAUI_AN_SEG_NUM,
  722. sizeof(struct mpi_coredump_segment_header) +
  723. sizeof(mpi_coredump->serdes_xaui_an),
  724. "XAUI AN Registers");
  725. /* Rev C. Step 20b */
  726. ql_build_coredump_seg_header(&mpi_coredump->xaui_hss_pcs_hdr,
  727. XAUI_HSS_PCS_SEG_NUM,
  728. sizeof(struct mpi_coredump_segment_header) +
  729. sizeof(mpi_coredump->serdes_xaui_hss_pcs),
  730. "XAUI HSS PCS Registers");
  731. ql_build_coredump_seg_header(&mpi_coredump->xfi_an_hdr, XFI_AN_SEG_NUM,
  732. sizeof(struct mpi_coredump_segment_header) +
  733. sizeof(mpi_coredump->serdes_xfi_an),
  734. "XFI AN Registers");
  735. ql_build_coredump_seg_header(&mpi_coredump->xfi_train_hdr,
  736. XFI_TRAIN_SEG_NUM,
  737. sizeof(struct mpi_coredump_segment_header) +
  738. sizeof(mpi_coredump->serdes_xfi_train),
  739. "XFI TRAIN Registers");
  740. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pcs_hdr,
  741. XFI_HSS_PCS_SEG_NUM,
  742. sizeof(struct mpi_coredump_segment_header) +
  743. sizeof(mpi_coredump->serdes_xfi_hss_pcs),
  744. "XFI HSS PCS Registers");
  745. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_tx_hdr,
  746. XFI_HSS_TX_SEG_NUM,
  747. sizeof(struct mpi_coredump_segment_header) +
  748. sizeof(mpi_coredump->serdes_xfi_hss_tx),
  749. "XFI HSS TX Registers");
  750. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_rx_hdr,
  751. XFI_HSS_RX_SEG_NUM,
  752. sizeof(struct mpi_coredump_segment_header) +
  753. sizeof(mpi_coredump->serdes_xfi_hss_rx),
  754. "XFI HSS RX Registers");
  755. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pll_hdr,
  756. XFI_HSS_PLL_SEG_NUM,
  757. sizeof(struct mpi_coredump_segment_header) +
  758. sizeof(mpi_coredump->serdes_xfi_hss_pll),
  759. "XFI HSS PLL Registers");
  760. ql_build_coredump_seg_header(&mpi_coredump->xaui2_an_hdr,
  761. XAUI2_AN_SEG_NUM,
  762. sizeof(struct mpi_coredump_segment_header) +
  763. sizeof(mpi_coredump->serdes2_xaui_an),
  764. "XAUI2 AN Registers");
  765. ql_build_coredump_seg_header(&mpi_coredump->xaui2_hss_pcs_hdr,
  766. XAUI2_HSS_PCS_SEG_NUM,
  767. sizeof(struct mpi_coredump_segment_header) +
  768. sizeof(mpi_coredump->serdes2_xaui_hss_pcs),
  769. "XAUI2 HSS PCS Registers");
  770. ql_build_coredump_seg_header(&mpi_coredump->xfi2_an_hdr,
  771. XFI2_AN_SEG_NUM,
  772. sizeof(struct mpi_coredump_segment_header) +
  773. sizeof(mpi_coredump->serdes2_xfi_an),
  774. "XFI2 AN Registers");
  775. ql_build_coredump_seg_header(&mpi_coredump->xfi2_train_hdr,
  776. XFI2_TRAIN_SEG_NUM,
  777. sizeof(struct mpi_coredump_segment_header) +
  778. sizeof(mpi_coredump->serdes2_xfi_train),
  779. "XFI2 TRAIN Registers");
  780. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pcs_hdr,
  781. XFI2_HSS_PCS_SEG_NUM,
  782. sizeof(struct mpi_coredump_segment_header) +
  783. sizeof(mpi_coredump->serdes2_xfi_hss_pcs),
  784. "XFI2 HSS PCS Registers");
  785. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_tx_hdr,
  786. XFI2_HSS_TX_SEG_NUM,
  787. sizeof(struct mpi_coredump_segment_header) +
  788. sizeof(mpi_coredump->serdes2_xfi_hss_tx),
  789. "XFI2 HSS TX Registers");
  790. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_rx_hdr,
  791. XFI2_HSS_RX_SEG_NUM,
  792. sizeof(struct mpi_coredump_segment_header) +
  793. sizeof(mpi_coredump->serdes2_xfi_hss_rx),
  794. "XFI2 HSS RX Registers");
  795. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pll_hdr,
  796. XFI2_HSS_PLL_SEG_NUM,
  797. sizeof(struct mpi_coredump_segment_header) +
  798. sizeof(mpi_coredump->serdes2_xfi_hss_pll),
  799. "XFI2 HSS PLL Registers");
  800. status = ql_get_serdes_regs(qdev, mpi_coredump);
  801. if (status) {
  802. netif_err(qdev, drv, qdev->ndev,
  803. "Failed Dump of Serdes Registers. Status = 0x%.08x\n",
  804. status);
  805. goto err;
  806. }
  807. ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
  808. CORE_SEG_NUM,
  809. sizeof(mpi_coredump->core_regs_seg_hdr) +
  810. sizeof(mpi_coredump->mpi_core_regs) +
  811. sizeof(mpi_coredump->mpi_core_sh_regs),
  812. "Core Registers");
  813. /* Get the MPI Core Registers */
  814. status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
  815. MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
  816. if (status)
  817. goto err;
  818. /* Get the 16 MPI shadow registers */
  819. status = ql_get_mpi_shadow_regs(qdev,
  820. &mpi_coredump->mpi_core_sh_regs[0]);
  821. if (status)
  822. goto err;
  823. /* Get the Test Logic Registers */
  824. ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
  825. TEST_LOGIC_SEG_NUM,
  826. sizeof(struct mpi_coredump_segment_header)
  827. + sizeof(mpi_coredump->test_logic_regs),
  828. "Test Logic Regs");
  829. status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
  830. TEST_REGS_ADDR, TEST_REGS_CNT);
  831. if (status)
  832. goto err;
  833. /* Get the RMII Registers */
  834. ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
  835. RMII_SEG_NUM,
  836. sizeof(struct mpi_coredump_segment_header)
  837. + sizeof(mpi_coredump->rmii_regs),
  838. "RMII Registers");
  839. status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
  840. RMII_REGS_ADDR, RMII_REGS_CNT);
  841. if (status)
  842. goto err;
  843. /* Get the FCMAC1 Registers */
  844. ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
  845. FCMAC1_SEG_NUM,
  846. sizeof(struct mpi_coredump_segment_header)
  847. + sizeof(mpi_coredump->fcmac1_regs),
  848. "FCMAC1 Registers");
  849. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
  850. FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
  851. if (status)
  852. goto err;
  853. /* Get the FCMAC2 Registers */
  854. ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
  855. FCMAC2_SEG_NUM,
  856. sizeof(struct mpi_coredump_segment_header)
  857. + sizeof(mpi_coredump->fcmac2_regs),
  858. "FCMAC2 Registers");
  859. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
  860. FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
  861. if (status)
  862. goto err;
  863. /* Get the FC1 MBX Registers */
  864. ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
  865. FC1_MBOX_SEG_NUM,
  866. sizeof(struct mpi_coredump_segment_header)
  867. + sizeof(mpi_coredump->fc1_mbx_regs),
  868. "FC1 MBox Regs");
  869. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
  870. FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  871. if (status)
  872. goto err;
  873. /* Get the IDE Registers */
  874. ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
  875. IDE_SEG_NUM,
  876. sizeof(struct mpi_coredump_segment_header)
  877. + sizeof(mpi_coredump->ide_regs),
  878. "IDE Registers");
  879. status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
  880. IDE_REGS_ADDR, IDE_REGS_CNT);
  881. if (status)
  882. goto err;
  883. /* Get the NIC1 MBX Registers */
  884. ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
  885. NIC1_MBOX_SEG_NUM,
  886. sizeof(struct mpi_coredump_segment_header)
  887. + sizeof(mpi_coredump->nic1_mbx_regs),
  888. "NIC1 MBox Regs");
  889. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
  890. NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  891. if (status)
  892. goto err;
  893. /* Get the SMBus Registers */
  894. ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
  895. SMBUS_SEG_NUM,
  896. sizeof(struct mpi_coredump_segment_header)
  897. + sizeof(mpi_coredump->smbus_regs),
  898. "SMBus Registers");
  899. status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
  900. SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
  901. if (status)
  902. goto err;
  903. /* Get the FC2 MBX Registers */
  904. ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
  905. FC2_MBOX_SEG_NUM,
  906. sizeof(struct mpi_coredump_segment_header)
  907. + sizeof(mpi_coredump->fc2_mbx_regs),
  908. "FC2 MBox Regs");
  909. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
  910. FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  911. if (status)
  912. goto err;
  913. /* Get the NIC2 MBX Registers */
  914. ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
  915. NIC2_MBOX_SEG_NUM,
  916. sizeof(struct mpi_coredump_segment_header)
  917. + sizeof(mpi_coredump->nic2_mbx_regs),
  918. "NIC2 MBox Regs");
  919. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
  920. NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  921. if (status)
  922. goto err;
  923. /* Get the I2C Registers */
  924. ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
  925. I2C_SEG_NUM,
  926. sizeof(struct mpi_coredump_segment_header)
  927. + sizeof(mpi_coredump->i2c_regs),
  928. "I2C Registers");
  929. status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
  930. I2C_REGS_ADDR, I2C_REGS_CNT);
  931. if (status)
  932. goto err;
  933. /* Get the MEMC Registers */
  934. ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
  935. MEMC_SEG_NUM,
  936. sizeof(struct mpi_coredump_segment_header)
  937. + sizeof(mpi_coredump->memc_regs),
  938. "MEMC Registers");
  939. status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
  940. MEMC_REGS_ADDR, MEMC_REGS_CNT);
  941. if (status)
  942. goto err;
  943. /* Get the PBus Registers */
  944. ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
  945. PBUS_SEG_NUM,
  946. sizeof(struct mpi_coredump_segment_header)
  947. + sizeof(mpi_coredump->pbus_regs),
  948. "PBUS Registers");
  949. status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
  950. PBUS_REGS_ADDR, PBUS_REGS_CNT);
  951. if (status)
  952. goto err;
  953. /* Get the MDE Registers */
  954. ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
  955. MDE_SEG_NUM,
  956. sizeof(struct mpi_coredump_segment_header)
  957. + sizeof(mpi_coredump->mde_regs),
  958. "MDE Registers");
  959. status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
  960. MDE_REGS_ADDR, MDE_REGS_CNT);
  961. if (status)
  962. goto err;
  963. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  964. MISC_NIC_INFO_SEG_NUM,
  965. sizeof(struct mpi_coredump_segment_header)
  966. + sizeof(mpi_coredump->misc_nic_info),
  967. "MISC NIC INFO");
  968. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  969. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  970. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  971. mpi_coredump->misc_nic_info.function = qdev->func;
  972. /* Segment 31 */
  973. /* Get indexed register values. */
  974. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  975. INTR_STATES_SEG_NUM,
  976. sizeof(struct mpi_coredump_segment_header)
  977. + sizeof(mpi_coredump->intr_states),
  978. "INTR States");
  979. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  980. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  981. CAM_ENTRIES_SEG_NUM,
  982. sizeof(struct mpi_coredump_segment_header)
  983. + sizeof(mpi_coredump->cam_entries),
  984. "CAM Entries");
  985. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  986. if (status)
  987. goto err;
  988. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  989. ROUTING_WORDS_SEG_NUM,
  990. sizeof(struct mpi_coredump_segment_header)
  991. + sizeof(mpi_coredump->nic_routing_words),
  992. "Routing Words");
  993. status = ql_get_routing_entries(qdev,
  994. &mpi_coredump->nic_routing_words[0]);
  995. if (status)
  996. goto err;
  997. /* Segment 34 (Rev C. step 23) */
  998. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  999. ETS_SEG_NUM,
  1000. sizeof(struct mpi_coredump_segment_header)
  1001. + sizeof(mpi_coredump->ets),
  1002. "ETS Registers");
  1003. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  1004. if (status)
  1005. goto err;
  1006. ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
  1007. PROBE_DUMP_SEG_NUM,
  1008. sizeof(struct mpi_coredump_segment_header)
  1009. + sizeof(mpi_coredump->probe_dump),
  1010. "Probe Dump");
  1011. ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
  1012. ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
  1013. ROUTING_INDEX_SEG_NUM,
  1014. sizeof(struct mpi_coredump_segment_header)
  1015. + sizeof(mpi_coredump->routing_regs),
  1016. "Routing Regs");
  1017. status = ql_get_routing_index_registers(qdev,
  1018. &mpi_coredump->routing_regs[0]);
  1019. if (status)
  1020. goto err;
  1021. ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
  1022. MAC_PROTOCOL_SEG_NUM,
  1023. sizeof(struct mpi_coredump_segment_header)
  1024. + sizeof(mpi_coredump->mac_prot_regs),
  1025. "MAC Prot Regs");
  1026. ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
  1027. /* Get the semaphore registers for all 5 functions */
  1028. ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
  1029. SEM_REGS_SEG_NUM,
  1030. sizeof(struct mpi_coredump_segment_header) +
  1031. sizeof(mpi_coredump->sem_regs), "Sem Registers");
  1032. ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
  1033. /* Prevent the mpi restarting while we dump the memory.*/
  1034. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
  1035. /* clear the pause */
  1036. status = ql_unpause_mpi_risc(qdev);
  1037. if (status) {
  1038. netif_err(qdev, drv, qdev->ndev,
  1039. "Failed RISC unpause. Status = 0x%.08x\n", status);
  1040. goto err;
  1041. }
  1042. /* Reset the RISC so we can dump RAM */
  1043. status = ql_hard_reset_mpi_risc(qdev);
  1044. if (status) {
  1045. netif_err(qdev, drv, qdev->ndev,
  1046. "Failed RISC reset. Status = 0x%.08x\n", status);
  1047. goto err;
  1048. }
  1049. ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr,
  1050. WCS_RAM_SEG_NUM,
  1051. sizeof(struct mpi_coredump_segment_header)
  1052. + sizeof(mpi_coredump->code_ram),
  1053. "WCS RAM");
  1054. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0],
  1055. CODE_RAM_ADDR, CODE_RAM_CNT);
  1056. if (status) {
  1057. netif_err(qdev, drv, qdev->ndev,
  1058. "Failed Dump of CODE RAM. Status = 0x%.08x\n",
  1059. status);
  1060. goto err;
  1061. }
  1062. /* Insert the segment header */
  1063. ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr,
  1064. MEMC_RAM_SEG_NUM,
  1065. sizeof(struct mpi_coredump_segment_header)
  1066. + sizeof(mpi_coredump->memc_ram),
  1067. "MEMC RAM");
  1068. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0],
  1069. MEMC_RAM_ADDR, MEMC_RAM_CNT);
  1070. if (status) {
  1071. netif_err(qdev, drv, qdev->ndev,
  1072. "Failed Dump of MEMC RAM. Status = 0x%.08x\n",
  1073. status);
  1074. goto err;
  1075. }
  1076. err:
  1077. ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
  1078. return status;
  1079. }
  1080. static void ql_get_core_dump(struct ql_adapter *qdev)
  1081. {
  1082. if (!ql_own_firmware(qdev)) {
  1083. netif_err(qdev, drv, qdev->ndev, "Don't own firmware!\n");
  1084. return;
  1085. }
  1086. if (!netif_running(qdev->ndev)) {
  1087. netif_err(qdev, ifup, qdev->ndev,
  1088. "Force Coredump can only be done from interface that is up.\n");
  1089. return;
  1090. }
  1091. if (ql_mb_sys_err(qdev)) {
  1092. netif_err(qdev, ifup, qdev->ndev,
  1093. "Fail force coredump with ql_mb_sys_err().\n");
  1094. return;
  1095. }
  1096. }
  1097. void ql_gen_reg_dump(struct ql_adapter *qdev,
  1098. struct ql_reg_dump *mpi_coredump)
  1099. {
  1100. int i, status;
  1101. memset(&(mpi_coredump->mpi_global_header), 0,
  1102. sizeof(struct mpi_coredump_global_header));
  1103. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  1104. mpi_coredump->mpi_global_header.headerSize =
  1105. sizeof(struct mpi_coredump_global_header);
  1106. mpi_coredump->mpi_global_header.imageSize =
  1107. sizeof(struct ql_reg_dump);
  1108. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  1109. sizeof(mpi_coredump->mpi_global_header.idString));
  1110. /* segment 16 */
  1111. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  1112. MISC_NIC_INFO_SEG_NUM,
  1113. sizeof(struct mpi_coredump_segment_header)
  1114. + sizeof(mpi_coredump->misc_nic_info),
  1115. "MISC NIC INFO");
  1116. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  1117. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  1118. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  1119. mpi_coredump->misc_nic_info.function = qdev->func;
  1120. /* Segment 16, Rev C. Step 18 */
  1121. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  1122. NIC1_CONTROL_SEG_NUM,
  1123. sizeof(struct mpi_coredump_segment_header)
  1124. + sizeof(mpi_coredump->nic_regs),
  1125. "NIC Registers");
  1126. /* Get generic reg dump */
  1127. for (i = 0; i < 64; i++)
  1128. mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
  1129. /* Segment 31 */
  1130. /* Get indexed register values. */
  1131. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  1132. INTR_STATES_SEG_NUM,
  1133. sizeof(struct mpi_coredump_segment_header)
  1134. + sizeof(mpi_coredump->intr_states),
  1135. "INTR States");
  1136. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  1137. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  1138. CAM_ENTRIES_SEG_NUM,
  1139. sizeof(struct mpi_coredump_segment_header)
  1140. + sizeof(mpi_coredump->cam_entries),
  1141. "CAM Entries");
  1142. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  1143. if (status)
  1144. return;
  1145. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  1146. ROUTING_WORDS_SEG_NUM,
  1147. sizeof(struct mpi_coredump_segment_header)
  1148. + sizeof(mpi_coredump->nic_routing_words),
  1149. "Routing Words");
  1150. status = ql_get_routing_entries(qdev,
  1151. &mpi_coredump->nic_routing_words[0]);
  1152. if (status)
  1153. return;
  1154. /* Segment 34 (Rev C. step 23) */
  1155. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  1156. ETS_SEG_NUM,
  1157. sizeof(struct mpi_coredump_segment_header)
  1158. + sizeof(mpi_coredump->ets),
  1159. "ETS Registers");
  1160. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  1161. if (status)
  1162. return;
  1163. if (test_bit(QL_FRC_COREDUMP, &qdev->flags))
  1164. ql_get_core_dump(qdev);
  1165. }
  1166. /* Coredump to messages log file using separate worker thread */
  1167. void ql_mpi_core_to_log(struct work_struct *work)
  1168. {
  1169. struct ql_adapter *qdev =
  1170. container_of(work, struct ql_adapter, mpi_core_to_log.work);
  1171. u32 *tmp, count;
  1172. int i;
  1173. count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
  1174. tmp = (u32 *)qdev->mpi_coredump;
  1175. netif_printk(qdev, drv, KERN_DEBUG, qdev->ndev,
  1176. "Core is dumping to log file!\n");
  1177. for (i = 0; i < count; i += 8) {
  1178. printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x "
  1179. "%.08x %.08x %.08x \n", i,
  1180. tmp[i + 0],
  1181. tmp[i + 1],
  1182. tmp[i + 2],
  1183. tmp[i + 3],
  1184. tmp[i + 4],
  1185. tmp[i + 5],
  1186. tmp[i + 6],
  1187. tmp[i + 7]);
  1188. msleep(5);
  1189. }
  1190. }
  1191. #ifdef QL_REG_DUMP
  1192. static void ql_dump_intr_states(struct ql_adapter *qdev)
  1193. {
  1194. int i;
  1195. u32 value;
  1196. for (i = 0; i < qdev->intr_count; i++) {
  1197. ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
  1198. value = ql_read32(qdev, INTR_EN);
  1199. printk(KERN_ERR PFX
  1200. "%s: Interrupt %d is %s.\n",
  1201. qdev->ndev->name, i,
  1202. (value & INTR_EN_EN ? "enabled" : "disabled"));
  1203. }
  1204. }
  1205. void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
  1206. {
  1207. u32 data;
  1208. if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
  1209. printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
  1210. return;
  1211. }
  1212. ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
  1213. printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
  1214. data);
  1215. ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
  1216. printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
  1217. data);
  1218. ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  1219. printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
  1220. data);
  1221. ql_read_xgmac_reg(qdev, TX_CFG, &data);
  1222. printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  1223. ql_read_xgmac_reg(qdev, RX_CFG, &data);
  1224. printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  1225. ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
  1226. printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
  1227. data);
  1228. ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
  1229. printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
  1230. data);
  1231. ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
  1232. printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
  1233. data);
  1234. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
  1235. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
  1236. qdev->ndev->name, data);
  1237. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
  1238. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
  1239. qdev->ndev->name, data);
  1240. ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
  1241. printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  1242. data);
  1243. ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
  1244. printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  1245. data);
  1246. ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
  1247. printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
  1248. data);
  1249. ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
  1250. printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
  1251. qdev->ndev->name, data);
  1252. ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
  1253. printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
  1254. data);
  1255. ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
  1256. printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
  1257. qdev->ndev->name, data);
  1258. ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
  1259. printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
  1260. data);
  1261. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  1262. }
  1263. static void ql_dump_ets_regs(struct ql_adapter *qdev)
  1264. {
  1265. }
  1266. static void ql_dump_cam_entries(struct ql_adapter *qdev)
  1267. {
  1268. int i;
  1269. u32 value[3];
  1270. i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1271. if (i)
  1272. return;
  1273. for (i = 0; i < 4; i++) {
  1274. if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
  1275. printk(KERN_ERR PFX
  1276. "%s: Failed read of mac index register.\n",
  1277. __func__);
  1278. return;
  1279. } else {
  1280. if (value[0])
  1281. printk(KERN_ERR PFX
  1282. "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
  1283. qdev->ndev->name, i, value[1], value[0],
  1284. value[2]);
  1285. }
  1286. }
  1287. for (i = 0; i < 32; i++) {
  1288. if (ql_get_mac_addr_reg
  1289. (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
  1290. printk(KERN_ERR PFX
  1291. "%s: Failed read of mac index register.\n",
  1292. __func__);
  1293. return;
  1294. } else {
  1295. if (value[0])
  1296. printk(KERN_ERR PFX
  1297. "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
  1298. qdev->ndev->name, i, value[1], value[0]);
  1299. }
  1300. }
  1301. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1302. }
  1303. void ql_dump_routing_entries(struct ql_adapter *qdev)
  1304. {
  1305. int i;
  1306. u32 value;
  1307. i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  1308. if (i)
  1309. return;
  1310. for (i = 0; i < 16; i++) {
  1311. value = 0;
  1312. if (ql_get_routing_reg(qdev, i, &value)) {
  1313. printk(KERN_ERR PFX
  1314. "%s: Failed read of routing index register.\n",
  1315. __func__);
  1316. return;
  1317. } else {
  1318. if (value)
  1319. printk(KERN_ERR PFX
  1320. "%s: Routing Mask %d = 0x%.08x.\n",
  1321. qdev->ndev->name, i, value);
  1322. }
  1323. }
  1324. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  1325. }
  1326. void ql_dump_regs(struct ql_adapter *qdev)
  1327. {
  1328. printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
  1329. printk(KERN_ERR PFX "SYS = 0x%x.\n",
  1330. ql_read32(qdev, SYS));
  1331. printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
  1332. ql_read32(qdev, RST_FO));
  1333. printk(KERN_ERR PFX "FSC = 0x%x.\n",
  1334. ql_read32(qdev, FSC));
  1335. printk(KERN_ERR PFX "CSR = 0x%x.\n",
  1336. ql_read32(qdev, CSR));
  1337. printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
  1338. ql_read32(qdev, ICB_RID));
  1339. printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
  1340. ql_read32(qdev, ICB_L));
  1341. printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
  1342. ql_read32(qdev, ICB_H));
  1343. printk(KERN_ERR PFX "CFG = 0x%x.\n",
  1344. ql_read32(qdev, CFG));
  1345. printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
  1346. ql_read32(qdev, BIOS_ADDR));
  1347. printk(KERN_ERR PFX "STS = 0x%x.\n",
  1348. ql_read32(qdev, STS));
  1349. printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
  1350. ql_read32(qdev, INTR_EN));
  1351. printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
  1352. ql_read32(qdev, INTR_MASK));
  1353. printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
  1354. ql_read32(qdev, ISR1));
  1355. printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
  1356. ql_read32(qdev, ISR2));
  1357. printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
  1358. ql_read32(qdev, ISR3));
  1359. printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
  1360. ql_read32(qdev, ISR4));
  1361. printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
  1362. ql_read32(qdev, REV_ID));
  1363. printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
  1364. ql_read32(qdev, FRC_ECC_ERR));
  1365. printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
  1366. ql_read32(qdev, ERR_STS));
  1367. printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
  1368. ql_read32(qdev, RAM_DBG_ADDR));
  1369. printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
  1370. ql_read32(qdev, RAM_DBG_DATA));
  1371. printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
  1372. ql_read32(qdev, ECC_ERR_CNT));
  1373. printk(KERN_ERR PFX "SEM = 0x%x.\n",
  1374. ql_read32(qdev, SEM));
  1375. printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
  1376. ql_read32(qdev, GPIO_1));
  1377. printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
  1378. ql_read32(qdev, GPIO_2));
  1379. printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
  1380. ql_read32(qdev, GPIO_3));
  1381. printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
  1382. ql_read32(qdev, XGMAC_ADDR));
  1383. printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
  1384. ql_read32(qdev, XGMAC_DATA));
  1385. printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
  1386. ql_read32(qdev, NIC_ETS));
  1387. printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
  1388. ql_read32(qdev, CNA_ETS));
  1389. printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
  1390. ql_read32(qdev, FLASH_ADDR));
  1391. printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
  1392. ql_read32(qdev, FLASH_DATA));
  1393. printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
  1394. ql_read32(qdev, CQ_STOP));
  1395. printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
  1396. ql_read32(qdev, PAGE_TBL_RID));
  1397. printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
  1398. ql_read32(qdev, WQ_PAGE_TBL_LO));
  1399. printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
  1400. ql_read32(qdev, WQ_PAGE_TBL_HI));
  1401. printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
  1402. ql_read32(qdev, CQ_PAGE_TBL_LO));
  1403. printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
  1404. ql_read32(qdev, CQ_PAGE_TBL_HI));
  1405. printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
  1406. ql_read32(qdev, COS_DFLT_CQ1));
  1407. printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
  1408. ql_read32(qdev, COS_DFLT_CQ2));
  1409. printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
  1410. ql_read32(qdev, SPLT_HDR));
  1411. printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
  1412. ql_read32(qdev, FC_PAUSE_THRES));
  1413. printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
  1414. ql_read32(qdev, NIC_PAUSE_THRES));
  1415. printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
  1416. ql_read32(qdev, FC_ETHERTYPE));
  1417. printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
  1418. ql_read32(qdev, FC_RCV_CFG));
  1419. printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
  1420. ql_read32(qdev, NIC_RCV_CFG));
  1421. printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
  1422. ql_read32(qdev, FC_COS_TAGS));
  1423. printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
  1424. ql_read32(qdev, NIC_COS_TAGS));
  1425. printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
  1426. ql_read32(qdev, MGMT_RCV_CFG));
  1427. printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
  1428. ql_read32(qdev, XG_SERDES_ADDR));
  1429. printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
  1430. ql_read32(qdev, XG_SERDES_DATA));
  1431. printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
  1432. ql_read32(qdev, PRB_MX_ADDR));
  1433. printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
  1434. ql_read32(qdev, PRB_MX_DATA));
  1435. ql_dump_intr_states(qdev);
  1436. ql_dump_xgmac_control_regs(qdev);
  1437. ql_dump_ets_regs(qdev);
  1438. ql_dump_cam_entries(qdev);
  1439. ql_dump_routing_entries(qdev);
  1440. }
  1441. #endif
  1442. #ifdef QL_STAT_DUMP
  1443. void ql_dump_stat(struct ql_adapter *qdev)
  1444. {
  1445. printk(KERN_ERR "%s: Enter.\n", __func__);
  1446. printk(KERN_ERR "tx_pkts = %ld\n",
  1447. (unsigned long)qdev->nic_stats.tx_pkts);
  1448. printk(KERN_ERR "tx_bytes = %ld\n",
  1449. (unsigned long)qdev->nic_stats.tx_bytes);
  1450. printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
  1451. (unsigned long)qdev->nic_stats.tx_mcast_pkts);
  1452. printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
  1453. (unsigned long)qdev->nic_stats.tx_bcast_pkts);
  1454. printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
  1455. (unsigned long)qdev->nic_stats.tx_ucast_pkts);
  1456. printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
  1457. (unsigned long)qdev->nic_stats.tx_ctl_pkts);
  1458. printk(KERN_ERR "tx_pause_pkts = %ld.\n",
  1459. (unsigned long)qdev->nic_stats.tx_pause_pkts);
  1460. printk(KERN_ERR "tx_64_pkt = %ld.\n",
  1461. (unsigned long)qdev->nic_stats.tx_64_pkt);
  1462. printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
  1463. (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
  1464. printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
  1465. (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
  1466. printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
  1467. (unsigned long)qdev->nic_stats.tx_256_511_pkt);
  1468. printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
  1469. (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
  1470. printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
  1471. (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
  1472. printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
  1473. (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
  1474. printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
  1475. (unsigned long)qdev->nic_stats.tx_undersize_pkt);
  1476. printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
  1477. (unsigned long)qdev->nic_stats.tx_oversize_pkt);
  1478. printk(KERN_ERR "rx_bytes = %ld.\n",
  1479. (unsigned long)qdev->nic_stats.rx_bytes);
  1480. printk(KERN_ERR "rx_bytes_ok = %ld.\n",
  1481. (unsigned long)qdev->nic_stats.rx_bytes_ok);
  1482. printk(KERN_ERR "rx_pkts = %ld.\n",
  1483. (unsigned long)qdev->nic_stats.rx_pkts);
  1484. printk(KERN_ERR "rx_pkts_ok = %ld.\n",
  1485. (unsigned long)qdev->nic_stats.rx_pkts_ok);
  1486. printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
  1487. (unsigned long)qdev->nic_stats.rx_bcast_pkts);
  1488. printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
  1489. (unsigned long)qdev->nic_stats.rx_mcast_pkts);
  1490. printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
  1491. (unsigned long)qdev->nic_stats.rx_ucast_pkts);
  1492. printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
  1493. (unsigned long)qdev->nic_stats.rx_undersize_pkts);
  1494. printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
  1495. (unsigned long)qdev->nic_stats.rx_oversize_pkts);
  1496. printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
  1497. (unsigned long)qdev->nic_stats.rx_jabber_pkts);
  1498. printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
  1499. (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
  1500. printk(KERN_ERR "rx_drop_events = %ld.\n",
  1501. (unsigned long)qdev->nic_stats.rx_drop_events);
  1502. printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
  1503. (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
  1504. printk(KERN_ERR "rx_align_err = %ld.\n",
  1505. (unsigned long)qdev->nic_stats.rx_align_err);
  1506. printk(KERN_ERR "rx_symbol_err = %ld.\n",
  1507. (unsigned long)qdev->nic_stats.rx_symbol_err);
  1508. printk(KERN_ERR "rx_mac_err = %ld.\n",
  1509. (unsigned long)qdev->nic_stats.rx_mac_err);
  1510. printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
  1511. (unsigned long)qdev->nic_stats.rx_ctl_pkts);
  1512. printk(KERN_ERR "rx_pause_pkts = %ld.\n",
  1513. (unsigned long)qdev->nic_stats.rx_pause_pkts);
  1514. printk(KERN_ERR "rx_64_pkts = %ld.\n",
  1515. (unsigned long)qdev->nic_stats.rx_64_pkts);
  1516. printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
  1517. (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
  1518. printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
  1519. (unsigned long)qdev->nic_stats.rx_128_255_pkts);
  1520. printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
  1521. (unsigned long)qdev->nic_stats.rx_256_511_pkts);
  1522. printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
  1523. (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
  1524. printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
  1525. (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
  1526. printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
  1527. (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
  1528. printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
  1529. (unsigned long)qdev->nic_stats.rx_len_err_pkts);
  1530. };
  1531. #endif
  1532. #ifdef QL_DEV_DUMP
  1533. void ql_dump_qdev(struct ql_adapter *qdev)
  1534. {
  1535. int i;
  1536. printk(KERN_ERR PFX "qdev->flags = %lx.\n",
  1537. qdev->flags);
  1538. printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
  1539. qdev->vlgrp);
  1540. printk(KERN_ERR PFX "qdev->pdev = %p.\n",
  1541. qdev->pdev);
  1542. printk(KERN_ERR PFX "qdev->ndev = %p.\n",
  1543. qdev->ndev);
  1544. printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
  1545. qdev->chip_rev_id);
  1546. printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
  1547. qdev->reg_base);
  1548. printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
  1549. qdev->doorbell_area);
  1550. printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
  1551. qdev->doorbell_area_size);
  1552. printk(KERN_ERR PFX "msg_enable = %x.\n",
  1553. qdev->msg_enable);
  1554. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
  1555. qdev->rx_ring_shadow_reg_area);
  1556. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
  1557. (unsigned long long) qdev->rx_ring_shadow_reg_dma);
  1558. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
  1559. qdev->tx_ring_shadow_reg_area);
  1560. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
  1561. (unsigned long long) qdev->tx_ring_shadow_reg_dma);
  1562. printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
  1563. qdev->intr_count);
  1564. if (qdev->msi_x_entry)
  1565. for (i = 0; i < qdev->intr_count; i++) {
  1566. printk(KERN_ERR PFX
  1567. "msi_x_entry.[%d]vector = %d.\n", i,
  1568. qdev->msi_x_entry[i].vector);
  1569. printk(KERN_ERR PFX
  1570. "msi_x_entry.[%d]entry = %d.\n", i,
  1571. qdev->msi_x_entry[i].entry);
  1572. }
  1573. for (i = 0; i < qdev->intr_count; i++) {
  1574. printk(KERN_ERR PFX
  1575. "intr_context[%d].qdev = %p.\n", i,
  1576. qdev->intr_context[i].qdev);
  1577. printk(KERN_ERR PFX
  1578. "intr_context[%d].intr = %d.\n", i,
  1579. qdev->intr_context[i].intr);
  1580. printk(KERN_ERR PFX
  1581. "intr_context[%d].hooked = %d.\n", i,
  1582. qdev->intr_context[i].hooked);
  1583. printk(KERN_ERR PFX
  1584. "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
  1585. qdev->intr_context[i].intr_en_mask);
  1586. printk(KERN_ERR PFX
  1587. "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
  1588. qdev->intr_context[i].intr_dis_mask);
  1589. printk(KERN_ERR PFX
  1590. "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
  1591. qdev->intr_context[i].intr_read_mask);
  1592. }
  1593. printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
  1594. printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
  1595. printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
  1596. printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
  1597. printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
  1598. printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
  1599. qdev->tx_ring);
  1600. printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
  1601. qdev->rss_ring_count);
  1602. printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
  1603. printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
  1604. qdev->default_rx_queue);
  1605. printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
  1606. qdev->xg_sem_mask);
  1607. printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
  1608. qdev->port_link_up);
  1609. printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
  1610. qdev->port_init);
  1611. }
  1612. #endif
  1613. #ifdef QL_CB_DUMP
  1614. void ql_dump_wqicb(struct wqicb *wqicb)
  1615. {
  1616. printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
  1617. printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
  1618. printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
  1619. printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
  1620. le16_to_cpu(wqicb->cq_id_rss));
  1621. printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
  1622. printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n",
  1623. (unsigned long long) le64_to_cpu(wqicb->addr));
  1624. printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n",
  1625. (unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
  1626. }
  1627. void ql_dump_tx_ring(struct tx_ring *tx_ring)
  1628. {
  1629. if (tx_ring == NULL)
  1630. return;
  1631. printk(KERN_ERR PFX
  1632. "===================== Dumping tx_ring %d ===============.\n",
  1633. tx_ring->wq_id);
  1634. printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
  1635. printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
  1636. (unsigned long long) tx_ring->wq_base_dma);
  1637. printk(KERN_ERR PFX
  1638. "tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1639. tx_ring->cnsmr_idx_sh_reg,
  1640. tx_ring->cnsmr_idx_sh_reg
  1641. ? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
  1642. printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
  1643. printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
  1644. printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
  1645. tx_ring->prod_idx_db_reg);
  1646. printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
  1647. tx_ring->valid_db_reg);
  1648. printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
  1649. printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
  1650. printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
  1651. printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
  1652. printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
  1653. atomic_read(&tx_ring->tx_count));
  1654. }
  1655. void ql_dump_ricb(struct ricb *ricb)
  1656. {
  1657. int i;
  1658. printk(KERN_ERR PFX
  1659. "===================== Dumping ricb ===============.\n");
  1660. printk(KERN_ERR PFX "Dumping ricb stuff...\n");
  1661. printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
  1662. printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
  1663. ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
  1664. ricb->flags & RSS_L6K ? "RSS_L6K " : "",
  1665. ricb->flags & RSS_LI ? "RSS_LI " : "",
  1666. ricb->flags & RSS_LB ? "RSS_LB " : "",
  1667. ricb->flags & RSS_LM ? "RSS_LM " : "",
  1668. ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
  1669. ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
  1670. ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
  1671. ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
  1672. printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
  1673. for (i = 0; i < 16; i++)
  1674. printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
  1675. le32_to_cpu(ricb->hash_cq_id[i]));
  1676. for (i = 0; i < 10; i++)
  1677. printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
  1678. le32_to_cpu(ricb->ipv6_hash_key[i]));
  1679. for (i = 0; i < 4; i++)
  1680. printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
  1681. le32_to_cpu(ricb->ipv4_hash_key[i]));
  1682. }
  1683. void ql_dump_cqicb(struct cqicb *cqicb)
  1684. {
  1685. printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
  1686. printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
  1687. printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
  1688. printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
  1689. printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n",
  1690. (unsigned long long) le64_to_cpu(cqicb->addr));
  1691. printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n",
  1692. (unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
  1693. printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
  1694. le16_to_cpu(cqicb->pkt_delay));
  1695. printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
  1696. le16_to_cpu(cqicb->irq_delay));
  1697. printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n",
  1698. (unsigned long long) le64_to_cpu(cqicb->lbq_addr));
  1699. printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
  1700. le16_to_cpu(cqicb->lbq_buf_size));
  1701. printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
  1702. le16_to_cpu(cqicb->lbq_len));
  1703. printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n",
  1704. (unsigned long long) le64_to_cpu(cqicb->sbq_addr));
  1705. printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
  1706. le16_to_cpu(cqicb->sbq_buf_size));
  1707. printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
  1708. le16_to_cpu(cqicb->sbq_len));
  1709. }
  1710. void ql_dump_rx_ring(struct rx_ring *rx_ring)
  1711. {
  1712. if (rx_ring == NULL)
  1713. return;
  1714. printk(KERN_ERR PFX
  1715. "===================== Dumping rx_ring %d ===============.\n",
  1716. rx_ring->cq_id);
  1717. printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
  1718. rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
  1719. rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
  1720. rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
  1721. printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
  1722. printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
  1723. printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
  1724. (unsigned long long) rx_ring->cq_base_dma);
  1725. printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
  1726. printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
  1727. printk(KERN_ERR PFX
  1728. "rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1729. rx_ring->prod_idx_sh_reg,
  1730. rx_ring->prod_idx_sh_reg
  1731. ? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
  1732. printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
  1733. (unsigned long long) rx_ring->prod_idx_sh_reg_dma);
  1734. printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
  1735. rx_ring->cnsmr_idx_db_reg);
  1736. printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
  1737. printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
  1738. printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
  1739. rx_ring->valid_db_reg);
  1740. printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
  1741. printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
  1742. (unsigned long long) rx_ring->lbq_base_dma);
  1743. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
  1744. rx_ring->lbq_base_indirect);
  1745. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
  1746. (unsigned long long) rx_ring->lbq_base_indirect_dma);
  1747. printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
  1748. printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
  1749. printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
  1750. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
  1751. rx_ring->lbq_prod_idx_db_reg);
  1752. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
  1753. rx_ring->lbq_prod_idx);
  1754. printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
  1755. rx_ring->lbq_curr_idx);
  1756. printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
  1757. rx_ring->lbq_clean_idx);
  1758. printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
  1759. rx_ring->lbq_free_cnt);
  1760. printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
  1761. rx_ring->lbq_buf_size);
  1762. printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
  1763. printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
  1764. (unsigned long long) rx_ring->sbq_base_dma);
  1765. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
  1766. rx_ring->sbq_base_indirect);
  1767. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
  1768. (unsigned long long) rx_ring->sbq_base_indirect_dma);
  1769. printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
  1770. printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
  1771. printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
  1772. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
  1773. rx_ring->sbq_prod_idx_db_reg);
  1774. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
  1775. rx_ring->sbq_prod_idx);
  1776. printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
  1777. rx_ring->sbq_curr_idx);
  1778. printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
  1779. rx_ring->sbq_clean_idx);
  1780. printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
  1781. rx_ring->sbq_free_cnt);
  1782. printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
  1783. rx_ring->sbq_buf_size);
  1784. printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
  1785. printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
  1786. printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
  1787. printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
  1788. }
  1789. void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
  1790. {
  1791. void *ptr;
  1792. printk(KERN_ERR PFX "%s: Enter.\n", __func__);
  1793. ptr = kmalloc(size, GFP_ATOMIC);
  1794. if (ptr == NULL) {
  1795. printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
  1796. __func__);
  1797. return;
  1798. }
  1799. if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
  1800. printk(KERN_ERR "%s: Failed to upload control block!\n",
  1801. __func__);
  1802. goto fail_it;
  1803. }
  1804. switch (bit) {
  1805. case CFG_DRQ:
  1806. ql_dump_wqicb((struct wqicb *)ptr);
  1807. break;
  1808. case CFG_DCQ:
  1809. ql_dump_cqicb((struct cqicb *)ptr);
  1810. break;
  1811. case CFG_DR:
  1812. ql_dump_ricb((struct ricb *)ptr);
  1813. break;
  1814. default:
  1815. printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
  1816. __func__, bit);
  1817. break;
  1818. }
  1819. fail_it:
  1820. kfree(ptr);
  1821. }
  1822. #endif
  1823. #ifdef QL_OB_DUMP
  1824. void ql_dump_tx_desc(struct tx_buf_desc *tbd)
  1825. {
  1826. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1827. le64_to_cpu((u64) tbd->addr));
  1828. printk(KERN_ERR PFX "tbd->len = %d\n",
  1829. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1830. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1831. tbd->len & TX_DESC_C ? "C" : ".",
  1832. tbd->len & TX_DESC_E ? "E" : ".");
  1833. tbd++;
  1834. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1835. le64_to_cpu((u64) tbd->addr));
  1836. printk(KERN_ERR PFX "tbd->len = %d\n",
  1837. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1838. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1839. tbd->len & TX_DESC_C ? "C" : ".",
  1840. tbd->len & TX_DESC_E ? "E" : ".");
  1841. tbd++;
  1842. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1843. le64_to_cpu((u64) tbd->addr));
  1844. printk(KERN_ERR PFX "tbd->len = %d\n",
  1845. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1846. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1847. tbd->len & TX_DESC_C ? "C" : ".",
  1848. tbd->len & TX_DESC_E ? "E" : ".");
  1849. }
  1850. void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
  1851. {
  1852. struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
  1853. (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
  1854. struct tx_buf_desc *tbd;
  1855. u16 frame_len;
  1856. printk(KERN_ERR PFX "%s\n", __func__);
  1857. printk(KERN_ERR PFX "opcode = %s\n",
  1858. (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
  1859. printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
  1860. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
  1861. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
  1862. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
  1863. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
  1864. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
  1865. printk(KERN_ERR PFX "flags2 = %s %s %s\n",
  1866. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
  1867. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
  1868. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
  1869. printk(KERN_ERR PFX "flags3 = %s %s %s \n",
  1870. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
  1871. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
  1872. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
  1873. printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
  1874. printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
  1875. printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
  1876. if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
  1877. printk(KERN_ERR PFX "frame_len = %d\n",
  1878. le32_to_cpu(ob_mac_tso_iocb->frame_len));
  1879. printk(KERN_ERR PFX "mss = %d\n",
  1880. le16_to_cpu(ob_mac_tso_iocb->mss));
  1881. printk(KERN_ERR PFX "prot_hdr_len = %d\n",
  1882. le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
  1883. printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
  1884. le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
  1885. frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
  1886. } else {
  1887. printk(KERN_ERR PFX "frame_len = %d\n",
  1888. le16_to_cpu(ob_mac_iocb->frame_len));
  1889. frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
  1890. }
  1891. tbd = &ob_mac_iocb->tbd[0];
  1892. ql_dump_tx_desc(tbd);
  1893. }
  1894. void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
  1895. {
  1896. printk(KERN_ERR PFX "%s\n", __func__);
  1897. printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
  1898. printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
  1899. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
  1900. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
  1901. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
  1902. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
  1903. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
  1904. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
  1905. ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
  1906. printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
  1907. }
  1908. #endif
  1909. #ifdef QL_IB_DUMP
  1910. void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
  1911. {
  1912. printk(KERN_ERR PFX "%s\n", __func__);
  1913. printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
  1914. printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
  1915. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
  1916. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
  1917. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
  1918. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
  1919. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
  1920. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
  1921. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
  1922. printk(KERN_ERR PFX "%s%s%s Multicast.\n",
  1923. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1924. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1925. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1926. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1927. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1928. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1929. printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
  1930. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
  1931. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
  1932. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
  1933. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
  1934. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
  1935. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
  1936. printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
  1937. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1938. IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
  1939. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1940. IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
  1941. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1942. IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
  1943. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1944. IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
  1945. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1946. IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
  1947. printk(KERN_ERR PFX "flags3 = %s%s.\n",
  1948. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
  1949. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
  1950. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1951. printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
  1952. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1953. IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
  1954. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1955. IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
  1956. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1957. IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
  1958. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1959. IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
  1960. printk(KERN_ERR PFX "data_len = %d\n",
  1961. le32_to_cpu(ib_mac_rsp->data_len));
  1962. printk(KERN_ERR PFX "data_addr = 0x%llx\n",
  1963. (unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
  1964. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1965. printk(KERN_ERR PFX "rss = %x\n",
  1966. le32_to_cpu(ib_mac_rsp->rss));
  1967. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
  1968. printk(KERN_ERR PFX "vlan_id = %x\n",
  1969. le16_to_cpu(ib_mac_rsp->vlan_id));
  1970. printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
  1971. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
  1972. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
  1973. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
  1974. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1975. printk(KERN_ERR PFX "hdr length = %d.\n",
  1976. le32_to_cpu(ib_mac_rsp->hdr_len));
  1977. printk(KERN_ERR PFX "hdr addr = 0x%llx.\n",
  1978. (unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
  1979. }
  1980. }
  1981. #endif
  1982. #ifdef QL_ALL_DUMP
  1983. void ql_dump_all(struct ql_adapter *qdev)
  1984. {
  1985. int i;
  1986. QL_DUMP_REGS(qdev);
  1987. QL_DUMP_QDEV(qdev);
  1988. for (i = 0; i < qdev->tx_ring_count; i++) {
  1989. QL_DUMP_TX_RING(&qdev->tx_ring[i]);
  1990. QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
  1991. }
  1992. for (i = 0; i < qdev->rx_ring_count; i++) {
  1993. QL_DUMP_RX_RING(&qdev->rx_ring[i]);
  1994. QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
  1995. }
  1996. }
  1997. #endif