niu.c 230 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/pci.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/netdevice.h>
  11. #include <linux/ethtool.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/delay.h>
  15. #include <linux/bitops.h>
  16. #include <linux/mii.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/if_vlan.h>
  19. #include <linux/ip.h>
  20. #include <linux/in.h>
  21. #include <linux/ipv6.h>
  22. #include <linux/log2.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/crc32.h>
  25. #include <linux/list.h>
  26. #include <linux/io.h>
  27. #ifdef CONFIG_SPARC64
  28. #include <linux/of_device.h>
  29. #endif
  30. #include "niu.h"
  31. #define DRV_MODULE_NAME "niu"
  32. #define DRV_MODULE_VERSION "1.0"
  33. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  34. static char version[] __devinitdata =
  35. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  36. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  37. MODULE_DESCRIPTION("NIU ethernet driver");
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_MODULE_VERSION);
  40. #ifndef readq
  41. static u64 readq(void __iomem *reg)
  42. {
  43. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  44. }
  45. static void writeq(u64 val, void __iomem *reg)
  46. {
  47. writel(val & 0xffffffff, reg);
  48. writel(val >> 32, reg + 0x4UL);
  49. }
  50. #endif
  51. static DEFINE_PCI_DEVICE_TABLE(niu_pci_tbl) = {
  52. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  53. {}
  54. };
  55. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  56. #define NIU_TX_TIMEOUT (5 * HZ)
  57. #define nr64(reg) readq(np->regs + (reg))
  58. #define nw64(reg, val) writeq((val), np->regs + (reg))
  59. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  60. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  61. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  62. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  63. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  64. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  65. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  66. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  67. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  68. static int niu_debug;
  69. static int debug = -1;
  70. module_param(debug, int, 0);
  71. MODULE_PARM_DESC(debug, "NIU debug level");
  72. #define niu_lock_parent(np, flags) \
  73. spin_lock_irqsave(&np->parent->lock, flags)
  74. #define niu_unlock_parent(np, flags) \
  75. spin_unlock_irqrestore(&np->parent->lock, flags)
  76. static int serdes_init_10g_serdes(struct niu *np);
  77. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  78. u64 bits, int limit, int delay)
  79. {
  80. while (--limit >= 0) {
  81. u64 val = nr64_mac(reg);
  82. if (!(val & bits))
  83. break;
  84. udelay(delay);
  85. }
  86. if (limit < 0)
  87. return -ENODEV;
  88. return 0;
  89. }
  90. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  91. u64 bits, int limit, int delay,
  92. const char *reg_name)
  93. {
  94. int err;
  95. nw64_mac(reg, bits);
  96. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  97. if (err)
  98. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  99. (unsigned long long)bits, reg_name,
  100. (unsigned long long)nr64_mac(reg));
  101. return err;
  102. }
  103. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  104. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  105. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  106. })
  107. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  108. u64 bits, int limit, int delay)
  109. {
  110. while (--limit >= 0) {
  111. u64 val = nr64_ipp(reg);
  112. if (!(val & bits))
  113. break;
  114. udelay(delay);
  115. }
  116. if (limit < 0)
  117. return -ENODEV;
  118. return 0;
  119. }
  120. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  121. u64 bits, int limit, int delay,
  122. const char *reg_name)
  123. {
  124. int err;
  125. u64 val;
  126. val = nr64_ipp(reg);
  127. val |= bits;
  128. nw64_ipp(reg, val);
  129. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  130. if (err)
  131. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  132. (unsigned long long)bits, reg_name,
  133. (unsigned long long)nr64_ipp(reg));
  134. return err;
  135. }
  136. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  137. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  138. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  139. })
  140. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  141. u64 bits, int limit, int delay)
  142. {
  143. while (--limit >= 0) {
  144. u64 val = nr64(reg);
  145. if (!(val & bits))
  146. break;
  147. udelay(delay);
  148. }
  149. if (limit < 0)
  150. return -ENODEV;
  151. return 0;
  152. }
  153. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  154. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  155. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  156. })
  157. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  158. u64 bits, int limit, int delay,
  159. const char *reg_name)
  160. {
  161. int err;
  162. nw64(reg, bits);
  163. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  164. if (err)
  165. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  166. (unsigned long long)bits, reg_name,
  167. (unsigned long long)nr64(reg));
  168. return err;
  169. }
  170. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  171. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  172. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  173. })
  174. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  175. {
  176. u64 val = (u64) lp->timer;
  177. if (on)
  178. val |= LDG_IMGMT_ARM;
  179. nw64(LDG_IMGMT(lp->ldg_num), val);
  180. }
  181. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  182. {
  183. unsigned long mask_reg, bits;
  184. u64 val;
  185. if (ldn < 0 || ldn > LDN_MAX)
  186. return -EINVAL;
  187. if (ldn < 64) {
  188. mask_reg = LD_IM0(ldn);
  189. bits = LD_IM0_MASK;
  190. } else {
  191. mask_reg = LD_IM1(ldn - 64);
  192. bits = LD_IM1_MASK;
  193. }
  194. val = nr64(mask_reg);
  195. if (on)
  196. val &= ~bits;
  197. else
  198. val |= bits;
  199. nw64(mask_reg, val);
  200. return 0;
  201. }
  202. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  203. {
  204. struct niu_parent *parent = np->parent;
  205. int i;
  206. for (i = 0; i <= LDN_MAX; i++) {
  207. int err;
  208. if (parent->ldg_map[i] != lp->ldg_num)
  209. continue;
  210. err = niu_ldn_irq_enable(np, i, on);
  211. if (err)
  212. return err;
  213. }
  214. return 0;
  215. }
  216. static int niu_enable_interrupts(struct niu *np, int on)
  217. {
  218. int i;
  219. for (i = 0; i < np->num_ldg; i++) {
  220. struct niu_ldg *lp = &np->ldg[i];
  221. int err;
  222. err = niu_enable_ldn_in_ldg(np, lp, on);
  223. if (err)
  224. return err;
  225. }
  226. for (i = 0; i < np->num_ldg; i++)
  227. niu_ldg_rearm(np, &np->ldg[i], on);
  228. return 0;
  229. }
  230. static u32 phy_encode(u32 type, int port)
  231. {
  232. return (type << (port * 2));
  233. }
  234. static u32 phy_decode(u32 val, int port)
  235. {
  236. return (val >> (port * 2)) & PORT_TYPE_MASK;
  237. }
  238. static int mdio_wait(struct niu *np)
  239. {
  240. int limit = 1000;
  241. u64 val;
  242. while (--limit > 0) {
  243. val = nr64(MIF_FRAME_OUTPUT);
  244. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  245. return val & MIF_FRAME_OUTPUT_DATA;
  246. udelay(10);
  247. }
  248. return -ENODEV;
  249. }
  250. static int mdio_read(struct niu *np, int port, int dev, int reg)
  251. {
  252. int err;
  253. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  254. err = mdio_wait(np);
  255. if (err < 0)
  256. return err;
  257. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  258. return mdio_wait(np);
  259. }
  260. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  261. {
  262. int err;
  263. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  264. err = mdio_wait(np);
  265. if (err < 0)
  266. return err;
  267. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  268. err = mdio_wait(np);
  269. if (err < 0)
  270. return err;
  271. return 0;
  272. }
  273. static int mii_read(struct niu *np, int port, int reg)
  274. {
  275. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  276. return mdio_wait(np);
  277. }
  278. static int mii_write(struct niu *np, int port, int reg, int data)
  279. {
  280. int err;
  281. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  282. err = mdio_wait(np);
  283. if (err < 0)
  284. return err;
  285. return 0;
  286. }
  287. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  288. {
  289. int err;
  290. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  291. ESR2_TI_PLL_TX_CFG_L(channel),
  292. val & 0xffff);
  293. if (!err)
  294. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  295. ESR2_TI_PLL_TX_CFG_H(channel),
  296. val >> 16);
  297. return err;
  298. }
  299. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  300. {
  301. int err;
  302. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  303. ESR2_TI_PLL_RX_CFG_L(channel),
  304. val & 0xffff);
  305. if (!err)
  306. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  307. ESR2_TI_PLL_RX_CFG_H(channel),
  308. val >> 16);
  309. return err;
  310. }
  311. /* Mode is always 10G fiber. */
  312. static int serdes_init_niu_10g_fiber(struct niu *np)
  313. {
  314. struct niu_link_config *lp = &np->link_config;
  315. u32 tx_cfg, rx_cfg;
  316. unsigned long i;
  317. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  318. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  319. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  320. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  321. if (lp->loopback_mode == LOOPBACK_PHY) {
  322. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  323. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  325. tx_cfg |= PLL_TX_CFG_ENTEST;
  326. rx_cfg |= PLL_RX_CFG_ENTEST;
  327. }
  328. /* Initialize all 4 lanes of the SERDES. */
  329. for (i = 0; i < 4; i++) {
  330. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  331. if (err)
  332. return err;
  333. }
  334. for (i = 0; i < 4; i++) {
  335. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  336. if (err)
  337. return err;
  338. }
  339. return 0;
  340. }
  341. static int serdes_init_niu_1g_serdes(struct niu *np)
  342. {
  343. struct niu_link_config *lp = &np->link_config;
  344. u16 pll_cfg, pll_sts;
  345. int max_retry = 100;
  346. u64 uninitialized_var(sig), mask, val;
  347. u32 tx_cfg, rx_cfg;
  348. unsigned long i;
  349. int err;
  350. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  351. PLL_TX_CFG_RATE_HALF);
  352. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  353. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  354. PLL_RX_CFG_RATE_HALF);
  355. if (np->port == 0)
  356. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  357. if (lp->loopback_mode == LOOPBACK_PHY) {
  358. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  359. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  360. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  361. tx_cfg |= PLL_TX_CFG_ENTEST;
  362. rx_cfg |= PLL_RX_CFG_ENTEST;
  363. }
  364. /* Initialize PLL for 1G */
  365. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  366. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  367. ESR2_TI_PLL_CFG_L, pll_cfg);
  368. if (err) {
  369. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  370. np->port, __func__);
  371. return err;
  372. }
  373. pll_sts = PLL_CFG_ENPLL;
  374. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  375. ESR2_TI_PLL_STS_L, pll_sts);
  376. if (err) {
  377. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  378. np->port, __func__);
  379. return err;
  380. }
  381. udelay(200);
  382. /* Initialize all 4 lanes of the SERDES. */
  383. for (i = 0; i < 4; i++) {
  384. err = esr2_set_tx_cfg(np, i, tx_cfg);
  385. if (err)
  386. return err;
  387. }
  388. for (i = 0; i < 4; i++) {
  389. err = esr2_set_rx_cfg(np, i, rx_cfg);
  390. if (err)
  391. return err;
  392. }
  393. switch (np->port) {
  394. case 0:
  395. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  396. mask = val;
  397. break;
  398. case 1:
  399. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  400. mask = val;
  401. break;
  402. default:
  403. return -EINVAL;
  404. }
  405. while (max_retry--) {
  406. sig = nr64(ESR_INT_SIGNALS);
  407. if ((sig & mask) == val)
  408. break;
  409. mdelay(500);
  410. }
  411. if ((sig & mask) != val) {
  412. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  413. np->port, (int)(sig & mask), (int)val);
  414. return -ENODEV;
  415. }
  416. return 0;
  417. }
  418. static int serdes_init_niu_10g_serdes(struct niu *np)
  419. {
  420. struct niu_link_config *lp = &np->link_config;
  421. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  422. int max_retry = 100;
  423. u64 uninitialized_var(sig), mask, val;
  424. unsigned long i;
  425. int err;
  426. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  427. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  428. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  429. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  430. if (lp->loopback_mode == LOOPBACK_PHY) {
  431. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  432. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  433. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  434. tx_cfg |= PLL_TX_CFG_ENTEST;
  435. rx_cfg |= PLL_RX_CFG_ENTEST;
  436. }
  437. /* Initialize PLL for 10G */
  438. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  439. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  440. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  441. if (err) {
  442. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  443. np->port, __func__);
  444. return err;
  445. }
  446. pll_sts = PLL_CFG_ENPLL;
  447. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  448. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  449. if (err) {
  450. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  451. np->port, __func__);
  452. return err;
  453. }
  454. udelay(200);
  455. /* Initialize all 4 lanes of the SERDES. */
  456. for (i = 0; i < 4; i++) {
  457. err = esr2_set_tx_cfg(np, i, tx_cfg);
  458. if (err)
  459. return err;
  460. }
  461. for (i = 0; i < 4; i++) {
  462. err = esr2_set_rx_cfg(np, i, rx_cfg);
  463. if (err)
  464. return err;
  465. }
  466. /* check if serdes is ready */
  467. switch (np->port) {
  468. case 0:
  469. mask = ESR_INT_SIGNALS_P0_BITS;
  470. val = (ESR_INT_SRDY0_P0 |
  471. ESR_INT_DET0_P0 |
  472. ESR_INT_XSRDY_P0 |
  473. ESR_INT_XDP_P0_CH3 |
  474. ESR_INT_XDP_P0_CH2 |
  475. ESR_INT_XDP_P0_CH1 |
  476. ESR_INT_XDP_P0_CH0);
  477. break;
  478. case 1:
  479. mask = ESR_INT_SIGNALS_P1_BITS;
  480. val = (ESR_INT_SRDY0_P1 |
  481. ESR_INT_DET0_P1 |
  482. ESR_INT_XSRDY_P1 |
  483. ESR_INT_XDP_P1_CH3 |
  484. ESR_INT_XDP_P1_CH2 |
  485. ESR_INT_XDP_P1_CH1 |
  486. ESR_INT_XDP_P1_CH0);
  487. break;
  488. default:
  489. return -EINVAL;
  490. }
  491. while (max_retry--) {
  492. sig = nr64(ESR_INT_SIGNALS);
  493. if ((sig & mask) == val)
  494. break;
  495. mdelay(500);
  496. }
  497. if ((sig & mask) != val) {
  498. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  499. np->port, (int)(sig & mask), (int)val);
  500. /* 10G failed, try initializing at 1G */
  501. err = serdes_init_niu_1g_serdes(np);
  502. if (!err) {
  503. np->flags &= ~NIU_FLAGS_10G;
  504. np->mac_xcvr = MAC_XCVR_PCS;
  505. } else {
  506. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  507. np->port);
  508. return -ENODEV;
  509. }
  510. }
  511. return 0;
  512. }
  513. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  514. {
  515. int err;
  516. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  517. if (err >= 0) {
  518. *val = (err & 0xffff);
  519. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  520. ESR_RXTX_CTRL_H(chan));
  521. if (err >= 0)
  522. *val |= ((err & 0xffff) << 16);
  523. err = 0;
  524. }
  525. return err;
  526. }
  527. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  528. {
  529. int err;
  530. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  531. ESR_GLUE_CTRL0_L(chan));
  532. if (err >= 0) {
  533. *val = (err & 0xffff);
  534. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  535. ESR_GLUE_CTRL0_H(chan));
  536. if (err >= 0) {
  537. *val |= ((err & 0xffff) << 16);
  538. err = 0;
  539. }
  540. }
  541. return err;
  542. }
  543. static int esr_read_reset(struct niu *np, u32 *val)
  544. {
  545. int err;
  546. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  547. ESR_RXTX_RESET_CTRL_L);
  548. if (err >= 0) {
  549. *val = (err & 0xffff);
  550. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  551. ESR_RXTX_RESET_CTRL_H);
  552. if (err >= 0) {
  553. *val |= ((err & 0xffff) << 16);
  554. err = 0;
  555. }
  556. }
  557. return err;
  558. }
  559. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  560. {
  561. int err;
  562. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  563. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  564. if (!err)
  565. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  566. ESR_RXTX_CTRL_H(chan), (val >> 16));
  567. return err;
  568. }
  569. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  570. {
  571. int err;
  572. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  573. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  574. if (!err)
  575. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  576. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  577. return err;
  578. }
  579. static int esr_reset(struct niu *np)
  580. {
  581. u32 uninitialized_var(reset);
  582. int err;
  583. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  584. ESR_RXTX_RESET_CTRL_L, 0x0000);
  585. if (err)
  586. return err;
  587. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  588. ESR_RXTX_RESET_CTRL_H, 0xffff);
  589. if (err)
  590. return err;
  591. udelay(200);
  592. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  593. ESR_RXTX_RESET_CTRL_L, 0xffff);
  594. if (err)
  595. return err;
  596. udelay(200);
  597. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  598. ESR_RXTX_RESET_CTRL_H, 0x0000);
  599. if (err)
  600. return err;
  601. udelay(200);
  602. err = esr_read_reset(np, &reset);
  603. if (err)
  604. return err;
  605. if (reset != 0) {
  606. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  607. np->port, reset);
  608. return -ENODEV;
  609. }
  610. return 0;
  611. }
  612. static int serdes_init_10g(struct niu *np)
  613. {
  614. struct niu_link_config *lp = &np->link_config;
  615. unsigned long ctrl_reg, test_cfg_reg, i;
  616. u64 ctrl_val, test_cfg_val, sig, mask, val;
  617. int err;
  618. switch (np->port) {
  619. case 0:
  620. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  621. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  622. break;
  623. case 1:
  624. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  625. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  626. break;
  627. default:
  628. return -EINVAL;
  629. }
  630. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  631. ENET_SERDES_CTRL_SDET_1 |
  632. ENET_SERDES_CTRL_SDET_2 |
  633. ENET_SERDES_CTRL_SDET_3 |
  634. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  638. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  642. test_cfg_val = 0;
  643. if (lp->loopback_mode == LOOPBACK_PHY) {
  644. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  645. ENET_SERDES_TEST_MD_0_SHIFT) |
  646. (ENET_TEST_MD_PAD_LOOPBACK <<
  647. ENET_SERDES_TEST_MD_1_SHIFT) |
  648. (ENET_TEST_MD_PAD_LOOPBACK <<
  649. ENET_SERDES_TEST_MD_2_SHIFT) |
  650. (ENET_TEST_MD_PAD_LOOPBACK <<
  651. ENET_SERDES_TEST_MD_3_SHIFT));
  652. }
  653. nw64(ctrl_reg, ctrl_val);
  654. nw64(test_cfg_reg, test_cfg_val);
  655. /* Initialize all 4 lanes of the SERDES. */
  656. for (i = 0; i < 4; i++) {
  657. u32 rxtx_ctrl, glue0;
  658. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  659. if (err)
  660. return err;
  661. err = esr_read_glue0(np, i, &glue0);
  662. if (err)
  663. return err;
  664. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  665. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  666. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  667. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  668. ESR_GLUE_CTRL0_THCNT |
  669. ESR_GLUE_CTRL0_BLTIME);
  670. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  671. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  672. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  673. (BLTIME_300_CYCLES <<
  674. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  675. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  676. if (err)
  677. return err;
  678. err = esr_write_glue0(np, i, glue0);
  679. if (err)
  680. return err;
  681. }
  682. err = esr_reset(np);
  683. if (err)
  684. return err;
  685. sig = nr64(ESR_INT_SIGNALS);
  686. switch (np->port) {
  687. case 0:
  688. mask = ESR_INT_SIGNALS_P0_BITS;
  689. val = (ESR_INT_SRDY0_P0 |
  690. ESR_INT_DET0_P0 |
  691. ESR_INT_XSRDY_P0 |
  692. ESR_INT_XDP_P0_CH3 |
  693. ESR_INT_XDP_P0_CH2 |
  694. ESR_INT_XDP_P0_CH1 |
  695. ESR_INT_XDP_P0_CH0);
  696. break;
  697. case 1:
  698. mask = ESR_INT_SIGNALS_P1_BITS;
  699. val = (ESR_INT_SRDY0_P1 |
  700. ESR_INT_DET0_P1 |
  701. ESR_INT_XSRDY_P1 |
  702. ESR_INT_XDP_P1_CH3 |
  703. ESR_INT_XDP_P1_CH2 |
  704. ESR_INT_XDP_P1_CH1 |
  705. ESR_INT_XDP_P1_CH0);
  706. break;
  707. default:
  708. return -EINVAL;
  709. }
  710. if ((sig & mask) != val) {
  711. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  712. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  713. return 0;
  714. }
  715. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  716. np->port, (int)(sig & mask), (int)val);
  717. return -ENODEV;
  718. }
  719. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  720. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  721. return 0;
  722. }
  723. static int serdes_init_1g(struct niu *np)
  724. {
  725. u64 val;
  726. val = nr64(ENET_SERDES_1_PLL_CFG);
  727. val &= ~ENET_SERDES_PLL_FBDIV2;
  728. switch (np->port) {
  729. case 0:
  730. val |= ENET_SERDES_PLL_HRATE0;
  731. break;
  732. case 1:
  733. val |= ENET_SERDES_PLL_HRATE1;
  734. break;
  735. case 2:
  736. val |= ENET_SERDES_PLL_HRATE2;
  737. break;
  738. case 3:
  739. val |= ENET_SERDES_PLL_HRATE3;
  740. break;
  741. default:
  742. return -EINVAL;
  743. }
  744. nw64(ENET_SERDES_1_PLL_CFG, val);
  745. return 0;
  746. }
  747. static int serdes_init_1g_serdes(struct niu *np)
  748. {
  749. struct niu_link_config *lp = &np->link_config;
  750. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  751. u64 ctrl_val, test_cfg_val, sig, mask, val;
  752. int err;
  753. u64 reset_val, val_rd;
  754. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  755. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  756. ENET_SERDES_PLL_FBDIV0;
  757. switch (np->port) {
  758. case 0:
  759. reset_val = ENET_SERDES_RESET_0;
  760. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  761. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  762. pll_cfg = ENET_SERDES_0_PLL_CFG;
  763. break;
  764. case 1:
  765. reset_val = ENET_SERDES_RESET_1;
  766. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  767. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  768. pll_cfg = ENET_SERDES_1_PLL_CFG;
  769. break;
  770. default:
  771. return -EINVAL;
  772. }
  773. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  774. ENET_SERDES_CTRL_SDET_1 |
  775. ENET_SERDES_CTRL_SDET_2 |
  776. ENET_SERDES_CTRL_SDET_3 |
  777. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  781. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  785. test_cfg_val = 0;
  786. if (lp->loopback_mode == LOOPBACK_PHY) {
  787. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  788. ENET_SERDES_TEST_MD_0_SHIFT) |
  789. (ENET_TEST_MD_PAD_LOOPBACK <<
  790. ENET_SERDES_TEST_MD_1_SHIFT) |
  791. (ENET_TEST_MD_PAD_LOOPBACK <<
  792. ENET_SERDES_TEST_MD_2_SHIFT) |
  793. (ENET_TEST_MD_PAD_LOOPBACK <<
  794. ENET_SERDES_TEST_MD_3_SHIFT));
  795. }
  796. nw64(ENET_SERDES_RESET, reset_val);
  797. mdelay(20);
  798. val_rd = nr64(ENET_SERDES_RESET);
  799. val_rd &= ~reset_val;
  800. nw64(pll_cfg, val);
  801. nw64(ctrl_reg, ctrl_val);
  802. nw64(test_cfg_reg, test_cfg_val);
  803. nw64(ENET_SERDES_RESET, val_rd);
  804. mdelay(2000);
  805. /* Initialize all 4 lanes of the SERDES. */
  806. for (i = 0; i < 4; i++) {
  807. u32 rxtx_ctrl, glue0;
  808. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  809. if (err)
  810. return err;
  811. err = esr_read_glue0(np, i, &glue0);
  812. if (err)
  813. return err;
  814. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  815. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  816. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  817. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  818. ESR_GLUE_CTRL0_THCNT |
  819. ESR_GLUE_CTRL0_BLTIME);
  820. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  821. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  822. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  823. (BLTIME_300_CYCLES <<
  824. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  825. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  826. if (err)
  827. return err;
  828. err = esr_write_glue0(np, i, glue0);
  829. if (err)
  830. return err;
  831. }
  832. sig = nr64(ESR_INT_SIGNALS);
  833. switch (np->port) {
  834. case 0:
  835. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  836. mask = val;
  837. break;
  838. case 1:
  839. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  840. mask = val;
  841. break;
  842. default:
  843. return -EINVAL;
  844. }
  845. if ((sig & mask) != val) {
  846. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  847. np->port, (int)(sig & mask), (int)val);
  848. return -ENODEV;
  849. }
  850. return 0;
  851. }
  852. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  853. {
  854. struct niu_link_config *lp = &np->link_config;
  855. int link_up;
  856. u64 val;
  857. u16 current_speed;
  858. unsigned long flags;
  859. u8 current_duplex;
  860. link_up = 0;
  861. current_speed = SPEED_INVALID;
  862. current_duplex = DUPLEX_INVALID;
  863. spin_lock_irqsave(&np->lock, flags);
  864. val = nr64_pcs(PCS_MII_STAT);
  865. if (val & PCS_MII_STAT_LINK_STATUS) {
  866. link_up = 1;
  867. current_speed = SPEED_1000;
  868. current_duplex = DUPLEX_FULL;
  869. }
  870. lp->active_speed = current_speed;
  871. lp->active_duplex = current_duplex;
  872. spin_unlock_irqrestore(&np->lock, flags);
  873. *link_up_p = link_up;
  874. return 0;
  875. }
  876. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  877. {
  878. unsigned long flags;
  879. struct niu_link_config *lp = &np->link_config;
  880. int link_up = 0;
  881. int link_ok = 1;
  882. u64 val, val2;
  883. u16 current_speed;
  884. u8 current_duplex;
  885. if (!(np->flags & NIU_FLAGS_10G))
  886. return link_status_1g_serdes(np, link_up_p);
  887. current_speed = SPEED_INVALID;
  888. current_duplex = DUPLEX_INVALID;
  889. spin_lock_irqsave(&np->lock, flags);
  890. val = nr64_xpcs(XPCS_STATUS(0));
  891. val2 = nr64_mac(XMAC_INTER2);
  892. if (val2 & 0x01000000)
  893. link_ok = 0;
  894. if ((val & 0x1000ULL) && link_ok) {
  895. link_up = 1;
  896. current_speed = SPEED_10000;
  897. current_duplex = DUPLEX_FULL;
  898. }
  899. lp->active_speed = current_speed;
  900. lp->active_duplex = current_duplex;
  901. spin_unlock_irqrestore(&np->lock, flags);
  902. *link_up_p = link_up;
  903. return 0;
  904. }
  905. static int link_status_mii(struct niu *np, int *link_up_p)
  906. {
  907. struct niu_link_config *lp = &np->link_config;
  908. int err;
  909. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  910. int supported, advertising, active_speed, active_duplex;
  911. err = mii_read(np, np->phy_addr, MII_BMCR);
  912. if (unlikely(err < 0))
  913. return err;
  914. bmcr = err;
  915. err = mii_read(np, np->phy_addr, MII_BMSR);
  916. if (unlikely(err < 0))
  917. return err;
  918. bmsr = err;
  919. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  920. if (unlikely(err < 0))
  921. return err;
  922. advert = err;
  923. err = mii_read(np, np->phy_addr, MII_LPA);
  924. if (unlikely(err < 0))
  925. return err;
  926. lpa = err;
  927. if (likely(bmsr & BMSR_ESTATEN)) {
  928. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  929. if (unlikely(err < 0))
  930. return err;
  931. estatus = err;
  932. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  933. if (unlikely(err < 0))
  934. return err;
  935. ctrl1000 = err;
  936. err = mii_read(np, np->phy_addr, MII_STAT1000);
  937. if (unlikely(err < 0))
  938. return err;
  939. stat1000 = err;
  940. } else
  941. estatus = ctrl1000 = stat1000 = 0;
  942. supported = 0;
  943. if (bmsr & BMSR_ANEGCAPABLE)
  944. supported |= SUPPORTED_Autoneg;
  945. if (bmsr & BMSR_10HALF)
  946. supported |= SUPPORTED_10baseT_Half;
  947. if (bmsr & BMSR_10FULL)
  948. supported |= SUPPORTED_10baseT_Full;
  949. if (bmsr & BMSR_100HALF)
  950. supported |= SUPPORTED_100baseT_Half;
  951. if (bmsr & BMSR_100FULL)
  952. supported |= SUPPORTED_100baseT_Full;
  953. if (estatus & ESTATUS_1000_THALF)
  954. supported |= SUPPORTED_1000baseT_Half;
  955. if (estatus & ESTATUS_1000_TFULL)
  956. supported |= SUPPORTED_1000baseT_Full;
  957. lp->supported = supported;
  958. advertising = 0;
  959. if (advert & ADVERTISE_10HALF)
  960. advertising |= ADVERTISED_10baseT_Half;
  961. if (advert & ADVERTISE_10FULL)
  962. advertising |= ADVERTISED_10baseT_Full;
  963. if (advert & ADVERTISE_100HALF)
  964. advertising |= ADVERTISED_100baseT_Half;
  965. if (advert & ADVERTISE_100FULL)
  966. advertising |= ADVERTISED_100baseT_Full;
  967. if (ctrl1000 & ADVERTISE_1000HALF)
  968. advertising |= ADVERTISED_1000baseT_Half;
  969. if (ctrl1000 & ADVERTISE_1000FULL)
  970. advertising |= ADVERTISED_1000baseT_Full;
  971. if (bmcr & BMCR_ANENABLE) {
  972. int neg, neg1000;
  973. lp->active_autoneg = 1;
  974. advertising |= ADVERTISED_Autoneg;
  975. neg = advert & lpa;
  976. neg1000 = (ctrl1000 << 2) & stat1000;
  977. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  978. active_speed = SPEED_1000;
  979. else if (neg & LPA_100)
  980. active_speed = SPEED_100;
  981. else if (neg & (LPA_10HALF | LPA_10FULL))
  982. active_speed = SPEED_10;
  983. else
  984. active_speed = SPEED_INVALID;
  985. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  986. active_duplex = DUPLEX_FULL;
  987. else if (active_speed != SPEED_INVALID)
  988. active_duplex = DUPLEX_HALF;
  989. else
  990. active_duplex = DUPLEX_INVALID;
  991. } else {
  992. lp->active_autoneg = 0;
  993. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  994. active_speed = SPEED_1000;
  995. else if (bmcr & BMCR_SPEED100)
  996. active_speed = SPEED_100;
  997. else
  998. active_speed = SPEED_10;
  999. if (bmcr & BMCR_FULLDPLX)
  1000. active_duplex = DUPLEX_FULL;
  1001. else
  1002. active_duplex = DUPLEX_HALF;
  1003. }
  1004. lp->active_advertising = advertising;
  1005. lp->active_speed = active_speed;
  1006. lp->active_duplex = active_duplex;
  1007. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1008. return 0;
  1009. }
  1010. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1011. {
  1012. struct niu_link_config *lp = &np->link_config;
  1013. u16 current_speed, bmsr;
  1014. unsigned long flags;
  1015. u8 current_duplex;
  1016. int err, link_up;
  1017. link_up = 0;
  1018. current_speed = SPEED_INVALID;
  1019. current_duplex = DUPLEX_INVALID;
  1020. spin_lock_irqsave(&np->lock, flags);
  1021. err = -EINVAL;
  1022. err = mii_read(np, np->phy_addr, MII_BMSR);
  1023. if (err < 0)
  1024. goto out;
  1025. bmsr = err;
  1026. if (bmsr & BMSR_LSTATUS) {
  1027. u16 adv, lpa, common, estat;
  1028. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1029. if (err < 0)
  1030. goto out;
  1031. adv = err;
  1032. err = mii_read(np, np->phy_addr, MII_LPA);
  1033. if (err < 0)
  1034. goto out;
  1035. lpa = err;
  1036. common = adv & lpa;
  1037. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1038. if (err < 0)
  1039. goto out;
  1040. estat = err;
  1041. link_up = 1;
  1042. current_speed = SPEED_1000;
  1043. current_duplex = DUPLEX_FULL;
  1044. }
  1045. lp->active_speed = current_speed;
  1046. lp->active_duplex = current_duplex;
  1047. err = 0;
  1048. out:
  1049. spin_unlock_irqrestore(&np->lock, flags);
  1050. *link_up_p = link_up;
  1051. return err;
  1052. }
  1053. static int link_status_1g(struct niu *np, int *link_up_p)
  1054. {
  1055. struct niu_link_config *lp = &np->link_config;
  1056. unsigned long flags;
  1057. int err;
  1058. spin_lock_irqsave(&np->lock, flags);
  1059. err = link_status_mii(np, link_up_p);
  1060. lp->supported |= SUPPORTED_TP;
  1061. lp->active_advertising |= ADVERTISED_TP;
  1062. spin_unlock_irqrestore(&np->lock, flags);
  1063. return err;
  1064. }
  1065. static int bcm8704_reset(struct niu *np)
  1066. {
  1067. int err, limit;
  1068. err = mdio_read(np, np->phy_addr,
  1069. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1070. if (err < 0 || err == 0xffff)
  1071. return err;
  1072. err |= BMCR_RESET;
  1073. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1074. MII_BMCR, err);
  1075. if (err)
  1076. return err;
  1077. limit = 1000;
  1078. while (--limit >= 0) {
  1079. err = mdio_read(np, np->phy_addr,
  1080. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1081. if (err < 0)
  1082. return err;
  1083. if (!(err & BMCR_RESET))
  1084. break;
  1085. }
  1086. if (limit < 0) {
  1087. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1088. np->port, (err & 0xffff));
  1089. return -ENODEV;
  1090. }
  1091. return 0;
  1092. }
  1093. /* When written, certain PHY registers need to be read back twice
  1094. * in order for the bits to settle properly.
  1095. */
  1096. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1097. {
  1098. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1099. if (err < 0)
  1100. return err;
  1101. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1102. if (err < 0)
  1103. return err;
  1104. return 0;
  1105. }
  1106. static int bcm8706_init_user_dev3(struct niu *np)
  1107. {
  1108. int err;
  1109. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1110. BCM8704_USER_OPT_DIGITAL_CTRL);
  1111. if (err < 0)
  1112. return err;
  1113. err &= ~USER_ODIG_CTRL_GPIOS;
  1114. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1115. err |= USER_ODIG_CTRL_RESV2;
  1116. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1117. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1118. if (err)
  1119. return err;
  1120. mdelay(1000);
  1121. return 0;
  1122. }
  1123. static int bcm8704_init_user_dev3(struct niu *np)
  1124. {
  1125. int err;
  1126. err = mdio_write(np, np->phy_addr,
  1127. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1128. (USER_CONTROL_OPTXRST_LVL |
  1129. USER_CONTROL_OPBIASFLT_LVL |
  1130. USER_CONTROL_OBTMPFLT_LVL |
  1131. USER_CONTROL_OPPRFLT_LVL |
  1132. USER_CONTROL_OPTXFLT_LVL |
  1133. USER_CONTROL_OPRXLOS_LVL |
  1134. USER_CONTROL_OPRXFLT_LVL |
  1135. USER_CONTROL_OPTXON_LVL |
  1136. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1137. if (err)
  1138. return err;
  1139. err = mdio_write(np, np->phy_addr,
  1140. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1141. (USER_PMD_TX_CTL_XFP_CLKEN |
  1142. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1143. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1144. USER_PMD_TX_CTL_TSCK_LPWREN));
  1145. if (err)
  1146. return err;
  1147. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1148. if (err)
  1149. return err;
  1150. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1151. if (err)
  1152. return err;
  1153. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1154. BCM8704_USER_OPT_DIGITAL_CTRL);
  1155. if (err < 0)
  1156. return err;
  1157. err &= ~USER_ODIG_CTRL_GPIOS;
  1158. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1159. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1160. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1161. if (err)
  1162. return err;
  1163. mdelay(1000);
  1164. return 0;
  1165. }
  1166. static int mrvl88x2011_act_led(struct niu *np, int val)
  1167. {
  1168. int err;
  1169. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1170. MRVL88X2011_LED_8_TO_11_CTL);
  1171. if (err < 0)
  1172. return err;
  1173. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1174. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1175. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1176. MRVL88X2011_LED_8_TO_11_CTL, err);
  1177. }
  1178. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1179. {
  1180. int err;
  1181. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1182. MRVL88X2011_LED_BLINK_CTL);
  1183. if (err >= 0) {
  1184. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1185. err |= (rate << 4);
  1186. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1187. MRVL88X2011_LED_BLINK_CTL, err);
  1188. }
  1189. return err;
  1190. }
  1191. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1192. {
  1193. int err;
  1194. /* Set LED functions */
  1195. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1196. if (err)
  1197. return err;
  1198. /* led activity */
  1199. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1200. if (err)
  1201. return err;
  1202. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1203. MRVL88X2011_GENERAL_CTL);
  1204. if (err < 0)
  1205. return err;
  1206. err |= MRVL88X2011_ENA_XFPREFCLK;
  1207. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1208. MRVL88X2011_GENERAL_CTL, err);
  1209. if (err < 0)
  1210. return err;
  1211. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1212. MRVL88X2011_PMA_PMD_CTL_1);
  1213. if (err < 0)
  1214. return err;
  1215. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1216. err |= MRVL88X2011_LOOPBACK;
  1217. else
  1218. err &= ~MRVL88X2011_LOOPBACK;
  1219. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1220. MRVL88X2011_PMA_PMD_CTL_1, err);
  1221. if (err < 0)
  1222. return err;
  1223. /* Enable PMD */
  1224. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1225. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1226. }
  1227. static int xcvr_diag_bcm870x(struct niu *np)
  1228. {
  1229. u16 analog_stat0, tx_alarm_status;
  1230. int err = 0;
  1231. #if 1
  1232. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1233. MII_STAT1000);
  1234. if (err < 0)
  1235. return err;
  1236. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1237. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1238. if (err < 0)
  1239. return err;
  1240. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1241. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1242. MII_NWAYTEST);
  1243. if (err < 0)
  1244. return err;
  1245. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1246. #endif
  1247. /* XXX dig this out it might not be so useful XXX */
  1248. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1249. BCM8704_USER_ANALOG_STATUS0);
  1250. if (err < 0)
  1251. return err;
  1252. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1253. BCM8704_USER_ANALOG_STATUS0);
  1254. if (err < 0)
  1255. return err;
  1256. analog_stat0 = err;
  1257. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1258. BCM8704_USER_TX_ALARM_STATUS);
  1259. if (err < 0)
  1260. return err;
  1261. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1262. BCM8704_USER_TX_ALARM_STATUS);
  1263. if (err < 0)
  1264. return err;
  1265. tx_alarm_status = err;
  1266. if (analog_stat0 != 0x03fc) {
  1267. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1268. pr_info("Port %u cable not connected or bad cable\n",
  1269. np->port);
  1270. } else if (analog_stat0 == 0x639c) {
  1271. pr_info("Port %u optical module is bad or missing\n",
  1272. np->port);
  1273. }
  1274. }
  1275. return 0;
  1276. }
  1277. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1278. {
  1279. struct niu_link_config *lp = &np->link_config;
  1280. int err;
  1281. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1282. MII_BMCR);
  1283. if (err < 0)
  1284. return err;
  1285. err &= ~BMCR_LOOPBACK;
  1286. if (lp->loopback_mode == LOOPBACK_MAC)
  1287. err |= BMCR_LOOPBACK;
  1288. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1289. MII_BMCR, err);
  1290. if (err)
  1291. return err;
  1292. return 0;
  1293. }
  1294. static int xcvr_init_10g_bcm8706(struct niu *np)
  1295. {
  1296. int err = 0;
  1297. u64 val;
  1298. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1299. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1300. return err;
  1301. val = nr64_mac(XMAC_CONFIG);
  1302. val &= ~XMAC_CONFIG_LED_POLARITY;
  1303. val |= XMAC_CONFIG_FORCE_LED_ON;
  1304. nw64_mac(XMAC_CONFIG, val);
  1305. val = nr64(MIF_CONFIG);
  1306. val |= MIF_CONFIG_INDIRECT_MODE;
  1307. nw64(MIF_CONFIG, val);
  1308. err = bcm8704_reset(np);
  1309. if (err)
  1310. return err;
  1311. err = xcvr_10g_set_lb_bcm870x(np);
  1312. if (err)
  1313. return err;
  1314. err = bcm8706_init_user_dev3(np);
  1315. if (err)
  1316. return err;
  1317. err = xcvr_diag_bcm870x(np);
  1318. if (err)
  1319. return err;
  1320. return 0;
  1321. }
  1322. static int xcvr_init_10g_bcm8704(struct niu *np)
  1323. {
  1324. int err;
  1325. err = bcm8704_reset(np);
  1326. if (err)
  1327. return err;
  1328. err = bcm8704_init_user_dev3(np);
  1329. if (err)
  1330. return err;
  1331. err = xcvr_10g_set_lb_bcm870x(np);
  1332. if (err)
  1333. return err;
  1334. err = xcvr_diag_bcm870x(np);
  1335. if (err)
  1336. return err;
  1337. return 0;
  1338. }
  1339. static int xcvr_init_10g(struct niu *np)
  1340. {
  1341. int phy_id, err;
  1342. u64 val;
  1343. val = nr64_mac(XMAC_CONFIG);
  1344. val &= ~XMAC_CONFIG_LED_POLARITY;
  1345. val |= XMAC_CONFIG_FORCE_LED_ON;
  1346. nw64_mac(XMAC_CONFIG, val);
  1347. /* XXX shared resource, lock parent XXX */
  1348. val = nr64(MIF_CONFIG);
  1349. val |= MIF_CONFIG_INDIRECT_MODE;
  1350. nw64(MIF_CONFIG, val);
  1351. phy_id = phy_decode(np->parent->port_phy, np->port);
  1352. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1353. /* handle different phy types */
  1354. switch (phy_id & NIU_PHY_ID_MASK) {
  1355. case NIU_PHY_ID_MRVL88X2011:
  1356. err = xcvr_init_10g_mrvl88x2011(np);
  1357. break;
  1358. default: /* bcom 8704 */
  1359. err = xcvr_init_10g_bcm8704(np);
  1360. break;
  1361. }
  1362. return 0;
  1363. }
  1364. static int mii_reset(struct niu *np)
  1365. {
  1366. int limit, err;
  1367. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1368. if (err)
  1369. return err;
  1370. limit = 1000;
  1371. while (--limit >= 0) {
  1372. udelay(500);
  1373. err = mii_read(np, np->phy_addr, MII_BMCR);
  1374. if (err < 0)
  1375. return err;
  1376. if (!(err & BMCR_RESET))
  1377. break;
  1378. }
  1379. if (limit < 0) {
  1380. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1381. np->port, err);
  1382. return -ENODEV;
  1383. }
  1384. return 0;
  1385. }
  1386. static int xcvr_init_1g_rgmii(struct niu *np)
  1387. {
  1388. int err;
  1389. u64 val;
  1390. u16 bmcr, bmsr, estat;
  1391. val = nr64(MIF_CONFIG);
  1392. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1393. nw64(MIF_CONFIG, val);
  1394. err = mii_reset(np);
  1395. if (err)
  1396. return err;
  1397. err = mii_read(np, np->phy_addr, MII_BMSR);
  1398. if (err < 0)
  1399. return err;
  1400. bmsr = err;
  1401. estat = 0;
  1402. if (bmsr & BMSR_ESTATEN) {
  1403. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1404. if (err < 0)
  1405. return err;
  1406. estat = err;
  1407. }
  1408. bmcr = 0;
  1409. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1410. if (err)
  1411. return err;
  1412. if (bmsr & BMSR_ESTATEN) {
  1413. u16 ctrl1000 = 0;
  1414. if (estat & ESTATUS_1000_TFULL)
  1415. ctrl1000 |= ADVERTISE_1000FULL;
  1416. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1417. if (err)
  1418. return err;
  1419. }
  1420. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1421. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1422. if (err)
  1423. return err;
  1424. err = mii_read(np, np->phy_addr, MII_BMCR);
  1425. if (err < 0)
  1426. return err;
  1427. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1428. err = mii_read(np, np->phy_addr, MII_BMSR);
  1429. if (err < 0)
  1430. return err;
  1431. return 0;
  1432. }
  1433. static int mii_init_common(struct niu *np)
  1434. {
  1435. struct niu_link_config *lp = &np->link_config;
  1436. u16 bmcr, bmsr, adv, estat;
  1437. int err;
  1438. err = mii_reset(np);
  1439. if (err)
  1440. return err;
  1441. err = mii_read(np, np->phy_addr, MII_BMSR);
  1442. if (err < 0)
  1443. return err;
  1444. bmsr = err;
  1445. estat = 0;
  1446. if (bmsr & BMSR_ESTATEN) {
  1447. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1448. if (err < 0)
  1449. return err;
  1450. estat = err;
  1451. }
  1452. bmcr = 0;
  1453. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1454. if (err)
  1455. return err;
  1456. if (lp->loopback_mode == LOOPBACK_MAC) {
  1457. bmcr |= BMCR_LOOPBACK;
  1458. if (lp->active_speed == SPEED_1000)
  1459. bmcr |= BMCR_SPEED1000;
  1460. if (lp->active_duplex == DUPLEX_FULL)
  1461. bmcr |= BMCR_FULLDPLX;
  1462. }
  1463. if (lp->loopback_mode == LOOPBACK_PHY) {
  1464. u16 aux;
  1465. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1466. BCM5464R_AUX_CTL_WRITE_1);
  1467. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1468. if (err)
  1469. return err;
  1470. }
  1471. if (lp->autoneg) {
  1472. u16 ctrl1000;
  1473. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1474. if ((bmsr & BMSR_10HALF) &&
  1475. (lp->advertising & ADVERTISED_10baseT_Half))
  1476. adv |= ADVERTISE_10HALF;
  1477. if ((bmsr & BMSR_10FULL) &&
  1478. (lp->advertising & ADVERTISED_10baseT_Full))
  1479. adv |= ADVERTISE_10FULL;
  1480. if ((bmsr & BMSR_100HALF) &&
  1481. (lp->advertising & ADVERTISED_100baseT_Half))
  1482. adv |= ADVERTISE_100HALF;
  1483. if ((bmsr & BMSR_100FULL) &&
  1484. (lp->advertising & ADVERTISED_100baseT_Full))
  1485. adv |= ADVERTISE_100FULL;
  1486. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1487. if (err)
  1488. return err;
  1489. if (likely(bmsr & BMSR_ESTATEN)) {
  1490. ctrl1000 = 0;
  1491. if ((estat & ESTATUS_1000_THALF) &&
  1492. (lp->advertising & ADVERTISED_1000baseT_Half))
  1493. ctrl1000 |= ADVERTISE_1000HALF;
  1494. if ((estat & ESTATUS_1000_TFULL) &&
  1495. (lp->advertising & ADVERTISED_1000baseT_Full))
  1496. ctrl1000 |= ADVERTISE_1000FULL;
  1497. err = mii_write(np, np->phy_addr,
  1498. MII_CTRL1000, ctrl1000);
  1499. if (err)
  1500. return err;
  1501. }
  1502. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1503. } else {
  1504. /* !lp->autoneg */
  1505. int fulldpx;
  1506. if (lp->duplex == DUPLEX_FULL) {
  1507. bmcr |= BMCR_FULLDPLX;
  1508. fulldpx = 1;
  1509. } else if (lp->duplex == DUPLEX_HALF)
  1510. fulldpx = 0;
  1511. else
  1512. return -EINVAL;
  1513. if (lp->speed == SPEED_1000) {
  1514. /* if X-full requested while not supported, or
  1515. X-half requested while not supported... */
  1516. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1517. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1518. return -EINVAL;
  1519. bmcr |= BMCR_SPEED1000;
  1520. } else if (lp->speed == SPEED_100) {
  1521. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1522. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1523. return -EINVAL;
  1524. bmcr |= BMCR_SPEED100;
  1525. } else if (lp->speed == SPEED_10) {
  1526. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1527. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1528. return -EINVAL;
  1529. } else
  1530. return -EINVAL;
  1531. }
  1532. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1533. if (err)
  1534. return err;
  1535. #if 0
  1536. err = mii_read(np, np->phy_addr, MII_BMCR);
  1537. if (err < 0)
  1538. return err;
  1539. bmcr = err;
  1540. err = mii_read(np, np->phy_addr, MII_BMSR);
  1541. if (err < 0)
  1542. return err;
  1543. bmsr = err;
  1544. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1545. np->port, bmcr, bmsr);
  1546. #endif
  1547. return 0;
  1548. }
  1549. static int xcvr_init_1g(struct niu *np)
  1550. {
  1551. u64 val;
  1552. /* XXX shared resource, lock parent XXX */
  1553. val = nr64(MIF_CONFIG);
  1554. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1555. nw64(MIF_CONFIG, val);
  1556. return mii_init_common(np);
  1557. }
  1558. static int niu_xcvr_init(struct niu *np)
  1559. {
  1560. const struct niu_phy_ops *ops = np->phy_ops;
  1561. int err;
  1562. err = 0;
  1563. if (ops->xcvr_init)
  1564. err = ops->xcvr_init(np);
  1565. return err;
  1566. }
  1567. static int niu_serdes_init(struct niu *np)
  1568. {
  1569. const struct niu_phy_ops *ops = np->phy_ops;
  1570. int err;
  1571. err = 0;
  1572. if (ops->serdes_init)
  1573. err = ops->serdes_init(np);
  1574. return err;
  1575. }
  1576. static void niu_init_xif(struct niu *);
  1577. static void niu_handle_led(struct niu *, int status);
  1578. static int niu_link_status_common(struct niu *np, int link_up)
  1579. {
  1580. struct niu_link_config *lp = &np->link_config;
  1581. struct net_device *dev = np->dev;
  1582. unsigned long flags;
  1583. if (!netif_carrier_ok(dev) && link_up) {
  1584. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1585. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1586. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1587. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1588. "10Mbit/sec",
  1589. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1590. spin_lock_irqsave(&np->lock, flags);
  1591. niu_init_xif(np);
  1592. niu_handle_led(np, 1);
  1593. spin_unlock_irqrestore(&np->lock, flags);
  1594. netif_carrier_on(dev);
  1595. } else if (netif_carrier_ok(dev) && !link_up) {
  1596. netif_warn(np, link, dev, "Link is down\n");
  1597. spin_lock_irqsave(&np->lock, flags);
  1598. niu_handle_led(np, 0);
  1599. spin_unlock_irqrestore(&np->lock, flags);
  1600. netif_carrier_off(dev);
  1601. }
  1602. return 0;
  1603. }
  1604. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1605. {
  1606. int err, link_up, pma_status, pcs_status;
  1607. link_up = 0;
  1608. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1609. MRVL88X2011_10G_PMD_STATUS_2);
  1610. if (err < 0)
  1611. goto out;
  1612. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1613. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1614. MRVL88X2011_PMA_PMD_STATUS_1);
  1615. if (err < 0)
  1616. goto out;
  1617. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1618. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1619. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1620. MRVL88X2011_PMA_PMD_STATUS_1);
  1621. if (err < 0)
  1622. goto out;
  1623. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1624. MRVL88X2011_PMA_PMD_STATUS_1);
  1625. if (err < 0)
  1626. goto out;
  1627. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1628. /* Check XGXS Register : 4.0018.[0-3,12] */
  1629. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1630. MRVL88X2011_10G_XGXS_LANE_STAT);
  1631. if (err < 0)
  1632. goto out;
  1633. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1634. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1635. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1636. 0x800))
  1637. link_up = (pma_status && pcs_status) ? 1 : 0;
  1638. np->link_config.active_speed = SPEED_10000;
  1639. np->link_config.active_duplex = DUPLEX_FULL;
  1640. err = 0;
  1641. out:
  1642. mrvl88x2011_act_led(np, (link_up ?
  1643. MRVL88X2011_LED_CTL_PCS_ACT :
  1644. MRVL88X2011_LED_CTL_OFF));
  1645. *link_up_p = link_up;
  1646. return err;
  1647. }
  1648. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1649. {
  1650. int err, link_up;
  1651. link_up = 0;
  1652. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1653. BCM8704_PMD_RCV_SIGDET);
  1654. if (err < 0 || err == 0xffff)
  1655. goto out;
  1656. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1657. err = 0;
  1658. goto out;
  1659. }
  1660. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1661. BCM8704_PCS_10G_R_STATUS);
  1662. if (err < 0)
  1663. goto out;
  1664. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1665. err = 0;
  1666. goto out;
  1667. }
  1668. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1669. BCM8704_PHYXS_XGXS_LANE_STAT);
  1670. if (err < 0)
  1671. goto out;
  1672. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1673. PHYXS_XGXS_LANE_STAT_MAGIC |
  1674. PHYXS_XGXS_LANE_STAT_PATTEST |
  1675. PHYXS_XGXS_LANE_STAT_LANE3 |
  1676. PHYXS_XGXS_LANE_STAT_LANE2 |
  1677. PHYXS_XGXS_LANE_STAT_LANE1 |
  1678. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1679. err = 0;
  1680. np->link_config.active_speed = SPEED_INVALID;
  1681. np->link_config.active_duplex = DUPLEX_INVALID;
  1682. goto out;
  1683. }
  1684. link_up = 1;
  1685. np->link_config.active_speed = SPEED_10000;
  1686. np->link_config.active_duplex = DUPLEX_FULL;
  1687. err = 0;
  1688. out:
  1689. *link_up_p = link_up;
  1690. return err;
  1691. }
  1692. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1693. {
  1694. int err, link_up;
  1695. link_up = 0;
  1696. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1697. BCM8704_PMD_RCV_SIGDET);
  1698. if (err < 0)
  1699. goto out;
  1700. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1701. err = 0;
  1702. goto out;
  1703. }
  1704. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1705. BCM8704_PCS_10G_R_STATUS);
  1706. if (err < 0)
  1707. goto out;
  1708. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1709. err = 0;
  1710. goto out;
  1711. }
  1712. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1713. BCM8704_PHYXS_XGXS_LANE_STAT);
  1714. if (err < 0)
  1715. goto out;
  1716. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1717. PHYXS_XGXS_LANE_STAT_MAGIC |
  1718. PHYXS_XGXS_LANE_STAT_LANE3 |
  1719. PHYXS_XGXS_LANE_STAT_LANE2 |
  1720. PHYXS_XGXS_LANE_STAT_LANE1 |
  1721. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1722. err = 0;
  1723. goto out;
  1724. }
  1725. link_up = 1;
  1726. np->link_config.active_speed = SPEED_10000;
  1727. np->link_config.active_duplex = DUPLEX_FULL;
  1728. err = 0;
  1729. out:
  1730. *link_up_p = link_up;
  1731. return err;
  1732. }
  1733. static int link_status_10g(struct niu *np, int *link_up_p)
  1734. {
  1735. unsigned long flags;
  1736. int err = -EINVAL;
  1737. spin_lock_irqsave(&np->lock, flags);
  1738. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1739. int phy_id;
  1740. phy_id = phy_decode(np->parent->port_phy, np->port);
  1741. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1742. /* handle different phy types */
  1743. switch (phy_id & NIU_PHY_ID_MASK) {
  1744. case NIU_PHY_ID_MRVL88X2011:
  1745. err = link_status_10g_mrvl(np, link_up_p);
  1746. break;
  1747. default: /* bcom 8704 */
  1748. err = link_status_10g_bcom(np, link_up_p);
  1749. break;
  1750. }
  1751. }
  1752. spin_unlock_irqrestore(&np->lock, flags);
  1753. return err;
  1754. }
  1755. static int niu_10g_phy_present(struct niu *np)
  1756. {
  1757. u64 sig, mask, val;
  1758. sig = nr64(ESR_INT_SIGNALS);
  1759. switch (np->port) {
  1760. case 0:
  1761. mask = ESR_INT_SIGNALS_P0_BITS;
  1762. val = (ESR_INT_SRDY0_P0 |
  1763. ESR_INT_DET0_P0 |
  1764. ESR_INT_XSRDY_P0 |
  1765. ESR_INT_XDP_P0_CH3 |
  1766. ESR_INT_XDP_P0_CH2 |
  1767. ESR_INT_XDP_P0_CH1 |
  1768. ESR_INT_XDP_P0_CH0);
  1769. break;
  1770. case 1:
  1771. mask = ESR_INT_SIGNALS_P1_BITS;
  1772. val = (ESR_INT_SRDY0_P1 |
  1773. ESR_INT_DET0_P1 |
  1774. ESR_INT_XSRDY_P1 |
  1775. ESR_INT_XDP_P1_CH3 |
  1776. ESR_INT_XDP_P1_CH2 |
  1777. ESR_INT_XDP_P1_CH1 |
  1778. ESR_INT_XDP_P1_CH0);
  1779. break;
  1780. default:
  1781. return 0;
  1782. }
  1783. if ((sig & mask) != val)
  1784. return 0;
  1785. return 1;
  1786. }
  1787. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1788. {
  1789. unsigned long flags;
  1790. int err = 0;
  1791. int phy_present;
  1792. int phy_present_prev;
  1793. spin_lock_irqsave(&np->lock, flags);
  1794. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1795. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1796. 1 : 0;
  1797. phy_present = niu_10g_phy_present(np);
  1798. if (phy_present != phy_present_prev) {
  1799. /* state change */
  1800. if (phy_present) {
  1801. /* A NEM was just plugged in */
  1802. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1803. if (np->phy_ops->xcvr_init)
  1804. err = np->phy_ops->xcvr_init(np);
  1805. if (err) {
  1806. err = mdio_read(np, np->phy_addr,
  1807. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1808. if (err == 0xffff) {
  1809. /* No mdio, back-to-back XAUI */
  1810. goto out;
  1811. }
  1812. /* debounce */
  1813. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1814. }
  1815. } else {
  1816. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1817. *link_up_p = 0;
  1818. netif_warn(np, link, np->dev,
  1819. "Hotplug PHY Removed\n");
  1820. }
  1821. }
  1822. out:
  1823. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1824. err = link_status_10g_bcm8706(np, link_up_p);
  1825. if (err == 0xffff) {
  1826. /* No mdio, back-to-back XAUI: it is C10NEM */
  1827. *link_up_p = 1;
  1828. np->link_config.active_speed = SPEED_10000;
  1829. np->link_config.active_duplex = DUPLEX_FULL;
  1830. }
  1831. }
  1832. }
  1833. spin_unlock_irqrestore(&np->lock, flags);
  1834. return 0;
  1835. }
  1836. static int niu_link_status(struct niu *np, int *link_up_p)
  1837. {
  1838. const struct niu_phy_ops *ops = np->phy_ops;
  1839. int err;
  1840. err = 0;
  1841. if (ops->link_status)
  1842. err = ops->link_status(np, link_up_p);
  1843. return err;
  1844. }
  1845. static void niu_timer(unsigned long __opaque)
  1846. {
  1847. struct niu *np = (struct niu *) __opaque;
  1848. unsigned long off;
  1849. int err, link_up;
  1850. err = niu_link_status(np, &link_up);
  1851. if (!err)
  1852. niu_link_status_common(np, link_up);
  1853. if (netif_carrier_ok(np->dev))
  1854. off = 5 * HZ;
  1855. else
  1856. off = 1 * HZ;
  1857. np->timer.expires = jiffies + off;
  1858. add_timer(&np->timer);
  1859. }
  1860. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1861. .serdes_init = serdes_init_10g_serdes,
  1862. .link_status = link_status_10g_serdes,
  1863. };
  1864. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1865. .serdes_init = serdes_init_niu_10g_serdes,
  1866. .link_status = link_status_10g_serdes,
  1867. };
  1868. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1869. .serdes_init = serdes_init_niu_1g_serdes,
  1870. .link_status = link_status_1g_serdes,
  1871. };
  1872. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1873. .xcvr_init = xcvr_init_1g_rgmii,
  1874. .link_status = link_status_1g_rgmii,
  1875. };
  1876. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1877. .serdes_init = serdes_init_niu_10g_fiber,
  1878. .xcvr_init = xcvr_init_10g,
  1879. .link_status = link_status_10g,
  1880. };
  1881. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1882. .serdes_init = serdes_init_10g,
  1883. .xcvr_init = xcvr_init_10g,
  1884. .link_status = link_status_10g,
  1885. };
  1886. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1887. .serdes_init = serdes_init_10g,
  1888. .xcvr_init = xcvr_init_10g_bcm8706,
  1889. .link_status = link_status_10g_hotplug,
  1890. };
  1891. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1892. .serdes_init = serdes_init_niu_10g_fiber,
  1893. .xcvr_init = xcvr_init_10g_bcm8706,
  1894. .link_status = link_status_10g_hotplug,
  1895. };
  1896. static const struct niu_phy_ops phy_ops_10g_copper = {
  1897. .serdes_init = serdes_init_10g,
  1898. .link_status = link_status_10g, /* XXX */
  1899. };
  1900. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1901. .serdes_init = serdes_init_1g,
  1902. .xcvr_init = xcvr_init_1g,
  1903. .link_status = link_status_1g,
  1904. };
  1905. static const struct niu_phy_ops phy_ops_1g_copper = {
  1906. .xcvr_init = xcvr_init_1g,
  1907. .link_status = link_status_1g,
  1908. };
  1909. struct niu_phy_template {
  1910. const struct niu_phy_ops *ops;
  1911. u32 phy_addr_base;
  1912. };
  1913. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1914. .ops = &phy_ops_10g_fiber_niu,
  1915. .phy_addr_base = 16,
  1916. };
  1917. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1918. .ops = &phy_ops_10g_serdes_niu,
  1919. .phy_addr_base = 0,
  1920. };
  1921. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1922. .ops = &phy_ops_1g_serdes_niu,
  1923. .phy_addr_base = 0,
  1924. };
  1925. static const struct niu_phy_template phy_template_10g_fiber = {
  1926. .ops = &phy_ops_10g_fiber,
  1927. .phy_addr_base = 8,
  1928. };
  1929. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1930. .ops = &phy_ops_10g_fiber_hotplug,
  1931. .phy_addr_base = 8,
  1932. };
  1933. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1934. .ops = &phy_ops_niu_10g_hotplug,
  1935. .phy_addr_base = 8,
  1936. };
  1937. static const struct niu_phy_template phy_template_10g_copper = {
  1938. .ops = &phy_ops_10g_copper,
  1939. .phy_addr_base = 10,
  1940. };
  1941. static const struct niu_phy_template phy_template_1g_fiber = {
  1942. .ops = &phy_ops_1g_fiber,
  1943. .phy_addr_base = 0,
  1944. };
  1945. static const struct niu_phy_template phy_template_1g_copper = {
  1946. .ops = &phy_ops_1g_copper,
  1947. .phy_addr_base = 0,
  1948. };
  1949. static const struct niu_phy_template phy_template_1g_rgmii = {
  1950. .ops = &phy_ops_1g_rgmii,
  1951. .phy_addr_base = 0,
  1952. };
  1953. static const struct niu_phy_template phy_template_10g_serdes = {
  1954. .ops = &phy_ops_10g_serdes,
  1955. .phy_addr_base = 0,
  1956. };
  1957. static int niu_atca_port_num[4] = {
  1958. 0, 0, 11, 10
  1959. };
  1960. static int serdes_init_10g_serdes(struct niu *np)
  1961. {
  1962. struct niu_link_config *lp = &np->link_config;
  1963. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1964. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1965. u64 reset_val;
  1966. switch (np->port) {
  1967. case 0:
  1968. reset_val = ENET_SERDES_RESET_0;
  1969. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1970. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1971. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1972. break;
  1973. case 1:
  1974. reset_val = ENET_SERDES_RESET_1;
  1975. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1976. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1977. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1978. break;
  1979. default:
  1980. return -EINVAL;
  1981. }
  1982. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1983. ENET_SERDES_CTRL_SDET_1 |
  1984. ENET_SERDES_CTRL_SDET_2 |
  1985. ENET_SERDES_CTRL_SDET_3 |
  1986. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1987. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1988. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1989. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1990. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1991. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1992. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1993. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1994. test_cfg_val = 0;
  1995. if (lp->loopback_mode == LOOPBACK_PHY) {
  1996. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1997. ENET_SERDES_TEST_MD_0_SHIFT) |
  1998. (ENET_TEST_MD_PAD_LOOPBACK <<
  1999. ENET_SERDES_TEST_MD_1_SHIFT) |
  2000. (ENET_TEST_MD_PAD_LOOPBACK <<
  2001. ENET_SERDES_TEST_MD_2_SHIFT) |
  2002. (ENET_TEST_MD_PAD_LOOPBACK <<
  2003. ENET_SERDES_TEST_MD_3_SHIFT));
  2004. }
  2005. esr_reset(np);
  2006. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2007. nw64(ctrl_reg, ctrl_val);
  2008. nw64(test_cfg_reg, test_cfg_val);
  2009. /* Initialize all 4 lanes of the SERDES. */
  2010. for (i = 0; i < 4; i++) {
  2011. u32 rxtx_ctrl, glue0;
  2012. int err;
  2013. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2014. if (err)
  2015. return err;
  2016. err = esr_read_glue0(np, i, &glue0);
  2017. if (err)
  2018. return err;
  2019. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2020. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2021. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2022. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2023. ESR_GLUE_CTRL0_THCNT |
  2024. ESR_GLUE_CTRL0_BLTIME);
  2025. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2026. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2027. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2028. (BLTIME_300_CYCLES <<
  2029. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2030. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2031. if (err)
  2032. return err;
  2033. err = esr_write_glue0(np, i, glue0);
  2034. if (err)
  2035. return err;
  2036. }
  2037. sig = nr64(ESR_INT_SIGNALS);
  2038. switch (np->port) {
  2039. case 0:
  2040. mask = ESR_INT_SIGNALS_P0_BITS;
  2041. val = (ESR_INT_SRDY0_P0 |
  2042. ESR_INT_DET0_P0 |
  2043. ESR_INT_XSRDY_P0 |
  2044. ESR_INT_XDP_P0_CH3 |
  2045. ESR_INT_XDP_P0_CH2 |
  2046. ESR_INT_XDP_P0_CH1 |
  2047. ESR_INT_XDP_P0_CH0);
  2048. break;
  2049. case 1:
  2050. mask = ESR_INT_SIGNALS_P1_BITS;
  2051. val = (ESR_INT_SRDY0_P1 |
  2052. ESR_INT_DET0_P1 |
  2053. ESR_INT_XSRDY_P1 |
  2054. ESR_INT_XDP_P1_CH3 |
  2055. ESR_INT_XDP_P1_CH2 |
  2056. ESR_INT_XDP_P1_CH1 |
  2057. ESR_INT_XDP_P1_CH0);
  2058. break;
  2059. default:
  2060. return -EINVAL;
  2061. }
  2062. if ((sig & mask) != val) {
  2063. int err;
  2064. err = serdes_init_1g_serdes(np);
  2065. if (!err) {
  2066. np->flags &= ~NIU_FLAGS_10G;
  2067. np->mac_xcvr = MAC_XCVR_PCS;
  2068. } else {
  2069. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2070. np->port);
  2071. return -ENODEV;
  2072. }
  2073. }
  2074. return 0;
  2075. }
  2076. static int niu_determine_phy_disposition(struct niu *np)
  2077. {
  2078. struct niu_parent *parent = np->parent;
  2079. u8 plat_type = parent->plat_type;
  2080. const struct niu_phy_template *tp;
  2081. u32 phy_addr_off = 0;
  2082. if (plat_type == PLAT_TYPE_NIU) {
  2083. switch (np->flags &
  2084. (NIU_FLAGS_10G |
  2085. NIU_FLAGS_FIBER |
  2086. NIU_FLAGS_XCVR_SERDES)) {
  2087. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2088. /* 10G Serdes */
  2089. tp = &phy_template_niu_10g_serdes;
  2090. break;
  2091. case NIU_FLAGS_XCVR_SERDES:
  2092. /* 1G Serdes */
  2093. tp = &phy_template_niu_1g_serdes;
  2094. break;
  2095. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2096. /* 10G Fiber */
  2097. default:
  2098. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2099. tp = &phy_template_niu_10g_hotplug;
  2100. if (np->port == 0)
  2101. phy_addr_off = 8;
  2102. if (np->port == 1)
  2103. phy_addr_off = 12;
  2104. } else {
  2105. tp = &phy_template_niu_10g_fiber;
  2106. phy_addr_off += np->port;
  2107. }
  2108. break;
  2109. }
  2110. } else {
  2111. switch (np->flags &
  2112. (NIU_FLAGS_10G |
  2113. NIU_FLAGS_FIBER |
  2114. NIU_FLAGS_XCVR_SERDES)) {
  2115. case 0:
  2116. /* 1G copper */
  2117. tp = &phy_template_1g_copper;
  2118. if (plat_type == PLAT_TYPE_VF_P0)
  2119. phy_addr_off = 10;
  2120. else if (plat_type == PLAT_TYPE_VF_P1)
  2121. phy_addr_off = 26;
  2122. phy_addr_off += (np->port ^ 0x3);
  2123. break;
  2124. case NIU_FLAGS_10G:
  2125. /* 10G copper */
  2126. tp = &phy_template_10g_copper;
  2127. break;
  2128. case NIU_FLAGS_FIBER:
  2129. /* 1G fiber */
  2130. tp = &phy_template_1g_fiber;
  2131. break;
  2132. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2133. /* 10G fiber */
  2134. tp = &phy_template_10g_fiber;
  2135. if (plat_type == PLAT_TYPE_VF_P0 ||
  2136. plat_type == PLAT_TYPE_VF_P1)
  2137. phy_addr_off = 8;
  2138. phy_addr_off += np->port;
  2139. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2140. tp = &phy_template_10g_fiber_hotplug;
  2141. if (np->port == 0)
  2142. phy_addr_off = 8;
  2143. if (np->port == 1)
  2144. phy_addr_off = 12;
  2145. }
  2146. break;
  2147. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2148. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2149. case NIU_FLAGS_XCVR_SERDES:
  2150. switch(np->port) {
  2151. case 0:
  2152. case 1:
  2153. tp = &phy_template_10g_serdes;
  2154. break;
  2155. case 2:
  2156. case 3:
  2157. tp = &phy_template_1g_rgmii;
  2158. break;
  2159. default:
  2160. return -EINVAL;
  2161. break;
  2162. }
  2163. phy_addr_off = niu_atca_port_num[np->port];
  2164. break;
  2165. default:
  2166. return -EINVAL;
  2167. }
  2168. }
  2169. np->phy_ops = tp->ops;
  2170. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2171. return 0;
  2172. }
  2173. static int niu_init_link(struct niu *np)
  2174. {
  2175. struct niu_parent *parent = np->parent;
  2176. int err, ignore;
  2177. if (parent->plat_type == PLAT_TYPE_NIU) {
  2178. err = niu_xcvr_init(np);
  2179. if (err)
  2180. return err;
  2181. msleep(200);
  2182. }
  2183. err = niu_serdes_init(np);
  2184. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2185. return err;
  2186. msleep(200);
  2187. err = niu_xcvr_init(np);
  2188. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2189. niu_link_status(np, &ignore);
  2190. return 0;
  2191. }
  2192. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2193. {
  2194. u16 reg0 = addr[4] << 8 | addr[5];
  2195. u16 reg1 = addr[2] << 8 | addr[3];
  2196. u16 reg2 = addr[0] << 8 | addr[1];
  2197. if (np->flags & NIU_FLAGS_XMAC) {
  2198. nw64_mac(XMAC_ADDR0, reg0);
  2199. nw64_mac(XMAC_ADDR1, reg1);
  2200. nw64_mac(XMAC_ADDR2, reg2);
  2201. } else {
  2202. nw64_mac(BMAC_ADDR0, reg0);
  2203. nw64_mac(BMAC_ADDR1, reg1);
  2204. nw64_mac(BMAC_ADDR2, reg2);
  2205. }
  2206. }
  2207. static int niu_num_alt_addr(struct niu *np)
  2208. {
  2209. if (np->flags & NIU_FLAGS_XMAC)
  2210. return XMAC_NUM_ALT_ADDR;
  2211. else
  2212. return BMAC_NUM_ALT_ADDR;
  2213. }
  2214. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2215. {
  2216. u16 reg0 = addr[4] << 8 | addr[5];
  2217. u16 reg1 = addr[2] << 8 | addr[3];
  2218. u16 reg2 = addr[0] << 8 | addr[1];
  2219. if (index >= niu_num_alt_addr(np))
  2220. return -EINVAL;
  2221. if (np->flags & NIU_FLAGS_XMAC) {
  2222. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2223. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2224. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2225. } else {
  2226. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2227. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2228. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2229. }
  2230. return 0;
  2231. }
  2232. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2233. {
  2234. unsigned long reg;
  2235. u64 val, mask;
  2236. if (index >= niu_num_alt_addr(np))
  2237. return -EINVAL;
  2238. if (np->flags & NIU_FLAGS_XMAC) {
  2239. reg = XMAC_ADDR_CMPEN;
  2240. mask = 1 << index;
  2241. } else {
  2242. reg = BMAC_ADDR_CMPEN;
  2243. mask = 1 << (index + 1);
  2244. }
  2245. val = nr64_mac(reg);
  2246. if (on)
  2247. val |= mask;
  2248. else
  2249. val &= ~mask;
  2250. nw64_mac(reg, val);
  2251. return 0;
  2252. }
  2253. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2254. int num, int mac_pref)
  2255. {
  2256. u64 val = nr64_mac(reg);
  2257. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2258. val |= num;
  2259. if (mac_pref)
  2260. val |= HOST_INFO_MPR;
  2261. nw64_mac(reg, val);
  2262. }
  2263. static int __set_rdc_table_num(struct niu *np,
  2264. int xmac_index, int bmac_index,
  2265. int rdc_table_num, int mac_pref)
  2266. {
  2267. unsigned long reg;
  2268. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2269. return -EINVAL;
  2270. if (np->flags & NIU_FLAGS_XMAC)
  2271. reg = XMAC_HOST_INFO(xmac_index);
  2272. else
  2273. reg = BMAC_HOST_INFO(bmac_index);
  2274. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2275. return 0;
  2276. }
  2277. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2278. int mac_pref)
  2279. {
  2280. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2281. }
  2282. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2283. int mac_pref)
  2284. {
  2285. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2286. }
  2287. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2288. int table_num, int mac_pref)
  2289. {
  2290. if (idx >= niu_num_alt_addr(np))
  2291. return -EINVAL;
  2292. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2293. }
  2294. static u64 vlan_entry_set_parity(u64 reg_val)
  2295. {
  2296. u64 port01_mask;
  2297. u64 port23_mask;
  2298. port01_mask = 0x00ff;
  2299. port23_mask = 0xff00;
  2300. if (hweight64(reg_val & port01_mask) & 1)
  2301. reg_val |= ENET_VLAN_TBL_PARITY0;
  2302. else
  2303. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2304. if (hweight64(reg_val & port23_mask) & 1)
  2305. reg_val |= ENET_VLAN_TBL_PARITY1;
  2306. else
  2307. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2308. return reg_val;
  2309. }
  2310. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2311. int port, int vpr, int rdc_table)
  2312. {
  2313. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2314. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2315. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2316. ENET_VLAN_TBL_SHIFT(port));
  2317. if (vpr)
  2318. reg_val |= (ENET_VLAN_TBL_VPR <<
  2319. ENET_VLAN_TBL_SHIFT(port));
  2320. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2321. reg_val = vlan_entry_set_parity(reg_val);
  2322. nw64(ENET_VLAN_TBL(index), reg_val);
  2323. }
  2324. static void vlan_tbl_clear(struct niu *np)
  2325. {
  2326. int i;
  2327. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2328. nw64(ENET_VLAN_TBL(i), 0);
  2329. }
  2330. static int tcam_wait_bit(struct niu *np, u64 bit)
  2331. {
  2332. int limit = 1000;
  2333. while (--limit > 0) {
  2334. if (nr64(TCAM_CTL) & bit)
  2335. break;
  2336. udelay(1);
  2337. }
  2338. if (limit <= 0)
  2339. return -ENODEV;
  2340. return 0;
  2341. }
  2342. static int tcam_flush(struct niu *np, int index)
  2343. {
  2344. nw64(TCAM_KEY_0, 0x00);
  2345. nw64(TCAM_KEY_MASK_0, 0xff);
  2346. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2347. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2348. }
  2349. #if 0
  2350. static int tcam_read(struct niu *np, int index,
  2351. u64 *key, u64 *mask)
  2352. {
  2353. int err;
  2354. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2355. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2356. if (!err) {
  2357. key[0] = nr64(TCAM_KEY_0);
  2358. key[1] = nr64(TCAM_KEY_1);
  2359. key[2] = nr64(TCAM_KEY_2);
  2360. key[3] = nr64(TCAM_KEY_3);
  2361. mask[0] = nr64(TCAM_KEY_MASK_0);
  2362. mask[1] = nr64(TCAM_KEY_MASK_1);
  2363. mask[2] = nr64(TCAM_KEY_MASK_2);
  2364. mask[3] = nr64(TCAM_KEY_MASK_3);
  2365. }
  2366. return err;
  2367. }
  2368. #endif
  2369. static int tcam_write(struct niu *np, int index,
  2370. u64 *key, u64 *mask)
  2371. {
  2372. nw64(TCAM_KEY_0, key[0]);
  2373. nw64(TCAM_KEY_1, key[1]);
  2374. nw64(TCAM_KEY_2, key[2]);
  2375. nw64(TCAM_KEY_3, key[3]);
  2376. nw64(TCAM_KEY_MASK_0, mask[0]);
  2377. nw64(TCAM_KEY_MASK_1, mask[1]);
  2378. nw64(TCAM_KEY_MASK_2, mask[2]);
  2379. nw64(TCAM_KEY_MASK_3, mask[3]);
  2380. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2381. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2382. }
  2383. #if 0
  2384. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2385. {
  2386. int err;
  2387. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2388. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2389. if (!err)
  2390. *data = nr64(TCAM_KEY_1);
  2391. return err;
  2392. }
  2393. #endif
  2394. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2395. {
  2396. nw64(TCAM_KEY_1, assoc_data);
  2397. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2398. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2399. }
  2400. static void tcam_enable(struct niu *np, int on)
  2401. {
  2402. u64 val = nr64(FFLP_CFG_1);
  2403. if (on)
  2404. val &= ~FFLP_CFG_1_TCAM_DIS;
  2405. else
  2406. val |= FFLP_CFG_1_TCAM_DIS;
  2407. nw64(FFLP_CFG_1, val);
  2408. }
  2409. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2410. {
  2411. u64 val = nr64(FFLP_CFG_1);
  2412. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2413. FFLP_CFG_1_CAMLAT |
  2414. FFLP_CFG_1_CAMRATIO);
  2415. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2416. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2417. nw64(FFLP_CFG_1, val);
  2418. val = nr64(FFLP_CFG_1);
  2419. val |= FFLP_CFG_1_FFLPINITDONE;
  2420. nw64(FFLP_CFG_1, val);
  2421. }
  2422. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2423. int on)
  2424. {
  2425. unsigned long reg;
  2426. u64 val;
  2427. if (class < CLASS_CODE_ETHERTYPE1 ||
  2428. class > CLASS_CODE_ETHERTYPE2)
  2429. return -EINVAL;
  2430. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2431. val = nr64(reg);
  2432. if (on)
  2433. val |= L2_CLS_VLD;
  2434. else
  2435. val &= ~L2_CLS_VLD;
  2436. nw64(reg, val);
  2437. return 0;
  2438. }
  2439. #if 0
  2440. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2441. u64 ether_type)
  2442. {
  2443. unsigned long reg;
  2444. u64 val;
  2445. if (class < CLASS_CODE_ETHERTYPE1 ||
  2446. class > CLASS_CODE_ETHERTYPE2 ||
  2447. (ether_type & ~(u64)0xffff) != 0)
  2448. return -EINVAL;
  2449. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2450. val = nr64(reg);
  2451. val &= ~L2_CLS_ETYPE;
  2452. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2453. nw64(reg, val);
  2454. return 0;
  2455. }
  2456. #endif
  2457. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2458. int on)
  2459. {
  2460. unsigned long reg;
  2461. u64 val;
  2462. if (class < CLASS_CODE_USER_PROG1 ||
  2463. class > CLASS_CODE_USER_PROG4)
  2464. return -EINVAL;
  2465. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2466. val = nr64(reg);
  2467. if (on)
  2468. val |= L3_CLS_VALID;
  2469. else
  2470. val &= ~L3_CLS_VALID;
  2471. nw64(reg, val);
  2472. return 0;
  2473. }
  2474. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2475. int ipv6, u64 protocol_id,
  2476. u64 tos_mask, u64 tos_val)
  2477. {
  2478. unsigned long reg;
  2479. u64 val;
  2480. if (class < CLASS_CODE_USER_PROG1 ||
  2481. class > CLASS_CODE_USER_PROG4 ||
  2482. (protocol_id & ~(u64)0xff) != 0 ||
  2483. (tos_mask & ~(u64)0xff) != 0 ||
  2484. (tos_val & ~(u64)0xff) != 0)
  2485. return -EINVAL;
  2486. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2487. val = nr64(reg);
  2488. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2489. L3_CLS_TOSMASK | L3_CLS_TOS);
  2490. if (ipv6)
  2491. val |= L3_CLS_IPVER;
  2492. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2493. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2494. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2495. nw64(reg, val);
  2496. return 0;
  2497. }
  2498. static int tcam_early_init(struct niu *np)
  2499. {
  2500. unsigned long i;
  2501. int err;
  2502. tcam_enable(np, 0);
  2503. tcam_set_lat_and_ratio(np,
  2504. DEFAULT_TCAM_LATENCY,
  2505. DEFAULT_TCAM_ACCESS_RATIO);
  2506. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2507. err = tcam_user_eth_class_enable(np, i, 0);
  2508. if (err)
  2509. return err;
  2510. }
  2511. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2512. err = tcam_user_ip_class_enable(np, i, 0);
  2513. if (err)
  2514. return err;
  2515. }
  2516. return 0;
  2517. }
  2518. static int tcam_flush_all(struct niu *np)
  2519. {
  2520. unsigned long i;
  2521. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2522. int err = tcam_flush(np, i);
  2523. if (err)
  2524. return err;
  2525. }
  2526. return 0;
  2527. }
  2528. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2529. {
  2530. return ((u64)index | (num_entries == 1 ?
  2531. HASH_TBL_ADDR_AUTOINC : 0));
  2532. }
  2533. #if 0
  2534. static int hash_read(struct niu *np, unsigned long partition,
  2535. unsigned long index, unsigned long num_entries,
  2536. u64 *data)
  2537. {
  2538. u64 val = hash_addr_regval(index, num_entries);
  2539. unsigned long i;
  2540. if (partition >= FCRAM_NUM_PARTITIONS ||
  2541. index + num_entries > FCRAM_SIZE)
  2542. return -EINVAL;
  2543. nw64(HASH_TBL_ADDR(partition), val);
  2544. for (i = 0; i < num_entries; i++)
  2545. data[i] = nr64(HASH_TBL_DATA(partition));
  2546. return 0;
  2547. }
  2548. #endif
  2549. static int hash_write(struct niu *np, unsigned long partition,
  2550. unsigned long index, unsigned long num_entries,
  2551. u64 *data)
  2552. {
  2553. u64 val = hash_addr_regval(index, num_entries);
  2554. unsigned long i;
  2555. if (partition >= FCRAM_NUM_PARTITIONS ||
  2556. index + (num_entries * 8) > FCRAM_SIZE)
  2557. return -EINVAL;
  2558. nw64(HASH_TBL_ADDR(partition), val);
  2559. for (i = 0; i < num_entries; i++)
  2560. nw64(HASH_TBL_DATA(partition), data[i]);
  2561. return 0;
  2562. }
  2563. static void fflp_reset(struct niu *np)
  2564. {
  2565. u64 val;
  2566. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2567. udelay(10);
  2568. nw64(FFLP_CFG_1, 0);
  2569. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2570. nw64(FFLP_CFG_1, val);
  2571. }
  2572. static void fflp_set_timings(struct niu *np)
  2573. {
  2574. u64 val = nr64(FFLP_CFG_1);
  2575. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2576. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2577. nw64(FFLP_CFG_1, val);
  2578. val = nr64(FFLP_CFG_1);
  2579. val |= FFLP_CFG_1_FFLPINITDONE;
  2580. nw64(FFLP_CFG_1, val);
  2581. val = nr64(FCRAM_REF_TMR);
  2582. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2583. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2584. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2585. nw64(FCRAM_REF_TMR, val);
  2586. }
  2587. static int fflp_set_partition(struct niu *np, u64 partition,
  2588. u64 mask, u64 base, int enable)
  2589. {
  2590. unsigned long reg;
  2591. u64 val;
  2592. if (partition >= FCRAM_NUM_PARTITIONS ||
  2593. (mask & ~(u64)0x1f) != 0 ||
  2594. (base & ~(u64)0x1f) != 0)
  2595. return -EINVAL;
  2596. reg = FLW_PRT_SEL(partition);
  2597. val = nr64(reg);
  2598. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2599. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2600. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2601. if (enable)
  2602. val |= FLW_PRT_SEL_EXT;
  2603. nw64(reg, val);
  2604. return 0;
  2605. }
  2606. static int fflp_disable_all_partitions(struct niu *np)
  2607. {
  2608. unsigned long i;
  2609. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2610. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2611. if (err)
  2612. return err;
  2613. }
  2614. return 0;
  2615. }
  2616. static void fflp_llcsnap_enable(struct niu *np, int on)
  2617. {
  2618. u64 val = nr64(FFLP_CFG_1);
  2619. if (on)
  2620. val |= FFLP_CFG_1_LLCSNAP;
  2621. else
  2622. val &= ~FFLP_CFG_1_LLCSNAP;
  2623. nw64(FFLP_CFG_1, val);
  2624. }
  2625. static void fflp_errors_enable(struct niu *np, int on)
  2626. {
  2627. u64 val = nr64(FFLP_CFG_1);
  2628. if (on)
  2629. val &= ~FFLP_CFG_1_ERRORDIS;
  2630. else
  2631. val |= FFLP_CFG_1_ERRORDIS;
  2632. nw64(FFLP_CFG_1, val);
  2633. }
  2634. static int fflp_hash_clear(struct niu *np)
  2635. {
  2636. struct fcram_hash_ipv4 ent;
  2637. unsigned long i;
  2638. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2639. memset(&ent, 0, sizeof(ent));
  2640. ent.header = HASH_HEADER_EXT;
  2641. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2642. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2643. if (err)
  2644. return err;
  2645. }
  2646. return 0;
  2647. }
  2648. static int fflp_early_init(struct niu *np)
  2649. {
  2650. struct niu_parent *parent;
  2651. unsigned long flags;
  2652. int err;
  2653. niu_lock_parent(np, flags);
  2654. parent = np->parent;
  2655. err = 0;
  2656. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2657. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2658. fflp_reset(np);
  2659. fflp_set_timings(np);
  2660. err = fflp_disable_all_partitions(np);
  2661. if (err) {
  2662. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2663. "fflp_disable_all_partitions failed, err=%d\n",
  2664. err);
  2665. goto out;
  2666. }
  2667. }
  2668. err = tcam_early_init(np);
  2669. if (err) {
  2670. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2671. "tcam_early_init failed, err=%d\n", err);
  2672. goto out;
  2673. }
  2674. fflp_llcsnap_enable(np, 1);
  2675. fflp_errors_enable(np, 0);
  2676. nw64(H1POLY, 0);
  2677. nw64(H2POLY, 0);
  2678. err = tcam_flush_all(np);
  2679. if (err) {
  2680. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2681. "tcam_flush_all failed, err=%d\n", err);
  2682. goto out;
  2683. }
  2684. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2685. err = fflp_hash_clear(np);
  2686. if (err) {
  2687. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2688. "fflp_hash_clear failed, err=%d\n",
  2689. err);
  2690. goto out;
  2691. }
  2692. }
  2693. vlan_tbl_clear(np);
  2694. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2695. }
  2696. out:
  2697. niu_unlock_parent(np, flags);
  2698. return err;
  2699. }
  2700. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2701. {
  2702. if (class_code < CLASS_CODE_USER_PROG1 ||
  2703. class_code > CLASS_CODE_SCTP_IPV6)
  2704. return -EINVAL;
  2705. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2706. return 0;
  2707. }
  2708. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2709. {
  2710. if (class_code < CLASS_CODE_USER_PROG1 ||
  2711. class_code > CLASS_CODE_SCTP_IPV6)
  2712. return -EINVAL;
  2713. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2714. return 0;
  2715. }
  2716. /* Entries for the ports are interleaved in the TCAM */
  2717. static u16 tcam_get_index(struct niu *np, u16 idx)
  2718. {
  2719. /* One entry reserved for IP fragment rule */
  2720. if (idx >= (np->clas.tcam_sz - 1))
  2721. idx = 0;
  2722. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2723. }
  2724. static u16 tcam_get_size(struct niu *np)
  2725. {
  2726. /* One entry reserved for IP fragment rule */
  2727. return np->clas.tcam_sz - 1;
  2728. }
  2729. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2730. {
  2731. /* One entry reserved for IP fragment rule */
  2732. return np->clas.tcam_valid_entries - 1;
  2733. }
  2734. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2735. u32 offset, u32 size)
  2736. {
  2737. int i = skb_shinfo(skb)->nr_frags;
  2738. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2739. frag->page = page;
  2740. frag->page_offset = offset;
  2741. frag->size = size;
  2742. skb->len += size;
  2743. skb->data_len += size;
  2744. skb->truesize += size;
  2745. skb_shinfo(skb)->nr_frags = i + 1;
  2746. }
  2747. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2748. {
  2749. a >>= PAGE_SHIFT;
  2750. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2751. return (a & (MAX_RBR_RING_SIZE - 1));
  2752. }
  2753. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2754. struct page ***link)
  2755. {
  2756. unsigned int h = niu_hash_rxaddr(rp, addr);
  2757. struct page *p, **pp;
  2758. addr &= PAGE_MASK;
  2759. pp = &rp->rxhash[h];
  2760. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2761. if (p->index == addr) {
  2762. *link = pp;
  2763. break;
  2764. }
  2765. }
  2766. return p;
  2767. }
  2768. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2769. {
  2770. unsigned int h = niu_hash_rxaddr(rp, base);
  2771. page->index = base;
  2772. page->mapping = (struct address_space *) rp->rxhash[h];
  2773. rp->rxhash[h] = page;
  2774. }
  2775. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2776. gfp_t mask, int start_index)
  2777. {
  2778. struct page *page;
  2779. u64 addr;
  2780. int i;
  2781. page = alloc_page(mask);
  2782. if (!page)
  2783. return -ENOMEM;
  2784. addr = np->ops->map_page(np->device, page, 0,
  2785. PAGE_SIZE, DMA_FROM_DEVICE);
  2786. niu_hash_page(rp, page, addr);
  2787. if (rp->rbr_blocks_per_page > 1)
  2788. atomic_add(rp->rbr_blocks_per_page - 1,
  2789. &compound_head(page)->_count);
  2790. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2791. __le32 *rbr = &rp->rbr[start_index + i];
  2792. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2793. addr += rp->rbr_block_size;
  2794. }
  2795. return 0;
  2796. }
  2797. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2798. {
  2799. int index = rp->rbr_index;
  2800. rp->rbr_pending++;
  2801. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2802. int err = niu_rbr_add_page(np, rp, mask, index);
  2803. if (unlikely(err)) {
  2804. rp->rbr_pending--;
  2805. return;
  2806. }
  2807. rp->rbr_index += rp->rbr_blocks_per_page;
  2808. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2809. if (rp->rbr_index == rp->rbr_table_size)
  2810. rp->rbr_index = 0;
  2811. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2812. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2813. rp->rbr_pending = 0;
  2814. }
  2815. }
  2816. }
  2817. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2818. {
  2819. unsigned int index = rp->rcr_index;
  2820. int num_rcr = 0;
  2821. rp->rx_dropped++;
  2822. while (1) {
  2823. struct page *page, **link;
  2824. u64 addr, val;
  2825. u32 rcr_size;
  2826. num_rcr++;
  2827. val = le64_to_cpup(&rp->rcr[index]);
  2828. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2829. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2830. page = niu_find_rxpage(rp, addr, &link);
  2831. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2832. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2833. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2834. *link = (struct page *) page->mapping;
  2835. np->ops->unmap_page(np->device, page->index,
  2836. PAGE_SIZE, DMA_FROM_DEVICE);
  2837. page->index = 0;
  2838. page->mapping = NULL;
  2839. __free_page(page);
  2840. rp->rbr_refill_pending++;
  2841. }
  2842. index = NEXT_RCR(rp, index);
  2843. if (!(val & RCR_ENTRY_MULTI))
  2844. break;
  2845. }
  2846. rp->rcr_index = index;
  2847. return num_rcr;
  2848. }
  2849. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2850. struct rx_ring_info *rp)
  2851. {
  2852. unsigned int index = rp->rcr_index;
  2853. struct sk_buff *skb;
  2854. int len, num_rcr;
  2855. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2856. if (unlikely(!skb))
  2857. return niu_rx_pkt_ignore(np, rp);
  2858. num_rcr = 0;
  2859. while (1) {
  2860. struct page *page, **link;
  2861. u32 rcr_size, append_size;
  2862. u64 addr, val, off;
  2863. num_rcr++;
  2864. val = le64_to_cpup(&rp->rcr[index]);
  2865. len = (val & RCR_ENTRY_L2_LEN) >>
  2866. RCR_ENTRY_L2_LEN_SHIFT;
  2867. len -= ETH_FCS_LEN;
  2868. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2869. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2870. page = niu_find_rxpage(rp, addr, &link);
  2871. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2872. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2873. off = addr & ~PAGE_MASK;
  2874. append_size = rcr_size;
  2875. if (num_rcr == 1) {
  2876. int ptype;
  2877. off += 2;
  2878. append_size -= 2;
  2879. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2880. if ((ptype == RCR_PKT_TYPE_TCP ||
  2881. ptype == RCR_PKT_TYPE_UDP) &&
  2882. !(val & (RCR_ENTRY_NOPORT |
  2883. RCR_ENTRY_ERROR)))
  2884. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2885. else
  2886. skb->ip_summed = CHECKSUM_NONE;
  2887. }
  2888. if (!(val & RCR_ENTRY_MULTI))
  2889. append_size = len - skb->len;
  2890. niu_rx_skb_append(skb, page, off, append_size);
  2891. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2892. *link = (struct page *) page->mapping;
  2893. np->ops->unmap_page(np->device, page->index,
  2894. PAGE_SIZE, DMA_FROM_DEVICE);
  2895. page->index = 0;
  2896. page->mapping = NULL;
  2897. rp->rbr_refill_pending++;
  2898. } else
  2899. get_page(page);
  2900. index = NEXT_RCR(rp, index);
  2901. if (!(val & RCR_ENTRY_MULTI))
  2902. break;
  2903. }
  2904. rp->rcr_index = index;
  2905. skb_reserve(skb, NET_IP_ALIGN);
  2906. __pskb_pull_tail(skb, min(len, VLAN_ETH_HLEN));
  2907. rp->rx_packets++;
  2908. rp->rx_bytes += skb->len;
  2909. skb->protocol = eth_type_trans(skb, np->dev);
  2910. skb_record_rx_queue(skb, rp->rx_channel);
  2911. napi_gro_receive(napi, skb);
  2912. return num_rcr;
  2913. }
  2914. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2915. {
  2916. int blocks_per_page = rp->rbr_blocks_per_page;
  2917. int err, index = rp->rbr_index;
  2918. err = 0;
  2919. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2920. err = niu_rbr_add_page(np, rp, mask, index);
  2921. if (err)
  2922. break;
  2923. index += blocks_per_page;
  2924. }
  2925. rp->rbr_index = index;
  2926. return err;
  2927. }
  2928. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2929. {
  2930. int i;
  2931. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2932. struct page *page;
  2933. page = rp->rxhash[i];
  2934. while (page) {
  2935. struct page *next = (struct page *) page->mapping;
  2936. u64 base = page->index;
  2937. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2938. DMA_FROM_DEVICE);
  2939. page->index = 0;
  2940. page->mapping = NULL;
  2941. __free_page(page);
  2942. page = next;
  2943. }
  2944. }
  2945. for (i = 0; i < rp->rbr_table_size; i++)
  2946. rp->rbr[i] = cpu_to_le32(0);
  2947. rp->rbr_index = 0;
  2948. }
  2949. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2950. {
  2951. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2952. struct sk_buff *skb = tb->skb;
  2953. struct tx_pkt_hdr *tp;
  2954. u64 tx_flags;
  2955. int i, len;
  2956. tp = (struct tx_pkt_hdr *) skb->data;
  2957. tx_flags = le64_to_cpup(&tp->flags);
  2958. rp->tx_packets++;
  2959. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2960. ((tx_flags & TXHDR_PAD) / 2));
  2961. len = skb_headlen(skb);
  2962. np->ops->unmap_single(np->device, tb->mapping,
  2963. len, DMA_TO_DEVICE);
  2964. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2965. rp->mark_pending--;
  2966. tb->skb = NULL;
  2967. do {
  2968. idx = NEXT_TX(rp, idx);
  2969. len -= MAX_TX_DESC_LEN;
  2970. } while (len > 0);
  2971. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2972. tb = &rp->tx_buffs[idx];
  2973. BUG_ON(tb->skb != NULL);
  2974. np->ops->unmap_page(np->device, tb->mapping,
  2975. skb_shinfo(skb)->frags[i].size,
  2976. DMA_TO_DEVICE);
  2977. idx = NEXT_TX(rp, idx);
  2978. }
  2979. dev_kfree_skb(skb);
  2980. return idx;
  2981. }
  2982. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2983. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2984. {
  2985. struct netdev_queue *txq;
  2986. u16 pkt_cnt, tmp;
  2987. int cons, index;
  2988. u64 cs;
  2989. index = (rp - np->tx_rings);
  2990. txq = netdev_get_tx_queue(np->dev, index);
  2991. cs = rp->tx_cs;
  2992. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2993. goto out;
  2994. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2995. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2996. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2997. rp->last_pkt_cnt = tmp;
  2998. cons = rp->cons;
  2999. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  3000. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  3001. while (pkt_cnt--)
  3002. cons = release_tx_packet(np, rp, cons);
  3003. rp->cons = cons;
  3004. smp_mb();
  3005. out:
  3006. if (unlikely(netif_tx_queue_stopped(txq) &&
  3007. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3008. __netif_tx_lock(txq, smp_processor_id());
  3009. if (netif_tx_queue_stopped(txq) &&
  3010. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3011. netif_tx_wake_queue(txq);
  3012. __netif_tx_unlock(txq);
  3013. }
  3014. }
  3015. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3016. struct rx_ring_info *rp,
  3017. const int limit)
  3018. {
  3019. /* This elaborate scheme is needed for reading the RX discard
  3020. * counters, as they are only 16-bit and can overflow quickly,
  3021. * and because the overflow indication bit is not usable as
  3022. * the counter value does not wrap, but remains at max value
  3023. * 0xFFFF.
  3024. *
  3025. * In theory and in practice counters can be lost in between
  3026. * reading nr64() and clearing the counter nw64(). For this
  3027. * reason, the number of counter clearings nw64() is
  3028. * limited/reduced though the limit parameter.
  3029. */
  3030. int rx_channel = rp->rx_channel;
  3031. u32 misc, wred;
  3032. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3033. * following discard events: IPP (Input Port Process),
  3034. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3035. * Block Ring) prefetch buffer is empty.
  3036. */
  3037. misc = nr64(RXMISC(rx_channel));
  3038. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3039. nw64(RXMISC(rx_channel), 0);
  3040. rp->rx_errors += misc & RXMISC_COUNT;
  3041. if (unlikely(misc & RXMISC_OFLOW))
  3042. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3043. rx_channel);
  3044. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3045. "rx-%d: MISC drop=%u over=%u\n",
  3046. rx_channel, misc, misc-limit);
  3047. }
  3048. /* WRED (Weighted Random Early Discard) by hardware */
  3049. wred = nr64(RED_DIS_CNT(rx_channel));
  3050. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3051. nw64(RED_DIS_CNT(rx_channel), 0);
  3052. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3053. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3054. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3055. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3056. "rx-%d: WRED drop=%u over=%u\n",
  3057. rx_channel, wred, wred-limit);
  3058. }
  3059. }
  3060. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3061. struct rx_ring_info *rp, int budget)
  3062. {
  3063. int qlen, rcr_done = 0, work_done = 0;
  3064. struct rxdma_mailbox *mbox = rp->mbox;
  3065. u64 stat;
  3066. #if 1
  3067. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3068. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3069. #else
  3070. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3071. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3072. #endif
  3073. mbox->rx_dma_ctl_stat = 0;
  3074. mbox->rcrstat_a = 0;
  3075. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3076. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3077. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3078. rcr_done = work_done = 0;
  3079. qlen = min(qlen, budget);
  3080. while (work_done < qlen) {
  3081. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3082. work_done++;
  3083. }
  3084. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3085. unsigned int i;
  3086. for (i = 0; i < rp->rbr_refill_pending; i++)
  3087. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3088. rp->rbr_refill_pending = 0;
  3089. }
  3090. stat = (RX_DMA_CTL_STAT_MEX |
  3091. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3092. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3093. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3094. /* Only sync discards stats when qlen indicate potential for drops */
  3095. if (qlen > 10)
  3096. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3097. return work_done;
  3098. }
  3099. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3100. {
  3101. u64 v0 = lp->v0;
  3102. u32 tx_vec = (v0 >> 32);
  3103. u32 rx_vec = (v0 & 0xffffffff);
  3104. int i, work_done = 0;
  3105. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3106. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3107. for (i = 0; i < np->num_tx_rings; i++) {
  3108. struct tx_ring_info *rp = &np->tx_rings[i];
  3109. if (tx_vec & (1 << rp->tx_channel))
  3110. niu_tx_work(np, rp);
  3111. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3112. }
  3113. for (i = 0; i < np->num_rx_rings; i++) {
  3114. struct rx_ring_info *rp = &np->rx_rings[i];
  3115. if (rx_vec & (1 << rp->rx_channel)) {
  3116. int this_work_done;
  3117. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3118. budget);
  3119. budget -= this_work_done;
  3120. work_done += this_work_done;
  3121. }
  3122. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3123. }
  3124. return work_done;
  3125. }
  3126. static int niu_poll(struct napi_struct *napi, int budget)
  3127. {
  3128. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3129. struct niu *np = lp->np;
  3130. int work_done;
  3131. work_done = niu_poll_core(np, lp, budget);
  3132. if (work_done < budget) {
  3133. napi_complete(napi);
  3134. niu_ldg_rearm(np, lp, 1);
  3135. }
  3136. return work_done;
  3137. }
  3138. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3139. u64 stat)
  3140. {
  3141. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3142. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3143. pr_cont("RBR_TMOUT ");
  3144. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3145. pr_cont("RSP_CNT ");
  3146. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3147. pr_cont("BYTE_EN_BUS ");
  3148. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3149. pr_cont("RSP_DAT ");
  3150. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3151. pr_cont("RCR_ACK ");
  3152. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3153. pr_cont("RCR_SHA_PAR ");
  3154. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3155. pr_cont("RBR_PRE_PAR ");
  3156. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3157. pr_cont("CONFIG ");
  3158. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3159. pr_cont("RCRINCON ");
  3160. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3161. pr_cont("RCRFULL ");
  3162. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3163. pr_cont("RBRFULL ");
  3164. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3165. pr_cont("RBRLOGPAGE ");
  3166. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3167. pr_cont("CFIGLOGPAGE ");
  3168. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3169. pr_cont("DC_FIDO ");
  3170. pr_cont(")\n");
  3171. }
  3172. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3173. {
  3174. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3175. int err = 0;
  3176. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3177. RX_DMA_CTL_STAT_PORT_FATAL))
  3178. err = -EINVAL;
  3179. if (err) {
  3180. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3181. rp->rx_channel,
  3182. (unsigned long long) stat);
  3183. niu_log_rxchan_errors(np, rp, stat);
  3184. }
  3185. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3186. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3187. return err;
  3188. }
  3189. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3190. u64 cs)
  3191. {
  3192. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3193. if (cs & TX_CS_MBOX_ERR)
  3194. pr_cont("MBOX ");
  3195. if (cs & TX_CS_PKT_SIZE_ERR)
  3196. pr_cont("PKT_SIZE ");
  3197. if (cs & TX_CS_TX_RING_OFLOW)
  3198. pr_cont("TX_RING_OFLOW ");
  3199. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3200. pr_cont("PREF_BUF_PAR ");
  3201. if (cs & TX_CS_NACK_PREF)
  3202. pr_cont("NACK_PREF ");
  3203. if (cs & TX_CS_NACK_PKT_RD)
  3204. pr_cont("NACK_PKT_RD ");
  3205. if (cs & TX_CS_CONF_PART_ERR)
  3206. pr_cont("CONF_PART ");
  3207. if (cs & TX_CS_PKT_PRT_ERR)
  3208. pr_cont("PKT_PTR ");
  3209. pr_cont(")\n");
  3210. }
  3211. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3212. {
  3213. u64 cs, logh, logl;
  3214. cs = nr64(TX_CS(rp->tx_channel));
  3215. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3216. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3217. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3218. rp->tx_channel,
  3219. (unsigned long long)cs,
  3220. (unsigned long long)logh,
  3221. (unsigned long long)logl);
  3222. niu_log_txchan_errors(np, rp, cs);
  3223. return -ENODEV;
  3224. }
  3225. static int niu_mif_interrupt(struct niu *np)
  3226. {
  3227. u64 mif_status = nr64(MIF_STATUS);
  3228. int phy_mdint = 0;
  3229. if (np->flags & NIU_FLAGS_XMAC) {
  3230. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3231. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3232. phy_mdint = 1;
  3233. }
  3234. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3235. (unsigned long long)mif_status, phy_mdint);
  3236. return -ENODEV;
  3237. }
  3238. static void niu_xmac_interrupt(struct niu *np)
  3239. {
  3240. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3241. u64 val;
  3242. val = nr64_mac(XTXMAC_STATUS);
  3243. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3244. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3245. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3246. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3247. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3248. mp->tx_fifo_errors++;
  3249. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3250. mp->tx_overflow_errors++;
  3251. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3252. mp->tx_max_pkt_size_errors++;
  3253. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3254. mp->tx_underflow_errors++;
  3255. val = nr64_mac(XRXMAC_STATUS);
  3256. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3257. mp->rx_local_faults++;
  3258. if (val & XRXMAC_STATUS_RFLT_DET)
  3259. mp->rx_remote_faults++;
  3260. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3261. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3262. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3263. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3264. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3265. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3266. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3267. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3268. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3269. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3270. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3271. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3272. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3273. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3274. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3275. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3276. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3277. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3278. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3279. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3280. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3281. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3282. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3283. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3284. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3285. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3286. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3287. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3288. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3289. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3290. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3291. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3292. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3293. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3294. if (val & XRXMAC_STATUS_RXUFLOW)
  3295. mp->rx_underflows++;
  3296. if (val & XRXMAC_STATUS_RXOFLOW)
  3297. mp->rx_overflows++;
  3298. val = nr64_mac(XMAC_FC_STAT);
  3299. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3300. mp->pause_off_state++;
  3301. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3302. mp->pause_on_state++;
  3303. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3304. mp->pause_received++;
  3305. }
  3306. static void niu_bmac_interrupt(struct niu *np)
  3307. {
  3308. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3309. u64 val;
  3310. val = nr64_mac(BTXMAC_STATUS);
  3311. if (val & BTXMAC_STATUS_UNDERRUN)
  3312. mp->tx_underflow_errors++;
  3313. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3314. mp->tx_max_pkt_size_errors++;
  3315. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3316. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3317. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3318. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3319. val = nr64_mac(BRXMAC_STATUS);
  3320. if (val & BRXMAC_STATUS_OVERFLOW)
  3321. mp->rx_overflows++;
  3322. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3323. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3324. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3325. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3326. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3327. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3328. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3329. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3330. val = nr64_mac(BMAC_CTRL_STATUS);
  3331. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3332. mp->pause_off_state++;
  3333. if (val & BMAC_CTRL_STATUS_PAUSE)
  3334. mp->pause_on_state++;
  3335. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3336. mp->pause_received++;
  3337. }
  3338. static int niu_mac_interrupt(struct niu *np)
  3339. {
  3340. if (np->flags & NIU_FLAGS_XMAC)
  3341. niu_xmac_interrupt(np);
  3342. else
  3343. niu_bmac_interrupt(np);
  3344. return 0;
  3345. }
  3346. static void niu_log_device_error(struct niu *np, u64 stat)
  3347. {
  3348. netdev_err(np->dev, "Core device errors ( ");
  3349. if (stat & SYS_ERR_MASK_META2)
  3350. pr_cont("META2 ");
  3351. if (stat & SYS_ERR_MASK_META1)
  3352. pr_cont("META1 ");
  3353. if (stat & SYS_ERR_MASK_PEU)
  3354. pr_cont("PEU ");
  3355. if (stat & SYS_ERR_MASK_TXC)
  3356. pr_cont("TXC ");
  3357. if (stat & SYS_ERR_MASK_RDMC)
  3358. pr_cont("RDMC ");
  3359. if (stat & SYS_ERR_MASK_TDMC)
  3360. pr_cont("TDMC ");
  3361. if (stat & SYS_ERR_MASK_ZCP)
  3362. pr_cont("ZCP ");
  3363. if (stat & SYS_ERR_MASK_FFLP)
  3364. pr_cont("FFLP ");
  3365. if (stat & SYS_ERR_MASK_IPP)
  3366. pr_cont("IPP ");
  3367. if (stat & SYS_ERR_MASK_MAC)
  3368. pr_cont("MAC ");
  3369. if (stat & SYS_ERR_MASK_SMX)
  3370. pr_cont("SMX ");
  3371. pr_cont(")\n");
  3372. }
  3373. static int niu_device_error(struct niu *np)
  3374. {
  3375. u64 stat = nr64(SYS_ERR_STAT);
  3376. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3377. (unsigned long long)stat);
  3378. niu_log_device_error(np, stat);
  3379. return -ENODEV;
  3380. }
  3381. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3382. u64 v0, u64 v1, u64 v2)
  3383. {
  3384. int i, err = 0;
  3385. lp->v0 = v0;
  3386. lp->v1 = v1;
  3387. lp->v2 = v2;
  3388. if (v1 & 0x00000000ffffffffULL) {
  3389. u32 rx_vec = (v1 & 0xffffffff);
  3390. for (i = 0; i < np->num_rx_rings; i++) {
  3391. struct rx_ring_info *rp = &np->rx_rings[i];
  3392. if (rx_vec & (1 << rp->rx_channel)) {
  3393. int r = niu_rx_error(np, rp);
  3394. if (r) {
  3395. err = r;
  3396. } else {
  3397. if (!v0)
  3398. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3399. RX_DMA_CTL_STAT_MEX);
  3400. }
  3401. }
  3402. }
  3403. }
  3404. if (v1 & 0x7fffffff00000000ULL) {
  3405. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3406. for (i = 0; i < np->num_tx_rings; i++) {
  3407. struct tx_ring_info *rp = &np->tx_rings[i];
  3408. if (tx_vec & (1 << rp->tx_channel)) {
  3409. int r = niu_tx_error(np, rp);
  3410. if (r)
  3411. err = r;
  3412. }
  3413. }
  3414. }
  3415. if ((v0 | v1) & 0x8000000000000000ULL) {
  3416. int r = niu_mif_interrupt(np);
  3417. if (r)
  3418. err = r;
  3419. }
  3420. if (v2) {
  3421. if (v2 & 0x01ef) {
  3422. int r = niu_mac_interrupt(np);
  3423. if (r)
  3424. err = r;
  3425. }
  3426. if (v2 & 0x0210) {
  3427. int r = niu_device_error(np);
  3428. if (r)
  3429. err = r;
  3430. }
  3431. }
  3432. if (err)
  3433. niu_enable_interrupts(np, 0);
  3434. return err;
  3435. }
  3436. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3437. int ldn)
  3438. {
  3439. struct rxdma_mailbox *mbox = rp->mbox;
  3440. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3441. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3442. RX_DMA_CTL_STAT_RCRTO);
  3443. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3444. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3445. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3446. }
  3447. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3448. int ldn)
  3449. {
  3450. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3451. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3452. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3453. }
  3454. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3455. {
  3456. struct niu_parent *parent = np->parent;
  3457. u32 rx_vec, tx_vec;
  3458. int i;
  3459. tx_vec = (v0 >> 32);
  3460. rx_vec = (v0 & 0xffffffff);
  3461. for (i = 0; i < np->num_rx_rings; i++) {
  3462. struct rx_ring_info *rp = &np->rx_rings[i];
  3463. int ldn = LDN_RXDMA(rp->rx_channel);
  3464. if (parent->ldg_map[ldn] != ldg)
  3465. continue;
  3466. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3467. if (rx_vec & (1 << rp->rx_channel))
  3468. niu_rxchan_intr(np, rp, ldn);
  3469. }
  3470. for (i = 0; i < np->num_tx_rings; i++) {
  3471. struct tx_ring_info *rp = &np->tx_rings[i];
  3472. int ldn = LDN_TXDMA(rp->tx_channel);
  3473. if (parent->ldg_map[ldn] != ldg)
  3474. continue;
  3475. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3476. if (tx_vec & (1 << rp->tx_channel))
  3477. niu_txchan_intr(np, rp, ldn);
  3478. }
  3479. }
  3480. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3481. u64 v0, u64 v1, u64 v2)
  3482. {
  3483. if (likely(napi_schedule_prep(&lp->napi))) {
  3484. lp->v0 = v0;
  3485. lp->v1 = v1;
  3486. lp->v2 = v2;
  3487. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3488. __napi_schedule(&lp->napi);
  3489. }
  3490. }
  3491. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3492. {
  3493. struct niu_ldg *lp = dev_id;
  3494. struct niu *np = lp->np;
  3495. int ldg = lp->ldg_num;
  3496. unsigned long flags;
  3497. u64 v0, v1, v2;
  3498. if (netif_msg_intr(np))
  3499. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3500. __func__, lp, ldg);
  3501. spin_lock_irqsave(&np->lock, flags);
  3502. v0 = nr64(LDSV0(ldg));
  3503. v1 = nr64(LDSV1(ldg));
  3504. v2 = nr64(LDSV2(ldg));
  3505. if (netif_msg_intr(np))
  3506. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3507. (unsigned long long) v0,
  3508. (unsigned long long) v1,
  3509. (unsigned long long) v2);
  3510. if (unlikely(!v0 && !v1 && !v2)) {
  3511. spin_unlock_irqrestore(&np->lock, flags);
  3512. return IRQ_NONE;
  3513. }
  3514. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3515. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3516. if (err)
  3517. goto out;
  3518. }
  3519. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3520. niu_schedule_napi(np, lp, v0, v1, v2);
  3521. else
  3522. niu_ldg_rearm(np, lp, 1);
  3523. out:
  3524. spin_unlock_irqrestore(&np->lock, flags);
  3525. return IRQ_HANDLED;
  3526. }
  3527. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3528. {
  3529. if (rp->mbox) {
  3530. np->ops->free_coherent(np->device,
  3531. sizeof(struct rxdma_mailbox),
  3532. rp->mbox, rp->mbox_dma);
  3533. rp->mbox = NULL;
  3534. }
  3535. if (rp->rcr) {
  3536. np->ops->free_coherent(np->device,
  3537. MAX_RCR_RING_SIZE * sizeof(__le64),
  3538. rp->rcr, rp->rcr_dma);
  3539. rp->rcr = NULL;
  3540. rp->rcr_table_size = 0;
  3541. rp->rcr_index = 0;
  3542. }
  3543. if (rp->rbr) {
  3544. niu_rbr_free(np, rp);
  3545. np->ops->free_coherent(np->device,
  3546. MAX_RBR_RING_SIZE * sizeof(__le32),
  3547. rp->rbr, rp->rbr_dma);
  3548. rp->rbr = NULL;
  3549. rp->rbr_table_size = 0;
  3550. rp->rbr_index = 0;
  3551. }
  3552. kfree(rp->rxhash);
  3553. rp->rxhash = NULL;
  3554. }
  3555. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3556. {
  3557. if (rp->mbox) {
  3558. np->ops->free_coherent(np->device,
  3559. sizeof(struct txdma_mailbox),
  3560. rp->mbox, rp->mbox_dma);
  3561. rp->mbox = NULL;
  3562. }
  3563. if (rp->descr) {
  3564. int i;
  3565. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3566. if (rp->tx_buffs[i].skb)
  3567. (void) release_tx_packet(np, rp, i);
  3568. }
  3569. np->ops->free_coherent(np->device,
  3570. MAX_TX_RING_SIZE * sizeof(__le64),
  3571. rp->descr, rp->descr_dma);
  3572. rp->descr = NULL;
  3573. rp->pending = 0;
  3574. rp->prod = 0;
  3575. rp->cons = 0;
  3576. rp->wrap_bit = 0;
  3577. }
  3578. }
  3579. static void niu_free_channels(struct niu *np)
  3580. {
  3581. int i;
  3582. if (np->rx_rings) {
  3583. for (i = 0; i < np->num_rx_rings; i++) {
  3584. struct rx_ring_info *rp = &np->rx_rings[i];
  3585. niu_free_rx_ring_info(np, rp);
  3586. }
  3587. kfree(np->rx_rings);
  3588. np->rx_rings = NULL;
  3589. np->num_rx_rings = 0;
  3590. }
  3591. if (np->tx_rings) {
  3592. for (i = 0; i < np->num_tx_rings; i++) {
  3593. struct tx_ring_info *rp = &np->tx_rings[i];
  3594. niu_free_tx_ring_info(np, rp);
  3595. }
  3596. kfree(np->tx_rings);
  3597. np->tx_rings = NULL;
  3598. np->num_tx_rings = 0;
  3599. }
  3600. }
  3601. static int niu_alloc_rx_ring_info(struct niu *np,
  3602. struct rx_ring_info *rp)
  3603. {
  3604. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3605. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3606. GFP_KERNEL);
  3607. if (!rp->rxhash)
  3608. return -ENOMEM;
  3609. rp->mbox = np->ops->alloc_coherent(np->device,
  3610. sizeof(struct rxdma_mailbox),
  3611. &rp->mbox_dma, GFP_KERNEL);
  3612. if (!rp->mbox)
  3613. return -ENOMEM;
  3614. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3615. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3616. rp->mbox);
  3617. return -EINVAL;
  3618. }
  3619. rp->rcr = np->ops->alloc_coherent(np->device,
  3620. MAX_RCR_RING_SIZE * sizeof(__le64),
  3621. &rp->rcr_dma, GFP_KERNEL);
  3622. if (!rp->rcr)
  3623. return -ENOMEM;
  3624. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3625. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3626. rp->rcr);
  3627. return -EINVAL;
  3628. }
  3629. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3630. rp->rcr_index = 0;
  3631. rp->rbr = np->ops->alloc_coherent(np->device,
  3632. MAX_RBR_RING_SIZE * sizeof(__le32),
  3633. &rp->rbr_dma, GFP_KERNEL);
  3634. if (!rp->rbr)
  3635. return -ENOMEM;
  3636. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3637. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3638. rp->rbr);
  3639. return -EINVAL;
  3640. }
  3641. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3642. rp->rbr_index = 0;
  3643. rp->rbr_pending = 0;
  3644. return 0;
  3645. }
  3646. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3647. {
  3648. int mtu = np->dev->mtu;
  3649. /* These values are recommended by the HW designers for fair
  3650. * utilization of DRR amongst the rings.
  3651. */
  3652. rp->max_burst = mtu + 32;
  3653. if (rp->max_burst > 4096)
  3654. rp->max_burst = 4096;
  3655. }
  3656. static int niu_alloc_tx_ring_info(struct niu *np,
  3657. struct tx_ring_info *rp)
  3658. {
  3659. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3660. rp->mbox = np->ops->alloc_coherent(np->device,
  3661. sizeof(struct txdma_mailbox),
  3662. &rp->mbox_dma, GFP_KERNEL);
  3663. if (!rp->mbox)
  3664. return -ENOMEM;
  3665. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3666. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3667. rp->mbox);
  3668. return -EINVAL;
  3669. }
  3670. rp->descr = np->ops->alloc_coherent(np->device,
  3671. MAX_TX_RING_SIZE * sizeof(__le64),
  3672. &rp->descr_dma, GFP_KERNEL);
  3673. if (!rp->descr)
  3674. return -ENOMEM;
  3675. if ((unsigned long)rp->descr & (64UL - 1)) {
  3676. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3677. rp->descr);
  3678. return -EINVAL;
  3679. }
  3680. rp->pending = MAX_TX_RING_SIZE;
  3681. rp->prod = 0;
  3682. rp->cons = 0;
  3683. rp->wrap_bit = 0;
  3684. /* XXX make these configurable... XXX */
  3685. rp->mark_freq = rp->pending / 4;
  3686. niu_set_max_burst(np, rp);
  3687. return 0;
  3688. }
  3689. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3690. {
  3691. u16 bss;
  3692. bss = min(PAGE_SHIFT, 15);
  3693. rp->rbr_block_size = 1 << bss;
  3694. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3695. rp->rbr_sizes[0] = 256;
  3696. rp->rbr_sizes[1] = 1024;
  3697. if (np->dev->mtu > ETH_DATA_LEN) {
  3698. switch (PAGE_SIZE) {
  3699. case 4 * 1024:
  3700. rp->rbr_sizes[2] = 4096;
  3701. break;
  3702. default:
  3703. rp->rbr_sizes[2] = 8192;
  3704. break;
  3705. }
  3706. } else {
  3707. rp->rbr_sizes[2] = 2048;
  3708. }
  3709. rp->rbr_sizes[3] = rp->rbr_block_size;
  3710. }
  3711. static int niu_alloc_channels(struct niu *np)
  3712. {
  3713. struct niu_parent *parent = np->parent;
  3714. int first_rx_channel, first_tx_channel;
  3715. int i, port, err;
  3716. port = np->port;
  3717. first_rx_channel = first_tx_channel = 0;
  3718. for (i = 0; i < port; i++) {
  3719. first_rx_channel += parent->rxchan_per_port[i];
  3720. first_tx_channel += parent->txchan_per_port[i];
  3721. }
  3722. np->num_rx_rings = parent->rxchan_per_port[port];
  3723. np->num_tx_rings = parent->txchan_per_port[port];
  3724. np->dev->real_num_tx_queues = np->num_tx_rings;
  3725. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3726. GFP_KERNEL);
  3727. err = -ENOMEM;
  3728. if (!np->rx_rings)
  3729. goto out_err;
  3730. for (i = 0; i < np->num_rx_rings; i++) {
  3731. struct rx_ring_info *rp = &np->rx_rings[i];
  3732. rp->np = np;
  3733. rp->rx_channel = first_rx_channel + i;
  3734. err = niu_alloc_rx_ring_info(np, rp);
  3735. if (err)
  3736. goto out_err;
  3737. niu_size_rbr(np, rp);
  3738. /* XXX better defaults, configurable, etc... XXX */
  3739. rp->nonsyn_window = 64;
  3740. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3741. rp->syn_window = 64;
  3742. rp->syn_threshold = rp->rcr_table_size - 64;
  3743. rp->rcr_pkt_threshold = 16;
  3744. rp->rcr_timeout = 8;
  3745. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3746. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3747. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3748. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3749. if (err)
  3750. return err;
  3751. }
  3752. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3753. GFP_KERNEL);
  3754. err = -ENOMEM;
  3755. if (!np->tx_rings)
  3756. goto out_err;
  3757. for (i = 0; i < np->num_tx_rings; i++) {
  3758. struct tx_ring_info *rp = &np->tx_rings[i];
  3759. rp->np = np;
  3760. rp->tx_channel = first_tx_channel + i;
  3761. err = niu_alloc_tx_ring_info(np, rp);
  3762. if (err)
  3763. goto out_err;
  3764. }
  3765. return 0;
  3766. out_err:
  3767. niu_free_channels(np);
  3768. return err;
  3769. }
  3770. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3771. {
  3772. int limit = 1000;
  3773. while (--limit > 0) {
  3774. u64 val = nr64(TX_CS(channel));
  3775. if (val & TX_CS_SNG_STATE)
  3776. return 0;
  3777. }
  3778. return -ENODEV;
  3779. }
  3780. static int niu_tx_channel_stop(struct niu *np, int channel)
  3781. {
  3782. u64 val = nr64(TX_CS(channel));
  3783. val |= TX_CS_STOP_N_GO;
  3784. nw64(TX_CS(channel), val);
  3785. return niu_tx_cs_sng_poll(np, channel);
  3786. }
  3787. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3788. {
  3789. int limit = 1000;
  3790. while (--limit > 0) {
  3791. u64 val = nr64(TX_CS(channel));
  3792. if (!(val & TX_CS_RST))
  3793. return 0;
  3794. }
  3795. return -ENODEV;
  3796. }
  3797. static int niu_tx_channel_reset(struct niu *np, int channel)
  3798. {
  3799. u64 val = nr64(TX_CS(channel));
  3800. int err;
  3801. val |= TX_CS_RST;
  3802. nw64(TX_CS(channel), val);
  3803. err = niu_tx_cs_reset_poll(np, channel);
  3804. if (!err)
  3805. nw64(TX_RING_KICK(channel), 0);
  3806. return err;
  3807. }
  3808. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3809. {
  3810. u64 val;
  3811. nw64(TX_LOG_MASK1(channel), 0);
  3812. nw64(TX_LOG_VAL1(channel), 0);
  3813. nw64(TX_LOG_MASK2(channel), 0);
  3814. nw64(TX_LOG_VAL2(channel), 0);
  3815. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3816. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3817. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3818. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3819. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3820. nw64(TX_LOG_PAGE_VLD(channel), val);
  3821. /* XXX TXDMA 32bit mode? XXX */
  3822. return 0;
  3823. }
  3824. static void niu_txc_enable_port(struct niu *np, int on)
  3825. {
  3826. unsigned long flags;
  3827. u64 val, mask;
  3828. niu_lock_parent(np, flags);
  3829. val = nr64(TXC_CONTROL);
  3830. mask = (u64)1 << np->port;
  3831. if (on) {
  3832. val |= TXC_CONTROL_ENABLE | mask;
  3833. } else {
  3834. val &= ~mask;
  3835. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3836. val &= ~TXC_CONTROL_ENABLE;
  3837. }
  3838. nw64(TXC_CONTROL, val);
  3839. niu_unlock_parent(np, flags);
  3840. }
  3841. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3842. {
  3843. unsigned long flags;
  3844. u64 val;
  3845. niu_lock_parent(np, flags);
  3846. val = nr64(TXC_INT_MASK);
  3847. val &= ~TXC_INT_MASK_VAL(np->port);
  3848. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3849. niu_unlock_parent(np, flags);
  3850. }
  3851. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3852. {
  3853. u64 val = 0;
  3854. if (on) {
  3855. int i;
  3856. for (i = 0; i < np->num_tx_rings; i++)
  3857. val |= (1 << np->tx_rings[i].tx_channel);
  3858. }
  3859. nw64(TXC_PORT_DMA(np->port), val);
  3860. }
  3861. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3862. {
  3863. int err, channel = rp->tx_channel;
  3864. u64 val, ring_len;
  3865. err = niu_tx_channel_stop(np, channel);
  3866. if (err)
  3867. return err;
  3868. err = niu_tx_channel_reset(np, channel);
  3869. if (err)
  3870. return err;
  3871. err = niu_tx_channel_lpage_init(np, channel);
  3872. if (err)
  3873. return err;
  3874. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3875. nw64(TX_ENT_MSK(channel), 0);
  3876. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3877. TX_RNG_CFIG_STADDR)) {
  3878. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3879. channel, (unsigned long long)rp->descr_dma);
  3880. return -EINVAL;
  3881. }
  3882. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3883. * blocks. rp->pending is the number of TX descriptors in
  3884. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3885. * to get the proper value the chip wants.
  3886. */
  3887. ring_len = (rp->pending / 8);
  3888. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3889. rp->descr_dma);
  3890. nw64(TX_RNG_CFIG(channel), val);
  3891. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3892. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3893. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3894. channel, (unsigned long long)rp->mbox_dma);
  3895. return -EINVAL;
  3896. }
  3897. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3898. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3899. nw64(TX_CS(channel), 0);
  3900. rp->last_pkt_cnt = 0;
  3901. return 0;
  3902. }
  3903. static void niu_init_rdc_groups(struct niu *np)
  3904. {
  3905. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3906. int i, first_table_num = tp->first_table_num;
  3907. for (i = 0; i < tp->num_tables; i++) {
  3908. struct rdc_table *tbl = &tp->tables[i];
  3909. int this_table = first_table_num + i;
  3910. int slot;
  3911. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3912. nw64(RDC_TBL(this_table, slot),
  3913. tbl->rxdma_channel[slot]);
  3914. }
  3915. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3916. }
  3917. static void niu_init_drr_weight(struct niu *np)
  3918. {
  3919. int type = phy_decode(np->parent->port_phy, np->port);
  3920. u64 val;
  3921. switch (type) {
  3922. case PORT_TYPE_10G:
  3923. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3924. break;
  3925. case PORT_TYPE_1G:
  3926. default:
  3927. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3928. break;
  3929. }
  3930. nw64(PT_DRR_WT(np->port), val);
  3931. }
  3932. static int niu_init_hostinfo(struct niu *np)
  3933. {
  3934. struct niu_parent *parent = np->parent;
  3935. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3936. int i, err, num_alt = niu_num_alt_addr(np);
  3937. int first_rdc_table = tp->first_table_num;
  3938. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3939. if (err)
  3940. return err;
  3941. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3942. if (err)
  3943. return err;
  3944. for (i = 0; i < num_alt; i++) {
  3945. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3946. if (err)
  3947. return err;
  3948. }
  3949. return 0;
  3950. }
  3951. static int niu_rx_channel_reset(struct niu *np, int channel)
  3952. {
  3953. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3954. RXDMA_CFIG1_RST, 1000, 10,
  3955. "RXDMA_CFIG1");
  3956. }
  3957. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3958. {
  3959. u64 val;
  3960. nw64(RX_LOG_MASK1(channel), 0);
  3961. nw64(RX_LOG_VAL1(channel), 0);
  3962. nw64(RX_LOG_MASK2(channel), 0);
  3963. nw64(RX_LOG_VAL2(channel), 0);
  3964. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3965. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3966. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3967. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3968. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3969. nw64(RX_LOG_PAGE_VLD(channel), val);
  3970. return 0;
  3971. }
  3972. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3973. {
  3974. u64 val;
  3975. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3976. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3977. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3978. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3979. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3980. }
  3981. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3982. {
  3983. u64 val = 0;
  3984. *ret = 0;
  3985. switch (rp->rbr_block_size) {
  3986. case 4 * 1024:
  3987. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3988. break;
  3989. case 8 * 1024:
  3990. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3991. break;
  3992. case 16 * 1024:
  3993. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3994. break;
  3995. case 32 * 1024:
  3996. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3997. break;
  3998. default:
  3999. return -EINVAL;
  4000. }
  4001. val |= RBR_CFIG_B_VLD2;
  4002. switch (rp->rbr_sizes[2]) {
  4003. case 2 * 1024:
  4004. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4005. break;
  4006. case 4 * 1024:
  4007. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4008. break;
  4009. case 8 * 1024:
  4010. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4011. break;
  4012. case 16 * 1024:
  4013. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4014. break;
  4015. default:
  4016. return -EINVAL;
  4017. }
  4018. val |= RBR_CFIG_B_VLD1;
  4019. switch (rp->rbr_sizes[1]) {
  4020. case 1 * 1024:
  4021. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4022. break;
  4023. case 2 * 1024:
  4024. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4025. break;
  4026. case 4 * 1024:
  4027. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4028. break;
  4029. case 8 * 1024:
  4030. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4031. break;
  4032. default:
  4033. return -EINVAL;
  4034. }
  4035. val |= RBR_CFIG_B_VLD0;
  4036. switch (rp->rbr_sizes[0]) {
  4037. case 256:
  4038. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4039. break;
  4040. case 512:
  4041. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4042. break;
  4043. case 1 * 1024:
  4044. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4045. break;
  4046. case 2 * 1024:
  4047. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4048. break;
  4049. default:
  4050. return -EINVAL;
  4051. }
  4052. *ret = val;
  4053. return 0;
  4054. }
  4055. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4056. {
  4057. u64 val = nr64(RXDMA_CFIG1(channel));
  4058. int limit;
  4059. if (on)
  4060. val |= RXDMA_CFIG1_EN;
  4061. else
  4062. val &= ~RXDMA_CFIG1_EN;
  4063. nw64(RXDMA_CFIG1(channel), val);
  4064. limit = 1000;
  4065. while (--limit > 0) {
  4066. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4067. break;
  4068. udelay(10);
  4069. }
  4070. if (limit <= 0)
  4071. return -ENODEV;
  4072. return 0;
  4073. }
  4074. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4075. {
  4076. int err, channel = rp->rx_channel;
  4077. u64 val;
  4078. err = niu_rx_channel_reset(np, channel);
  4079. if (err)
  4080. return err;
  4081. err = niu_rx_channel_lpage_init(np, channel);
  4082. if (err)
  4083. return err;
  4084. niu_rx_channel_wred_init(np, rp);
  4085. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4086. nw64(RX_DMA_CTL_STAT(channel),
  4087. (RX_DMA_CTL_STAT_MEX |
  4088. RX_DMA_CTL_STAT_RCRTHRES |
  4089. RX_DMA_CTL_STAT_RCRTO |
  4090. RX_DMA_CTL_STAT_RBR_EMPTY));
  4091. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4092. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4093. nw64(RBR_CFIG_A(channel),
  4094. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4095. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4096. err = niu_compute_rbr_cfig_b(rp, &val);
  4097. if (err)
  4098. return err;
  4099. nw64(RBR_CFIG_B(channel), val);
  4100. nw64(RCRCFIG_A(channel),
  4101. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4102. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4103. nw64(RCRCFIG_B(channel),
  4104. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4105. RCRCFIG_B_ENTOUT |
  4106. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4107. err = niu_enable_rx_channel(np, channel, 1);
  4108. if (err)
  4109. return err;
  4110. nw64(RBR_KICK(channel), rp->rbr_index);
  4111. val = nr64(RX_DMA_CTL_STAT(channel));
  4112. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4113. nw64(RX_DMA_CTL_STAT(channel), val);
  4114. return 0;
  4115. }
  4116. static int niu_init_rx_channels(struct niu *np)
  4117. {
  4118. unsigned long flags;
  4119. u64 seed = jiffies_64;
  4120. int err, i;
  4121. niu_lock_parent(np, flags);
  4122. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4123. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4124. niu_unlock_parent(np, flags);
  4125. /* XXX RXDMA 32bit mode? XXX */
  4126. niu_init_rdc_groups(np);
  4127. niu_init_drr_weight(np);
  4128. err = niu_init_hostinfo(np);
  4129. if (err)
  4130. return err;
  4131. for (i = 0; i < np->num_rx_rings; i++) {
  4132. struct rx_ring_info *rp = &np->rx_rings[i];
  4133. err = niu_init_one_rx_channel(np, rp);
  4134. if (err)
  4135. return err;
  4136. }
  4137. return 0;
  4138. }
  4139. static int niu_set_ip_frag_rule(struct niu *np)
  4140. {
  4141. struct niu_parent *parent = np->parent;
  4142. struct niu_classifier *cp = &np->clas;
  4143. struct niu_tcam_entry *tp;
  4144. int index, err;
  4145. index = cp->tcam_top;
  4146. tp = &parent->tcam[index];
  4147. /* Note that the noport bit is the same in both ipv4 and
  4148. * ipv6 format TCAM entries.
  4149. */
  4150. memset(tp, 0, sizeof(*tp));
  4151. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4152. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4153. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4154. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4155. err = tcam_write(np, index, tp->key, tp->key_mask);
  4156. if (err)
  4157. return err;
  4158. err = tcam_assoc_write(np, index, tp->assoc_data);
  4159. if (err)
  4160. return err;
  4161. tp->valid = 1;
  4162. cp->tcam_valid_entries++;
  4163. return 0;
  4164. }
  4165. static int niu_init_classifier_hw(struct niu *np)
  4166. {
  4167. struct niu_parent *parent = np->parent;
  4168. struct niu_classifier *cp = &np->clas;
  4169. int i, err;
  4170. nw64(H1POLY, cp->h1_init);
  4171. nw64(H2POLY, cp->h2_init);
  4172. err = niu_init_hostinfo(np);
  4173. if (err)
  4174. return err;
  4175. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4176. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4177. vlan_tbl_write(np, i, np->port,
  4178. vp->vlan_pref, vp->rdc_num);
  4179. }
  4180. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4181. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4182. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4183. ap->rdc_num, ap->mac_pref);
  4184. if (err)
  4185. return err;
  4186. }
  4187. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4188. int index = i - CLASS_CODE_USER_PROG1;
  4189. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4190. if (err)
  4191. return err;
  4192. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4193. if (err)
  4194. return err;
  4195. }
  4196. err = niu_set_ip_frag_rule(np);
  4197. if (err)
  4198. return err;
  4199. tcam_enable(np, 1);
  4200. return 0;
  4201. }
  4202. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4203. {
  4204. nw64(ZCP_RAM_DATA0, data[0]);
  4205. nw64(ZCP_RAM_DATA1, data[1]);
  4206. nw64(ZCP_RAM_DATA2, data[2]);
  4207. nw64(ZCP_RAM_DATA3, data[3]);
  4208. nw64(ZCP_RAM_DATA4, data[4]);
  4209. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4210. nw64(ZCP_RAM_ACC,
  4211. (ZCP_RAM_ACC_WRITE |
  4212. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4213. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4214. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4215. 1000, 100);
  4216. }
  4217. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4218. {
  4219. int err;
  4220. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4221. 1000, 100);
  4222. if (err) {
  4223. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4224. (unsigned long long)nr64(ZCP_RAM_ACC));
  4225. return err;
  4226. }
  4227. nw64(ZCP_RAM_ACC,
  4228. (ZCP_RAM_ACC_READ |
  4229. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4230. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4231. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4232. 1000, 100);
  4233. if (err) {
  4234. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4235. (unsigned long long)nr64(ZCP_RAM_ACC));
  4236. return err;
  4237. }
  4238. data[0] = nr64(ZCP_RAM_DATA0);
  4239. data[1] = nr64(ZCP_RAM_DATA1);
  4240. data[2] = nr64(ZCP_RAM_DATA2);
  4241. data[3] = nr64(ZCP_RAM_DATA3);
  4242. data[4] = nr64(ZCP_RAM_DATA4);
  4243. return 0;
  4244. }
  4245. static void niu_zcp_cfifo_reset(struct niu *np)
  4246. {
  4247. u64 val = nr64(RESET_CFIFO);
  4248. val |= RESET_CFIFO_RST(np->port);
  4249. nw64(RESET_CFIFO, val);
  4250. udelay(10);
  4251. val &= ~RESET_CFIFO_RST(np->port);
  4252. nw64(RESET_CFIFO, val);
  4253. }
  4254. static int niu_init_zcp(struct niu *np)
  4255. {
  4256. u64 data[5], rbuf[5];
  4257. int i, max, err;
  4258. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4259. if (np->port == 0 || np->port == 1)
  4260. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4261. else
  4262. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4263. } else
  4264. max = NIU_CFIFO_ENTRIES;
  4265. data[0] = 0;
  4266. data[1] = 0;
  4267. data[2] = 0;
  4268. data[3] = 0;
  4269. data[4] = 0;
  4270. for (i = 0; i < max; i++) {
  4271. err = niu_zcp_write(np, i, data);
  4272. if (err)
  4273. return err;
  4274. err = niu_zcp_read(np, i, rbuf);
  4275. if (err)
  4276. return err;
  4277. }
  4278. niu_zcp_cfifo_reset(np);
  4279. nw64(CFIFO_ECC(np->port), 0);
  4280. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4281. (void) nr64(ZCP_INT_STAT);
  4282. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4283. return 0;
  4284. }
  4285. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4286. {
  4287. u64 val = nr64_ipp(IPP_CFIG);
  4288. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4289. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4290. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4291. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4292. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4293. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4294. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4295. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4296. }
  4297. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4298. {
  4299. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4300. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4301. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4302. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4303. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4304. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4305. }
  4306. static int niu_ipp_reset(struct niu *np)
  4307. {
  4308. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4309. 1000, 100, "IPP_CFIG");
  4310. }
  4311. static int niu_init_ipp(struct niu *np)
  4312. {
  4313. u64 data[5], rbuf[5], val;
  4314. int i, max, err;
  4315. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4316. if (np->port == 0 || np->port == 1)
  4317. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4318. else
  4319. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4320. } else
  4321. max = NIU_DFIFO_ENTRIES;
  4322. data[0] = 0;
  4323. data[1] = 0;
  4324. data[2] = 0;
  4325. data[3] = 0;
  4326. data[4] = 0;
  4327. for (i = 0; i < max; i++) {
  4328. niu_ipp_write(np, i, data);
  4329. niu_ipp_read(np, i, rbuf);
  4330. }
  4331. (void) nr64_ipp(IPP_INT_STAT);
  4332. (void) nr64_ipp(IPP_INT_STAT);
  4333. err = niu_ipp_reset(np);
  4334. if (err)
  4335. return err;
  4336. (void) nr64_ipp(IPP_PKT_DIS);
  4337. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4338. (void) nr64_ipp(IPP_ECC);
  4339. (void) nr64_ipp(IPP_INT_STAT);
  4340. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4341. val = nr64_ipp(IPP_CFIG);
  4342. val &= ~IPP_CFIG_IP_MAX_PKT;
  4343. val |= (IPP_CFIG_IPP_ENABLE |
  4344. IPP_CFIG_DFIFO_ECC_EN |
  4345. IPP_CFIG_DROP_BAD_CRC |
  4346. IPP_CFIG_CKSUM_EN |
  4347. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4348. nw64_ipp(IPP_CFIG, val);
  4349. return 0;
  4350. }
  4351. static void niu_handle_led(struct niu *np, int status)
  4352. {
  4353. u64 val;
  4354. val = nr64_mac(XMAC_CONFIG);
  4355. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4356. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4357. if (status) {
  4358. val |= XMAC_CONFIG_LED_POLARITY;
  4359. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4360. } else {
  4361. val |= XMAC_CONFIG_FORCE_LED_ON;
  4362. val &= ~XMAC_CONFIG_LED_POLARITY;
  4363. }
  4364. }
  4365. nw64_mac(XMAC_CONFIG, val);
  4366. }
  4367. static void niu_init_xif_xmac(struct niu *np)
  4368. {
  4369. struct niu_link_config *lp = &np->link_config;
  4370. u64 val;
  4371. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4372. val = nr64(MIF_CONFIG);
  4373. val |= MIF_CONFIG_ATCA_GE;
  4374. nw64(MIF_CONFIG, val);
  4375. }
  4376. val = nr64_mac(XMAC_CONFIG);
  4377. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4378. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4379. if (lp->loopback_mode == LOOPBACK_MAC) {
  4380. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4381. val |= XMAC_CONFIG_LOOPBACK;
  4382. } else {
  4383. val &= ~XMAC_CONFIG_LOOPBACK;
  4384. }
  4385. if (np->flags & NIU_FLAGS_10G) {
  4386. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4387. } else {
  4388. val |= XMAC_CONFIG_LFS_DISABLE;
  4389. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4390. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4391. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4392. else
  4393. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4394. }
  4395. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4396. if (lp->active_speed == SPEED_100)
  4397. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4398. else
  4399. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4400. nw64_mac(XMAC_CONFIG, val);
  4401. val = nr64_mac(XMAC_CONFIG);
  4402. val &= ~XMAC_CONFIG_MODE_MASK;
  4403. if (np->flags & NIU_FLAGS_10G) {
  4404. val |= XMAC_CONFIG_MODE_XGMII;
  4405. } else {
  4406. if (lp->active_speed == SPEED_1000)
  4407. val |= XMAC_CONFIG_MODE_GMII;
  4408. else
  4409. val |= XMAC_CONFIG_MODE_MII;
  4410. }
  4411. nw64_mac(XMAC_CONFIG, val);
  4412. }
  4413. static void niu_init_xif_bmac(struct niu *np)
  4414. {
  4415. struct niu_link_config *lp = &np->link_config;
  4416. u64 val;
  4417. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4418. if (lp->loopback_mode == LOOPBACK_MAC)
  4419. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4420. else
  4421. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4422. if (lp->active_speed == SPEED_1000)
  4423. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4424. else
  4425. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4426. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4427. BMAC_XIF_CONFIG_LED_POLARITY);
  4428. if (!(np->flags & NIU_FLAGS_10G) &&
  4429. !(np->flags & NIU_FLAGS_FIBER) &&
  4430. lp->active_speed == SPEED_100)
  4431. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4432. else
  4433. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4434. nw64_mac(BMAC_XIF_CONFIG, val);
  4435. }
  4436. static void niu_init_xif(struct niu *np)
  4437. {
  4438. if (np->flags & NIU_FLAGS_XMAC)
  4439. niu_init_xif_xmac(np);
  4440. else
  4441. niu_init_xif_bmac(np);
  4442. }
  4443. static void niu_pcs_mii_reset(struct niu *np)
  4444. {
  4445. int limit = 1000;
  4446. u64 val = nr64_pcs(PCS_MII_CTL);
  4447. val |= PCS_MII_CTL_RST;
  4448. nw64_pcs(PCS_MII_CTL, val);
  4449. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4450. udelay(100);
  4451. val = nr64_pcs(PCS_MII_CTL);
  4452. }
  4453. }
  4454. static void niu_xpcs_reset(struct niu *np)
  4455. {
  4456. int limit = 1000;
  4457. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4458. val |= XPCS_CONTROL1_RESET;
  4459. nw64_xpcs(XPCS_CONTROL1, val);
  4460. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4461. udelay(100);
  4462. val = nr64_xpcs(XPCS_CONTROL1);
  4463. }
  4464. }
  4465. static int niu_init_pcs(struct niu *np)
  4466. {
  4467. struct niu_link_config *lp = &np->link_config;
  4468. u64 val;
  4469. switch (np->flags & (NIU_FLAGS_10G |
  4470. NIU_FLAGS_FIBER |
  4471. NIU_FLAGS_XCVR_SERDES)) {
  4472. case NIU_FLAGS_FIBER:
  4473. /* 1G fiber */
  4474. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4475. nw64_pcs(PCS_DPATH_MODE, 0);
  4476. niu_pcs_mii_reset(np);
  4477. break;
  4478. case NIU_FLAGS_10G:
  4479. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4480. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4481. /* 10G SERDES */
  4482. if (!(np->flags & NIU_FLAGS_XMAC))
  4483. return -EINVAL;
  4484. /* 10G copper or fiber */
  4485. val = nr64_mac(XMAC_CONFIG);
  4486. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4487. nw64_mac(XMAC_CONFIG, val);
  4488. niu_xpcs_reset(np);
  4489. val = nr64_xpcs(XPCS_CONTROL1);
  4490. if (lp->loopback_mode == LOOPBACK_PHY)
  4491. val |= XPCS_CONTROL1_LOOPBACK;
  4492. else
  4493. val &= ~XPCS_CONTROL1_LOOPBACK;
  4494. nw64_xpcs(XPCS_CONTROL1, val);
  4495. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4496. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4497. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4498. break;
  4499. case NIU_FLAGS_XCVR_SERDES:
  4500. /* 1G SERDES */
  4501. niu_pcs_mii_reset(np);
  4502. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4503. nw64_pcs(PCS_DPATH_MODE, 0);
  4504. break;
  4505. case 0:
  4506. /* 1G copper */
  4507. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4508. /* 1G RGMII FIBER */
  4509. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4510. niu_pcs_mii_reset(np);
  4511. break;
  4512. default:
  4513. return -EINVAL;
  4514. }
  4515. return 0;
  4516. }
  4517. static int niu_reset_tx_xmac(struct niu *np)
  4518. {
  4519. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4520. (XTXMAC_SW_RST_REG_RS |
  4521. XTXMAC_SW_RST_SOFT_RST),
  4522. 1000, 100, "XTXMAC_SW_RST");
  4523. }
  4524. static int niu_reset_tx_bmac(struct niu *np)
  4525. {
  4526. int limit;
  4527. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4528. limit = 1000;
  4529. while (--limit >= 0) {
  4530. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4531. break;
  4532. udelay(100);
  4533. }
  4534. if (limit < 0) {
  4535. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4536. np->port,
  4537. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4538. return -ENODEV;
  4539. }
  4540. return 0;
  4541. }
  4542. static int niu_reset_tx_mac(struct niu *np)
  4543. {
  4544. if (np->flags & NIU_FLAGS_XMAC)
  4545. return niu_reset_tx_xmac(np);
  4546. else
  4547. return niu_reset_tx_bmac(np);
  4548. }
  4549. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4550. {
  4551. u64 val;
  4552. val = nr64_mac(XMAC_MIN);
  4553. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4554. XMAC_MIN_RX_MIN_PKT_SIZE);
  4555. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4556. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4557. nw64_mac(XMAC_MIN, val);
  4558. nw64_mac(XMAC_MAX, max);
  4559. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4560. val = nr64_mac(XMAC_IPG);
  4561. if (np->flags & NIU_FLAGS_10G) {
  4562. val &= ~XMAC_IPG_IPG_XGMII;
  4563. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4564. } else {
  4565. val &= ~XMAC_IPG_IPG_MII_GMII;
  4566. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4567. }
  4568. nw64_mac(XMAC_IPG, val);
  4569. val = nr64_mac(XMAC_CONFIG);
  4570. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4571. XMAC_CONFIG_STRETCH_MODE |
  4572. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4573. XMAC_CONFIG_TX_ENABLE);
  4574. nw64_mac(XMAC_CONFIG, val);
  4575. nw64_mac(TXMAC_FRM_CNT, 0);
  4576. nw64_mac(TXMAC_BYTE_CNT, 0);
  4577. }
  4578. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4579. {
  4580. u64 val;
  4581. nw64_mac(BMAC_MIN_FRAME, min);
  4582. nw64_mac(BMAC_MAX_FRAME, max);
  4583. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4584. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4585. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4586. val = nr64_mac(BTXMAC_CONFIG);
  4587. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4588. BTXMAC_CONFIG_ENABLE);
  4589. nw64_mac(BTXMAC_CONFIG, val);
  4590. }
  4591. static void niu_init_tx_mac(struct niu *np)
  4592. {
  4593. u64 min, max;
  4594. min = 64;
  4595. if (np->dev->mtu > ETH_DATA_LEN)
  4596. max = 9216;
  4597. else
  4598. max = 1522;
  4599. /* The XMAC_MIN register only accepts values for TX min which
  4600. * have the low 3 bits cleared.
  4601. */
  4602. BUG_ON(min & 0x7);
  4603. if (np->flags & NIU_FLAGS_XMAC)
  4604. niu_init_tx_xmac(np, min, max);
  4605. else
  4606. niu_init_tx_bmac(np, min, max);
  4607. }
  4608. static int niu_reset_rx_xmac(struct niu *np)
  4609. {
  4610. int limit;
  4611. nw64_mac(XRXMAC_SW_RST,
  4612. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4613. limit = 1000;
  4614. while (--limit >= 0) {
  4615. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4616. XRXMAC_SW_RST_SOFT_RST)))
  4617. break;
  4618. udelay(100);
  4619. }
  4620. if (limit < 0) {
  4621. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4622. np->port,
  4623. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4624. return -ENODEV;
  4625. }
  4626. return 0;
  4627. }
  4628. static int niu_reset_rx_bmac(struct niu *np)
  4629. {
  4630. int limit;
  4631. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4632. limit = 1000;
  4633. while (--limit >= 0) {
  4634. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4635. break;
  4636. udelay(100);
  4637. }
  4638. if (limit < 0) {
  4639. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4640. np->port,
  4641. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4642. return -ENODEV;
  4643. }
  4644. return 0;
  4645. }
  4646. static int niu_reset_rx_mac(struct niu *np)
  4647. {
  4648. if (np->flags & NIU_FLAGS_XMAC)
  4649. return niu_reset_rx_xmac(np);
  4650. else
  4651. return niu_reset_rx_bmac(np);
  4652. }
  4653. static void niu_init_rx_xmac(struct niu *np)
  4654. {
  4655. struct niu_parent *parent = np->parent;
  4656. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4657. int first_rdc_table = tp->first_table_num;
  4658. unsigned long i;
  4659. u64 val;
  4660. nw64_mac(XMAC_ADD_FILT0, 0);
  4661. nw64_mac(XMAC_ADD_FILT1, 0);
  4662. nw64_mac(XMAC_ADD_FILT2, 0);
  4663. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4664. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4665. for (i = 0; i < MAC_NUM_HASH; i++)
  4666. nw64_mac(XMAC_HASH_TBL(i), 0);
  4667. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4668. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4669. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4670. val = nr64_mac(XMAC_CONFIG);
  4671. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4672. XMAC_CONFIG_PROMISCUOUS |
  4673. XMAC_CONFIG_PROMISC_GROUP |
  4674. XMAC_CONFIG_ERR_CHK_DIS |
  4675. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4676. XMAC_CONFIG_RESERVED_MULTICAST |
  4677. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4678. XMAC_CONFIG_ADDR_FILTER_EN |
  4679. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4680. XMAC_CONFIG_STRIP_CRC |
  4681. XMAC_CONFIG_PASS_FLOW_CTRL |
  4682. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4683. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4684. nw64_mac(XMAC_CONFIG, val);
  4685. nw64_mac(RXMAC_BT_CNT, 0);
  4686. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4687. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4688. nw64_mac(RXMAC_FRAG_CNT, 0);
  4689. nw64_mac(RXMAC_HIST_CNT1, 0);
  4690. nw64_mac(RXMAC_HIST_CNT2, 0);
  4691. nw64_mac(RXMAC_HIST_CNT3, 0);
  4692. nw64_mac(RXMAC_HIST_CNT4, 0);
  4693. nw64_mac(RXMAC_HIST_CNT5, 0);
  4694. nw64_mac(RXMAC_HIST_CNT6, 0);
  4695. nw64_mac(RXMAC_HIST_CNT7, 0);
  4696. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4697. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4698. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4699. nw64_mac(LINK_FAULT_CNT, 0);
  4700. }
  4701. static void niu_init_rx_bmac(struct niu *np)
  4702. {
  4703. struct niu_parent *parent = np->parent;
  4704. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4705. int first_rdc_table = tp->first_table_num;
  4706. unsigned long i;
  4707. u64 val;
  4708. nw64_mac(BMAC_ADD_FILT0, 0);
  4709. nw64_mac(BMAC_ADD_FILT1, 0);
  4710. nw64_mac(BMAC_ADD_FILT2, 0);
  4711. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4712. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4713. for (i = 0; i < MAC_NUM_HASH; i++)
  4714. nw64_mac(BMAC_HASH_TBL(i), 0);
  4715. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4716. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4717. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4718. val = nr64_mac(BRXMAC_CONFIG);
  4719. val &= ~(BRXMAC_CONFIG_ENABLE |
  4720. BRXMAC_CONFIG_STRIP_PAD |
  4721. BRXMAC_CONFIG_STRIP_FCS |
  4722. BRXMAC_CONFIG_PROMISC |
  4723. BRXMAC_CONFIG_PROMISC_GRP |
  4724. BRXMAC_CONFIG_ADDR_FILT_EN |
  4725. BRXMAC_CONFIG_DISCARD_DIS);
  4726. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4727. nw64_mac(BRXMAC_CONFIG, val);
  4728. val = nr64_mac(BMAC_ADDR_CMPEN);
  4729. val |= BMAC_ADDR_CMPEN_EN0;
  4730. nw64_mac(BMAC_ADDR_CMPEN, val);
  4731. }
  4732. static void niu_init_rx_mac(struct niu *np)
  4733. {
  4734. niu_set_primary_mac(np, np->dev->dev_addr);
  4735. if (np->flags & NIU_FLAGS_XMAC)
  4736. niu_init_rx_xmac(np);
  4737. else
  4738. niu_init_rx_bmac(np);
  4739. }
  4740. static void niu_enable_tx_xmac(struct niu *np, int on)
  4741. {
  4742. u64 val = nr64_mac(XMAC_CONFIG);
  4743. if (on)
  4744. val |= XMAC_CONFIG_TX_ENABLE;
  4745. else
  4746. val &= ~XMAC_CONFIG_TX_ENABLE;
  4747. nw64_mac(XMAC_CONFIG, val);
  4748. }
  4749. static void niu_enable_tx_bmac(struct niu *np, int on)
  4750. {
  4751. u64 val = nr64_mac(BTXMAC_CONFIG);
  4752. if (on)
  4753. val |= BTXMAC_CONFIG_ENABLE;
  4754. else
  4755. val &= ~BTXMAC_CONFIG_ENABLE;
  4756. nw64_mac(BTXMAC_CONFIG, val);
  4757. }
  4758. static void niu_enable_tx_mac(struct niu *np, int on)
  4759. {
  4760. if (np->flags & NIU_FLAGS_XMAC)
  4761. niu_enable_tx_xmac(np, on);
  4762. else
  4763. niu_enable_tx_bmac(np, on);
  4764. }
  4765. static void niu_enable_rx_xmac(struct niu *np, int on)
  4766. {
  4767. u64 val = nr64_mac(XMAC_CONFIG);
  4768. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4769. XMAC_CONFIG_PROMISCUOUS);
  4770. if (np->flags & NIU_FLAGS_MCAST)
  4771. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4772. if (np->flags & NIU_FLAGS_PROMISC)
  4773. val |= XMAC_CONFIG_PROMISCUOUS;
  4774. if (on)
  4775. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4776. else
  4777. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4778. nw64_mac(XMAC_CONFIG, val);
  4779. }
  4780. static void niu_enable_rx_bmac(struct niu *np, int on)
  4781. {
  4782. u64 val = nr64_mac(BRXMAC_CONFIG);
  4783. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4784. BRXMAC_CONFIG_PROMISC);
  4785. if (np->flags & NIU_FLAGS_MCAST)
  4786. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4787. if (np->flags & NIU_FLAGS_PROMISC)
  4788. val |= BRXMAC_CONFIG_PROMISC;
  4789. if (on)
  4790. val |= BRXMAC_CONFIG_ENABLE;
  4791. else
  4792. val &= ~BRXMAC_CONFIG_ENABLE;
  4793. nw64_mac(BRXMAC_CONFIG, val);
  4794. }
  4795. static void niu_enable_rx_mac(struct niu *np, int on)
  4796. {
  4797. if (np->flags & NIU_FLAGS_XMAC)
  4798. niu_enable_rx_xmac(np, on);
  4799. else
  4800. niu_enable_rx_bmac(np, on);
  4801. }
  4802. static int niu_init_mac(struct niu *np)
  4803. {
  4804. int err;
  4805. niu_init_xif(np);
  4806. err = niu_init_pcs(np);
  4807. if (err)
  4808. return err;
  4809. err = niu_reset_tx_mac(np);
  4810. if (err)
  4811. return err;
  4812. niu_init_tx_mac(np);
  4813. err = niu_reset_rx_mac(np);
  4814. if (err)
  4815. return err;
  4816. niu_init_rx_mac(np);
  4817. /* This looks hookey but the RX MAC reset we just did will
  4818. * undo some of the state we setup in niu_init_tx_mac() so we
  4819. * have to call it again. In particular, the RX MAC reset will
  4820. * set the XMAC_MAX register back to it's default value.
  4821. */
  4822. niu_init_tx_mac(np);
  4823. niu_enable_tx_mac(np, 1);
  4824. niu_enable_rx_mac(np, 1);
  4825. return 0;
  4826. }
  4827. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4828. {
  4829. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4830. }
  4831. static void niu_stop_tx_channels(struct niu *np)
  4832. {
  4833. int i;
  4834. for (i = 0; i < np->num_tx_rings; i++) {
  4835. struct tx_ring_info *rp = &np->tx_rings[i];
  4836. niu_stop_one_tx_channel(np, rp);
  4837. }
  4838. }
  4839. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4840. {
  4841. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4842. }
  4843. static void niu_reset_tx_channels(struct niu *np)
  4844. {
  4845. int i;
  4846. for (i = 0; i < np->num_tx_rings; i++) {
  4847. struct tx_ring_info *rp = &np->tx_rings[i];
  4848. niu_reset_one_tx_channel(np, rp);
  4849. }
  4850. }
  4851. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4852. {
  4853. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4854. }
  4855. static void niu_stop_rx_channels(struct niu *np)
  4856. {
  4857. int i;
  4858. for (i = 0; i < np->num_rx_rings; i++) {
  4859. struct rx_ring_info *rp = &np->rx_rings[i];
  4860. niu_stop_one_rx_channel(np, rp);
  4861. }
  4862. }
  4863. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4864. {
  4865. int channel = rp->rx_channel;
  4866. (void) niu_rx_channel_reset(np, channel);
  4867. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4868. nw64(RX_DMA_CTL_STAT(channel), 0);
  4869. (void) niu_enable_rx_channel(np, channel, 0);
  4870. }
  4871. static void niu_reset_rx_channels(struct niu *np)
  4872. {
  4873. int i;
  4874. for (i = 0; i < np->num_rx_rings; i++) {
  4875. struct rx_ring_info *rp = &np->rx_rings[i];
  4876. niu_reset_one_rx_channel(np, rp);
  4877. }
  4878. }
  4879. static void niu_disable_ipp(struct niu *np)
  4880. {
  4881. u64 rd, wr, val;
  4882. int limit;
  4883. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4884. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4885. limit = 100;
  4886. while (--limit >= 0 && (rd != wr)) {
  4887. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4888. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4889. }
  4890. if (limit < 0 &&
  4891. (rd != 0 && wr != 1)) {
  4892. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4893. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4894. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4895. }
  4896. val = nr64_ipp(IPP_CFIG);
  4897. val &= ~(IPP_CFIG_IPP_ENABLE |
  4898. IPP_CFIG_DFIFO_ECC_EN |
  4899. IPP_CFIG_DROP_BAD_CRC |
  4900. IPP_CFIG_CKSUM_EN);
  4901. nw64_ipp(IPP_CFIG, val);
  4902. (void) niu_ipp_reset(np);
  4903. }
  4904. static int niu_init_hw(struct niu *np)
  4905. {
  4906. int i, err;
  4907. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4908. niu_txc_enable_port(np, 1);
  4909. niu_txc_port_dma_enable(np, 1);
  4910. niu_txc_set_imask(np, 0);
  4911. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4912. for (i = 0; i < np->num_tx_rings; i++) {
  4913. struct tx_ring_info *rp = &np->tx_rings[i];
  4914. err = niu_init_one_tx_channel(np, rp);
  4915. if (err)
  4916. return err;
  4917. }
  4918. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4919. err = niu_init_rx_channels(np);
  4920. if (err)
  4921. goto out_uninit_tx_channels;
  4922. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4923. err = niu_init_classifier_hw(np);
  4924. if (err)
  4925. goto out_uninit_rx_channels;
  4926. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4927. err = niu_init_zcp(np);
  4928. if (err)
  4929. goto out_uninit_rx_channels;
  4930. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4931. err = niu_init_ipp(np);
  4932. if (err)
  4933. goto out_uninit_rx_channels;
  4934. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4935. err = niu_init_mac(np);
  4936. if (err)
  4937. goto out_uninit_ipp;
  4938. return 0;
  4939. out_uninit_ipp:
  4940. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4941. niu_disable_ipp(np);
  4942. out_uninit_rx_channels:
  4943. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4944. niu_stop_rx_channels(np);
  4945. niu_reset_rx_channels(np);
  4946. out_uninit_tx_channels:
  4947. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4948. niu_stop_tx_channels(np);
  4949. niu_reset_tx_channels(np);
  4950. return err;
  4951. }
  4952. static void niu_stop_hw(struct niu *np)
  4953. {
  4954. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4955. niu_enable_interrupts(np, 0);
  4956. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4957. niu_enable_rx_mac(np, 0);
  4958. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4959. niu_disable_ipp(np);
  4960. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4961. niu_stop_tx_channels(np);
  4962. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4963. niu_stop_rx_channels(np);
  4964. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4965. niu_reset_tx_channels(np);
  4966. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4967. niu_reset_rx_channels(np);
  4968. }
  4969. static void niu_set_irq_name(struct niu *np)
  4970. {
  4971. int port = np->port;
  4972. int i, j = 1;
  4973. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4974. if (port == 0) {
  4975. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4976. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4977. j = 3;
  4978. }
  4979. for (i = 0; i < np->num_ldg - j; i++) {
  4980. if (i < np->num_rx_rings)
  4981. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4982. np->dev->name, i);
  4983. else if (i < np->num_tx_rings + np->num_rx_rings)
  4984. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4985. i - np->num_rx_rings);
  4986. }
  4987. }
  4988. static int niu_request_irq(struct niu *np)
  4989. {
  4990. int i, j, err;
  4991. niu_set_irq_name(np);
  4992. err = 0;
  4993. for (i = 0; i < np->num_ldg; i++) {
  4994. struct niu_ldg *lp = &np->ldg[i];
  4995. err = request_irq(lp->irq, niu_interrupt,
  4996. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  4997. np->irq_name[i], lp);
  4998. if (err)
  4999. goto out_free_irqs;
  5000. }
  5001. return 0;
  5002. out_free_irqs:
  5003. for (j = 0; j < i; j++) {
  5004. struct niu_ldg *lp = &np->ldg[j];
  5005. free_irq(lp->irq, lp);
  5006. }
  5007. return err;
  5008. }
  5009. static void niu_free_irq(struct niu *np)
  5010. {
  5011. int i;
  5012. for (i = 0; i < np->num_ldg; i++) {
  5013. struct niu_ldg *lp = &np->ldg[i];
  5014. free_irq(lp->irq, lp);
  5015. }
  5016. }
  5017. static void niu_enable_napi(struct niu *np)
  5018. {
  5019. int i;
  5020. for (i = 0; i < np->num_ldg; i++)
  5021. napi_enable(&np->ldg[i].napi);
  5022. }
  5023. static void niu_disable_napi(struct niu *np)
  5024. {
  5025. int i;
  5026. for (i = 0; i < np->num_ldg; i++)
  5027. napi_disable(&np->ldg[i].napi);
  5028. }
  5029. static int niu_open(struct net_device *dev)
  5030. {
  5031. struct niu *np = netdev_priv(dev);
  5032. int err;
  5033. netif_carrier_off(dev);
  5034. err = niu_alloc_channels(np);
  5035. if (err)
  5036. goto out_err;
  5037. err = niu_enable_interrupts(np, 0);
  5038. if (err)
  5039. goto out_free_channels;
  5040. err = niu_request_irq(np);
  5041. if (err)
  5042. goto out_free_channels;
  5043. niu_enable_napi(np);
  5044. spin_lock_irq(&np->lock);
  5045. err = niu_init_hw(np);
  5046. if (!err) {
  5047. init_timer(&np->timer);
  5048. np->timer.expires = jiffies + HZ;
  5049. np->timer.data = (unsigned long) np;
  5050. np->timer.function = niu_timer;
  5051. err = niu_enable_interrupts(np, 1);
  5052. if (err)
  5053. niu_stop_hw(np);
  5054. }
  5055. spin_unlock_irq(&np->lock);
  5056. if (err) {
  5057. niu_disable_napi(np);
  5058. goto out_free_irq;
  5059. }
  5060. netif_tx_start_all_queues(dev);
  5061. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5062. netif_carrier_on(dev);
  5063. add_timer(&np->timer);
  5064. return 0;
  5065. out_free_irq:
  5066. niu_free_irq(np);
  5067. out_free_channels:
  5068. niu_free_channels(np);
  5069. out_err:
  5070. return err;
  5071. }
  5072. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5073. {
  5074. cancel_work_sync(&np->reset_task);
  5075. niu_disable_napi(np);
  5076. netif_tx_stop_all_queues(dev);
  5077. del_timer_sync(&np->timer);
  5078. spin_lock_irq(&np->lock);
  5079. niu_stop_hw(np);
  5080. spin_unlock_irq(&np->lock);
  5081. }
  5082. static int niu_close(struct net_device *dev)
  5083. {
  5084. struct niu *np = netdev_priv(dev);
  5085. niu_full_shutdown(np, dev);
  5086. niu_free_irq(np);
  5087. niu_free_channels(np);
  5088. niu_handle_led(np, 0);
  5089. return 0;
  5090. }
  5091. static void niu_sync_xmac_stats(struct niu *np)
  5092. {
  5093. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5094. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5095. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5096. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5097. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5098. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5099. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5100. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5101. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5102. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5103. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5104. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5105. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5106. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5107. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5108. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5109. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5110. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5111. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5112. }
  5113. static void niu_sync_bmac_stats(struct niu *np)
  5114. {
  5115. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5116. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5117. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5118. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5119. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5120. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5121. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5122. }
  5123. static void niu_sync_mac_stats(struct niu *np)
  5124. {
  5125. if (np->flags & NIU_FLAGS_XMAC)
  5126. niu_sync_xmac_stats(np);
  5127. else
  5128. niu_sync_bmac_stats(np);
  5129. }
  5130. static void niu_get_rx_stats(struct niu *np)
  5131. {
  5132. unsigned long pkts, dropped, errors, bytes;
  5133. int i;
  5134. pkts = dropped = errors = bytes = 0;
  5135. for (i = 0; i < np->num_rx_rings; i++) {
  5136. struct rx_ring_info *rp = &np->rx_rings[i];
  5137. niu_sync_rx_discard_stats(np, rp, 0);
  5138. pkts += rp->rx_packets;
  5139. bytes += rp->rx_bytes;
  5140. dropped += rp->rx_dropped;
  5141. errors += rp->rx_errors;
  5142. }
  5143. np->dev->stats.rx_packets = pkts;
  5144. np->dev->stats.rx_bytes = bytes;
  5145. np->dev->stats.rx_dropped = dropped;
  5146. np->dev->stats.rx_errors = errors;
  5147. }
  5148. static void niu_get_tx_stats(struct niu *np)
  5149. {
  5150. unsigned long pkts, errors, bytes;
  5151. int i;
  5152. pkts = errors = bytes = 0;
  5153. for (i = 0; i < np->num_tx_rings; i++) {
  5154. struct tx_ring_info *rp = &np->tx_rings[i];
  5155. pkts += rp->tx_packets;
  5156. bytes += rp->tx_bytes;
  5157. errors += rp->tx_errors;
  5158. }
  5159. np->dev->stats.tx_packets = pkts;
  5160. np->dev->stats.tx_bytes = bytes;
  5161. np->dev->stats.tx_errors = errors;
  5162. }
  5163. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5164. {
  5165. struct niu *np = netdev_priv(dev);
  5166. niu_get_rx_stats(np);
  5167. niu_get_tx_stats(np);
  5168. return &dev->stats;
  5169. }
  5170. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5171. {
  5172. int i;
  5173. for (i = 0; i < 16; i++)
  5174. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5175. }
  5176. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5177. {
  5178. int i;
  5179. for (i = 0; i < 16; i++)
  5180. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5181. }
  5182. static void niu_load_hash(struct niu *np, u16 *hash)
  5183. {
  5184. if (np->flags & NIU_FLAGS_XMAC)
  5185. niu_load_hash_xmac(np, hash);
  5186. else
  5187. niu_load_hash_bmac(np, hash);
  5188. }
  5189. static void niu_set_rx_mode(struct net_device *dev)
  5190. {
  5191. struct niu *np = netdev_priv(dev);
  5192. int i, alt_cnt, err;
  5193. struct dev_addr_list *addr;
  5194. struct netdev_hw_addr *ha;
  5195. unsigned long flags;
  5196. u16 hash[16] = { 0, };
  5197. spin_lock_irqsave(&np->lock, flags);
  5198. niu_enable_rx_mac(np, 0);
  5199. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5200. if (dev->flags & IFF_PROMISC)
  5201. np->flags |= NIU_FLAGS_PROMISC;
  5202. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5203. np->flags |= NIU_FLAGS_MCAST;
  5204. alt_cnt = netdev_uc_count(dev);
  5205. if (alt_cnt > niu_num_alt_addr(np)) {
  5206. alt_cnt = 0;
  5207. np->flags |= NIU_FLAGS_PROMISC;
  5208. }
  5209. if (alt_cnt) {
  5210. int index = 0;
  5211. netdev_for_each_uc_addr(ha, dev) {
  5212. err = niu_set_alt_mac(np, index, ha->addr);
  5213. if (err)
  5214. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5215. err, index);
  5216. err = niu_enable_alt_mac(np, index, 1);
  5217. if (err)
  5218. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5219. err, index);
  5220. index++;
  5221. }
  5222. } else {
  5223. int alt_start;
  5224. if (np->flags & NIU_FLAGS_XMAC)
  5225. alt_start = 0;
  5226. else
  5227. alt_start = 1;
  5228. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5229. err = niu_enable_alt_mac(np, i, 0);
  5230. if (err)
  5231. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5232. err, i);
  5233. }
  5234. }
  5235. if (dev->flags & IFF_ALLMULTI) {
  5236. for (i = 0; i < 16; i++)
  5237. hash[i] = 0xffff;
  5238. } else if (!netdev_mc_empty(dev)) {
  5239. netdev_for_each_mc_addr(addr, dev) {
  5240. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5241. crc >>= 24;
  5242. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5243. }
  5244. }
  5245. if (np->flags & NIU_FLAGS_MCAST)
  5246. niu_load_hash(np, hash);
  5247. niu_enable_rx_mac(np, 1);
  5248. spin_unlock_irqrestore(&np->lock, flags);
  5249. }
  5250. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5251. {
  5252. struct niu *np = netdev_priv(dev);
  5253. struct sockaddr *addr = p;
  5254. unsigned long flags;
  5255. if (!is_valid_ether_addr(addr->sa_data))
  5256. return -EINVAL;
  5257. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5258. if (!netif_running(dev))
  5259. return 0;
  5260. spin_lock_irqsave(&np->lock, flags);
  5261. niu_enable_rx_mac(np, 0);
  5262. niu_set_primary_mac(np, dev->dev_addr);
  5263. niu_enable_rx_mac(np, 1);
  5264. spin_unlock_irqrestore(&np->lock, flags);
  5265. return 0;
  5266. }
  5267. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5268. {
  5269. return -EOPNOTSUPP;
  5270. }
  5271. static void niu_netif_stop(struct niu *np)
  5272. {
  5273. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5274. niu_disable_napi(np);
  5275. netif_tx_disable(np->dev);
  5276. }
  5277. static void niu_netif_start(struct niu *np)
  5278. {
  5279. /* NOTE: unconditional netif_wake_queue is only appropriate
  5280. * so long as all callers are assured to have free tx slots
  5281. * (such as after niu_init_hw).
  5282. */
  5283. netif_tx_wake_all_queues(np->dev);
  5284. niu_enable_napi(np);
  5285. niu_enable_interrupts(np, 1);
  5286. }
  5287. static void niu_reset_buffers(struct niu *np)
  5288. {
  5289. int i, j, k, err;
  5290. if (np->rx_rings) {
  5291. for (i = 0; i < np->num_rx_rings; i++) {
  5292. struct rx_ring_info *rp = &np->rx_rings[i];
  5293. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5294. struct page *page;
  5295. page = rp->rxhash[j];
  5296. while (page) {
  5297. struct page *next =
  5298. (struct page *) page->mapping;
  5299. u64 base = page->index;
  5300. base = base >> RBR_DESCR_ADDR_SHIFT;
  5301. rp->rbr[k++] = cpu_to_le32(base);
  5302. page = next;
  5303. }
  5304. }
  5305. for (; k < MAX_RBR_RING_SIZE; k++) {
  5306. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5307. if (unlikely(err))
  5308. break;
  5309. }
  5310. rp->rbr_index = rp->rbr_table_size - 1;
  5311. rp->rcr_index = 0;
  5312. rp->rbr_pending = 0;
  5313. rp->rbr_refill_pending = 0;
  5314. }
  5315. }
  5316. if (np->tx_rings) {
  5317. for (i = 0; i < np->num_tx_rings; i++) {
  5318. struct tx_ring_info *rp = &np->tx_rings[i];
  5319. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5320. if (rp->tx_buffs[j].skb)
  5321. (void) release_tx_packet(np, rp, j);
  5322. }
  5323. rp->pending = MAX_TX_RING_SIZE;
  5324. rp->prod = 0;
  5325. rp->cons = 0;
  5326. rp->wrap_bit = 0;
  5327. }
  5328. }
  5329. }
  5330. static void niu_reset_task(struct work_struct *work)
  5331. {
  5332. struct niu *np = container_of(work, struct niu, reset_task);
  5333. unsigned long flags;
  5334. int err;
  5335. spin_lock_irqsave(&np->lock, flags);
  5336. if (!netif_running(np->dev)) {
  5337. spin_unlock_irqrestore(&np->lock, flags);
  5338. return;
  5339. }
  5340. spin_unlock_irqrestore(&np->lock, flags);
  5341. del_timer_sync(&np->timer);
  5342. niu_netif_stop(np);
  5343. spin_lock_irqsave(&np->lock, flags);
  5344. niu_stop_hw(np);
  5345. spin_unlock_irqrestore(&np->lock, flags);
  5346. niu_reset_buffers(np);
  5347. spin_lock_irqsave(&np->lock, flags);
  5348. err = niu_init_hw(np);
  5349. if (!err) {
  5350. np->timer.expires = jiffies + HZ;
  5351. add_timer(&np->timer);
  5352. niu_netif_start(np);
  5353. }
  5354. spin_unlock_irqrestore(&np->lock, flags);
  5355. }
  5356. static void niu_tx_timeout(struct net_device *dev)
  5357. {
  5358. struct niu *np = netdev_priv(dev);
  5359. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5360. dev->name);
  5361. schedule_work(&np->reset_task);
  5362. }
  5363. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5364. u64 mapping, u64 len, u64 mark,
  5365. u64 n_frags)
  5366. {
  5367. __le64 *desc = &rp->descr[index];
  5368. *desc = cpu_to_le64(mark |
  5369. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5370. (len << TX_DESC_TR_LEN_SHIFT) |
  5371. (mapping & TX_DESC_SAD));
  5372. }
  5373. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5374. u64 pad_bytes, u64 len)
  5375. {
  5376. u16 eth_proto, eth_proto_inner;
  5377. u64 csum_bits, l3off, ihl, ret;
  5378. u8 ip_proto;
  5379. int ipv6;
  5380. eth_proto = be16_to_cpu(ehdr->h_proto);
  5381. eth_proto_inner = eth_proto;
  5382. if (eth_proto == ETH_P_8021Q) {
  5383. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5384. __be16 val = vp->h_vlan_encapsulated_proto;
  5385. eth_proto_inner = be16_to_cpu(val);
  5386. }
  5387. ipv6 = ihl = 0;
  5388. switch (skb->protocol) {
  5389. case cpu_to_be16(ETH_P_IP):
  5390. ip_proto = ip_hdr(skb)->protocol;
  5391. ihl = ip_hdr(skb)->ihl;
  5392. break;
  5393. case cpu_to_be16(ETH_P_IPV6):
  5394. ip_proto = ipv6_hdr(skb)->nexthdr;
  5395. ihl = (40 >> 2);
  5396. ipv6 = 1;
  5397. break;
  5398. default:
  5399. ip_proto = ihl = 0;
  5400. break;
  5401. }
  5402. csum_bits = TXHDR_CSUM_NONE;
  5403. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5404. u64 start, stuff;
  5405. csum_bits = (ip_proto == IPPROTO_TCP ?
  5406. TXHDR_CSUM_TCP :
  5407. (ip_proto == IPPROTO_UDP ?
  5408. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5409. start = skb_transport_offset(skb) -
  5410. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5411. stuff = start + skb->csum_offset;
  5412. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5413. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5414. }
  5415. l3off = skb_network_offset(skb) -
  5416. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5417. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5418. (len << TXHDR_LEN_SHIFT) |
  5419. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5420. (ihl << TXHDR_IHL_SHIFT) |
  5421. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5422. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5423. (ipv6 ? TXHDR_IP_VER : 0) |
  5424. csum_bits);
  5425. return ret;
  5426. }
  5427. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5428. struct net_device *dev)
  5429. {
  5430. struct niu *np = netdev_priv(dev);
  5431. unsigned long align, headroom;
  5432. struct netdev_queue *txq;
  5433. struct tx_ring_info *rp;
  5434. struct tx_pkt_hdr *tp;
  5435. unsigned int len, nfg;
  5436. struct ethhdr *ehdr;
  5437. int prod, i, tlen;
  5438. u64 mapping, mrk;
  5439. i = skb_get_queue_mapping(skb);
  5440. rp = &np->tx_rings[i];
  5441. txq = netdev_get_tx_queue(dev, i);
  5442. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5443. netif_tx_stop_queue(txq);
  5444. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5445. rp->tx_errors++;
  5446. return NETDEV_TX_BUSY;
  5447. }
  5448. if (skb->len < ETH_ZLEN) {
  5449. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5450. if (skb_pad(skb, pad_bytes))
  5451. goto out;
  5452. skb_put(skb, pad_bytes);
  5453. }
  5454. len = sizeof(struct tx_pkt_hdr) + 15;
  5455. if (skb_headroom(skb) < len) {
  5456. struct sk_buff *skb_new;
  5457. skb_new = skb_realloc_headroom(skb, len);
  5458. if (!skb_new) {
  5459. rp->tx_errors++;
  5460. goto out_drop;
  5461. }
  5462. kfree_skb(skb);
  5463. skb = skb_new;
  5464. } else
  5465. skb_orphan(skb);
  5466. align = ((unsigned long) skb->data & (16 - 1));
  5467. headroom = align + sizeof(struct tx_pkt_hdr);
  5468. ehdr = (struct ethhdr *) skb->data;
  5469. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5470. len = skb->len - sizeof(struct tx_pkt_hdr);
  5471. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5472. tp->resv = 0;
  5473. len = skb_headlen(skb);
  5474. mapping = np->ops->map_single(np->device, skb->data,
  5475. len, DMA_TO_DEVICE);
  5476. prod = rp->prod;
  5477. rp->tx_buffs[prod].skb = skb;
  5478. rp->tx_buffs[prod].mapping = mapping;
  5479. mrk = TX_DESC_SOP;
  5480. if (++rp->mark_counter == rp->mark_freq) {
  5481. rp->mark_counter = 0;
  5482. mrk |= TX_DESC_MARK;
  5483. rp->mark_pending++;
  5484. }
  5485. tlen = len;
  5486. nfg = skb_shinfo(skb)->nr_frags;
  5487. while (tlen > 0) {
  5488. tlen -= MAX_TX_DESC_LEN;
  5489. nfg++;
  5490. }
  5491. while (len > 0) {
  5492. unsigned int this_len = len;
  5493. if (this_len > MAX_TX_DESC_LEN)
  5494. this_len = MAX_TX_DESC_LEN;
  5495. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5496. mrk = nfg = 0;
  5497. prod = NEXT_TX(rp, prod);
  5498. mapping += this_len;
  5499. len -= this_len;
  5500. }
  5501. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5502. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5503. len = frag->size;
  5504. mapping = np->ops->map_page(np->device, frag->page,
  5505. frag->page_offset, len,
  5506. DMA_TO_DEVICE);
  5507. rp->tx_buffs[prod].skb = NULL;
  5508. rp->tx_buffs[prod].mapping = mapping;
  5509. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5510. prod = NEXT_TX(rp, prod);
  5511. }
  5512. if (prod < rp->prod)
  5513. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5514. rp->prod = prod;
  5515. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5516. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5517. netif_tx_stop_queue(txq);
  5518. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5519. netif_tx_wake_queue(txq);
  5520. }
  5521. out:
  5522. return NETDEV_TX_OK;
  5523. out_drop:
  5524. rp->tx_errors++;
  5525. kfree_skb(skb);
  5526. goto out;
  5527. }
  5528. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5529. {
  5530. struct niu *np = netdev_priv(dev);
  5531. int err, orig_jumbo, new_jumbo;
  5532. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5533. return -EINVAL;
  5534. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5535. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5536. dev->mtu = new_mtu;
  5537. if (!netif_running(dev) ||
  5538. (orig_jumbo == new_jumbo))
  5539. return 0;
  5540. niu_full_shutdown(np, dev);
  5541. niu_free_channels(np);
  5542. niu_enable_napi(np);
  5543. err = niu_alloc_channels(np);
  5544. if (err)
  5545. return err;
  5546. spin_lock_irq(&np->lock);
  5547. err = niu_init_hw(np);
  5548. if (!err) {
  5549. init_timer(&np->timer);
  5550. np->timer.expires = jiffies + HZ;
  5551. np->timer.data = (unsigned long) np;
  5552. np->timer.function = niu_timer;
  5553. err = niu_enable_interrupts(np, 1);
  5554. if (err)
  5555. niu_stop_hw(np);
  5556. }
  5557. spin_unlock_irq(&np->lock);
  5558. if (!err) {
  5559. netif_tx_start_all_queues(dev);
  5560. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5561. netif_carrier_on(dev);
  5562. add_timer(&np->timer);
  5563. }
  5564. return err;
  5565. }
  5566. static void niu_get_drvinfo(struct net_device *dev,
  5567. struct ethtool_drvinfo *info)
  5568. {
  5569. struct niu *np = netdev_priv(dev);
  5570. struct niu_vpd *vpd = &np->vpd;
  5571. strcpy(info->driver, DRV_MODULE_NAME);
  5572. strcpy(info->version, DRV_MODULE_VERSION);
  5573. sprintf(info->fw_version, "%d.%d",
  5574. vpd->fcode_major, vpd->fcode_minor);
  5575. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5576. strcpy(info->bus_info, pci_name(np->pdev));
  5577. }
  5578. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5579. {
  5580. struct niu *np = netdev_priv(dev);
  5581. struct niu_link_config *lp;
  5582. lp = &np->link_config;
  5583. memset(cmd, 0, sizeof(*cmd));
  5584. cmd->phy_address = np->phy_addr;
  5585. cmd->supported = lp->supported;
  5586. cmd->advertising = lp->active_advertising;
  5587. cmd->autoneg = lp->active_autoneg;
  5588. cmd->speed = lp->active_speed;
  5589. cmd->duplex = lp->active_duplex;
  5590. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5591. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5592. XCVR_EXTERNAL : XCVR_INTERNAL;
  5593. return 0;
  5594. }
  5595. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5596. {
  5597. struct niu *np = netdev_priv(dev);
  5598. struct niu_link_config *lp = &np->link_config;
  5599. lp->advertising = cmd->advertising;
  5600. lp->speed = cmd->speed;
  5601. lp->duplex = cmd->duplex;
  5602. lp->autoneg = cmd->autoneg;
  5603. return niu_init_link(np);
  5604. }
  5605. static u32 niu_get_msglevel(struct net_device *dev)
  5606. {
  5607. struct niu *np = netdev_priv(dev);
  5608. return np->msg_enable;
  5609. }
  5610. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5611. {
  5612. struct niu *np = netdev_priv(dev);
  5613. np->msg_enable = value;
  5614. }
  5615. static int niu_nway_reset(struct net_device *dev)
  5616. {
  5617. struct niu *np = netdev_priv(dev);
  5618. if (np->link_config.autoneg)
  5619. return niu_init_link(np);
  5620. return 0;
  5621. }
  5622. static int niu_get_eeprom_len(struct net_device *dev)
  5623. {
  5624. struct niu *np = netdev_priv(dev);
  5625. return np->eeprom_len;
  5626. }
  5627. static int niu_get_eeprom(struct net_device *dev,
  5628. struct ethtool_eeprom *eeprom, u8 *data)
  5629. {
  5630. struct niu *np = netdev_priv(dev);
  5631. u32 offset, len, val;
  5632. offset = eeprom->offset;
  5633. len = eeprom->len;
  5634. if (offset + len < offset)
  5635. return -EINVAL;
  5636. if (offset >= np->eeprom_len)
  5637. return -EINVAL;
  5638. if (offset + len > np->eeprom_len)
  5639. len = eeprom->len = np->eeprom_len - offset;
  5640. if (offset & 3) {
  5641. u32 b_offset, b_count;
  5642. b_offset = offset & 3;
  5643. b_count = 4 - b_offset;
  5644. if (b_count > len)
  5645. b_count = len;
  5646. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5647. memcpy(data, ((char *)&val) + b_offset, b_count);
  5648. data += b_count;
  5649. len -= b_count;
  5650. offset += b_count;
  5651. }
  5652. while (len >= 4) {
  5653. val = nr64(ESPC_NCR(offset / 4));
  5654. memcpy(data, &val, 4);
  5655. data += 4;
  5656. len -= 4;
  5657. offset += 4;
  5658. }
  5659. if (len) {
  5660. val = nr64(ESPC_NCR(offset / 4));
  5661. memcpy(data, &val, len);
  5662. }
  5663. return 0;
  5664. }
  5665. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5666. {
  5667. switch (flow_type) {
  5668. case TCP_V4_FLOW:
  5669. case TCP_V6_FLOW:
  5670. *pid = IPPROTO_TCP;
  5671. break;
  5672. case UDP_V4_FLOW:
  5673. case UDP_V6_FLOW:
  5674. *pid = IPPROTO_UDP;
  5675. break;
  5676. case SCTP_V4_FLOW:
  5677. case SCTP_V6_FLOW:
  5678. *pid = IPPROTO_SCTP;
  5679. break;
  5680. case AH_V4_FLOW:
  5681. case AH_V6_FLOW:
  5682. *pid = IPPROTO_AH;
  5683. break;
  5684. case ESP_V4_FLOW:
  5685. case ESP_V6_FLOW:
  5686. *pid = IPPROTO_ESP;
  5687. break;
  5688. default:
  5689. *pid = 0;
  5690. break;
  5691. }
  5692. }
  5693. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5694. {
  5695. switch (class) {
  5696. case CLASS_CODE_TCP_IPV4:
  5697. *flow_type = TCP_V4_FLOW;
  5698. break;
  5699. case CLASS_CODE_UDP_IPV4:
  5700. *flow_type = UDP_V4_FLOW;
  5701. break;
  5702. case CLASS_CODE_AH_ESP_IPV4:
  5703. *flow_type = AH_V4_FLOW;
  5704. break;
  5705. case CLASS_CODE_SCTP_IPV4:
  5706. *flow_type = SCTP_V4_FLOW;
  5707. break;
  5708. case CLASS_CODE_TCP_IPV6:
  5709. *flow_type = TCP_V6_FLOW;
  5710. break;
  5711. case CLASS_CODE_UDP_IPV6:
  5712. *flow_type = UDP_V6_FLOW;
  5713. break;
  5714. case CLASS_CODE_AH_ESP_IPV6:
  5715. *flow_type = AH_V6_FLOW;
  5716. break;
  5717. case CLASS_CODE_SCTP_IPV6:
  5718. *flow_type = SCTP_V6_FLOW;
  5719. break;
  5720. case CLASS_CODE_USER_PROG1:
  5721. case CLASS_CODE_USER_PROG2:
  5722. case CLASS_CODE_USER_PROG3:
  5723. case CLASS_CODE_USER_PROG4:
  5724. *flow_type = IP_USER_FLOW;
  5725. break;
  5726. default:
  5727. return 0;
  5728. }
  5729. return 1;
  5730. }
  5731. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5732. {
  5733. switch (flow_type) {
  5734. case TCP_V4_FLOW:
  5735. *class = CLASS_CODE_TCP_IPV4;
  5736. break;
  5737. case UDP_V4_FLOW:
  5738. *class = CLASS_CODE_UDP_IPV4;
  5739. break;
  5740. case AH_V4_FLOW:
  5741. case ESP_V4_FLOW:
  5742. *class = CLASS_CODE_AH_ESP_IPV4;
  5743. break;
  5744. case SCTP_V4_FLOW:
  5745. *class = CLASS_CODE_SCTP_IPV4;
  5746. break;
  5747. case TCP_V6_FLOW:
  5748. *class = CLASS_CODE_TCP_IPV6;
  5749. break;
  5750. case UDP_V6_FLOW:
  5751. *class = CLASS_CODE_UDP_IPV6;
  5752. break;
  5753. case AH_V6_FLOW:
  5754. case ESP_V6_FLOW:
  5755. *class = CLASS_CODE_AH_ESP_IPV6;
  5756. break;
  5757. case SCTP_V6_FLOW:
  5758. *class = CLASS_CODE_SCTP_IPV6;
  5759. break;
  5760. default:
  5761. return 0;
  5762. }
  5763. return 1;
  5764. }
  5765. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5766. {
  5767. u64 ethflow = 0;
  5768. if (flow_key & FLOW_KEY_L2DA)
  5769. ethflow |= RXH_L2DA;
  5770. if (flow_key & FLOW_KEY_VLAN)
  5771. ethflow |= RXH_VLAN;
  5772. if (flow_key & FLOW_KEY_IPSA)
  5773. ethflow |= RXH_IP_SRC;
  5774. if (flow_key & FLOW_KEY_IPDA)
  5775. ethflow |= RXH_IP_DST;
  5776. if (flow_key & FLOW_KEY_PROTO)
  5777. ethflow |= RXH_L3_PROTO;
  5778. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5779. ethflow |= RXH_L4_B_0_1;
  5780. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5781. ethflow |= RXH_L4_B_2_3;
  5782. return ethflow;
  5783. }
  5784. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5785. {
  5786. u64 key = 0;
  5787. if (ethflow & RXH_L2DA)
  5788. key |= FLOW_KEY_L2DA;
  5789. if (ethflow & RXH_VLAN)
  5790. key |= FLOW_KEY_VLAN;
  5791. if (ethflow & RXH_IP_SRC)
  5792. key |= FLOW_KEY_IPSA;
  5793. if (ethflow & RXH_IP_DST)
  5794. key |= FLOW_KEY_IPDA;
  5795. if (ethflow & RXH_L3_PROTO)
  5796. key |= FLOW_KEY_PROTO;
  5797. if (ethflow & RXH_L4_B_0_1)
  5798. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5799. if (ethflow & RXH_L4_B_2_3)
  5800. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5801. *flow_key = key;
  5802. return 1;
  5803. }
  5804. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5805. {
  5806. u64 class;
  5807. nfc->data = 0;
  5808. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5809. return -EINVAL;
  5810. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5811. TCAM_KEY_DISC)
  5812. nfc->data = RXH_DISCARD;
  5813. else
  5814. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5815. CLASS_CODE_USER_PROG1]);
  5816. return 0;
  5817. }
  5818. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5819. struct ethtool_rx_flow_spec *fsp)
  5820. {
  5821. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5822. TCAM_V4KEY3_SADDR_SHIFT;
  5823. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5824. TCAM_V4KEY3_DADDR_SHIFT;
  5825. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5826. TCAM_V4KEY3_SADDR_SHIFT;
  5827. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5828. TCAM_V4KEY3_DADDR_SHIFT;
  5829. fsp->h_u.tcp_ip4_spec.ip4src =
  5830. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5831. fsp->m_u.tcp_ip4_spec.ip4src =
  5832. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5833. fsp->h_u.tcp_ip4_spec.ip4dst =
  5834. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5835. fsp->m_u.tcp_ip4_spec.ip4dst =
  5836. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5837. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5838. TCAM_V4KEY2_TOS_SHIFT;
  5839. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5840. TCAM_V4KEY2_TOS_SHIFT;
  5841. switch (fsp->flow_type) {
  5842. case TCP_V4_FLOW:
  5843. case UDP_V4_FLOW:
  5844. case SCTP_V4_FLOW:
  5845. fsp->h_u.tcp_ip4_spec.psrc =
  5846. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5847. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5848. fsp->h_u.tcp_ip4_spec.pdst =
  5849. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5850. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5851. fsp->m_u.tcp_ip4_spec.psrc =
  5852. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5853. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5854. fsp->m_u.tcp_ip4_spec.pdst =
  5855. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5856. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5857. fsp->h_u.tcp_ip4_spec.psrc =
  5858. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5859. fsp->h_u.tcp_ip4_spec.pdst =
  5860. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5861. fsp->m_u.tcp_ip4_spec.psrc =
  5862. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5863. fsp->m_u.tcp_ip4_spec.pdst =
  5864. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5865. break;
  5866. case AH_V4_FLOW:
  5867. case ESP_V4_FLOW:
  5868. fsp->h_u.ah_ip4_spec.spi =
  5869. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5870. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5871. fsp->m_u.ah_ip4_spec.spi =
  5872. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5873. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5874. fsp->h_u.ah_ip4_spec.spi =
  5875. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5876. fsp->m_u.ah_ip4_spec.spi =
  5877. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5878. break;
  5879. case IP_USER_FLOW:
  5880. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5881. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5882. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5883. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5884. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5885. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5886. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5887. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5888. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5889. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5890. fsp->h_u.usr_ip4_spec.proto =
  5891. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5892. TCAM_V4KEY2_PROTO_SHIFT;
  5893. fsp->m_u.usr_ip4_spec.proto =
  5894. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5895. TCAM_V4KEY2_PROTO_SHIFT;
  5896. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5897. break;
  5898. default:
  5899. break;
  5900. }
  5901. }
  5902. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5903. struct ethtool_rxnfc *nfc)
  5904. {
  5905. struct niu_parent *parent = np->parent;
  5906. struct niu_tcam_entry *tp;
  5907. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5908. u16 idx;
  5909. u64 class;
  5910. int ret = 0;
  5911. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5912. tp = &parent->tcam[idx];
  5913. if (!tp->valid) {
  5914. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5915. parent->index, (u16)nfc->fs.location, idx);
  5916. return -EINVAL;
  5917. }
  5918. /* fill the flow spec entry */
  5919. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5920. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5921. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5922. if (ret < 0) {
  5923. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5924. parent->index);
  5925. ret = -EINVAL;
  5926. goto out;
  5927. }
  5928. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5929. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5930. TCAM_V4KEY2_PROTO_SHIFT;
  5931. if (proto == IPPROTO_ESP) {
  5932. if (fsp->flow_type == AH_V4_FLOW)
  5933. fsp->flow_type = ESP_V4_FLOW;
  5934. else
  5935. fsp->flow_type = ESP_V6_FLOW;
  5936. }
  5937. }
  5938. switch (fsp->flow_type) {
  5939. case TCP_V4_FLOW:
  5940. case UDP_V4_FLOW:
  5941. case SCTP_V4_FLOW:
  5942. case AH_V4_FLOW:
  5943. case ESP_V4_FLOW:
  5944. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5945. break;
  5946. case TCP_V6_FLOW:
  5947. case UDP_V6_FLOW:
  5948. case SCTP_V6_FLOW:
  5949. case AH_V6_FLOW:
  5950. case ESP_V6_FLOW:
  5951. /* Not yet implemented */
  5952. ret = -EINVAL;
  5953. break;
  5954. case IP_USER_FLOW:
  5955. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5956. break;
  5957. default:
  5958. ret = -EINVAL;
  5959. break;
  5960. }
  5961. if (ret < 0)
  5962. goto out;
  5963. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5964. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5965. else
  5966. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5967. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5968. /* put the tcam size here */
  5969. nfc->data = tcam_get_size(np);
  5970. out:
  5971. return ret;
  5972. }
  5973. static int niu_get_ethtool_tcam_all(struct niu *np,
  5974. struct ethtool_rxnfc *nfc,
  5975. u32 *rule_locs)
  5976. {
  5977. struct niu_parent *parent = np->parent;
  5978. struct niu_tcam_entry *tp;
  5979. int i, idx, cnt;
  5980. u16 n_entries;
  5981. unsigned long flags;
  5982. /* put the tcam size here */
  5983. nfc->data = tcam_get_size(np);
  5984. niu_lock_parent(np, flags);
  5985. n_entries = nfc->rule_cnt;
  5986. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5987. idx = tcam_get_index(np, i);
  5988. tp = &parent->tcam[idx];
  5989. if (!tp->valid)
  5990. continue;
  5991. rule_locs[cnt] = i;
  5992. cnt++;
  5993. }
  5994. niu_unlock_parent(np, flags);
  5995. if (n_entries != cnt) {
  5996. /* print warning, this should not happen */
  5997. netdev_info(np->dev, "niu%d: In %s(): n_entries[%d] != cnt[%d]!!!\n",
  5998. np->parent->index, __func__, n_entries, cnt);
  5999. }
  6000. return 0;
  6001. }
  6002. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6003. void *rule_locs)
  6004. {
  6005. struct niu *np = netdev_priv(dev);
  6006. int ret = 0;
  6007. switch (cmd->cmd) {
  6008. case ETHTOOL_GRXFH:
  6009. ret = niu_get_hash_opts(np, cmd);
  6010. break;
  6011. case ETHTOOL_GRXRINGS:
  6012. cmd->data = np->num_rx_rings;
  6013. break;
  6014. case ETHTOOL_GRXCLSRLCNT:
  6015. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6016. break;
  6017. case ETHTOOL_GRXCLSRULE:
  6018. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6019. break;
  6020. case ETHTOOL_GRXCLSRLALL:
  6021. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6022. break;
  6023. default:
  6024. ret = -EINVAL;
  6025. break;
  6026. }
  6027. return ret;
  6028. }
  6029. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6030. {
  6031. u64 class;
  6032. u64 flow_key = 0;
  6033. unsigned long flags;
  6034. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6035. return -EINVAL;
  6036. if (class < CLASS_CODE_USER_PROG1 ||
  6037. class > CLASS_CODE_SCTP_IPV6)
  6038. return -EINVAL;
  6039. if (nfc->data & RXH_DISCARD) {
  6040. niu_lock_parent(np, flags);
  6041. flow_key = np->parent->tcam_key[class -
  6042. CLASS_CODE_USER_PROG1];
  6043. flow_key |= TCAM_KEY_DISC;
  6044. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6045. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6046. niu_unlock_parent(np, flags);
  6047. return 0;
  6048. } else {
  6049. /* Discard was set before, but is not set now */
  6050. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6051. TCAM_KEY_DISC) {
  6052. niu_lock_parent(np, flags);
  6053. flow_key = np->parent->tcam_key[class -
  6054. CLASS_CODE_USER_PROG1];
  6055. flow_key &= ~TCAM_KEY_DISC;
  6056. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6057. flow_key);
  6058. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6059. flow_key;
  6060. niu_unlock_parent(np, flags);
  6061. }
  6062. }
  6063. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6064. return -EINVAL;
  6065. niu_lock_parent(np, flags);
  6066. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6067. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6068. niu_unlock_parent(np, flags);
  6069. return 0;
  6070. }
  6071. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6072. struct niu_tcam_entry *tp,
  6073. int l2_rdc_tab, u64 class)
  6074. {
  6075. u8 pid = 0;
  6076. u32 sip, dip, sipm, dipm, spi, spim;
  6077. u16 sport, dport, spm, dpm;
  6078. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6079. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6080. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6081. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6082. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6083. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6084. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6085. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6086. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6087. tp->key[3] |= dip;
  6088. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6089. tp->key_mask[3] |= dipm;
  6090. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6091. TCAM_V4KEY2_TOS_SHIFT);
  6092. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6093. TCAM_V4KEY2_TOS_SHIFT);
  6094. switch (fsp->flow_type) {
  6095. case TCP_V4_FLOW:
  6096. case UDP_V4_FLOW:
  6097. case SCTP_V4_FLOW:
  6098. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6099. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6100. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6101. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6102. tp->key[2] |= (((u64)sport << 16) | dport);
  6103. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6104. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6105. break;
  6106. case AH_V4_FLOW:
  6107. case ESP_V4_FLOW:
  6108. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6109. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6110. tp->key[2] |= spi;
  6111. tp->key_mask[2] |= spim;
  6112. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6113. break;
  6114. case IP_USER_FLOW:
  6115. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6116. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6117. tp->key[2] |= spi;
  6118. tp->key_mask[2] |= spim;
  6119. pid = fsp->h_u.usr_ip4_spec.proto;
  6120. break;
  6121. default:
  6122. break;
  6123. }
  6124. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6125. if (pid) {
  6126. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6127. }
  6128. }
  6129. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6130. struct ethtool_rxnfc *nfc)
  6131. {
  6132. struct niu_parent *parent = np->parent;
  6133. struct niu_tcam_entry *tp;
  6134. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6135. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6136. int l2_rdc_table = rdc_table->first_table_num;
  6137. u16 idx;
  6138. u64 class;
  6139. unsigned long flags;
  6140. int err, ret;
  6141. ret = 0;
  6142. idx = nfc->fs.location;
  6143. if (idx >= tcam_get_size(np))
  6144. return -EINVAL;
  6145. if (fsp->flow_type == IP_USER_FLOW) {
  6146. int i;
  6147. int add_usr_cls = 0;
  6148. int ipv6 = 0;
  6149. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6150. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6151. niu_lock_parent(np, flags);
  6152. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6153. if (parent->l3_cls[i]) {
  6154. if (uspec->proto == parent->l3_cls_pid[i]) {
  6155. class = parent->l3_cls[i];
  6156. parent->l3_cls_refcnt[i]++;
  6157. add_usr_cls = 1;
  6158. break;
  6159. }
  6160. } else {
  6161. /* Program new user IP class */
  6162. switch (i) {
  6163. case 0:
  6164. class = CLASS_CODE_USER_PROG1;
  6165. break;
  6166. case 1:
  6167. class = CLASS_CODE_USER_PROG2;
  6168. break;
  6169. case 2:
  6170. class = CLASS_CODE_USER_PROG3;
  6171. break;
  6172. case 3:
  6173. class = CLASS_CODE_USER_PROG4;
  6174. break;
  6175. default:
  6176. break;
  6177. }
  6178. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6179. ipv6 = 1;
  6180. ret = tcam_user_ip_class_set(np, class, ipv6,
  6181. uspec->proto,
  6182. uspec->tos,
  6183. umask->tos);
  6184. if (ret)
  6185. goto out;
  6186. ret = tcam_user_ip_class_enable(np, class, 1);
  6187. if (ret)
  6188. goto out;
  6189. parent->l3_cls[i] = class;
  6190. parent->l3_cls_pid[i] = uspec->proto;
  6191. parent->l3_cls_refcnt[i]++;
  6192. add_usr_cls = 1;
  6193. break;
  6194. }
  6195. }
  6196. if (!add_usr_cls) {
  6197. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6198. parent->index, __func__, uspec->proto);
  6199. ret = -EINVAL;
  6200. goto out;
  6201. }
  6202. niu_unlock_parent(np, flags);
  6203. } else {
  6204. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6205. return -EINVAL;
  6206. }
  6207. }
  6208. niu_lock_parent(np, flags);
  6209. idx = tcam_get_index(np, idx);
  6210. tp = &parent->tcam[idx];
  6211. memset(tp, 0, sizeof(*tp));
  6212. /* fill in the tcam key and mask */
  6213. switch (fsp->flow_type) {
  6214. case TCP_V4_FLOW:
  6215. case UDP_V4_FLOW:
  6216. case SCTP_V4_FLOW:
  6217. case AH_V4_FLOW:
  6218. case ESP_V4_FLOW:
  6219. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6220. break;
  6221. case TCP_V6_FLOW:
  6222. case UDP_V6_FLOW:
  6223. case SCTP_V6_FLOW:
  6224. case AH_V6_FLOW:
  6225. case ESP_V6_FLOW:
  6226. /* Not yet implemented */
  6227. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6228. parent->index, __func__, fsp->flow_type);
  6229. ret = -EINVAL;
  6230. goto out;
  6231. case IP_USER_FLOW:
  6232. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6233. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6234. class);
  6235. } else {
  6236. /* Not yet implemented */
  6237. netdev_info(np->dev, "niu%d: In %s(): usr flow for IPv6 not implemented\n",
  6238. parent->index, __func__);
  6239. ret = -EINVAL;
  6240. goto out;
  6241. }
  6242. break;
  6243. default:
  6244. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6245. parent->index, __func__, fsp->flow_type);
  6246. ret = -EINVAL;
  6247. goto out;
  6248. }
  6249. /* fill in the assoc data */
  6250. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6251. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6252. } else {
  6253. if (fsp->ring_cookie >= np->num_rx_rings) {
  6254. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6255. parent->index, __func__,
  6256. (long long)fsp->ring_cookie);
  6257. ret = -EINVAL;
  6258. goto out;
  6259. }
  6260. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6261. (fsp->ring_cookie <<
  6262. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6263. }
  6264. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6265. if (err) {
  6266. ret = -EINVAL;
  6267. goto out;
  6268. }
  6269. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6270. if (err) {
  6271. ret = -EINVAL;
  6272. goto out;
  6273. }
  6274. /* validate the entry */
  6275. tp->valid = 1;
  6276. np->clas.tcam_valid_entries++;
  6277. out:
  6278. niu_unlock_parent(np, flags);
  6279. return ret;
  6280. }
  6281. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6282. {
  6283. struct niu_parent *parent = np->parent;
  6284. struct niu_tcam_entry *tp;
  6285. u16 idx;
  6286. unsigned long flags;
  6287. u64 class;
  6288. int ret = 0;
  6289. if (loc >= tcam_get_size(np))
  6290. return -EINVAL;
  6291. niu_lock_parent(np, flags);
  6292. idx = tcam_get_index(np, loc);
  6293. tp = &parent->tcam[idx];
  6294. /* if the entry is of a user defined class, then update*/
  6295. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6296. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6297. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6298. int i;
  6299. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6300. if (parent->l3_cls[i] == class) {
  6301. parent->l3_cls_refcnt[i]--;
  6302. if (!parent->l3_cls_refcnt[i]) {
  6303. /* disable class */
  6304. ret = tcam_user_ip_class_enable(np,
  6305. class,
  6306. 0);
  6307. if (ret)
  6308. goto out;
  6309. parent->l3_cls[i] = 0;
  6310. parent->l3_cls_pid[i] = 0;
  6311. }
  6312. break;
  6313. }
  6314. }
  6315. if (i == NIU_L3_PROG_CLS) {
  6316. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6317. parent->index, __func__,
  6318. (unsigned long long)class);
  6319. ret = -EINVAL;
  6320. goto out;
  6321. }
  6322. }
  6323. ret = tcam_flush(np, idx);
  6324. if (ret)
  6325. goto out;
  6326. /* invalidate the entry */
  6327. tp->valid = 0;
  6328. np->clas.tcam_valid_entries--;
  6329. out:
  6330. niu_unlock_parent(np, flags);
  6331. return ret;
  6332. }
  6333. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6334. {
  6335. struct niu *np = netdev_priv(dev);
  6336. int ret = 0;
  6337. switch (cmd->cmd) {
  6338. case ETHTOOL_SRXFH:
  6339. ret = niu_set_hash_opts(np, cmd);
  6340. break;
  6341. case ETHTOOL_SRXCLSRLINS:
  6342. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6343. break;
  6344. case ETHTOOL_SRXCLSRLDEL:
  6345. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6346. break;
  6347. default:
  6348. ret = -EINVAL;
  6349. break;
  6350. }
  6351. return ret;
  6352. }
  6353. static const struct {
  6354. const char string[ETH_GSTRING_LEN];
  6355. } niu_xmac_stat_keys[] = {
  6356. { "tx_frames" },
  6357. { "tx_bytes" },
  6358. { "tx_fifo_errors" },
  6359. { "tx_overflow_errors" },
  6360. { "tx_max_pkt_size_errors" },
  6361. { "tx_underflow_errors" },
  6362. { "rx_local_faults" },
  6363. { "rx_remote_faults" },
  6364. { "rx_link_faults" },
  6365. { "rx_align_errors" },
  6366. { "rx_frags" },
  6367. { "rx_mcasts" },
  6368. { "rx_bcasts" },
  6369. { "rx_hist_cnt1" },
  6370. { "rx_hist_cnt2" },
  6371. { "rx_hist_cnt3" },
  6372. { "rx_hist_cnt4" },
  6373. { "rx_hist_cnt5" },
  6374. { "rx_hist_cnt6" },
  6375. { "rx_hist_cnt7" },
  6376. { "rx_octets" },
  6377. { "rx_code_violations" },
  6378. { "rx_len_errors" },
  6379. { "rx_crc_errors" },
  6380. { "rx_underflows" },
  6381. { "rx_overflows" },
  6382. { "pause_off_state" },
  6383. { "pause_on_state" },
  6384. { "pause_received" },
  6385. };
  6386. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6387. static const struct {
  6388. const char string[ETH_GSTRING_LEN];
  6389. } niu_bmac_stat_keys[] = {
  6390. { "tx_underflow_errors" },
  6391. { "tx_max_pkt_size_errors" },
  6392. { "tx_bytes" },
  6393. { "tx_frames" },
  6394. { "rx_overflows" },
  6395. { "rx_frames" },
  6396. { "rx_align_errors" },
  6397. { "rx_crc_errors" },
  6398. { "rx_len_errors" },
  6399. { "pause_off_state" },
  6400. { "pause_on_state" },
  6401. { "pause_received" },
  6402. };
  6403. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6404. static const struct {
  6405. const char string[ETH_GSTRING_LEN];
  6406. } niu_rxchan_stat_keys[] = {
  6407. { "rx_channel" },
  6408. { "rx_packets" },
  6409. { "rx_bytes" },
  6410. { "rx_dropped" },
  6411. { "rx_errors" },
  6412. };
  6413. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6414. static const struct {
  6415. const char string[ETH_GSTRING_LEN];
  6416. } niu_txchan_stat_keys[] = {
  6417. { "tx_channel" },
  6418. { "tx_packets" },
  6419. { "tx_bytes" },
  6420. { "tx_errors" },
  6421. };
  6422. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6423. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6424. {
  6425. struct niu *np = netdev_priv(dev);
  6426. int i;
  6427. if (stringset != ETH_SS_STATS)
  6428. return;
  6429. if (np->flags & NIU_FLAGS_XMAC) {
  6430. memcpy(data, niu_xmac_stat_keys,
  6431. sizeof(niu_xmac_stat_keys));
  6432. data += sizeof(niu_xmac_stat_keys);
  6433. } else {
  6434. memcpy(data, niu_bmac_stat_keys,
  6435. sizeof(niu_bmac_stat_keys));
  6436. data += sizeof(niu_bmac_stat_keys);
  6437. }
  6438. for (i = 0; i < np->num_rx_rings; i++) {
  6439. memcpy(data, niu_rxchan_stat_keys,
  6440. sizeof(niu_rxchan_stat_keys));
  6441. data += sizeof(niu_rxchan_stat_keys);
  6442. }
  6443. for (i = 0; i < np->num_tx_rings; i++) {
  6444. memcpy(data, niu_txchan_stat_keys,
  6445. sizeof(niu_txchan_stat_keys));
  6446. data += sizeof(niu_txchan_stat_keys);
  6447. }
  6448. }
  6449. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6450. {
  6451. struct niu *np = netdev_priv(dev);
  6452. if (stringset != ETH_SS_STATS)
  6453. return -EINVAL;
  6454. return ((np->flags & NIU_FLAGS_XMAC ?
  6455. NUM_XMAC_STAT_KEYS :
  6456. NUM_BMAC_STAT_KEYS) +
  6457. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6458. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6459. }
  6460. static void niu_get_ethtool_stats(struct net_device *dev,
  6461. struct ethtool_stats *stats, u64 *data)
  6462. {
  6463. struct niu *np = netdev_priv(dev);
  6464. int i;
  6465. niu_sync_mac_stats(np);
  6466. if (np->flags & NIU_FLAGS_XMAC) {
  6467. memcpy(data, &np->mac_stats.xmac,
  6468. sizeof(struct niu_xmac_stats));
  6469. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6470. } else {
  6471. memcpy(data, &np->mac_stats.bmac,
  6472. sizeof(struct niu_bmac_stats));
  6473. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6474. }
  6475. for (i = 0; i < np->num_rx_rings; i++) {
  6476. struct rx_ring_info *rp = &np->rx_rings[i];
  6477. niu_sync_rx_discard_stats(np, rp, 0);
  6478. data[0] = rp->rx_channel;
  6479. data[1] = rp->rx_packets;
  6480. data[2] = rp->rx_bytes;
  6481. data[3] = rp->rx_dropped;
  6482. data[4] = rp->rx_errors;
  6483. data += 5;
  6484. }
  6485. for (i = 0; i < np->num_tx_rings; i++) {
  6486. struct tx_ring_info *rp = &np->tx_rings[i];
  6487. data[0] = rp->tx_channel;
  6488. data[1] = rp->tx_packets;
  6489. data[2] = rp->tx_bytes;
  6490. data[3] = rp->tx_errors;
  6491. data += 4;
  6492. }
  6493. }
  6494. static u64 niu_led_state_save(struct niu *np)
  6495. {
  6496. if (np->flags & NIU_FLAGS_XMAC)
  6497. return nr64_mac(XMAC_CONFIG);
  6498. else
  6499. return nr64_mac(BMAC_XIF_CONFIG);
  6500. }
  6501. static void niu_led_state_restore(struct niu *np, u64 val)
  6502. {
  6503. if (np->flags & NIU_FLAGS_XMAC)
  6504. nw64_mac(XMAC_CONFIG, val);
  6505. else
  6506. nw64_mac(BMAC_XIF_CONFIG, val);
  6507. }
  6508. static void niu_force_led(struct niu *np, int on)
  6509. {
  6510. u64 val, reg, bit;
  6511. if (np->flags & NIU_FLAGS_XMAC) {
  6512. reg = XMAC_CONFIG;
  6513. bit = XMAC_CONFIG_FORCE_LED_ON;
  6514. } else {
  6515. reg = BMAC_XIF_CONFIG;
  6516. bit = BMAC_XIF_CONFIG_LINK_LED;
  6517. }
  6518. val = nr64_mac(reg);
  6519. if (on)
  6520. val |= bit;
  6521. else
  6522. val &= ~bit;
  6523. nw64_mac(reg, val);
  6524. }
  6525. static int niu_phys_id(struct net_device *dev, u32 data)
  6526. {
  6527. struct niu *np = netdev_priv(dev);
  6528. u64 orig_led_state;
  6529. int i;
  6530. if (!netif_running(dev))
  6531. return -EAGAIN;
  6532. if (data == 0)
  6533. data = 2;
  6534. orig_led_state = niu_led_state_save(np);
  6535. for (i = 0; i < (data * 2); i++) {
  6536. int on = ((i % 2) == 0);
  6537. niu_force_led(np, on);
  6538. if (msleep_interruptible(500))
  6539. break;
  6540. }
  6541. niu_led_state_restore(np, orig_led_state);
  6542. return 0;
  6543. }
  6544. static const struct ethtool_ops niu_ethtool_ops = {
  6545. .get_drvinfo = niu_get_drvinfo,
  6546. .get_link = ethtool_op_get_link,
  6547. .get_msglevel = niu_get_msglevel,
  6548. .set_msglevel = niu_set_msglevel,
  6549. .nway_reset = niu_nway_reset,
  6550. .get_eeprom_len = niu_get_eeprom_len,
  6551. .get_eeprom = niu_get_eeprom,
  6552. .get_settings = niu_get_settings,
  6553. .set_settings = niu_set_settings,
  6554. .get_strings = niu_get_strings,
  6555. .get_sset_count = niu_get_sset_count,
  6556. .get_ethtool_stats = niu_get_ethtool_stats,
  6557. .phys_id = niu_phys_id,
  6558. .get_rxnfc = niu_get_nfc,
  6559. .set_rxnfc = niu_set_nfc,
  6560. };
  6561. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6562. int ldg, int ldn)
  6563. {
  6564. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6565. return -EINVAL;
  6566. if (ldn < 0 || ldn > LDN_MAX)
  6567. return -EINVAL;
  6568. parent->ldg_map[ldn] = ldg;
  6569. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6570. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6571. * the firmware, and we're not supposed to change them.
  6572. * Validate the mapping, because if it's wrong we probably
  6573. * won't get any interrupts and that's painful to debug.
  6574. */
  6575. if (nr64(LDG_NUM(ldn)) != ldg) {
  6576. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6577. np->port, ldn, ldg,
  6578. (unsigned long long) nr64(LDG_NUM(ldn)));
  6579. return -EINVAL;
  6580. }
  6581. } else
  6582. nw64(LDG_NUM(ldn), ldg);
  6583. return 0;
  6584. }
  6585. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6586. {
  6587. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6588. return -EINVAL;
  6589. nw64(LDG_TIMER_RES, res);
  6590. return 0;
  6591. }
  6592. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6593. {
  6594. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6595. (func < 0 || func > 3) ||
  6596. (vector < 0 || vector > 0x1f))
  6597. return -EINVAL;
  6598. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6599. return 0;
  6600. }
  6601. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6602. {
  6603. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6604. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6605. int limit;
  6606. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6607. return -EINVAL;
  6608. frame = frame_base;
  6609. nw64(ESPC_PIO_STAT, frame);
  6610. limit = 64;
  6611. do {
  6612. udelay(5);
  6613. frame = nr64(ESPC_PIO_STAT);
  6614. if (frame & ESPC_PIO_STAT_READ_END)
  6615. break;
  6616. } while (limit--);
  6617. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6618. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6619. (unsigned long long) frame);
  6620. return -ENODEV;
  6621. }
  6622. frame = frame_base;
  6623. nw64(ESPC_PIO_STAT, frame);
  6624. limit = 64;
  6625. do {
  6626. udelay(5);
  6627. frame = nr64(ESPC_PIO_STAT);
  6628. if (frame & ESPC_PIO_STAT_READ_END)
  6629. break;
  6630. } while (limit--);
  6631. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6632. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6633. (unsigned long long) frame);
  6634. return -ENODEV;
  6635. }
  6636. frame = nr64(ESPC_PIO_STAT);
  6637. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6638. }
  6639. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6640. {
  6641. int err = niu_pci_eeprom_read(np, off);
  6642. u16 val;
  6643. if (err < 0)
  6644. return err;
  6645. val = (err << 8);
  6646. err = niu_pci_eeprom_read(np, off + 1);
  6647. if (err < 0)
  6648. return err;
  6649. val |= (err & 0xff);
  6650. return val;
  6651. }
  6652. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6653. {
  6654. int err = niu_pci_eeprom_read(np, off);
  6655. u16 val;
  6656. if (err < 0)
  6657. return err;
  6658. val = (err & 0xff);
  6659. err = niu_pci_eeprom_read(np, off + 1);
  6660. if (err < 0)
  6661. return err;
  6662. val |= (err & 0xff) << 8;
  6663. return val;
  6664. }
  6665. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6666. u32 off,
  6667. char *namebuf,
  6668. int namebuf_len)
  6669. {
  6670. int i;
  6671. for (i = 0; i < namebuf_len; i++) {
  6672. int err = niu_pci_eeprom_read(np, off + i);
  6673. if (err < 0)
  6674. return err;
  6675. *namebuf++ = err;
  6676. if (!err)
  6677. break;
  6678. }
  6679. if (i >= namebuf_len)
  6680. return -EINVAL;
  6681. return i + 1;
  6682. }
  6683. static void __devinit niu_vpd_parse_version(struct niu *np)
  6684. {
  6685. struct niu_vpd *vpd = &np->vpd;
  6686. int len = strlen(vpd->version) + 1;
  6687. const char *s = vpd->version;
  6688. int i;
  6689. for (i = 0; i < len - 5; i++) {
  6690. if (!strncmp(s + i, "FCode ", 6))
  6691. break;
  6692. }
  6693. if (i >= len - 5)
  6694. return;
  6695. s += i + 5;
  6696. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6697. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6698. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6699. vpd->fcode_major, vpd->fcode_minor);
  6700. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6701. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6702. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6703. np->flags |= NIU_FLAGS_VPD_VALID;
  6704. }
  6705. /* ESPC_PIO_EN_ENABLE must be set */
  6706. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6707. u32 start, u32 end)
  6708. {
  6709. unsigned int found_mask = 0;
  6710. #define FOUND_MASK_MODEL 0x00000001
  6711. #define FOUND_MASK_BMODEL 0x00000002
  6712. #define FOUND_MASK_VERS 0x00000004
  6713. #define FOUND_MASK_MAC 0x00000008
  6714. #define FOUND_MASK_NMAC 0x00000010
  6715. #define FOUND_MASK_PHY 0x00000020
  6716. #define FOUND_MASK_ALL 0x0000003f
  6717. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6718. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6719. while (start < end) {
  6720. int len, err, instance, type, prop_len;
  6721. char namebuf[64];
  6722. u8 *prop_buf;
  6723. int max_len;
  6724. if (found_mask == FOUND_MASK_ALL) {
  6725. niu_vpd_parse_version(np);
  6726. return 1;
  6727. }
  6728. err = niu_pci_eeprom_read(np, start + 2);
  6729. if (err < 0)
  6730. return err;
  6731. len = err;
  6732. start += 3;
  6733. instance = niu_pci_eeprom_read(np, start);
  6734. type = niu_pci_eeprom_read(np, start + 3);
  6735. prop_len = niu_pci_eeprom_read(np, start + 4);
  6736. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6737. if (err < 0)
  6738. return err;
  6739. prop_buf = NULL;
  6740. max_len = 0;
  6741. if (!strcmp(namebuf, "model")) {
  6742. prop_buf = np->vpd.model;
  6743. max_len = NIU_VPD_MODEL_MAX;
  6744. found_mask |= FOUND_MASK_MODEL;
  6745. } else if (!strcmp(namebuf, "board-model")) {
  6746. prop_buf = np->vpd.board_model;
  6747. max_len = NIU_VPD_BD_MODEL_MAX;
  6748. found_mask |= FOUND_MASK_BMODEL;
  6749. } else if (!strcmp(namebuf, "version")) {
  6750. prop_buf = np->vpd.version;
  6751. max_len = NIU_VPD_VERSION_MAX;
  6752. found_mask |= FOUND_MASK_VERS;
  6753. } else if (!strcmp(namebuf, "local-mac-address")) {
  6754. prop_buf = np->vpd.local_mac;
  6755. max_len = ETH_ALEN;
  6756. found_mask |= FOUND_MASK_MAC;
  6757. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6758. prop_buf = &np->vpd.mac_num;
  6759. max_len = 1;
  6760. found_mask |= FOUND_MASK_NMAC;
  6761. } else if (!strcmp(namebuf, "phy-type")) {
  6762. prop_buf = np->vpd.phy_type;
  6763. max_len = NIU_VPD_PHY_TYPE_MAX;
  6764. found_mask |= FOUND_MASK_PHY;
  6765. }
  6766. if (max_len && prop_len > max_len) {
  6767. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6768. return -EINVAL;
  6769. }
  6770. if (prop_buf) {
  6771. u32 off = start + 5 + err;
  6772. int i;
  6773. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6774. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6775. namebuf, prop_len);
  6776. for (i = 0; i < prop_len; i++)
  6777. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6778. }
  6779. start += len;
  6780. }
  6781. return 0;
  6782. }
  6783. /* ESPC_PIO_EN_ENABLE must be set */
  6784. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6785. {
  6786. u32 offset;
  6787. int err;
  6788. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6789. if (err < 0)
  6790. return;
  6791. offset = err + 3;
  6792. while (start + offset < ESPC_EEPROM_SIZE) {
  6793. u32 here = start + offset;
  6794. u32 end;
  6795. err = niu_pci_eeprom_read(np, here);
  6796. if (err != 0x90)
  6797. return;
  6798. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6799. if (err < 0)
  6800. return;
  6801. here = start + offset + 3;
  6802. end = start + offset + err;
  6803. offset += err;
  6804. err = niu_pci_vpd_scan_props(np, here, end);
  6805. if (err < 0 || err == 1)
  6806. return;
  6807. }
  6808. }
  6809. /* ESPC_PIO_EN_ENABLE must be set */
  6810. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6811. {
  6812. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6813. int err;
  6814. while (start < end) {
  6815. ret = start;
  6816. /* ROM header signature? */
  6817. err = niu_pci_eeprom_read16(np, start + 0);
  6818. if (err != 0x55aa)
  6819. return 0;
  6820. /* Apply offset to PCI data structure. */
  6821. err = niu_pci_eeprom_read16(np, start + 23);
  6822. if (err < 0)
  6823. return 0;
  6824. start += err;
  6825. /* Check for "PCIR" signature. */
  6826. err = niu_pci_eeprom_read16(np, start + 0);
  6827. if (err != 0x5043)
  6828. return 0;
  6829. err = niu_pci_eeprom_read16(np, start + 2);
  6830. if (err != 0x4952)
  6831. return 0;
  6832. /* Check for OBP image type. */
  6833. err = niu_pci_eeprom_read(np, start + 20);
  6834. if (err < 0)
  6835. return 0;
  6836. if (err != 0x01) {
  6837. err = niu_pci_eeprom_read(np, ret + 2);
  6838. if (err < 0)
  6839. return 0;
  6840. start = ret + (err * 512);
  6841. continue;
  6842. }
  6843. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6844. if (err < 0)
  6845. return err;
  6846. ret += err;
  6847. err = niu_pci_eeprom_read(np, ret + 0);
  6848. if (err != 0x82)
  6849. return 0;
  6850. return ret;
  6851. }
  6852. return 0;
  6853. }
  6854. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6855. const char *phy_prop)
  6856. {
  6857. if (!strcmp(phy_prop, "mif")) {
  6858. /* 1G copper, MII */
  6859. np->flags &= ~(NIU_FLAGS_FIBER |
  6860. NIU_FLAGS_10G);
  6861. np->mac_xcvr = MAC_XCVR_MII;
  6862. } else if (!strcmp(phy_prop, "xgf")) {
  6863. /* 10G fiber, XPCS */
  6864. np->flags |= (NIU_FLAGS_10G |
  6865. NIU_FLAGS_FIBER);
  6866. np->mac_xcvr = MAC_XCVR_XPCS;
  6867. } else if (!strcmp(phy_prop, "pcs")) {
  6868. /* 1G fiber, PCS */
  6869. np->flags &= ~NIU_FLAGS_10G;
  6870. np->flags |= NIU_FLAGS_FIBER;
  6871. np->mac_xcvr = MAC_XCVR_PCS;
  6872. } else if (!strcmp(phy_prop, "xgc")) {
  6873. /* 10G copper, XPCS */
  6874. np->flags |= NIU_FLAGS_10G;
  6875. np->flags &= ~NIU_FLAGS_FIBER;
  6876. np->mac_xcvr = MAC_XCVR_XPCS;
  6877. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6878. /* 10G Serdes or 1G Serdes, default to 10G */
  6879. np->flags |= NIU_FLAGS_10G;
  6880. np->flags &= ~NIU_FLAGS_FIBER;
  6881. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6882. np->mac_xcvr = MAC_XCVR_XPCS;
  6883. } else {
  6884. return -EINVAL;
  6885. }
  6886. return 0;
  6887. }
  6888. static int niu_pci_vpd_get_nports(struct niu *np)
  6889. {
  6890. int ports = 0;
  6891. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6892. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6893. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6894. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6895. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6896. ports = 4;
  6897. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6898. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6899. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6900. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6901. ports = 2;
  6902. }
  6903. return ports;
  6904. }
  6905. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6906. {
  6907. struct net_device *dev = np->dev;
  6908. struct niu_vpd *vpd = &np->vpd;
  6909. u8 val8;
  6910. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6911. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6912. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6913. return;
  6914. }
  6915. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6916. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6917. np->flags |= NIU_FLAGS_10G;
  6918. np->flags &= ~NIU_FLAGS_FIBER;
  6919. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6920. np->mac_xcvr = MAC_XCVR_PCS;
  6921. if (np->port > 1) {
  6922. np->flags |= NIU_FLAGS_FIBER;
  6923. np->flags &= ~NIU_FLAGS_10G;
  6924. }
  6925. if (np->flags & NIU_FLAGS_10G)
  6926. np->mac_xcvr = MAC_XCVR_XPCS;
  6927. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6928. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6929. NIU_FLAGS_HOTPLUG_PHY);
  6930. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6931. dev_err(np->device, "Illegal phy string [%s]\n",
  6932. np->vpd.phy_type);
  6933. dev_err(np->device, "Falling back to SPROM\n");
  6934. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6935. return;
  6936. }
  6937. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6938. val8 = dev->perm_addr[5];
  6939. dev->perm_addr[5] += np->port;
  6940. if (dev->perm_addr[5] < val8)
  6941. dev->perm_addr[4]++;
  6942. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6943. }
  6944. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6945. {
  6946. struct net_device *dev = np->dev;
  6947. int len, i;
  6948. u64 val, sum;
  6949. u8 val8;
  6950. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6951. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6952. len = val / 4;
  6953. np->eeprom_len = len;
  6954. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6955. "SPROM: Image size %llu\n", (unsigned long long)val);
  6956. sum = 0;
  6957. for (i = 0; i < len; i++) {
  6958. val = nr64(ESPC_NCR(i));
  6959. sum += (val >> 0) & 0xff;
  6960. sum += (val >> 8) & 0xff;
  6961. sum += (val >> 16) & 0xff;
  6962. sum += (val >> 24) & 0xff;
  6963. }
  6964. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6965. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6966. if ((sum & 0xff) != 0xab) {
  6967. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6968. return -EINVAL;
  6969. }
  6970. val = nr64(ESPC_PHY_TYPE);
  6971. switch (np->port) {
  6972. case 0:
  6973. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6974. ESPC_PHY_TYPE_PORT0_SHIFT;
  6975. break;
  6976. case 1:
  6977. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6978. ESPC_PHY_TYPE_PORT1_SHIFT;
  6979. break;
  6980. case 2:
  6981. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6982. ESPC_PHY_TYPE_PORT2_SHIFT;
  6983. break;
  6984. case 3:
  6985. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6986. ESPC_PHY_TYPE_PORT3_SHIFT;
  6987. break;
  6988. default:
  6989. dev_err(np->device, "Bogus port number %u\n",
  6990. np->port);
  6991. return -EINVAL;
  6992. }
  6993. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6994. "SPROM: PHY type %x\n", val8);
  6995. switch (val8) {
  6996. case ESPC_PHY_TYPE_1G_COPPER:
  6997. /* 1G copper, MII */
  6998. np->flags &= ~(NIU_FLAGS_FIBER |
  6999. NIU_FLAGS_10G);
  7000. np->mac_xcvr = MAC_XCVR_MII;
  7001. break;
  7002. case ESPC_PHY_TYPE_1G_FIBER:
  7003. /* 1G fiber, PCS */
  7004. np->flags &= ~NIU_FLAGS_10G;
  7005. np->flags |= NIU_FLAGS_FIBER;
  7006. np->mac_xcvr = MAC_XCVR_PCS;
  7007. break;
  7008. case ESPC_PHY_TYPE_10G_COPPER:
  7009. /* 10G copper, XPCS */
  7010. np->flags |= NIU_FLAGS_10G;
  7011. np->flags &= ~NIU_FLAGS_FIBER;
  7012. np->mac_xcvr = MAC_XCVR_XPCS;
  7013. break;
  7014. case ESPC_PHY_TYPE_10G_FIBER:
  7015. /* 10G fiber, XPCS */
  7016. np->flags |= (NIU_FLAGS_10G |
  7017. NIU_FLAGS_FIBER);
  7018. np->mac_xcvr = MAC_XCVR_XPCS;
  7019. break;
  7020. default:
  7021. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7022. return -EINVAL;
  7023. }
  7024. val = nr64(ESPC_MAC_ADDR0);
  7025. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7026. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7027. dev->perm_addr[0] = (val >> 0) & 0xff;
  7028. dev->perm_addr[1] = (val >> 8) & 0xff;
  7029. dev->perm_addr[2] = (val >> 16) & 0xff;
  7030. dev->perm_addr[3] = (val >> 24) & 0xff;
  7031. val = nr64(ESPC_MAC_ADDR1);
  7032. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7033. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7034. dev->perm_addr[4] = (val >> 0) & 0xff;
  7035. dev->perm_addr[5] = (val >> 8) & 0xff;
  7036. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7037. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7038. dev->perm_addr);
  7039. return -EINVAL;
  7040. }
  7041. val8 = dev->perm_addr[5];
  7042. dev->perm_addr[5] += np->port;
  7043. if (dev->perm_addr[5] < val8)
  7044. dev->perm_addr[4]++;
  7045. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7046. val = nr64(ESPC_MOD_STR_LEN);
  7047. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7048. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7049. if (val >= 8 * 4)
  7050. return -EINVAL;
  7051. for (i = 0; i < val; i += 4) {
  7052. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7053. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7054. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7055. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7056. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7057. }
  7058. np->vpd.model[val] = '\0';
  7059. val = nr64(ESPC_BD_MOD_STR_LEN);
  7060. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7061. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7062. if (val >= 4 * 4)
  7063. return -EINVAL;
  7064. for (i = 0; i < val; i += 4) {
  7065. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7066. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7067. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7068. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7069. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7070. }
  7071. np->vpd.board_model[val] = '\0';
  7072. np->vpd.mac_num =
  7073. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7074. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7075. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7076. return 0;
  7077. }
  7078. static int __devinit niu_get_and_validate_port(struct niu *np)
  7079. {
  7080. struct niu_parent *parent = np->parent;
  7081. if (np->port <= 1)
  7082. np->flags |= NIU_FLAGS_XMAC;
  7083. if (!parent->num_ports) {
  7084. if (parent->plat_type == PLAT_TYPE_NIU) {
  7085. parent->num_ports = 2;
  7086. } else {
  7087. parent->num_ports = niu_pci_vpd_get_nports(np);
  7088. if (!parent->num_ports) {
  7089. /* Fall back to SPROM as last resort.
  7090. * This will fail on most cards.
  7091. */
  7092. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7093. ESPC_NUM_PORTS_MACS_VAL;
  7094. /* All of the current probing methods fail on
  7095. * Maramba on-board parts.
  7096. */
  7097. if (!parent->num_ports)
  7098. parent->num_ports = 4;
  7099. }
  7100. }
  7101. }
  7102. if (np->port >= parent->num_ports)
  7103. return -ENODEV;
  7104. return 0;
  7105. }
  7106. static int __devinit phy_record(struct niu_parent *parent,
  7107. struct phy_probe_info *p,
  7108. int dev_id_1, int dev_id_2, u8 phy_port,
  7109. int type)
  7110. {
  7111. u32 id = (dev_id_1 << 16) | dev_id_2;
  7112. u8 idx;
  7113. if (dev_id_1 < 0 || dev_id_2 < 0)
  7114. return 0;
  7115. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7116. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7117. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7118. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7119. return 0;
  7120. } else {
  7121. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7122. return 0;
  7123. }
  7124. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7125. parent->index, id,
  7126. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7127. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7128. phy_port);
  7129. if (p->cur[type] >= NIU_MAX_PORTS) {
  7130. pr_err("Too many PHY ports\n");
  7131. return -EINVAL;
  7132. }
  7133. idx = p->cur[type];
  7134. p->phy_id[type][idx] = id;
  7135. p->phy_port[type][idx] = phy_port;
  7136. p->cur[type] = idx + 1;
  7137. return 0;
  7138. }
  7139. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7140. {
  7141. int i;
  7142. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7143. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7144. return 1;
  7145. }
  7146. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7147. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7148. return 1;
  7149. }
  7150. return 0;
  7151. }
  7152. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7153. {
  7154. int port, cnt;
  7155. cnt = 0;
  7156. *lowest = 32;
  7157. for (port = 8; port < 32; port++) {
  7158. if (port_has_10g(p, port)) {
  7159. if (!cnt)
  7160. *lowest = port;
  7161. cnt++;
  7162. }
  7163. }
  7164. return cnt;
  7165. }
  7166. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7167. {
  7168. *lowest = 32;
  7169. if (p->cur[PHY_TYPE_MII])
  7170. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7171. return p->cur[PHY_TYPE_MII];
  7172. }
  7173. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7174. {
  7175. int num_ports = parent->num_ports;
  7176. int i;
  7177. for (i = 0; i < num_ports; i++) {
  7178. parent->rxchan_per_port[i] = (16 / num_ports);
  7179. parent->txchan_per_port[i] = (16 / num_ports);
  7180. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7181. parent->index, i,
  7182. parent->rxchan_per_port[i],
  7183. parent->txchan_per_port[i]);
  7184. }
  7185. }
  7186. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7187. int num_10g, int num_1g)
  7188. {
  7189. int num_ports = parent->num_ports;
  7190. int rx_chans_per_10g, rx_chans_per_1g;
  7191. int tx_chans_per_10g, tx_chans_per_1g;
  7192. int i, tot_rx, tot_tx;
  7193. if (!num_10g || !num_1g) {
  7194. rx_chans_per_10g = rx_chans_per_1g =
  7195. (NIU_NUM_RXCHAN / num_ports);
  7196. tx_chans_per_10g = tx_chans_per_1g =
  7197. (NIU_NUM_TXCHAN / num_ports);
  7198. } else {
  7199. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7200. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7201. (rx_chans_per_1g * num_1g)) /
  7202. num_10g;
  7203. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7204. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7205. (tx_chans_per_1g * num_1g)) /
  7206. num_10g;
  7207. }
  7208. tot_rx = tot_tx = 0;
  7209. for (i = 0; i < num_ports; i++) {
  7210. int type = phy_decode(parent->port_phy, i);
  7211. if (type == PORT_TYPE_10G) {
  7212. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7213. parent->txchan_per_port[i] = tx_chans_per_10g;
  7214. } else {
  7215. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7216. parent->txchan_per_port[i] = tx_chans_per_1g;
  7217. }
  7218. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7219. parent->index, i,
  7220. parent->rxchan_per_port[i],
  7221. parent->txchan_per_port[i]);
  7222. tot_rx += parent->rxchan_per_port[i];
  7223. tot_tx += parent->txchan_per_port[i];
  7224. }
  7225. if (tot_rx > NIU_NUM_RXCHAN) {
  7226. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7227. parent->index, tot_rx);
  7228. for (i = 0; i < num_ports; i++)
  7229. parent->rxchan_per_port[i] = 1;
  7230. }
  7231. if (tot_tx > NIU_NUM_TXCHAN) {
  7232. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7233. parent->index, tot_tx);
  7234. for (i = 0; i < num_ports; i++)
  7235. parent->txchan_per_port[i] = 1;
  7236. }
  7237. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7238. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7239. parent->index, tot_rx, tot_tx);
  7240. }
  7241. }
  7242. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7243. int num_10g, int num_1g)
  7244. {
  7245. int i, num_ports = parent->num_ports;
  7246. int rdc_group, rdc_groups_per_port;
  7247. int rdc_channel_base;
  7248. rdc_group = 0;
  7249. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7250. rdc_channel_base = 0;
  7251. for (i = 0; i < num_ports; i++) {
  7252. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7253. int grp, num_channels = parent->rxchan_per_port[i];
  7254. int this_channel_offset;
  7255. tp->first_table_num = rdc_group;
  7256. tp->num_tables = rdc_groups_per_port;
  7257. this_channel_offset = 0;
  7258. for (grp = 0; grp < tp->num_tables; grp++) {
  7259. struct rdc_table *rt = &tp->tables[grp];
  7260. int slot;
  7261. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7262. parent->index, i, tp->first_table_num + grp);
  7263. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7264. rt->rxdma_channel[slot] =
  7265. rdc_channel_base + this_channel_offset;
  7266. pr_cont("%d ", rt->rxdma_channel[slot]);
  7267. if (++this_channel_offset == num_channels)
  7268. this_channel_offset = 0;
  7269. }
  7270. pr_cont("]\n");
  7271. }
  7272. parent->rdc_default[i] = rdc_channel_base;
  7273. rdc_channel_base += num_channels;
  7274. rdc_group += rdc_groups_per_port;
  7275. }
  7276. }
  7277. static int __devinit fill_phy_probe_info(struct niu *np,
  7278. struct niu_parent *parent,
  7279. struct phy_probe_info *info)
  7280. {
  7281. unsigned long flags;
  7282. int port, err;
  7283. memset(info, 0, sizeof(*info));
  7284. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7285. niu_lock_parent(np, flags);
  7286. err = 0;
  7287. for (port = 8; port < 32; port++) {
  7288. int dev_id_1, dev_id_2;
  7289. dev_id_1 = mdio_read(np, port,
  7290. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7291. dev_id_2 = mdio_read(np, port,
  7292. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7293. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7294. PHY_TYPE_PMA_PMD);
  7295. if (err)
  7296. break;
  7297. dev_id_1 = mdio_read(np, port,
  7298. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7299. dev_id_2 = mdio_read(np, port,
  7300. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7301. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7302. PHY_TYPE_PCS);
  7303. if (err)
  7304. break;
  7305. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7306. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7307. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7308. PHY_TYPE_MII);
  7309. if (err)
  7310. break;
  7311. }
  7312. niu_unlock_parent(np, flags);
  7313. return err;
  7314. }
  7315. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7316. {
  7317. struct phy_probe_info *info = &parent->phy_probe_info;
  7318. int lowest_10g, lowest_1g;
  7319. int num_10g, num_1g;
  7320. u32 val;
  7321. int err;
  7322. num_10g = num_1g = 0;
  7323. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7324. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7325. num_10g = 0;
  7326. num_1g = 2;
  7327. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7328. parent->num_ports = 4;
  7329. val = (phy_encode(PORT_TYPE_1G, 0) |
  7330. phy_encode(PORT_TYPE_1G, 1) |
  7331. phy_encode(PORT_TYPE_1G, 2) |
  7332. phy_encode(PORT_TYPE_1G, 3));
  7333. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7334. num_10g = 2;
  7335. num_1g = 0;
  7336. parent->num_ports = 2;
  7337. val = (phy_encode(PORT_TYPE_10G, 0) |
  7338. phy_encode(PORT_TYPE_10G, 1));
  7339. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7340. (parent->plat_type == PLAT_TYPE_NIU)) {
  7341. /* this is the Monza case */
  7342. if (np->flags & NIU_FLAGS_10G) {
  7343. val = (phy_encode(PORT_TYPE_10G, 0) |
  7344. phy_encode(PORT_TYPE_10G, 1));
  7345. } else {
  7346. val = (phy_encode(PORT_TYPE_1G, 0) |
  7347. phy_encode(PORT_TYPE_1G, 1));
  7348. }
  7349. } else {
  7350. err = fill_phy_probe_info(np, parent, info);
  7351. if (err)
  7352. return err;
  7353. num_10g = count_10g_ports(info, &lowest_10g);
  7354. num_1g = count_1g_ports(info, &lowest_1g);
  7355. switch ((num_10g << 4) | num_1g) {
  7356. case 0x24:
  7357. if (lowest_1g == 10)
  7358. parent->plat_type = PLAT_TYPE_VF_P0;
  7359. else if (lowest_1g == 26)
  7360. parent->plat_type = PLAT_TYPE_VF_P1;
  7361. else
  7362. goto unknown_vg_1g_port;
  7363. /* fallthru */
  7364. case 0x22:
  7365. val = (phy_encode(PORT_TYPE_10G, 0) |
  7366. phy_encode(PORT_TYPE_10G, 1) |
  7367. phy_encode(PORT_TYPE_1G, 2) |
  7368. phy_encode(PORT_TYPE_1G, 3));
  7369. break;
  7370. case 0x20:
  7371. val = (phy_encode(PORT_TYPE_10G, 0) |
  7372. phy_encode(PORT_TYPE_10G, 1));
  7373. break;
  7374. case 0x10:
  7375. val = phy_encode(PORT_TYPE_10G, np->port);
  7376. break;
  7377. case 0x14:
  7378. if (lowest_1g == 10)
  7379. parent->plat_type = PLAT_TYPE_VF_P0;
  7380. else if (lowest_1g == 26)
  7381. parent->plat_type = PLAT_TYPE_VF_P1;
  7382. else
  7383. goto unknown_vg_1g_port;
  7384. /* fallthru */
  7385. case 0x13:
  7386. if ((lowest_10g & 0x7) == 0)
  7387. val = (phy_encode(PORT_TYPE_10G, 0) |
  7388. phy_encode(PORT_TYPE_1G, 1) |
  7389. phy_encode(PORT_TYPE_1G, 2) |
  7390. phy_encode(PORT_TYPE_1G, 3));
  7391. else
  7392. val = (phy_encode(PORT_TYPE_1G, 0) |
  7393. phy_encode(PORT_TYPE_10G, 1) |
  7394. phy_encode(PORT_TYPE_1G, 2) |
  7395. phy_encode(PORT_TYPE_1G, 3));
  7396. break;
  7397. case 0x04:
  7398. if (lowest_1g == 10)
  7399. parent->plat_type = PLAT_TYPE_VF_P0;
  7400. else if (lowest_1g == 26)
  7401. parent->plat_type = PLAT_TYPE_VF_P1;
  7402. else
  7403. goto unknown_vg_1g_port;
  7404. val = (phy_encode(PORT_TYPE_1G, 0) |
  7405. phy_encode(PORT_TYPE_1G, 1) |
  7406. phy_encode(PORT_TYPE_1G, 2) |
  7407. phy_encode(PORT_TYPE_1G, 3));
  7408. break;
  7409. default:
  7410. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7411. num_10g, num_1g);
  7412. return -EINVAL;
  7413. }
  7414. }
  7415. parent->port_phy = val;
  7416. if (parent->plat_type == PLAT_TYPE_NIU)
  7417. niu_n2_divide_channels(parent);
  7418. else
  7419. niu_divide_channels(parent, num_10g, num_1g);
  7420. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7421. return 0;
  7422. unknown_vg_1g_port:
  7423. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7424. return -EINVAL;
  7425. }
  7426. static int __devinit niu_probe_ports(struct niu *np)
  7427. {
  7428. struct niu_parent *parent = np->parent;
  7429. int err, i;
  7430. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7431. err = walk_phys(np, parent);
  7432. if (err)
  7433. return err;
  7434. niu_set_ldg_timer_res(np, 2);
  7435. for (i = 0; i <= LDN_MAX; i++)
  7436. niu_ldn_irq_enable(np, i, 0);
  7437. }
  7438. if (parent->port_phy == PORT_PHY_INVALID)
  7439. return -EINVAL;
  7440. return 0;
  7441. }
  7442. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7443. {
  7444. struct niu_classifier *cp = &np->clas;
  7445. cp->tcam_top = (u16) np->port;
  7446. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7447. cp->h1_init = 0xffffffff;
  7448. cp->h2_init = 0xffff;
  7449. return fflp_early_init(np);
  7450. }
  7451. static void __devinit niu_link_config_init(struct niu *np)
  7452. {
  7453. struct niu_link_config *lp = &np->link_config;
  7454. lp->advertising = (ADVERTISED_10baseT_Half |
  7455. ADVERTISED_10baseT_Full |
  7456. ADVERTISED_100baseT_Half |
  7457. ADVERTISED_100baseT_Full |
  7458. ADVERTISED_1000baseT_Half |
  7459. ADVERTISED_1000baseT_Full |
  7460. ADVERTISED_10000baseT_Full |
  7461. ADVERTISED_Autoneg);
  7462. lp->speed = lp->active_speed = SPEED_INVALID;
  7463. lp->duplex = DUPLEX_FULL;
  7464. lp->active_duplex = DUPLEX_INVALID;
  7465. lp->autoneg = 1;
  7466. #if 0
  7467. lp->loopback_mode = LOOPBACK_MAC;
  7468. lp->active_speed = SPEED_10000;
  7469. lp->active_duplex = DUPLEX_FULL;
  7470. #else
  7471. lp->loopback_mode = LOOPBACK_DISABLED;
  7472. #endif
  7473. }
  7474. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7475. {
  7476. switch (np->port) {
  7477. case 0:
  7478. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7479. np->ipp_off = 0x00000;
  7480. np->pcs_off = 0x04000;
  7481. np->xpcs_off = 0x02000;
  7482. break;
  7483. case 1:
  7484. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7485. np->ipp_off = 0x08000;
  7486. np->pcs_off = 0x0a000;
  7487. np->xpcs_off = 0x08000;
  7488. break;
  7489. case 2:
  7490. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7491. np->ipp_off = 0x04000;
  7492. np->pcs_off = 0x0e000;
  7493. np->xpcs_off = ~0UL;
  7494. break;
  7495. case 3:
  7496. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7497. np->ipp_off = 0x0c000;
  7498. np->pcs_off = 0x12000;
  7499. np->xpcs_off = ~0UL;
  7500. break;
  7501. default:
  7502. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7503. return -EINVAL;
  7504. }
  7505. return 0;
  7506. }
  7507. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7508. {
  7509. struct msix_entry msi_vec[NIU_NUM_LDG];
  7510. struct niu_parent *parent = np->parent;
  7511. struct pci_dev *pdev = np->pdev;
  7512. int i, num_irqs, err;
  7513. u8 first_ldg;
  7514. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7515. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7516. ldg_num_map[i] = first_ldg + i;
  7517. num_irqs = (parent->rxchan_per_port[np->port] +
  7518. parent->txchan_per_port[np->port] +
  7519. (np->port == 0 ? 3 : 1));
  7520. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7521. retry:
  7522. for (i = 0; i < num_irqs; i++) {
  7523. msi_vec[i].vector = 0;
  7524. msi_vec[i].entry = i;
  7525. }
  7526. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7527. if (err < 0) {
  7528. np->flags &= ~NIU_FLAGS_MSIX;
  7529. return;
  7530. }
  7531. if (err > 0) {
  7532. num_irqs = err;
  7533. goto retry;
  7534. }
  7535. np->flags |= NIU_FLAGS_MSIX;
  7536. for (i = 0; i < num_irqs; i++)
  7537. np->ldg[i].irq = msi_vec[i].vector;
  7538. np->num_ldg = num_irqs;
  7539. }
  7540. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7541. {
  7542. #ifdef CONFIG_SPARC64
  7543. struct of_device *op = np->op;
  7544. const u32 *int_prop;
  7545. int i;
  7546. int_prop = of_get_property(op->node, "interrupts", NULL);
  7547. if (!int_prop)
  7548. return -ENODEV;
  7549. for (i = 0; i < op->num_irqs; i++) {
  7550. ldg_num_map[i] = int_prop[i];
  7551. np->ldg[i].irq = op->irqs[i];
  7552. }
  7553. np->num_ldg = op->num_irqs;
  7554. return 0;
  7555. #else
  7556. return -EINVAL;
  7557. #endif
  7558. }
  7559. static int __devinit niu_ldg_init(struct niu *np)
  7560. {
  7561. struct niu_parent *parent = np->parent;
  7562. u8 ldg_num_map[NIU_NUM_LDG];
  7563. int first_chan, num_chan;
  7564. int i, err, ldg_rotor;
  7565. u8 port;
  7566. np->num_ldg = 1;
  7567. np->ldg[0].irq = np->dev->irq;
  7568. if (parent->plat_type == PLAT_TYPE_NIU) {
  7569. err = niu_n2_irq_init(np, ldg_num_map);
  7570. if (err)
  7571. return err;
  7572. } else
  7573. niu_try_msix(np, ldg_num_map);
  7574. port = np->port;
  7575. for (i = 0; i < np->num_ldg; i++) {
  7576. struct niu_ldg *lp = &np->ldg[i];
  7577. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7578. lp->np = np;
  7579. lp->ldg_num = ldg_num_map[i];
  7580. lp->timer = 2; /* XXX */
  7581. /* On N2 NIU the firmware has setup the SID mappings so they go
  7582. * to the correct values that will route the LDG to the proper
  7583. * interrupt in the NCU interrupt table.
  7584. */
  7585. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7586. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7587. if (err)
  7588. return err;
  7589. }
  7590. }
  7591. /* We adopt the LDG assignment ordering used by the N2 NIU
  7592. * 'interrupt' properties because that simplifies a lot of
  7593. * things. This ordering is:
  7594. *
  7595. * MAC
  7596. * MIF (if port zero)
  7597. * SYSERR (if port zero)
  7598. * RX channels
  7599. * TX channels
  7600. */
  7601. ldg_rotor = 0;
  7602. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7603. LDN_MAC(port));
  7604. if (err)
  7605. return err;
  7606. ldg_rotor++;
  7607. if (ldg_rotor == np->num_ldg)
  7608. ldg_rotor = 0;
  7609. if (port == 0) {
  7610. err = niu_ldg_assign_ldn(np, parent,
  7611. ldg_num_map[ldg_rotor],
  7612. LDN_MIF);
  7613. if (err)
  7614. return err;
  7615. ldg_rotor++;
  7616. if (ldg_rotor == np->num_ldg)
  7617. ldg_rotor = 0;
  7618. err = niu_ldg_assign_ldn(np, parent,
  7619. ldg_num_map[ldg_rotor],
  7620. LDN_DEVICE_ERROR);
  7621. if (err)
  7622. return err;
  7623. ldg_rotor++;
  7624. if (ldg_rotor == np->num_ldg)
  7625. ldg_rotor = 0;
  7626. }
  7627. first_chan = 0;
  7628. for (i = 0; i < port; i++)
  7629. first_chan += parent->rxchan_per_port[port];
  7630. num_chan = parent->rxchan_per_port[port];
  7631. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7632. err = niu_ldg_assign_ldn(np, parent,
  7633. ldg_num_map[ldg_rotor],
  7634. LDN_RXDMA(i));
  7635. if (err)
  7636. return err;
  7637. ldg_rotor++;
  7638. if (ldg_rotor == np->num_ldg)
  7639. ldg_rotor = 0;
  7640. }
  7641. first_chan = 0;
  7642. for (i = 0; i < port; i++)
  7643. first_chan += parent->txchan_per_port[port];
  7644. num_chan = parent->txchan_per_port[port];
  7645. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7646. err = niu_ldg_assign_ldn(np, parent,
  7647. ldg_num_map[ldg_rotor],
  7648. LDN_TXDMA(i));
  7649. if (err)
  7650. return err;
  7651. ldg_rotor++;
  7652. if (ldg_rotor == np->num_ldg)
  7653. ldg_rotor = 0;
  7654. }
  7655. return 0;
  7656. }
  7657. static void __devexit niu_ldg_free(struct niu *np)
  7658. {
  7659. if (np->flags & NIU_FLAGS_MSIX)
  7660. pci_disable_msix(np->pdev);
  7661. }
  7662. static int __devinit niu_get_of_props(struct niu *np)
  7663. {
  7664. #ifdef CONFIG_SPARC64
  7665. struct net_device *dev = np->dev;
  7666. struct device_node *dp;
  7667. const char *phy_type;
  7668. const u8 *mac_addr;
  7669. const char *model;
  7670. int prop_len;
  7671. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7672. dp = np->op->node;
  7673. else
  7674. dp = pci_device_to_OF_node(np->pdev);
  7675. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7676. if (!phy_type) {
  7677. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7678. dp->full_name);
  7679. return -EINVAL;
  7680. }
  7681. if (!strcmp(phy_type, "none"))
  7682. return -ENODEV;
  7683. strcpy(np->vpd.phy_type, phy_type);
  7684. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7685. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7686. dp->full_name, np->vpd.phy_type);
  7687. return -EINVAL;
  7688. }
  7689. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7690. if (!mac_addr) {
  7691. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7692. dp->full_name);
  7693. return -EINVAL;
  7694. }
  7695. if (prop_len != dev->addr_len) {
  7696. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7697. dp->full_name, prop_len);
  7698. }
  7699. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7700. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7701. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7702. dp->full_name);
  7703. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->perm_addr);
  7704. return -EINVAL;
  7705. }
  7706. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7707. model = of_get_property(dp, "model", &prop_len);
  7708. if (model)
  7709. strcpy(np->vpd.model, model);
  7710. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7711. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7712. NIU_FLAGS_HOTPLUG_PHY);
  7713. }
  7714. return 0;
  7715. #else
  7716. return -EINVAL;
  7717. #endif
  7718. }
  7719. static int __devinit niu_get_invariants(struct niu *np)
  7720. {
  7721. int err, have_props;
  7722. u32 offset;
  7723. err = niu_get_of_props(np);
  7724. if (err == -ENODEV)
  7725. return err;
  7726. have_props = !err;
  7727. err = niu_init_mac_ipp_pcs_base(np);
  7728. if (err)
  7729. return err;
  7730. if (have_props) {
  7731. err = niu_get_and_validate_port(np);
  7732. if (err)
  7733. return err;
  7734. } else {
  7735. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7736. return -EINVAL;
  7737. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7738. offset = niu_pci_vpd_offset(np);
  7739. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7740. "%s() VPD offset [%08x]\n", __func__, offset);
  7741. if (offset)
  7742. niu_pci_vpd_fetch(np, offset);
  7743. nw64(ESPC_PIO_EN, 0);
  7744. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7745. niu_pci_vpd_validate(np);
  7746. err = niu_get_and_validate_port(np);
  7747. if (err)
  7748. return err;
  7749. }
  7750. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7751. err = niu_get_and_validate_port(np);
  7752. if (err)
  7753. return err;
  7754. err = niu_pci_probe_sprom(np);
  7755. if (err)
  7756. return err;
  7757. }
  7758. }
  7759. err = niu_probe_ports(np);
  7760. if (err)
  7761. return err;
  7762. niu_ldg_init(np);
  7763. niu_classifier_swstate_init(np);
  7764. niu_link_config_init(np);
  7765. err = niu_determine_phy_disposition(np);
  7766. if (!err)
  7767. err = niu_init_link(np);
  7768. return err;
  7769. }
  7770. static LIST_HEAD(niu_parent_list);
  7771. static DEFINE_MUTEX(niu_parent_lock);
  7772. static int niu_parent_index;
  7773. static ssize_t show_port_phy(struct device *dev,
  7774. struct device_attribute *attr, char *buf)
  7775. {
  7776. struct platform_device *plat_dev = to_platform_device(dev);
  7777. struct niu_parent *p = plat_dev->dev.platform_data;
  7778. u32 port_phy = p->port_phy;
  7779. char *orig_buf = buf;
  7780. int i;
  7781. if (port_phy == PORT_PHY_UNKNOWN ||
  7782. port_phy == PORT_PHY_INVALID)
  7783. return 0;
  7784. for (i = 0; i < p->num_ports; i++) {
  7785. const char *type_str;
  7786. int type;
  7787. type = phy_decode(port_phy, i);
  7788. if (type == PORT_TYPE_10G)
  7789. type_str = "10G";
  7790. else
  7791. type_str = "1G";
  7792. buf += sprintf(buf,
  7793. (i == 0) ? "%s" : " %s",
  7794. type_str);
  7795. }
  7796. buf += sprintf(buf, "\n");
  7797. return buf - orig_buf;
  7798. }
  7799. static ssize_t show_plat_type(struct device *dev,
  7800. struct device_attribute *attr, char *buf)
  7801. {
  7802. struct platform_device *plat_dev = to_platform_device(dev);
  7803. struct niu_parent *p = plat_dev->dev.platform_data;
  7804. const char *type_str;
  7805. switch (p->plat_type) {
  7806. case PLAT_TYPE_ATLAS:
  7807. type_str = "atlas";
  7808. break;
  7809. case PLAT_TYPE_NIU:
  7810. type_str = "niu";
  7811. break;
  7812. case PLAT_TYPE_VF_P0:
  7813. type_str = "vf_p0";
  7814. break;
  7815. case PLAT_TYPE_VF_P1:
  7816. type_str = "vf_p1";
  7817. break;
  7818. default:
  7819. type_str = "unknown";
  7820. break;
  7821. }
  7822. return sprintf(buf, "%s\n", type_str);
  7823. }
  7824. static ssize_t __show_chan_per_port(struct device *dev,
  7825. struct device_attribute *attr, char *buf,
  7826. int rx)
  7827. {
  7828. struct platform_device *plat_dev = to_platform_device(dev);
  7829. struct niu_parent *p = plat_dev->dev.platform_data;
  7830. char *orig_buf = buf;
  7831. u8 *arr;
  7832. int i;
  7833. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7834. for (i = 0; i < p->num_ports; i++) {
  7835. buf += sprintf(buf,
  7836. (i == 0) ? "%d" : " %d",
  7837. arr[i]);
  7838. }
  7839. buf += sprintf(buf, "\n");
  7840. return buf - orig_buf;
  7841. }
  7842. static ssize_t show_rxchan_per_port(struct device *dev,
  7843. struct device_attribute *attr, char *buf)
  7844. {
  7845. return __show_chan_per_port(dev, attr, buf, 1);
  7846. }
  7847. static ssize_t show_txchan_per_port(struct device *dev,
  7848. struct device_attribute *attr, char *buf)
  7849. {
  7850. return __show_chan_per_port(dev, attr, buf, 1);
  7851. }
  7852. static ssize_t show_num_ports(struct device *dev,
  7853. struct device_attribute *attr, char *buf)
  7854. {
  7855. struct platform_device *plat_dev = to_platform_device(dev);
  7856. struct niu_parent *p = plat_dev->dev.platform_data;
  7857. return sprintf(buf, "%d\n", p->num_ports);
  7858. }
  7859. static struct device_attribute niu_parent_attributes[] = {
  7860. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7861. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7862. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7863. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7864. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7865. {}
  7866. };
  7867. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7868. union niu_parent_id *id,
  7869. u8 ptype)
  7870. {
  7871. struct platform_device *plat_dev;
  7872. struct niu_parent *p;
  7873. int i;
  7874. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7875. NULL, 0);
  7876. if (IS_ERR(plat_dev))
  7877. return NULL;
  7878. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7879. int err = device_create_file(&plat_dev->dev,
  7880. &niu_parent_attributes[i]);
  7881. if (err)
  7882. goto fail_unregister;
  7883. }
  7884. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7885. if (!p)
  7886. goto fail_unregister;
  7887. p->index = niu_parent_index++;
  7888. plat_dev->dev.platform_data = p;
  7889. p->plat_dev = plat_dev;
  7890. memcpy(&p->id, id, sizeof(*id));
  7891. p->plat_type = ptype;
  7892. INIT_LIST_HEAD(&p->list);
  7893. atomic_set(&p->refcnt, 0);
  7894. list_add(&p->list, &niu_parent_list);
  7895. spin_lock_init(&p->lock);
  7896. p->rxdma_clock_divider = 7500;
  7897. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7898. if (p->plat_type == PLAT_TYPE_NIU)
  7899. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7900. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7901. int index = i - CLASS_CODE_USER_PROG1;
  7902. p->tcam_key[index] = TCAM_KEY_TSEL;
  7903. p->flow_key[index] = (FLOW_KEY_IPSA |
  7904. FLOW_KEY_IPDA |
  7905. FLOW_KEY_PROTO |
  7906. (FLOW_KEY_L4_BYTE12 <<
  7907. FLOW_KEY_L4_0_SHIFT) |
  7908. (FLOW_KEY_L4_BYTE12 <<
  7909. FLOW_KEY_L4_1_SHIFT));
  7910. }
  7911. for (i = 0; i < LDN_MAX + 1; i++)
  7912. p->ldg_map[i] = LDG_INVALID;
  7913. return p;
  7914. fail_unregister:
  7915. platform_device_unregister(plat_dev);
  7916. return NULL;
  7917. }
  7918. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7919. union niu_parent_id *id,
  7920. u8 ptype)
  7921. {
  7922. struct niu_parent *p, *tmp;
  7923. int port = np->port;
  7924. mutex_lock(&niu_parent_lock);
  7925. p = NULL;
  7926. list_for_each_entry(tmp, &niu_parent_list, list) {
  7927. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7928. p = tmp;
  7929. break;
  7930. }
  7931. }
  7932. if (!p)
  7933. p = niu_new_parent(np, id, ptype);
  7934. if (p) {
  7935. char port_name[6];
  7936. int err;
  7937. sprintf(port_name, "port%d", port);
  7938. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7939. &np->device->kobj,
  7940. port_name);
  7941. if (!err) {
  7942. p->ports[port] = np;
  7943. atomic_inc(&p->refcnt);
  7944. }
  7945. }
  7946. mutex_unlock(&niu_parent_lock);
  7947. return p;
  7948. }
  7949. static void niu_put_parent(struct niu *np)
  7950. {
  7951. struct niu_parent *p = np->parent;
  7952. u8 port = np->port;
  7953. char port_name[6];
  7954. BUG_ON(!p || p->ports[port] != np);
  7955. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7956. "%s() port[%u]\n", __func__, port);
  7957. sprintf(port_name, "port%d", port);
  7958. mutex_lock(&niu_parent_lock);
  7959. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7960. p->ports[port] = NULL;
  7961. np->parent = NULL;
  7962. if (atomic_dec_and_test(&p->refcnt)) {
  7963. list_del(&p->list);
  7964. platform_device_unregister(p->plat_dev);
  7965. }
  7966. mutex_unlock(&niu_parent_lock);
  7967. }
  7968. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7969. u64 *handle, gfp_t flag)
  7970. {
  7971. dma_addr_t dh;
  7972. void *ret;
  7973. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7974. if (ret)
  7975. *handle = dh;
  7976. return ret;
  7977. }
  7978. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7979. void *cpu_addr, u64 handle)
  7980. {
  7981. dma_free_coherent(dev, size, cpu_addr, handle);
  7982. }
  7983. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7984. unsigned long offset, size_t size,
  7985. enum dma_data_direction direction)
  7986. {
  7987. return dma_map_page(dev, page, offset, size, direction);
  7988. }
  7989. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7990. size_t size, enum dma_data_direction direction)
  7991. {
  7992. dma_unmap_page(dev, dma_address, size, direction);
  7993. }
  7994. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7995. size_t size,
  7996. enum dma_data_direction direction)
  7997. {
  7998. return dma_map_single(dev, cpu_addr, size, direction);
  7999. }
  8000. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8001. size_t size,
  8002. enum dma_data_direction direction)
  8003. {
  8004. dma_unmap_single(dev, dma_address, size, direction);
  8005. }
  8006. static const struct niu_ops niu_pci_ops = {
  8007. .alloc_coherent = niu_pci_alloc_coherent,
  8008. .free_coherent = niu_pci_free_coherent,
  8009. .map_page = niu_pci_map_page,
  8010. .unmap_page = niu_pci_unmap_page,
  8011. .map_single = niu_pci_map_single,
  8012. .unmap_single = niu_pci_unmap_single,
  8013. };
  8014. static void __devinit niu_driver_version(void)
  8015. {
  8016. static int niu_version_printed;
  8017. if (niu_version_printed++ == 0)
  8018. pr_info("%s", version);
  8019. }
  8020. static struct net_device * __devinit niu_alloc_and_init(
  8021. struct device *gen_dev, struct pci_dev *pdev,
  8022. struct of_device *op, const struct niu_ops *ops,
  8023. u8 port)
  8024. {
  8025. struct net_device *dev;
  8026. struct niu *np;
  8027. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8028. if (!dev) {
  8029. dev_err(gen_dev, "Etherdev alloc failed, aborting\n");
  8030. return NULL;
  8031. }
  8032. SET_NETDEV_DEV(dev, gen_dev);
  8033. np = netdev_priv(dev);
  8034. np->dev = dev;
  8035. np->pdev = pdev;
  8036. np->op = op;
  8037. np->device = gen_dev;
  8038. np->ops = ops;
  8039. np->msg_enable = niu_debug;
  8040. spin_lock_init(&np->lock);
  8041. INIT_WORK(&np->reset_task, niu_reset_task);
  8042. np->port = port;
  8043. return dev;
  8044. }
  8045. static const struct net_device_ops niu_netdev_ops = {
  8046. .ndo_open = niu_open,
  8047. .ndo_stop = niu_close,
  8048. .ndo_start_xmit = niu_start_xmit,
  8049. .ndo_get_stats = niu_get_stats,
  8050. .ndo_set_multicast_list = niu_set_rx_mode,
  8051. .ndo_validate_addr = eth_validate_addr,
  8052. .ndo_set_mac_address = niu_set_mac_addr,
  8053. .ndo_do_ioctl = niu_ioctl,
  8054. .ndo_tx_timeout = niu_tx_timeout,
  8055. .ndo_change_mtu = niu_change_mtu,
  8056. };
  8057. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8058. {
  8059. dev->netdev_ops = &niu_netdev_ops;
  8060. dev->ethtool_ops = &niu_ethtool_ops;
  8061. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8062. }
  8063. static void __devinit niu_device_announce(struct niu *np)
  8064. {
  8065. struct net_device *dev = np->dev;
  8066. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8067. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8068. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8069. dev->name,
  8070. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8071. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8072. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8073. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8074. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8075. np->vpd.phy_type);
  8076. } else {
  8077. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8078. dev->name,
  8079. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8080. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8081. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8082. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8083. "COPPER")),
  8084. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8085. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8086. np->vpd.phy_type);
  8087. }
  8088. }
  8089. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8090. const struct pci_device_id *ent)
  8091. {
  8092. union niu_parent_id parent_id;
  8093. struct net_device *dev;
  8094. struct niu *np;
  8095. int err, pos;
  8096. u64 dma_mask;
  8097. u16 val16;
  8098. niu_driver_version();
  8099. err = pci_enable_device(pdev);
  8100. if (err) {
  8101. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8102. return err;
  8103. }
  8104. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8105. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8106. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8107. err = -ENODEV;
  8108. goto err_out_disable_pdev;
  8109. }
  8110. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8111. if (err) {
  8112. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8113. goto err_out_disable_pdev;
  8114. }
  8115. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8116. if (pos <= 0) {
  8117. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8118. goto err_out_free_res;
  8119. }
  8120. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8121. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8122. if (!dev) {
  8123. err = -ENOMEM;
  8124. goto err_out_free_res;
  8125. }
  8126. np = netdev_priv(dev);
  8127. memset(&parent_id, 0, sizeof(parent_id));
  8128. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8129. parent_id.pci.bus = pdev->bus->number;
  8130. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8131. np->parent = niu_get_parent(np, &parent_id,
  8132. PLAT_TYPE_ATLAS);
  8133. if (!np->parent) {
  8134. err = -ENOMEM;
  8135. goto err_out_free_dev;
  8136. }
  8137. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8138. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8139. val16 |= (PCI_EXP_DEVCTL_CERE |
  8140. PCI_EXP_DEVCTL_NFERE |
  8141. PCI_EXP_DEVCTL_FERE |
  8142. PCI_EXP_DEVCTL_URRE |
  8143. PCI_EXP_DEVCTL_RELAX_EN);
  8144. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8145. dma_mask = DMA_BIT_MASK(44);
  8146. err = pci_set_dma_mask(pdev, dma_mask);
  8147. if (!err) {
  8148. dev->features |= NETIF_F_HIGHDMA;
  8149. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8150. if (err) {
  8151. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8152. goto err_out_release_parent;
  8153. }
  8154. }
  8155. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8156. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8157. if (err) {
  8158. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8159. goto err_out_release_parent;
  8160. }
  8161. }
  8162. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8163. np->regs = pci_ioremap_bar(pdev, 0);
  8164. if (!np->regs) {
  8165. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8166. err = -ENOMEM;
  8167. goto err_out_release_parent;
  8168. }
  8169. pci_set_master(pdev);
  8170. pci_save_state(pdev);
  8171. dev->irq = pdev->irq;
  8172. niu_assign_netdev_ops(dev);
  8173. err = niu_get_invariants(np);
  8174. if (err) {
  8175. if (err != -ENODEV)
  8176. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8177. goto err_out_iounmap;
  8178. }
  8179. err = register_netdev(dev);
  8180. if (err) {
  8181. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8182. goto err_out_iounmap;
  8183. }
  8184. pci_set_drvdata(pdev, dev);
  8185. niu_device_announce(np);
  8186. return 0;
  8187. err_out_iounmap:
  8188. if (np->regs) {
  8189. iounmap(np->regs);
  8190. np->regs = NULL;
  8191. }
  8192. err_out_release_parent:
  8193. niu_put_parent(np);
  8194. err_out_free_dev:
  8195. free_netdev(dev);
  8196. err_out_free_res:
  8197. pci_release_regions(pdev);
  8198. err_out_disable_pdev:
  8199. pci_disable_device(pdev);
  8200. pci_set_drvdata(pdev, NULL);
  8201. return err;
  8202. }
  8203. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8204. {
  8205. struct net_device *dev = pci_get_drvdata(pdev);
  8206. if (dev) {
  8207. struct niu *np = netdev_priv(dev);
  8208. unregister_netdev(dev);
  8209. if (np->regs) {
  8210. iounmap(np->regs);
  8211. np->regs = NULL;
  8212. }
  8213. niu_ldg_free(np);
  8214. niu_put_parent(np);
  8215. free_netdev(dev);
  8216. pci_release_regions(pdev);
  8217. pci_disable_device(pdev);
  8218. pci_set_drvdata(pdev, NULL);
  8219. }
  8220. }
  8221. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8222. {
  8223. struct net_device *dev = pci_get_drvdata(pdev);
  8224. struct niu *np = netdev_priv(dev);
  8225. unsigned long flags;
  8226. if (!netif_running(dev))
  8227. return 0;
  8228. flush_scheduled_work();
  8229. niu_netif_stop(np);
  8230. del_timer_sync(&np->timer);
  8231. spin_lock_irqsave(&np->lock, flags);
  8232. niu_enable_interrupts(np, 0);
  8233. spin_unlock_irqrestore(&np->lock, flags);
  8234. netif_device_detach(dev);
  8235. spin_lock_irqsave(&np->lock, flags);
  8236. niu_stop_hw(np);
  8237. spin_unlock_irqrestore(&np->lock, flags);
  8238. pci_save_state(pdev);
  8239. return 0;
  8240. }
  8241. static int niu_resume(struct pci_dev *pdev)
  8242. {
  8243. struct net_device *dev = pci_get_drvdata(pdev);
  8244. struct niu *np = netdev_priv(dev);
  8245. unsigned long flags;
  8246. int err;
  8247. if (!netif_running(dev))
  8248. return 0;
  8249. pci_restore_state(pdev);
  8250. netif_device_attach(dev);
  8251. spin_lock_irqsave(&np->lock, flags);
  8252. err = niu_init_hw(np);
  8253. if (!err) {
  8254. np->timer.expires = jiffies + HZ;
  8255. add_timer(&np->timer);
  8256. niu_netif_start(np);
  8257. }
  8258. spin_unlock_irqrestore(&np->lock, flags);
  8259. return err;
  8260. }
  8261. static struct pci_driver niu_pci_driver = {
  8262. .name = DRV_MODULE_NAME,
  8263. .id_table = niu_pci_tbl,
  8264. .probe = niu_pci_init_one,
  8265. .remove = __devexit_p(niu_pci_remove_one),
  8266. .suspend = niu_suspend,
  8267. .resume = niu_resume,
  8268. };
  8269. #ifdef CONFIG_SPARC64
  8270. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8271. u64 *dma_addr, gfp_t flag)
  8272. {
  8273. unsigned long order = get_order(size);
  8274. unsigned long page = __get_free_pages(flag, order);
  8275. if (page == 0UL)
  8276. return NULL;
  8277. memset((char *)page, 0, PAGE_SIZE << order);
  8278. *dma_addr = __pa(page);
  8279. return (void *) page;
  8280. }
  8281. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8282. void *cpu_addr, u64 handle)
  8283. {
  8284. unsigned long order = get_order(size);
  8285. free_pages((unsigned long) cpu_addr, order);
  8286. }
  8287. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8288. unsigned long offset, size_t size,
  8289. enum dma_data_direction direction)
  8290. {
  8291. return page_to_phys(page) + offset;
  8292. }
  8293. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8294. size_t size, enum dma_data_direction direction)
  8295. {
  8296. /* Nothing to do. */
  8297. }
  8298. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8299. size_t size,
  8300. enum dma_data_direction direction)
  8301. {
  8302. return __pa(cpu_addr);
  8303. }
  8304. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8305. size_t size,
  8306. enum dma_data_direction direction)
  8307. {
  8308. /* Nothing to do. */
  8309. }
  8310. static const struct niu_ops niu_phys_ops = {
  8311. .alloc_coherent = niu_phys_alloc_coherent,
  8312. .free_coherent = niu_phys_free_coherent,
  8313. .map_page = niu_phys_map_page,
  8314. .unmap_page = niu_phys_unmap_page,
  8315. .map_single = niu_phys_map_single,
  8316. .unmap_single = niu_phys_unmap_single,
  8317. };
  8318. static int __devinit niu_of_probe(struct of_device *op,
  8319. const struct of_device_id *match)
  8320. {
  8321. union niu_parent_id parent_id;
  8322. struct net_device *dev;
  8323. struct niu *np;
  8324. const u32 *reg;
  8325. int err;
  8326. niu_driver_version();
  8327. reg = of_get_property(op->node, "reg", NULL);
  8328. if (!reg) {
  8329. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8330. op->node->full_name);
  8331. return -ENODEV;
  8332. }
  8333. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8334. &niu_phys_ops, reg[0] & 0x1);
  8335. if (!dev) {
  8336. err = -ENOMEM;
  8337. goto err_out;
  8338. }
  8339. np = netdev_priv(dev);
  8340. memset(&parent_id, 0, sizeof(parent_id));
  8341. parent_id.of = of_get_parent(op->node);
  8342. np->parent = niu_get_parent(np, &parent_id,
  8343. PLAT_TYPE_NIU);
  8344. if (!np->parent) {
  8345. err = -ENOMEM;
  8346. goto err_out_free_dev;
  8347. }
  8348. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8349. np->regs = of_ioremap(&op->resource[1], 0,
  8350. resource_size(&op->resource[1]),
  8351. "niu regs");
  8352. if (!np->regs) {
  8353. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8354. err = -ENOMEM;
  8355. goto err_out_release_parent;
  8356. }
  8357. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8358. resource_size(&op->resource[2]),
  8359. "niu vregs-1");
  8360. if (!np->vir_regs_1) {
  8361. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8362. err = -ENOMEM;
  8363. goto err_out_iounmap;
  8364. }
  8365. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8366. resource_size(&op->resource[3]),
  8367. "niu vregs-2");
  8368. if (!np->vir_regs_2) {
  8369. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8370. err = -ENOMEM;
  8371. goto err_out_iounmap;
  8372. }
  8373. niu_assign_netdev_ops(dev);
  8374. err = niu_get_invariants(np);
  8375. if (err) {
  8376. if (err != -ENODEV)
  8377. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8378. goto err_out_iounmap;
  8379. }
  8380. err = register_netdev(dev);
  8381. if (err) {
  8382. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8383. goto err_out_iounmap;
  8384. }
  8385. dev_set_drvdata(&op->dev, dev);
  8386. niu_device_announce(np);
  8387. return 0;
  8388. err_out_iounmap:
  8389. if (np->vir_regs_1) {
  8390. of_iounmap(&op->resource[2], np->vir_regs_1,
  8391. resource_size(&op->resource[2]));
  8392. np->vir_regs_1 = NULL;
  8393. }
  8394. if (np->vir_regs_2) {
  8395. of_iounmap(&op->resource[3], np->vir_regs_2,
  8396. resource_size(&op->resource[3]));
  8397. np->vir_regs_2 = NULL;
  8398. }
  8399. if (np->regs) {
  8400. of_iounmap(&op->resource[1], np->regs,
  8401. resource_size(&op->resource[1]));
  8402. np->regs = NULL;
  8403. }
  8404. err_out_release_parent:
  8405. niu_put_parent(np);
  8406. err_out_free_dev:
  8407. free_netdev(dev);
  8408. err_out:
  8409. return err;
  8410. }
  8411. static int __devexit niu_of_remove(struct of_device *op)
  8412. {
  8413. struct net_device *dev = dev_get_drvdata(&op->dev);
  8414. if (dev) {
  8415. struct niu *np = netdev_priv(dev);
  8416. unregister_netdev(dev);
  8417. if (np->vir_regs_1) {
  8418. of_iounmap(&op->resource[2], np->vir_regs_1,
  8419. resource_size(&op->resource[2]));
  8420. np->vir_regs_1 = NULL;
  8421. }
  8422. if (np->vir_regs_2) {
  8423. of_iounmap(&op->resource[3], np->vir_regs_2,
  8424. resource_size(&op->resource[3]));
  8425. np->vir_regs_2 = NULL;
  8426. }
  8427. if (np->regs) {
  8428. of_iounmap(&op->resource[1], np->regs,
  8429. resource_size(&op->resource[1]));
  8430. np->regs = NULL;
  8431. }
  8432. niu_ldg_free(np);
  8433. niu_put_parent(np);
  8434. free_netdev(dev);
  8435. dev_set_drvdata(&op->dev, NULL);
  8436. }
  8437. return 0;
  8438. }
  8439. static const struct of_device_id niu_match[] = {
  8440. {
  8441. .name = "network",
  8442. .compatible = "SUNW,niusl",
  8443. },
  8444. {},
  8445. };
  8446. MODULE_DEVICE_TABLE(of, niu_match);
  8447. static struct of_platform_driver niu_of_driver = {
  8448. .name = "niu",
  8449. .match_table = niu_match,
  8450. .probe = niu_of_probe,
  8451. .remove = __devexit_p(niu_of_remove),
  8452. };
  8453. #endif /* CONFIG_SPARC64 */
  8454. static int __init niu_init(void)
  8455. {
  8456. int err = 0;
  8457. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8458. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8459. #ifdef CONFIG_SPARC64
  8460. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8461. #endif
  8462. if (!err) {
  8463. err = pci_register_driver(&niu_pci_driver);
  8464. #ifdef CONFIG_SPARC64
  8465. if (err)
  8466. of_unregister_driver(&niu_of_driver);
  8467. #endif
  8468. }
  8469. return err;
  8470. }
  8471. static void __exit niu_exit(void)
  8472. {
  8473. pci_unregister_driver(&niu_pci_driver);
  8474. #ifdef CONFIG_SPARC64
  8475. of_unregister_driver(&niu_of_driver);
  8476. #endif
  8477. }
  8478. module_init(niu_init);
  8479. module_exit(niu_exit);