korina.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/dma.h>
  62. #include <asm/mach-rc32434/rb.h>
  63. #include <asm/mach-rc32434/rc32434.h>
  64. #include <asm/mach-rc32434/eth.h>
  65. #include <asm/mach-rc32434/dma_v.h>
  66. #define DRV_NAME "korina"
  67. #define DRV_VERSION "0.10"
  68. #define DRV_RELDATE "04Mar2008"
  69. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  70. ((dev)->dev_addr[1]))
  71. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  72. ((dev)->dev_addr[3] << 16) | \
  73. ((dev)->dev_addr[4] << 8) | \
  74. ((dev)->dev_addr[5]))
  75. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  76. /* the following must be powers of two */
  77. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  78. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  79. /* KORINA_RBSIZE is the hardware's default maximum receive
  80. * frame size in bytes. Having this hardcoded means that there
  81. * is no support for MTU sizes greater than 1500. */
  82. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  83. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  84. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  85. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  86. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  87. #define TX_TIMEOUT (6000 * HZ / 1000)
  88. enum chain_status { desc_filled, desc_empty };
  89. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  90. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  91. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  92. /* Information that need to be kept for each board. */
  93. struct korina_private {
  94. struct eth_regs *eth_regs;
  95. struct dma_reg *rx_dma_regs;
  96. struct dma_reg *tx_dma_regs;
  97. struct dma_desc *td_ring; /* transmit descriptor ring */
  98. struct dma_desc *rd_ring; /* receive descriptor ring */
  99. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  100. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  101. int rx_next_done;
  102. int rx_chain_head;
  103. int rx_chain_tail;
  104. enum chain_status rx_chain_status;
  105. int tx_next_done;
  106. int tx_chain_head;
  107. int tx_chain_tail;
  108. enum chain_status tx_chain_status;
  109. int tx_count;
  110. int tx_full;
  111. int rx_irq;
  112. int tx_irq;
  113. int ovr_irq;
  114. int und_irq;
  115. spinlock_t lock; /* NIC xmit lock */
  116. int dma_halt_cnt;
  117. int dma_run_cnt;
  118. struct napi_struct napi;
  119. struct timer_list media_check_timer;
  120. struct mii_if_info mii_if;
  121. struct net_device *dev;
  122. int phy_addr;
  123. };
  124. extern unsigned int idt_cpu_freq;
  125. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  126. {
  127. writel(0, &ch->dmandptr);
  128. writel(dma_addr, &ch->dmadptr);
  129. }
  130. static inline void korina_abort_dma(struct net_device *dev,
  131. struct dma_reg *ch)
  132. {
  133. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  134. writel(0x10, &ch->dmac);
  135. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  136. dev->trans_start = jiffies;
  137. writel(0, &ch->dmas);
  138. }
  139. writel(0, &ch->dmadptr);
  140. writel(0, &ch->dmandptr);
  141. }
  142. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  143. {
  144. writel(dma_addr, &ch->dmandptr);
  145. }
  146. static void korina_abort_tx(struct net_device *dev)
  147. {
  148. struct korina_private *lp = netdev_priv(dev);
  149. korina_abort_dma(dev, lp->tx_dma_regs);
  150. }
  151. static void korina_abort_rx(struct net_device *dev)
  152. {
  153. struct korina_private *lp = netdev_priv(dev);
  154. korina_abort_dma(dev, lp->rx_dma_regs);
  155. }
  156. static void korina_start_rx(struct korina_private *lp,
  157. struct dma_desc *rd)
  158. {
  159. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  160. }
  161. static void korina_chain_rx(struct korina_private *lp,
  162. struct dma_desc *rd)
  163. {
  164. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  165. }
  166. /* transmit packet */
  167. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  168. {
  169. struct korina_private *lp = netdev_priv(dev);
  170. unsigned long flags;
  171. u32 length;
  172. u32 chain_prev, chain_next;
  173. struct dma_desc *td;
  174. spin_lock_irqsave(&lp->lock, flags);
  175. td = &lp->td_ring[lp->tx_chain_tail];
  176. /* stop queue when full, drop pkts if queue already full */
  177. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  178. lp->tx_full = 1;
  179. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  180. netif_stop_queue(dev);
  181. else {
  182. dev->stats.tx_dropped++;
  183. dev_kfree_skb_any(skb);
  184. spin_unlock_irqrestore(&lp->lock, flags);
  185. return NETDEV_TX_BUSY;
  186. }
  187. }
  188. lp->tx_count++;
  189. lp->tx_skb[lp->tx_chain_tail] = skb;
  190. length = skb->len;
  191. dma_cache_wback((u32)skb->data, skb->len);
  192. /* Setup the transmit descriptor. */
  193. dma_cache_inv((u32) td, sizeof(*td));
  194. td->ca = CPHYSADDR(skb->data);
  195. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  196. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  197. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  198. if (lp->tx_chain_status == desc_empty) {
  199. /* Update tail */
  200. td->control = DMA_COUNT(length) |
  201. DMA_DESC_COF | DMA_DESC_IOF;
  202. /* Move tail */
  203. lp->tx_chain_tail = chain_next;
  204. /* Write to NDPTR */
  205. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  206. &lp->tx_dma_regs->dmandptr);
  207. /* Move head to tail */
  208. lp->tx_chain_head = lp->tx_chain_tail;
  209. } else {
  210. /* Update tail */
  211. td->control = DMA_COUNT(length) |
  212. DMA_DESC_COF | DMA_DESC_IOF;
  213. /* Link to prev */
  214. lp->td_ring[chain_prev].control &=
  215. ~DMA_DESC_COF;
  216. /* Link to prev */
  217. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  218. /* Move tail */
  219. lp->tx_chain_tail = chain_next;
  220. /* Write to NDPTR */
  221. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  222. &(lp->tx_dma_regs->dmandptr));
  223. /* Move head to tail */
  224. lp->tx_chain_head = lp->tx_chain_tail;
  225. lp->tx_chain_status = desc_empty;
  226. }
  227. } else {
  228. if (lp->tx_chain_status == desc_empty) {
  229. /* Update tail */
  230. td->control = DMA_COUNT(length) |
  231. DMA_DESC_COF | DMA_DESC_IOF;
  232. /* Move tail */
  233. lp->tx_chain_tail = chain_next;
  234. lp->tx_chain_status = desc_filled;
  235. } else {
  236. /* Update tail */
  237. td->control = DMA_COUNT(length) |
  238. DMA_DESC_COF | DMA_DESC_IOF;
  239. lp->td_ring[chain_prev].control &=
  240. ~DMA_DESC_COF;
  241. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  242. lp->tx_chain_tail = chain_next;
  243. }
  244. }
  245. dma_cache_wback((u32) td, sizeof(*td));
  246. dev->trans_start = jiffies;
  247. spin_unlock_irqrestore(&lp->lock, flags);
  248. return NETDEV_TX_OK;
  249. }
  250. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  251. {
  252. struct korina_private *lp = netdev_priv(dev);
  253. int ret;
  254. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  255. writel(0, &lp->eth_regs->miimcfg);
  256. writel(0, &lp->eth_regs->miimcmd);
  257. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  258. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  259. ret = (int)(readl(&lp->eth_regs->miimrdd));
  260. return ret;
  261. }
  262. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  263. {
  264. struct korina_private *lp = netdev_priv(dev);
  265. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  266. writel(0, &lp->eth_regs->miimcfg);
  267. writel(1, &lp->eth_regs->miimcmd);
  268. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  269. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  270. writel(val, &lp->eth_regs->miimwtd);
  271. }
  272. /* Ethernet Rx DMA interrupt */
  273. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  274. {
  275. struct net_device *dev = dev_id;
  276. struct korina_private *lp = netdev_priv(dev);
  277. u32 dmas, dmasm;
  278. irqreturn_t retval;
  279. dmas = readl(&lp->rx_dma_regs->dmas);
  280. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  281. dmasm = readl(&lp->rx_dma_regs->dmasm);
  282. writel(dmasm | (DMA_STAT_DONE |
  283. DMA_STAT_HALT | DMA_STAT_ERR),
  284. &lp->rx_dma_regs->dmasm);
  285. napi_schedule(&lp->napi);
  286. if (dmas & DMA_STAT_ERR)
  287. printk(KERN_ERR "%s: DMA error\n", dev->name);
  288. retval = IRQ_HANDLED;
  289. } else
  290. retval = IRQ_NONE;
  291. return retval;
  292. }
  293. static int korina_rx(struct net_device *dev, int limit)
  294. {
  295. struct korina_private *lp = netdev_priv(dev);
  296. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  297. struct sk_buff *skb, *skb_new;
  298. u8 *pkt_buf;
  299. u32 devcs, pkt_len, dmas;
  300. int count;
  301. dma_cache_inv((u32)rd, sizeof(*rd));
  302. for (count = 0; count < limit; count++) {
  303. skb = lp->rx_skb[lp->rx_next_done];
  304. skb_new = NULL;
  305. devcs = rd->devcs;
  306. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  307. break;
  308. /* Update statistics counters */
  309. if (devcs & ETH_RX_CRC)
  310. dev->stats.rx_crc_errors++;
  311. if (devcs & ETH_RX_LOR)
  312. dev->stats.rx_length_errors++;
  313. if (devcs & ETH_RX_LE)
  314. dev->stats.rx_length_errors++;
  315. if (devcs & ETH_RX_OVR)
  316. dev->stats.rx_over_errors++;
  317. if (devcs & ETH_RX_CV)
  318. dev->stats.rx_frame_errors++;
  319. if (devcs & ETH_RX_CES)
  320. dev->stats.rx_length_errors++;
  321. if (devcs & ETH_RX_MP)
  322. dev->stats.multicast++;
  323. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  324. /* check that this is a whole packet
  325. * WARNING: DMA_FD bit incorrectly set
  326. * in Rc32434 (errata ref #077) */
  327. dev->stats.rx_errors++;
  328. dev->stats.rx_dropped++;
  329. } else if ((devcs & ETH_RX_ROK)) {
  330. pkt_len = RCVPKT_LENGTH(devcs);
  331. /* must be the (first and) last
  332. * descriptor then */
  333. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  334. /* invalidate the cache */
  335. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  336. /* Malloc up new buffer. */
  337. skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  338. if (!skb_new)
  339. break;
  340. /* Do not count the CRC */
  341. skb_put(skb, pkt_len - 4);
  342. skb->protocol = eth_type_trans(skb, dev);
  343. /* Pass the packet to upper layers */
  344. netif_receive_skb(skb);
  345. dev->stats.rx_packets++;
  346. dev->stats.rx_bytes += pkt_len;
  347. /* Update the mcast stats */
  348. if (devcs & ETH_RX_MP)
  349. dev->stats.multicast++;
  350. lp->rx_skb[lp->rx_next_done] = skb_new;
  351. }
  352. rd->devcs = 0;
  353. /* Restore descriptor's curr_addr */
  354. if (skb_new)
  355. rd->ca = CPHYSADDR(skb_new->data);
  356. else
  357. rd->ca = CPHYSADDR(skb->data);
  358. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  359. DMA_DESC_COD | DMA_DESC_IOD;
  360. lp->rd_ring[(lp->rx_next_done - 1) &
  361. KORINA_RDS_MASK].control &=
  362. ~DMA_DESC_COD;
  363. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  364. dma_cache_wback((u32)rd, sizeof(*rd));
  365. rd = &lp->rd_ring[lp->rx_next_done];
  366. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  367. }
  368. dmas = readl(&lp->rx_dma_regs->dmas);
  369. if (dmas & DMA_STAT_HALT) {
  370. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  371. &lp->rx_dma_regs->dmas);
  372. lp->dma_halt_cnt++;
  373. rd->devcs = 0;
  374. skb = lp->rx_skb[lp->rx_next_done];
  375. rd->ca = CPHYSADDR(skb->data);
  376. dma_cache_wback((u32)rd, sizeof(*rd));
  377. korina_chain_rx(lp, rd);
  378. }
  379. return count;
  380. }
  381. static int korina_poll(struct napi_struct *napi, int budget)
  382. {
  383. struct korina_private *lp =
  384. container_of(napi, struct korina_private, napi);
  385. struct net_device *dev = lp->dev;
  386. int work_done;
  387. work_done = korina_rx(dev, budget);
  388. if (work_done < budget) {
  389. napi_complete(napi);
  390. writel(readl(&lp->rx_dma_regs->dmasm) &
  391. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  392. &lp->rx_dma_regs->dmasm);
  393. }
  394. return work_done;
  395. }
  396. /*
  397. * Set or clear the multicast filter for this adaptor.
  398. */
  399. static void korina_multicast_list(struct net_device *dev)
  400. {
  401. struct korina_private *lp = netdev_priv(dev);
  402. unsigned long flags;
  403. struct dev_mc_list *dmi;
  404. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  405. int i;
  406. /* Set promiscuous mode */
  407. if (dev->flags & IFF_PROMISC)
  408. recognise |= ETH_ARC_PRO;
  409. else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
  410. /* All multicast and broadcast */
  411. recognise |= ETH_ARC_AM;
  412. /* Build the hash table */
  413. if (netdev_mc_count(dev) > 4) {
  414. u16 hash_table[4];
  415. u32 crc;
  416. for (i = 0; i < 4; i++)
  417. hash_table[i] = 0;
  418. netdev_for_each_mc_addr(dmi, dev) {
  419. char *addrs = dmi->dmi_addr;
  420. if (!(*addrs & 1))
  421. continue;
  422. crc = ether_crc_le(6, addrs);
  423. crc >>= 26;
  424. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  425. }
  426. /* Accept filtered multicast */
  427. recognise |= ETH_ARC_AFM;
  428. /* Fill the MAC hash tables with their values */
  429. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  430. &lp->eth_regs->ethhash0);
  431. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  432. &lp->eth_regs->ethhash1);
  433. }
  434. spin_lock_irqsave(&lp->lock, flags);
  435. writel(recognise, &lp->eth_regs->etharc);
  436. spin_unlock_irqrestore(&lp->lock, flags);
  437. }
  438. static void korina_tx(struct net_device *dev)
  439. {
  440. struct korina_private *lp = netdev_priv(dev);
  441. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  442. u32 devcs;
  443. u32 dmas;
  444. spin_lock(&lp->lock);
  445. /* Process all desc that are done */
  446. while (IS_DMA_FINISHED(td->control)) {
  447. if (lp->tx_full == 1) {
  448. netif_wake_queue(dev);
  449. lp->tx_full = 0;
  450. }
  451. devcs = lp->td_ring[lp->tx_next_done].devcs;
  452. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  453. (ETH_TX_FD | ETH_TX_LD)) {
  454. dev->stats.tx_errors++;
  455. dev->stats.tx_dropped++;
  456. /* Should never happen */
  457. printk(KERN_ERR "%s: split tx ignored\n",
  458. dev->name);
  459. } else if (devcs & ETH_TX_TOK) {
  460. dev->stats.tx_packets++;
  461. dev->stats.tx_bytes +=
  462. lp->tx_skb[lp->tx_next_done]->len;
  463. } else {
  464. dev->stats.tx_errors++;
  465. dev->stats.tx_dropped++;
  466. /* Underflow */
  467. if (devcs & ETH_TX_UND)
  468. dev->stats.tx_fifo_errors++;
  469. /* Oversized frame */
  470. if (devcs & ETH_TX_OF)
  471. dev->stats.tx_aborted_errors++;
  472. /* Excessive deferrals */
  473. if (devcs & ETH_TX_ED)
  474. dev->stats.tx_carrier_errors++;
  475. /* Collisions: medium busy */
  476. if (devcs & ETH_TX_EC)
  477. dev->stats.collisions++;
  478. /* Late collision */
  479. if (devcs & ETH_TX_LC)
  480. dev->stats.tx_window_errors++;
  481. }
  482. /* We must always free the original skb */
  483. if (lp->tx_skb[lp->tx_next_done]) {
  484. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  485. lp->tx_skb[lp->tx_next_done] = NULL;
  486. }
  487. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  488. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  489. lp->td_ring[lp->tx_next_done].link = 0;
  490. lp->td_ring[lp->tx_next_done].ca = 0;
  491. lp->tx_count--;
  492. /* Go on to next transmission */
  493. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  494. td = &lp->td_ring[lp->tx_next_done];
  495. }
  496. /* Clear the DMA status register */
  497. dmas = readl(&lp->tx_dma_regs->dmas);
  498. writel(~dmas, &lp->tx_dma_regs->dmas);
  499. writel(readl(&lp->tx_dma_regs->dmasm) &
  500. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  501. &lp->tx_dma_regs->dmasm);
  502. spin_unlock(&lp->lock);
  503. }
  504. static irqreturn_t
  505. korina_tx_dma_interrupt(int irq, void *dev_id)
  506. {
  507. struct net_device *dev = dev_id;
  508. struct korina_private *lp = netdev_priv(dev);
  509. u32 dmas, dmasm;
  510. irqreturn_t retval;
  511. dmas = readl(&lp->tx_dma_regs->dmas);
  512. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  513. dmasm = readl(&lp->tx_dma_regs->dmasm);
  514. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  515. &lp->tx_dma_regs->dmasm);
  516. korina_tx(dev);
  517. if (lp->tx_chain_status == desc_filled &&
  518. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  519. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  520. &(lp->tx_dma_regs->dmandptr));
  521. lp->tx_chain_status = desc_empty;
  522. lp->tx_chain_head = lp->tx_chain_tail;
  523. dev->trans_start = jiffies;
  524. }
  525. if (dmas & DMA_STAT_ERR)
  526. printk(KERN_ERR "%s: DMA error\n", dev->name);
  527. retval = IRQ_HANDLED;
  528. } else
  529. retval = IRQ_NONE;
  530. return retval;
  531. }
  532. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  533. {
  534. struct korina_private *lp = netdev_priv(dev);
  535. mii_check_media(&lp->mii_if, 0, init_media);
  536. if (lp->mii_if.full_duplex)
  537. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  538. &lp->eth_regs->ethmac2);
  539. else
  540. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  541. &lp->eth_regs->ethmac2);
  542. }
  543. static void korina_poll_media(unsigned long data)
  544. {
  545. struct net_device *dev = (struct net_device *) data;
  546. struct korina_private *lp = netdev_priv(dev);
  547. korina_check_media(dev, 0);
  548. mod_timer(&lp->media_check_timer, jiffies + HZ);
  549. }
  550. static void korina_set_carrier(struct mii_if_info *mii)
  551. {
  552. if (mii->force_media) {
  553. /* autoneg is off: Link is always assumed to be up */
  554. if (!netif_carrier_ok(mii->dev))
  555. netif_carrier_on(mii->dev);
  556. } else /* Let MMI library update carrier status */
  557. korina_check_media(mii->dev, 0);
  558. }
  559. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  560. {
  561. struct korina_private *lp = netdev_priv(dev);
  562. struct mii_ioctl_data *data = if_mii(rq);
  563. int rc;
  564. if (!netif_running(dev))
  565. return -EINVAL;
  566. spin_lock_irq(&lp->lock);
  567. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  568. spin_unlock_irq(&lp->lock);
  569. korina_set_carrier(&lp->mii_if);
  570. return rc;
  571. }
  572. /* ethtool helpers */
  573. static void netdev_get_drvinfo(struct net_device *dev,
  574. struct ethtool_drvinfo *info)
  575. {
  576. struct korina_private *lp = netdev_priv(dev);
  577. strcpy(info->driver, DRV_NAME);
  578. strcpy(info->version, DRV_VERSION);
  579. strcpy(info->bus_info, lp->dev->name);
  580. }
  581. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  582. {
  583. struct korina_private *lp = netdev_priv(dev);
  584. int rc;
  585. spin_lock_irq(&lp->lock);
  586. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  587. spin_unlock_irq(&lp->lock);
  588. return rc;
  589. }
  590. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  591. {
  592. struct korina_private *lp = netdev_priv(dev);
  593. int rc;
  594. spin_lock_irq(&lp->lock);
  595. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  596. spin_unlock_irq(&lp->lock);
  597. korina_set_carrier(&lp->mii_if);
  598. return rc;
  599. }
  600. static u32 netdev_get_link(struct net_device *dev)
  601. {
  602. struct korina_private *lp = netdev_priv(dev);
  603. return mii_link_ok(&lp->mii_if);
  604. }
  605. static const struct ethtool_ops netdev_ethtool_ops = {
  606. .get_drvinfo = netdev_get_drvinfo,
  607. .get_settings = netdev_get_settings,
  608. .set_settings = netdev_set_settings,
  609. .get_link = netdev_get_link,
  610. };
  611. static int korina_alloc_ring(struct net_device *dev)
  612. {
  613. struct korina_private *lp = netdev_priv(dev);
  614. struct sk_buff *skb;
  615. int i;
  616. /* Initialize the transmit descriptors */
  617. for (i = 0; i < KORINA_NUM_TDS; i++) {
  618. lp->td_ring[i].control = DMA_DESC_IOF;
  619. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  620. lp->td_ring[i].ca = 0;
  621. lp->td_ring[i].link = 0;
  622. }
  623. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  624. lp->tx_full = lp->tx_count = 0;
  625. lp->tx_chain_status = desc_empty;
  626. /* Initialize the receive descriptors */
  627. for (i = 0; i < KORINA_NUM_RDS; i++) {
  628. skb = dev_alloc_skb(KORINA_RBSIZE + 2);
  629. if (!skb)
  630. return -ENOMEM;
  631. skb_reserve(skb, 2);
  632. lp->rx_skb[i] = skb;
  633. lp->rd_ring[i].control = DMA_DESC_IOD |
  634. DMA_COUNT(KORINA_RBSIZE);
  635. lp->rd_ring[i].devcs = 0;
  636. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  637. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  638. }
  639. /* loop back receive descriptors, so the last
  640. * descriptor points to the first one */
  641. lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
  642. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  643. lp->rx_next_done = 0;
  644. lp->rx_chain_head = 0;
  645. lp->rx_chain_tail = 0;
  646. lp->rx_chain_status = desc_empty;
  647. return 0;
  648. }
  649. static void korina_free_ring(struct net_device *dev)
  650. {
  651. struct korina_private *lp = netdev_priv(dev);
  652. int i;
  653. for (i = 0; i < KORINA_NUM_RDS; i++) {
  654. lp->rd_ring[i].control = 0;
  655. if (lp->rx_skb[i])
  656. dev_kfree_skb_any(lp->rx_skb[i]);
  657. lp->rx_skb[i] = NULL;
  658. }
  659. for (i = 0; i < KORINA_NUM_TDS; i++) {
  660. lp->td_ring[i].control = 0;
  661. if (lp->tx_skb[i])
  662. dev_kfree_skb_any(lp->tx_skb[i]);
  663. lp->tx_skb[i] = NULL;
  664. }
  665. }
  666. /*
  667. * Initialize the RC32434 ethernet controller.
  668. */
  669. static int korina_init(struct net_device *dev)
  670. {
  671. struct korina_private *lp = netdev_priv(dev);
  672. /* Disable DMA */
  673. korina_abort_tx(dev);
  674. korina_abort_rx(dev);
  675. /* reset ethernet logic */
  676. writel(0, &lp->eth_regs->ethintfc);
  677. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  678. dev->trans_start = jiffies;
  679. /* Enable Ethernet Interface */
  680. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  681. /* Allocate rings */
  682. if (korina_alloc_ring(dev)) {
  683. printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
  684. korina_free_ring(dev);
  685. return -ENOMEM;
  686. }
  687. writel(0, &lp->rx_dma_regs->dmas);
  688. /* Start Rx DMA */
  689. korina_start_rx(lp, &lp->rd_ring[0]);
  690. writel(readl(&lp->tx_dma_regs->dmasm) &
  691. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  692. &lp->tx_dma_regs->dmasm);
  693. writel(readl(&lp->rx_dma_regs->dmasm) &
  694. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  695. &lp->rx_dma_regs->dmasm);
  696. /* Accept only packets destined for this Ethernet device address */
  697. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  698. /* Set all Ether station address registers to their initial values */
  699. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  700. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  701. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  702. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  703. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  704. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  705. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  706. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  707. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  708. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  709. &lp->eth_regs->ethmac2);
  710. /* Back to back inter-packet-gap */
  711. writel(0x15, &lp->eth_regs->ethipgt);
  712. /* Non - Back to back inter-packet-gap */
  713. writel(0x12, &lp->eth_regs->ethipgr);
  714. /* Management Clock Prescaler Divisor
  715. * Clock independent setting */
  716. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  717. &lp->eth_regs->ethmcp);
  718. /* don't transmit until fifo contains 48b */
  719. writel(48, &lp->eth_regs->ethfifott);
  720. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  721. napi_enable(&lp->napi);
  722. netif_start_queue(dev);
  723. return 0;
  724. }
  725. /*
  726. * Restart the RC32434 ethernet controller.
  727. * FIXME: check the return status where we call it
  728. */
  729. static int korina_restart(struct net_device *dev)
  730. {
  731. struct korina_private *lp = netdev_priv(dev);
  732. int ret;
  733. /*
  734. * Disable interrupts
  735. */
  736. disable_irq(lp->rx_irq);
  737. disable_irq(lp->tx_irq);
  738. disable_irq(lp->ovr_irq);
  739. disable_irq(lp->und_irq);
  740. writel(readl(&lp->tx_dma_regs->dmasm) |
  741. DMA_STAT_FINI | DMA_STAT_ERR,
  742. &lp->tx_dma_regs->dmasm);
  743. writel(readl(&lp->rx_dma_regs->dmasm) |
  744. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  745. &lp->rx_dma_regs->dmasm);
  746. korina_free_ring(dev);
  747. napi_disable(&lp->napi);
  748. ret = korina_init(dev);
  749. if (ret < 0) {
  750. printk(KERN_ERR "%s: cannot restart device\n", dev->name);
  751. return ret;
  752. }
  753. korina_multicast_list(dev);
  754. enable_irq(lp->und_irq);
  755. enable_irq(lp->ovr_irq);
  756. enable_irq(lp->tx_irq);
  757. enable_irq(lp->rx_irq);
  758. return ret;
  759. }
  760. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  761. {
  762. struct korina_private *lp = netdev_priv(dev);
  763. netif_stop_queue(dev);
  764. writel(value, &lp->eth_regs->ethintfc);
  765. korina_restart(dev);
  766. }
  767. /* Ethernet Tx Underflow interrupt */
  768. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  769. {
  770. struct net_device *dev = dev_id;
  771. struct korina_private *lp = netdev_priv(dev);
  772. unsigned int und;
  773. spin_lock(&lp->lock);
  774. und = readl(&lp->eth_regs->ethintfc);
  775. if (und & ETH_INT_FC_UND)
  776. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  777. spin_unlock(&lp->lock);
  778. return IRQ_HANDLED;
  779. }
  780. static void korina_tx_timeout(struct net_device *dev)
  781. {
  782. struct korina_private *lp = netdev_priv(dev);
  783. unsigned long flags;
  784. spin_lock_irqsave(&lp->lock, flags);
  785. korina_restart(dev);
  786. spin_unlock_irqrestore(&lp->lock, flags);
  787. }
  788. /* Ethernet Rx Overflow interrupt */
  789. static irqreturn_t
  790. korina_ovr_interrupt(int irq, void *dev_id)
  791. {
  792. struct net_device *dev = dev_id;
  793. struct korina_private *lp = netdev_priv(dev);
  794. unsigned int ovr;
  795. spin_lock(&lp->lock);
  796. ovr = readl(&lp->eth_regs->ethintfc);
  797. if (ovr & ETH_INT_FC_OVR)
  798. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  799. spin_unlock(&lp->lock);
  800. return IRQ_HANDLED;
  801. }
  802. #ifdef CONFIG_NET_POLL_CONTROLLER
  803. static void korina_poll_controller(struct net_device *dev)
  804. {
  805. disable_irq(dev->irq);
  806. korina_tx_dma_interrupt(dev->irq, dev);
  807. enable_irq(dev->irq);
  808. }
  809. #endif
  810. static int korina_open(struct net_device *dev)
  811. {
  812. struct korina_private *lp = netdev_priv(dev);
  813. int ret;
  814. /* Initialize */
  815. ret = korina_init(dev);
  816. if (ret < 0) {
  817. printk(KERN_ERR "%s: cannot open device\n", dev->name);
  818. goto out;
  819. }
  820. /* Install the interrupt handler
  821. * that handles the Done Finished
  822. * Ovr and Und Events */
  823. ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
  824. IRQF_DISABLED, "Korina ethernet Rx", dev);
  825. if (ret < 0) {
  826. printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
  827. dev->name, lp->rx_irq);
  828. goto err_release;
  829. }
  830. ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
  831. IRQF_DISABLED, "Korina ethernet Tx", dev);
  832. if (ret < 0) {
  833. printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
  834. dev->name, lp->tx_irq);
  835. goto err_free_rx_irq;
  836. }
  837. /* Install handler for overrun error. */
  838. ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
  839. IRQF_DISABLED, "Ethernet Overflow", dev);
  840. if (ret < 0) {
  841. printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
  842. dev->name, lp->ovr_irq);
  843. goto err_free_tx_irq;
  844. }
  845. /* Install handler for underflow error. */
  846. ret = request_irq(lp->und_irq, korina_und_interrupt,
  847. IRQF_DISABLED, "Ethernet Underflow", dev);
  848. if (ret < 0) {
  849. printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
  850. dev->name, lp->und_irq);
  851. goto err_free_ovr_irq;
  852. }
  853. mod_timer(&lp->media_check_timer, jiffies + 1);
  854. out:
  855. return ret;
  856. err_free_ovr_irq:
  857. free_irq(lp->ovr_irq, dev);
  858. err_free_tx_irq:
  859. free_irq(lp->tx_irq, dev);
  860. err_free_rx_irq:
  861. free_irq(lp->rx_irq, dev);
  862. err_release:
  863. korina_free_ring(dev);
  864. goto out;
  865. }
  866. static int korina_close(struct net_device *dev)
  867. {
  868. struct korina_private *lp = netdev_priv(dev);
  869. u32 tmp;
  870. del_timer(&lp->media_check_timer);
  871. /* Disable interrupts */
  872. disable_irq(lp->rx_irq);
  873. disable_irq(lp->tx_irq);
  874. disable_irq(lp->ovr_irq);
  875. disable_irq(lp->und_irq);
  876. korina_abort_tx(dev);
  877. tmp = readl(&lp->tx_dma_regs->dmasm);
  878. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  879. writel(tmp, &lp->tx_dma_regs->dmasm);
  880. korina_abort_rx(dev);
  881. tmp = readl(&lp->rx_dma_regs->dmasm);
  882. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  883. writel(tmp, &lp->rx_dma_regs->dmasm);
  884. korina_free_ring(dev);
  885. napi_disable(&lp->napi);
  886. free_irq(lp->rx_irq, dev);
  887. free_irq(lp->tx_irq, dev);
  888. free_irq(lp->ovr_irq, dev);
  889. free_irq(lp->und_irq, dev);
  890. return 0;
  891. }
  892. static const struct net_device_ops korina_netdev_ops = {
  893. .ndo_open = korina_open,
  894. .ndo_stop = korina_close,
  895. .ndo_start_xmit = korina_send_packet,
  896. .ndo_set_multicast_list = korina_multicast_list,
  897. .ndo_tx_timeout = korina_tx_timeout,
  898. .ndo_do_ioctl = korina_ioctl,
  899. .ndo_change_mtu = eth_change_mtu,
  900. .ndo_validate_addr = eth_validate_addr,
  901. .ndo_set_mac_address = eth_mac_addr,
  902. #ifdef CONFIG_NET_POLL_CONTROLLER
  903. .ndo_poll_controller = korina_poll_controller,
  904. #endif
  905. };
  906. static int korina_probe(struct platform_device *pdev)
  907. {
  908. struct korina_device *bif = platform_get_drvdata(pdev);
  909. struct korina_private *lp;
  910. struct net_device *dev;
  911. struct resource *r;
  912. int rc;
  913. dev = alloc_etherdev(sizeof(struct korina_private));
  914. if (!dev) {
  915. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  916. return -ENOMEM;
  917. }
  918. SET_NETDEV_DEV(dev, &pdev->dev);
  919. lp = netdev_priv(dev);
  920. bif->dev = dev;
  921. memcpy(dev->dev_addr, bif->mac, 6);
  922. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  923. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  924. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  925. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  926. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  927. dev->base_addr = r->start;
  928. lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
  929. if (!lp->eth_regs) {
  930. printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
  931. rc = -ENXIO;
  932. goto probe_err_out;
  933. }
  934. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  935. lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  936. if (!lp->rx_dma_regs) {
  937. printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
  938. rc = -ENXIO;
  939. goto probe_err_dma_rx;
  940. }
  941. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  942. lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  943. if (!lp->tx_dma_regs) {
  944. printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
  945. rc = -ENXIO;
  946. goto probe_err_dma_tx;
  947. }
  948. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  949. if (!lp->td_ring) {
  950. printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
  951. rc = -ENXIO;
  952. goto probe_err_td_ring;
  953. }
  954. dma_cache_inv((unsigned long)(lp->td_ring),
  955. TD_RING_SIZE + RD_RING_SIZE);
  956. /* now convert TD_RING pointer to KSEG1 */
  957. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  958. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  959. spin_lock_init(&lp->lock);
  960. /* just use the rx dma irq */
  961. dev->irq = lp->rx_irq;
  962. lp->dev = dev;
  963. dev->netdev_ops = &korina_netdev_ops;
  964. dev->ethtool_ops = &netdev_ethtool_ops;
  965. dev->watchdog_timeo = TX_TIMEOUT;
  966. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  967. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  968. lp->mii_if.dev = dev;
  969. lp->mii_if.mdio_read = mdio_read;
  970. lp->mii_if.mdio_write = mdio_write;
  971. lp->mii_if.phy_id = lp->phy_addr;
  972. lp->mii_if.phy_id_mask = 0x1f;
  973. lp->mii_if.reg_num_mask = 0x1f;
  974. rc = register_netdev(dev);
  975. if (rc < 0) {
  976. printk(KERN_ERR DRV_NAME
  977. ": cannot register net device: %d\n", rc);
  978. goto probe_err_register;
  979. }
  980. setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
  981. printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
  982. dev->name);
  983. out:
  984. return rc;
  985. probe_err_register:
  986. kfree(lp->td_ring);
  987. probe_err_td_ring:
  988. iounmap(lp->tx_dma_regs);
  989. probe_err_dma_tx:
  990. iounmap(lp->rx_dma_regs);
  991. probe_err_dma_rx:
  992. iounmap(lp->eth_regs);
  993. probe_err_out:
  994. free_netdev(dev);
  995. goto out;
  996. }
  997. static int korina_remove(struct platform_device *pdev)
  998. {
  999. struct korina_device *bif = platform_get_drvdata(pdev);
  1000. struct korina_private *lp = netdev_priv(bif->dev);
  1001. iounmap(lp->eth_regs);
  1002. iounmap(lp->rx_dma_regs);
  1003. iounmap(lp->tx_dma_regs);
  1004. platform_set_drvdata(pdev, NULL);
  1005. unregister_netdev(bif->dev);
  1006. free_netdev(bif->dev);
  1007. return 0;
  1008. }
  1009. static struct platform_driver korina_driver = {
  1010. .driver.name = "korina",
  1011. .probe = korina_probe,
  1012. .remove = korina_remove,
  1013. };
  1014. static int __init korina_init_module(void)
  1015. {
  1016. return platform_driver_register(&korina_driver);
  1017. }
  1018. static void korina_cleanup_module(void)
  1019. {
  1020. return platform_driver_unregister(&korina_driver);
  1021. }
  1022. module_init(korina_init_module);
  1023. module_exit(korina_cleanup_module);
  1024. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1025. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1026. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1027. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1028. MODULE_LICENSE("GPL");