dm9000.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/dm9000.h>
  32. #include <linux/delay.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/irq.h>
  35. #include <asm/delay.h>
  36. #include <asm/irq.h>
  37. #include <asm/io.h>
  38. #include "dm9000.h"
  39. /* Board/System/Debug information/definition ---------------- */
  40. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  41. #define CARDNAME "dm9000"
  42. #define DRV_VERSION "1.31"
  43. /*
  44. * Transmit timeout, default 5 seconds.
  45. */
  46. static int watchdog = 5000;
  47. module_param(watchdog, int, 0400);
  48. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  49. /* DM9000 register address locking.
  50. *
  51. * The DM9000 uses an address register to control where data written
  52. * to the data register goes. This means that the address register
  53. * must be preserved over interrupts or similar calls.
  54. *
  55. * During interrupt and other critical calls, a spinlock is used to
  56. * protect the system, but the calls themselves save the address
  57. * in the address register in case they are interrupting another
  58. * access to the device.
  59. *
  60. * For general accesses a lock is provided so that calls which are
  61. * allowed to sleep are serialised so that the address register does
  62. * not need to be saved. This lock also serves to serialise access
  63. * to the EEPROM and PHY access registers which are shared between
  64. * these two devices.
  65. */
  66. /* The driver supports the original DM9000E, and now the two newer
  67. * devices, DM9000A and DM9000B.
  68. */
  69. enum dm9000_type {
  70. TYPE_DM9000E, /* original DM9000 */
  71. TYPE_DM9000A,
  72. TYPE_DM9000B
  73. };
  74. /* Structure/enum declaration ------------------------------- */
  75. typedef struct board_info {
  76. void __iomem *io_addr; /* Register I/O base address */
  77. void __iomem *io_data; /* Data I/O address */
  78. u16 irq; /* IRQ */
  79. u16 tx_pkt_cnt;
  80. u16 queue_pkt_len;
  81. u16 queue_start_addr;
  82. u16 queue_ip_summed;
  83. u16 dbug_cnt;
  84. u8 io_mode; /* 0:word, 2:byte */
  85. u8 phy_addr;
  86. u8 imr_all;
  87. unsigned int flags;
  88. unsigned int in_suspend :1;
  89. unsigned int wake_supported :1;
  90. int debug_level;
  91. enum dm9000_type type;
  92. void (*inblk)(void __iomem *port, void *data, int length);
  93. void (*outblk)(void __iomem *port, void *data, int length);
  94. void (*dumpblk)(void __iomem *port, int length);
  95. struct device *dev; /* parent device */
  96. struct resource *addr_res; /* resources found */
  97. struct resource *data_res;
  98. struct resource *addr_req; /* resources requested */
  99. struct resource *data_req;
  100. struct resource *irq_res;
  101. int irq_wake;
  102. struct mutex addr_lock; /* phy and eeprom access lock */
  103. struct delayed_work phy_poll;
  104. struct net_device *ndev;
  105. spinlock_t lock;
  106. struct mii_if_info mii;
  107. u32 msg_enable;
  108. u32 wake_state;
  109. int rx_csum;
  110. int can_csum;
  111. int ip_summed;
  112. } board_info_t;
  113. /* debug code */
  114. #define dm9000_dbg(db, lev, msg...) do { \
  115. if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
  116. (lev) < db->debug_level) { \
  117. dev_dbg(db->dev, msg); \
  118. } \
  119. } while (0)
  120. static inline board_info_t *to_dm9000_board(struct net_device *dev)
  121. {
  122. return netdev_priv(dev);
  123. }
  124. /* DM9000 network board routine ---------------------------- */
  125. static void
  126. dm9000_reset(board_info_t * db)
  127. {
  128. dev_dbg(db->dev, "resetting device\n");
  129. /* RESET device */
  130. writeb(DM9000_NCR, db->io_addr);
  131. udelay(200);
  132. writeb(NCR_RST, db->io_data);
  133. udelay(200);
  134. }
  135. /*
  136. * Read a byte from I/O port
  137. */
  138. static u8
  139. ior(board_info_t * db, int reg)
  140. {
  141. writeb(reg, db->io_addr);
  142. return readb(db->io_data);
  143. }
  144. /*
  145. * Write a byte to I/O port
  146. */
  147. static void
  148. iow(board_info_t * db, int reg, int value)
  149. {
  150. writeb(reg, db->io_addr);
  151. writeb(value, db->io_data);
  152. }
  153. /* routines for sending block to chip */
  154. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  155. {
  156. writesb(reg, data, count);
  157. }
  158. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  159. {
  160. writesw(reg, data, (count+1) >> 1);
  161. }
  162. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  163. {
  164. writesl(reg, data, (count+3) >> 2);
  165. }
  166. /* input block from chip to memory */
  167. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  168. {
  169. readsb(reg, data, count);
  170. }
  171. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  172. {
  173. readsw(reg, data, (count+1) >> 1);
  174. }
  175. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  176. {
  177. readsl(reg, data, (count+3) >> 2);
  178. }
  179. /* dump block from chip to null */
  180. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  181. {
  182. int i;
  183. int tmp;
  184. for (i = 0; i < count; i++)
  185. tmp = readb(reg);
  186. }
  187. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  188. {
  189. int i;
  190. int tmp;
  191. count = (count + 1) >> 1;
  192. for (i = 0; i < count; i++)
  193. tmp = readw(reg);
  194. }
  195. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  196. {
  197. int i;
  198. int tmp;
  199. count = (count + 3) >> 2;
  200. for (i = 0; i < count; i++)
  201. tmp = readl(reg);
  202. }
  203. /* dm9000_set_io
  204. *
  205. * select the specified set of io routines to use with the
  206. * device
  207. */
  208. static void dm9000_set_io(struct board_info *db, int byte_width)
  209. {
  210. /* use the size of the data resource to work out what IO
  211. * routines we want to use
  212. */
  213. switch (byte_width) {
  214. case 1:
  215. db->dumpblk = dm9000_dumpblk_8bit;
  216. db->outblk = dm9000_outblk_8bit;
  217. db->inblk = dm9000_inblk_8bit;
  218. break;
  219. case 3:
  220. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  221. case 2:
  222. db->dumpblk = dm9000_dumpblk_16bit;
  223. db->outblk = dm9000_outblk_16bit;
  224. db->inblk = dm9000_inblk_16bit;
  225. break;
  226. case 4:
  227. default:
  228. db->dumpblk = dm9000_dumpblk_32bit;
  229. db->outblk = dm9000_outblk_32bit;
  230. db->inblk = dm9000_inblk_32bit;
  231. break;
  232. }
  233. }
  234. static void dm9000_schedule_poll(board_info_t *db)
  235. {
  236. if (db->type == TYPE_DM9000E)
  237. schedule_delayed_work(&db->phy_poll, HZ * 2);
  238. }
  239. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  240. {
  241. board_info_t *dm = to_dm9000_board(dev);
  242. if (!netif_running(dev))
  243. return -EINVAL;
  244. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  245. }
  246. static unsigned int
  247. dm9000_read_locked(board_info_t *db, int reg)
  248. {
  249. unsigned long flags;
  250. unsigned int ret;
  251. spin_lock_irqsave(&db->lock, flags);
  252. ret = ior(db, reg);
  253. spin_unlock_irqrestore(&db->lock, flags);
  254. return ret;
  255. }
  256. static int dm9000_wait_eeprom(board_info_t *db)
  257. {
  258. unsigned int status;
  259. int timeout = 8; /* wait max 8msec */
  260. /* The DM9000 data sheets say we should be able to
  261. * poll the ERRE bit in EPCR to wait for the EEPROM
  262. * operation. From testing several chips, this bit
  263. * does not seem to work.
  264. *
  265. * We attempt to use the bit, but fall back to the
  266. * timeout (which is why we do not return an error
  267. * on expiry) to say that the EEPROM operation has
  268. * completed.
  269. */
  270. while (1) {
  271. status = dm9000_read_locked(db, DM9000_EPCR);
  272. if ((status & EPCR_ERRE) == 0)
  273. break;
  274. msleep(1);
  275. if (timeout-- < 0) {
  276. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  277. break;
  278. }
  279. }
  280. return 0;
  281. }
  282. /*
  283. * Read a word data from EEPROM
  284. */
  285. static void
  286. dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
  287. {
  288. unsigned long flags;
  289. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  290. to[0] = 0xff;
  291. to[1] = 0xff;
  292. return;
  293. }
  294. mutex_lock(&db->addr_lock);
  295. spin_lock_irqsave(&db->lock, flags);
  296. iow(db, DM9000_EPAR, offset);
  297. iow(db, DM9000_EPCR, EPCR_ERPRR);
  298. spin_unlock_irqrestore(&db->lock, flags);
  299. dm9000_wait_eeprom(db);
  300. /* delay for at-least 150uS */
  301. msleep(1);
  302. spin_lock_irqsave(&db->lock, flags);
  303. iow(db, DM9000_EPCR, 0x0);
  304. to[0] = ior(db, DM9000_EPDRL);
  305. to[1] = ior(db, DM9000_EPDRH);
  306. spin_unlock_irqrestore(&db->lock, flags);
  307. mutex_unlock(&db->addr_lock);
  308. }
  309. /*
  310. * Write a word data to SROM
  311. */
  312. static void
  313. dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
  314. {
  315. unsigned long flags;
  316. if (db->flags & DM9000_PLATF_NO_EEPROM)
  317. return;
  318. mutex_lock(&db->addr_lock);
  319. spin_lock_irqsave(&db->lock, flags);
  320. iow(db, DM9000_EPAR, offset);
  321. iow(db, DM9000_EPDRH, data[1]);
  322. iow(db, DM9000_EPDRL, data[0]);
  323. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  324. spin_unlock_irqrestore(&db->lock, flags);
  325. dm9000_wait_eeprom(db);
  326. mdelay(1); /* wait at least 150uS to clear */
  327. spin_lock_irqsave(&db->lock, flags);
  328. iow(db, DM9000_EPCR, 0);
  329. spin_unlock_irqrestore(&db->lock, flags);
  330. mutex_unlock(&db->addr_lock);
  331. }
  332. /* ethtool ops */
  333. static void dm9000_get_drvinfo(struct net_device *dev,
  334. struct ethtool_drvinfo *info)
  335. {
  336. board_info_t *dm = to_dm9000_board(dev);
  337. strcpy(info->driver, CARDNAME);
  338. strcpy(info->version, DRV_VERSION);
  339. strcpy(info->bus_info, to_platform_device(dm->dev)->name);
  340. }
  341. static u32 dm9000_get_msglevel(struct net_device *dev)
  342. {
  343. board_info_t *dm = to_dm9000_board(dev);
  344. return dm->msg_enable;
  345. }
  346. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  347. {
  348. board_info_t *dm = to_dm9000_board(dev);
  349. dm->msg_enable = value;
  350. }
  351. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  352. {
  353. board_info_t *dm = to_dm9000_board(dev);
  354. mii_ethtool_gset(&dm->mii, cmd);
  355. return 0;
  356. }
  357. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  358. {
  359. board_info_t *dm = to_dm9000_board(dev);
  360. return mii_ethtool_sset(&dm->mii, cmd);
  361. }
  362. static int dm9000_nway_reset(struct net_device *dev)
  363. {
  364. board_info_t *dm = to_dm9000_board(dev);
  365. return mii_nway_restart(&dm->mii);
  366. }
  367. static uint32_t dm9000_get_rx_csum(struct net_device *dev)
  368. {
  369. board_info_t *dm = to_dm9000_board(dev);
  370. return dm->rx_csum;
  371. }
  372. static int dm9000_set_rx_csum(struct net_device *dev, uint32_t data)
  373. {
  374. board_info_t *dm = to_dm9000_board(dev);
  375. unsigned long flags;
  376. if (dm->can_csum) {
  377. dm->rx_csum = data;
  378. spin_lock_irqsave(&dm->lock, flags);
  379. iow(dm, DM9000_RCSR, dm->rx_csum ? RCSR_CSUM : 0);
  380. spin_unlock_irqrestore(&dm->lock, flags);
  381. return 0;
  382. }
  383. return -EOPNOTSUPP;
  384. }
  385. static int dm9000_set_tx_csum(struct net_device *dev, uint32_t data)
  386. {
  387. board_info_t *dm = to_dm9000_board(dev);
  388. int ret = -EOPNOTSUPP;
  389. if (dm->can_csum)
  390. ret = ethtool_op_set_tx_csum(dev, data);
  391. return ret;
  392. }
  393. static u32 dm9000_get_link(struct net_device *dev)
  394. {
  395. board_info_t *dm = to_dm9000_board(dev);
  396. u32 ret;
  397. if (dm->flags & DM9000_PLATF_EXT_PHY)
  398. ret = mii_link_ok(&dm->mii);
  399. else
  400. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  401. return ret;
  402. }
  403. #define DM_EEPROM_MAGIC (0x444D394B)
  404. static int dm9000_get_eeprom_len(struct net_device *dev)
  405. {
  406. return 128;
  407. }
  408. static int dm9000_get_eeprom(struct net_device *dev,
  409. struct ethtool_eeprom *ee, u8 *data)
  410. {
  411. board_info_t *dm = to_dm9000_board(dev);
  412. int offset = ee->offset;
  413. int len = ee->len;
  414. int i;
  415. /* EEPROM access is aligned to two bytes */
  416. if ((len & 1) != 0 || (offset & 1) != 0)
  417. return -EINVAL;
  418. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  419. return -ENOENT;
  420. ee->magic = DM_EEPROM_MAGIC;
  421. for (i = 0; i < len; i += 2)
  422. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  423. return 0;
  424. }
  425. static int dm9000_set_eeprom(struct net_device *dev,
  426. struct ethtool_eeprom *ee, u8 *data)
  427. {
  428. board_info_t *dm = to_dm9000_board(dev);
  429. int offset = ee->offset;
  430. int len = ee->len;
  431. int i;
  432. /* EEPROM access is aligned to two bytes */
  433. if ((len & 1) != 0 || (offset & 1) != 0)
  434. return -EINVAL;
  435. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  436. return -ENOENT;
  437. if (ee->magic != DM_EEPROM_MAGIC)
  438. return -EINVAL;
  439. for (i = 0; i < len; i += 2)
  440. dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
  441. return 0;
  442. }
  443. static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  444. {
  445. board_info_t *dm = to_dm9000_board(dev);
  446. memset(w, 0, sizeof(struct ethtool_wolinfo));
  447. /* note, we could probably support wake-phy too */
  448. w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
  449. w->wolopts = dm->wake_state;
  450. }
  451. static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  452. {
  453. board_info_t *dm = to_dm9000_board(dev);
  454. unsigned long flags;
  455. u32 opts = w->wolopts;
  456. u32 wcr = 0;
  457. if (!dm->wake_supported)
  458. return -EOPNOTSUPP;
  459. if (opts & ~WAKE_MAGIC)
  460. return -EINVAL;
  461. if (opts & WAKE_MAGIC)
  462. wcr |= WCR_MAGICEN;
  463. mutex_lock(&dm->addr_lock);
  464. spin_lock_irqsave(&dm->lock, flags);
  465. iow(dm, DM9000_WCR, wcr);
  466. spin_unlock_irqrestore(&dm->lock, flags);
  467. mutex_unlock(&dm->addr_lock);
  468. if (dm->wake_state != opts) {
  469. /* change in wol state, update IRQ state */
  470. if (!dm->wake_state)
  471. set_irq_wake(dm->irq_wake, 1);
  472. else if (dm->wake_state & !opts)
  473. set_irq_wake(dm->irq_wake, 0);
  474. }
  475. dm->wake_state = opts;
  476. return 0;
  477. }
  478. static const struct ethtool_ops dm9000_ethtool_ops = {
  479. .get_drvinfo = dm9000_get_drvinfo,
  480. .get_settings = dm9000_get_settings,
  481. .set_settings = dm9000_set_settings,
  482. .get_msglevel = dm9000_get_msglevel,
  483. .set_msglevel = dm9000_set_msglevel,
  484. .nway_reset = dm9000_nway_reset,
  485. .get_link = dm9000_get_link,
  486. .get_wol = dm9000_get_wol,
  487. .set_wol = dm9000_set_wol,
  488. .get_eeprom_len = dm9000_get_eeprom_len,
  489. .get_eeprom = dm9000_get_eeprom,
  490. .set_eeprom = dm9000_set_eeprom,
  491. .get_rx_csum = dm9000_get_rx_csum,
  492. .set_rx_csum = dm9000_set_rx_csum,
  493. .get_tx_csum = ethtool_op_get_tx_csum,
  494. .set_tx_csum = dm9000_set_tx_csum,
  495. };
  496. static void dm9000_show_carrier(board_info_t *db,
  497. unsigned carrier, unsigned nsr)
  498. {
  499. struct net_device *ndev = db->ndev;
  500. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  501. if (carrier)
  502. dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
  503. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  504. (ncr & NCR_FDX) ? "full" : "half");
  505. else
  506. dev_info(db->dev, "%s: link down\n", ndev->name);
  507. }
  508. static void
  509. dm9000_poll_work(struct work_struct *w)
  510. {
  511. struct delayed_work *dw = to_delayed_work(w);
  512. board_info_t *db = container_of(dw, board_info_t, phy_poll);
  513. struct net_device *ndev = db->ndev;
  514. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  515. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  516. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  517. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  518. unsigned new_carrier;
  519. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  520. if (old_carrier != new_carrier) {
  521. if (netif_msg_link(db))
  522. dm9000_show_carrier(db, new_carrier, nsr);
  523. if (!new_carrier)
  524. netif_carrier_off(ndev);
  525. else
  526. netif_carrier_on(ndev);
  527. }
  528. } else
  529. mii_check_media(&db->mii, netif_msg_link(db), 0);
  530. if (netif_running(ndev))
  531. dm9000_schedule_poll(db);
  532. }
  533. /* dm9000_release_board
  534. *
  535. * release a board, and any mapped resources
  536. */
  537. static void
  538. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  539. {
  540. /* unmap our resources */
  541. iounmap(db->io_addr);
  542. iounmap(db->io_data);
  543. /* release the resources */
  544. release_resource(db->data_req);
  545. kfree(db->data_req);
  546. release_resource(db->addr_req);
  547. kfree(db->addr_req);
  548. }
  549. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  550. {
  551. switch (type) {
  552. case TYPE_DM9000E: return 'e';
  553. case TYPE_DM9000A: return 'a';
  554. case TYPE_DM9000B: return 'b';
  555. }
  556. return '?';
  557. }
  558. /*
  559. * Set DM9000 multicast address
  560. */
  561. static void
  562. dm9000_hash_table(struct net_device *dev)
  563. {
  564. board_info_t *db = netdev_priv(dev);
  565. struct dev_mc_list *mcptr;
  566. int i, oft;
  567. u32 hash_val;
  568. u16 hash_table[4];
  569. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  570. unsigned long flags;
  571. dm9000_dbg(db, 1, "entering %s\n", __func__);
  572. spin_lock_irqsave(&db->lock, flags);
  573. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  574. iow(db, oft, dev->dev_addr[i]);
  575. /* Clear Hash Table */
  576. for (i = 0; i < 4; i++)
  577. hash_table[i] = 0x0;
  578. /* broadcast address */
  579. hash_table[3] = 0x8000;
  580. if (dev->flags & IFF_PROMISC)
  581. rcr |= RCR_PRMSC;
  582. if (dev->flags & IFF_ALLMULTI)
  583. rcr |= RCR_ALL;
  584. /* the multicast address in Hash Table : 64 bits */
  585. netdev_for_each_mc_addr(mcptr, dev) {
  586. hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
  587. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  588. }
  589. /* Write the hash table to MAC MD table */
  590. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  591. iow(db, oft++, hash_table[i]);
  592. iow(db, oft++, hash_table[i] >> 8);
  593. }
  594. iow(db, DM9000_RCR, rcr);
  595. spin_unlock_irqrestore(&db->lock, flags);
  596. }
  597. /*
  598. * Initilize dm9000 board
  599. */
  600. static void
  601. dm9000_init_dm9000(struct net_device *dev)
  602. {
  603. board_info_t *db = netdev_priv(dev);
  604. unsigned int imr;
  605. unsigned int ncr;
  606. dm9000_dbg(db, 1, "entering %s\n", __func__);
  607. /* I/O mode */
  608. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  609. /* Checksum mode */
  610. dm9000_set_rx_csum(dev, db->rx_csum);
  611. /* GPIO0 on pre-activate PHY */
  612. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  613. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  614. iow(db, DM9000_GPR, 0); /* Enable PHY */
  615. ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
  616. /* if wol is needed, then always set NCR_WAKEEN otherwise we end
  617. * up dumping the wake events if we disable this. There is already
  618. * a wake-mask in DM9000_WCR */
  619. if (db->wake_supported)
  620. ncr |= NCR_WAKEEN;
  621. iow(db, DM9000_NCR, ncr);
  622. /* Program operating register */
  623. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  624. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  625. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  626. iow(db, DM9000_SMCR, 0); /* Special Mode */
  627. /* clear TX status */
  628. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  629. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  630. /* Set address filter table */
  631. dm9000_hash_table(dev);
  632. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  633. if (db->type != TYPE_DM9000E)
  634. imr |= IMR_LNKCHNG;
  635. db->imr_all = imr;
  636. /* Enable TX/RX interrupt mask */
  637. iow(db, DM9000_IMR, imr);
  638. /* Init Driver variable */
  639. db->tx_pkt_cnt = 0;
  640. db->queue_pkt_len = 0;
  641. dev->trans_start = 0;
  642. }
  643. /* Our watchdog timed out. Called by the networking layer */
  644. static void dm9000_timeout(struct net_device *dev)
  645. {
  646. board_info_t *db = netdev_priv(dev);
  647. u8 reg_save;
  648. unsigned long flags;
  649. /* Save previous register address */
  650. reg_save = readb(db->io_addr);
  651. spin_lock_irqsave(&db->lock, flags);
  652. netif_stop_queue(dev);
  653. dm9000_reset(db);
  654. dm9000_init_dm9000(dev);
  655. /* We can accept TX packets again */
  656. dev->trans_start = jiffies;
  657. netif_wake_queue(dev);
  658. /* Restore previous register address */
  659. writeb(reg_save, db->io_addr);
  660. spin_unlock_irqrestore(&db->lock, flags);
  661. }
  662. static void dm9000_send_packet(struct net_device *dev,
  663. int ip_summed,
  664. u16 pkt_len)
  665. {
  666. board_info_t *dm = to_dm9000_board(dev);
  667. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  668. if (dm->ip_summed != ip_summed) {
  669. if (ip_summed == CHECKSUM_NONE)
  670. iow(dm, DM9000_TCCR, 0);
  671. else
  672. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  673. dm->ip_summed = ip_summed;
  674. }
  675. /* Set TX length to DM9000 */
  676. iow(dm, DM9000_TXPLL, pkt_len);
  677. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  678. /* Issue TX polling command */
  679. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  680. }
  681. /*
  682. * Hardware start transmission.
  683. * Send a packet to media from the upper layer.
  684. */
  685. static int
  686. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  687. {
  688. unsigned long flags;
  689. board_info_t *db = netdev_priv(dev);
  690. dm9000_dbg(db, 3, "%s:\n", __func__);
  691. if (db->tx_pkt_cnt > 1)
  692. return NETDEV_TX_BUSY;
  693. spin_lock_irqsave(&db->lock, flags);
  694. /* Move data to DM9000 TX RAM */
  695. writeb(DM9000_MWCMD, db->io_addr);
  696. (db->outblk)(db->io_data, skb->data, skb->len);
  697. dev->stats.tx_bytes += skb->len;
  698. db->tx_pkt_cnt++;
  699. /* TX control: First packet immediately send, second packet queue */
  700. if (db->tx_pkt_cnt == 1) {
  701. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  702. } else {
  703. /* Second packet */
  704. db->queue_pkt_len = skb->len;
  705. db->queue_ip_summed = skb->ip_summed;
  706. netif_stop_queue(dev);
  707. }
  708. spin_unlock_irqrestore(&db->lock, flags);
  709. /* free this SKB */
  710. dev_kfree_skb(skb);
  711. return NETDEV_TX_OK;
  712. }
  713. /*
  714. * DM9000 interrupt handler
  715. * receive the packet to upper layer, free the transmitted packet
  716. */
  717. static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
  718. {
  719. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  720. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  721. /* One packet sent complete */
  722. db->tx_pkt_cnt--;
  723. dev->stats.tx_packets++;
  724. if (netif_msg_tx_done(db))
  725. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  726. /* Queue packet check & send */
  727. if (db->tx_pkt_cnt > 0)
  728. dm9000_send_packet(dev, db->queue_ip_summed,
  729. db->queue_pkt_len);
  730. netif_wake_queue(dev);
  731. }
  732. }
  733. struct dm9000_rxhdr {
  734. u8 RxPktReady;
  735. u8 RxStatus;
  736. __le16 RxLen;
  737. } __attribute__((__packed__));
  738. /*
  739. * Received a packet and pass to upper layer
  740. */
  741. static void
  742. dm9000_rx(struct net_device *dev)
  743. {
  744. board_info_t *db = netdev_priv(dev);
  745. struct dm9000_rxhdr rxhdr;
  746. struct sk_buff *skb;
  747. u8 rxbyte, *rdptr;
  748. bool GoodPacket;
  749. int RxLen;
  750. /* Check packet ready or not */
  751. do {
  752. ior(db, DM9000_MRCMDX); /* Dummy read */
  753. /* Get most updated data */
  754. rxbyte = readb(db->io_data);
  755. /* Status check: this byte must be 0 or 1 */
  756. if (rxbyte & DM9000_PKT_ERR) {
  757. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  758. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  759. iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
  760. return;
  761. }
  762. if (!(rxbyte & DM9000_PKT_RDY))
  763. return;
  764. /* A packet ready now & Get status/length */
  765. GoodPacket = true;
  766. writeb(DM9000_MRCMD, db->io_addr);
  767. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  768. RxLen = le16_to_cpu(rxhdr.RxLen);
  769. if (netif_msg_rx_status(db))
  770. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  771. rxhdr.RxStatus, RxLen);
  772. /* Packet Status check */
  773. if (RxLen < 0x40) {
  774. GoodPacket = false;
  775. if (netif_msg_rx_err(db))
  776. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  777. }
  778. if (RxLen > DM9000_PKT_MAX) {
  779. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  780. }
  781. /* rxhdr.RxStatus is identical to RSR register. */
  782. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  783. RSR_PLE | RSR_RWTO |
  784. RSR_LCS | RSR_RF)) {
  785. GoodPacket = false;
  786. if (rxhdr.RxStatus & RSR_FOE) {
  787. if (netif_msg_rx_err(db))
  788. dev_dbg(db->dev, "fifo error\n");
  789. dev->stats.rx_fifo_errors++;
  790. }
  791. if (rxhdr.RxStatus & RSR_CE) {
  792. if (netif_msg_rx_err(db))
  793. dev_dbg(db->dev, "crc error\n");
  794. dev->stats.rx_crc_errors++;
  795. }
  796. if (rxhdr.RxStatus & RSR_RF) {
  797. if (netif_msg_rx_err(db))
  798. dev_dbg(db->dev, "length error\n");
  799. dev->stats.rx_length_errors++;
  800. }
  801. }
  802. /* Move data from DM9000 */
  803. if (GoodPacket &&
  804. ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
  805. skb_reserve(skb, 2);
  806. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  807. /* Read received packet from RX SRAM */
  808. (db->inblk)(db->io_data, rdptr, RxLen);
  809. dev->stats.rx_bytes += RxLen;
  810. /* Pass to upper layer */
  811. skb->protocol = eth_type_trans(skb, dev);
  812. if (db->rx_csum) {
  813. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  814. skb->ip_summed = CHECKSUM_UNNECESSARY;
  815. else
  816. skb->ip_summed = CHECKSUM_NONE;
  817. }
  818. netif_rx(skb);
  819. dev->stats.rx_packets++;
  820. } else {
  821. /* need to dump the packet's data */
  822. (db->dumpblk)(db->io_data, RxLen);
  823. }
  824. } while (rxbyte & DM9000_PKT_RDY);
  825. }
  826. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  827. {
  828. struct net_device *dev = dev_id;
  829. board_info_t *db = netdev_priv(dev);
  830. int int_status;
  831. unsigned long flags;
  832. u8 reg_save;
  833. dm9000_dbg(db, 3, "entering %s\n", __func__);
  834. /* A real interrupt coming */
  835. /* holders of db->lock must always block IRQs */
  836. spin_lock_irqsave(&db->lock, flags);
  837. /* Save previous register address */
  838. reg_save = readb(db->io_addr);
  839. /* Disable all interrupts */
  840. iow(db, DM9000_IMR, IMR_PAR);
  841. /* Got DM9000 interrupt status */
  842. int_status = ior(db, DM9000_ISR); /* Got ISR */
  843. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  844. if (netif_msg_intr(db))
  845. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  846. /* Received the coming packet */
  847. if (int_status & ISR_PRS)
  848. dm9000_rx(dev);
  849. /* Trnasmit Interrupt check */
  850. if (int_status & ISR_PTS)
  851. dm9000_tx_done(dev, db);
  852. if (db->type != TYPE_DM9000E) {
  853. if (int_status & ISR_LNKCHNG) {
  854. /* fire a link-change request */
  855. schedule_delayed_work(&db->phy_poll, 1);
  856. }
  857. }
  858. /* Re-enable interrupt mask */
  859. iow(db, DM9000_IMR, db->imr_all);
  860. /* Restore previous register address */
  861. writeb(reg_save, db->io_addr);
  862. spin_unlock_irqrestore(&db->lock, flags);
  863. return IRQ_HANDLED;
  864. }
  865. static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
  866. {
  867. struct net_device *dev = dev_id;
  868. board_info_t *db = netdev_priv(dev);
  869. unsigned long flags;
  870. unsigned nsr, wcr;
  871. spin_lock_irqsave(&db->lock, flags);
  872. nsr = ior(db, DM9000_NSR);
  873. wcr = ior(db, DM9000_WCR);
  874. dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
  875. if (nsr & NSR_WAKEST) {
  876. /* clear, so we can avoid */
  877. iow(db, DM9000_NSR, NSR_WAKEST);
  878. if (wcr & WCR_LINKST)
  879. dev_info(db->dev, "wake by link status change\n");
  880. if (wcr & WCR_SAMPLEST)
  881. dev_info(db->dev, "wake by sample packet\n");
  882. if (wcr & WCR_MAGICST )
  883. dev_info(db->dev, "wake by magic packet\n");
  884. if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
  885. dev_err(db->dev, "wake signalled with no reason? "
  886. "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
  887. }
  888. spin_unlock_irqrestore(&db->lock, flags);
  889. return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
  890. }
  891. #ifdef CONFIG_NET_POLL_CONTROLLER
  892. /*
  893. *Used by netconsole
  894. */
  895. static void dm9000_poll_controller(struct net_device *dev)
  896. {
  897. disable_irq(dev->irq);
  898. dm9000_interrupt(dev->irq, dev);
  899. enable_irq(dev->irq);
  900. }
  901. #endif
  902. /*
  903. * Open the interface.
  904. * The interface is opened whenever "ifconfig" actives it.
  905. */
  906. static int
  907. dm9000_open(struct net_device *dev)
  908. {
  909. board_info_t *db = netdev_priv(dev);
  910. unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
  911. if (netif_msg_ifup(db))
  912. dev_dbg(db->dev, "enabling %s\n", dev->name);
  913. /* If there is no IRQ type specified, default to something that
  914. * may work, and tell the user that this is a problem */
  915. if (irqflags == IRQF_TRIGGER_NONE)
  916. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  917. irqflags |= IRQF_SHARED;
  918. if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
  919. return -EAGAIN;
  920. /* Initialize DM9000 board */
  921. dm9000_reset(db);
  922. dm9000_init_dm9000(dev);
  923. /* Init driver variable */
  924. db->dbug_cnt = 0;
  925. mii_check_media(&db->mii, netif_msg_link(db), 1);
  926. netif_start_queue(dev);
  927. dm9000_schedule_poll(db);
  928. return 0;
  929. }
  930. /*
  931. * Sleep, either by using msleep() or if we are suspending, then
  932. * use mdelay() to sleep.
  933. */
  934. static void dm9000_msleep(board_info_t *db, unsigned int ms)
  935. {
  936. if (db->in_suspend)
  937. mdelay(ms);
  938. else
  939. msleep(ms);
  940. }
  941. /*
  942. * Read a word from phyxcer
  943. */
  944. static int
  945. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  946. {
  947. board_info_t *db = netdev_priv(dev);
  948. unsigned long flags;
  949. unsigned int reg_save;
  950. int ret;
  951. mutex_lock(&db->addr_lock);
  952. spin_lock_irqsave(&db->lock,flags);
  953. /* Save previous register address */
  954. reg_save = readb(db->io_addr);
  955. /* Fill the phyxcer register into REG_0C */
  956. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  957. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
  958. writeb(reg_save, db->io_addr);
  959. spin_unlock_irqrestore(&db->lock,flags);
  960. dm9000_msleep(db, 1); /* Wait read complete */
  961. spin_lock_irqsave(&db->lock,flags);
  962. reg_save = readb(db->io_addr);
  963. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  964. /* The read data keeps on REG_0D & REG_0E */
  965. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  966. /* restore the previous address */
  967. writeb(reg_save, db->io_addr);
  968. spin_unlock_irqrestore(&db->lock,flags);
  969. mutex_unlock(&db->addr_lock);
  970. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  971. return ret;
  972. }
  973. /*
  974. * Write a word to phyxcer
  975. */
  976. static void
  977. dm9000_phy_write(struct net_device *dev,
  978. int phyaddr_unused, int reg, int value)
  979. {
  980. board_info_t *db = netdev_priv(dev);
  981. unsigned long flags;
  982. unsigned long reg_save;
  983. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  984. mutex_lock(&db->addr_lock);
  985. spin_lock_irqsave(&db->lock,flags);
  986. /* Save previous register address */
  987. reg_save = readb(db->io_addr);
  988. /* Fill the phyxcer register into REG_0C */
  989. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  990. /* Fill the written data into REG_0D & REG_0E */
  991. iow(db, DM9000_EPDRL, value);
  992. iow(db, DM9000_EPDRH, value >> 8);
  993. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
  994. writeb(reg_save, db->io_addr);
  995. spin_unlock_irqrestore(&db->lock, flags);
  996. dm9000_msleep(db, 1); /* Wait write complete */
  997. spin_lock_irqsave(&db->lock,flags);
  998. reg_save = readb(db->io_addr);
  999. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  1000. /* restore the previous address */
  1001. writeb(reg_save, db->io_addr);
  1002. spin_unlock_irqrestore(&db->lock, flags);
  1003. mutex_unlock(&db->addr_lock);
  1004. }
  1005. static void
  1006. dm9000_shutdown(struct net_device *dev)
  1007. {
  1008. board_info_t *db = netdev_priv(dev);
  1009. /* RESET device */
  1010. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  1011. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  1012. iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
  1013. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  1014. }
  1015. /*
  1016. * Stop the interface.
  1017. * The interface is stopped when it is brought.
  1018. */
  1019. static int
  1020. dm9000_stop(struct net_device *ndev)
  1021. {
  1022. board_info_t *db = netdev_priv(ndev);
  1023. if (netif_msg_ifdown(db))
  1024. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  1025. cancel_delayed_work_sync(&db->phy_poll);
  1026. netif_stop_queue(ndev);
  1027. netif_carrier_off(ndev);
  1028. /* free interrupt */
  1029. free_irq(ndev->irq, ndev);
  1030. dm9000_shutdown(ndev);
  1031. return 0;
  1032. }
  1033. static const struct net_device_ops dm9000_netdev_ops = {
  1034. .ndo_open = dm9000_open,
  1035. .ndo_stop = dm9000_stop,
  1036. .ndo_start_xmit = dm9000_start_xmit,
  1037. .ndo_tx_timeout = dm9000_timeout,
  1038. .ndo_set_multicast_list = dm9000_hash_table,
  1039. .ndo_do_ioctl = dm9000_ioctl,
  1040. .ndo_change_mtu = eth_change_mtu,
  1041. .ndo_validate_addr = eth_validate_addr,
  1042. .ndo_set_mac_address = eth_mac_addr,
  1043. #ifdef CONFIG_NET_POLL_CONTROLLER
  1044. .ndo_poll_controller = dm9000_poll_controller,
  1045. #endif
  1046. };
  1047. /*
  1048. * Search DM9000 board, allocate space and register it
  1049. */
  1050. static int __devinit
  1051. dm9000_probe(struct platform_device *pdev)
  1052. {
  1053. struct dm9000_plat_data *pdata = pdev->dev.platform_data;
  1054. struct board_info *db; /* Point a board information structure */
  1055. struct net_device *ndev;
  1056. const unsigned char *mac_src;
  1057. int ret = 0;
  1058. int iosize;
  1059. int i;
  1060. u32 id_val;
  1061. /* Init network device */
  1062. ndev = alloc_etherdev(sizeof(struct board_info));
  1063. if (!ndev) {
  1064. dev_err(&pdev->dev, "could not allocate device.\n");
  1065. return -ENOMEM;
  1066. }
  1067. SET_NETDEV_DEV(ndev, &pdev->dev);
  1068. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  1069. /* setup board info structure */
  1070. db = netdev_priv(ndev);
  1071. db->dev = &pdev->dev;
  1072. db->ndev = ndev;
  1073. spin_lock_init(&db->lock);
  1074. mutex_init(&db->addr_lock);
  1075. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1076. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1077. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1078. db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1079. if (db->addr_res == NULL || db->data_res == NULL ||
  1080. db->irq_res == NULL) {
  1081. dev_err(db->dev, "insufficient resources\n");
  1082. ret = -ENOENT;
  1083. goto out;
  1084. }
  1085. db->irq_wake = platform_get_irq(pdev, 1);
  1086. if (db->irq_wake >= 0) {
  1087. dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
  1088. ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
  1089. IRQF_SHARED, dev_name(db->dev), ndev);
  1090. if (ret) {
  1091. dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
  1092. } else {
  1093. /* test to see if irq is really wakeup capable */
  1094. ret = set_irq_wake(db->irq_wake, 1);
  1095. if (ret) {
  1096. dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
  1097. db->irq_wake, ret);
  1098. ret = 0;
  1099. } else {
  1100. set_irq_wake(db->irq_wake, 0);
  1101. db->wake_supported = 1;
  1102. }
  1103. }
  1104. }
  1105. iosize = resource_size(db->addr_res);
  1106. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1107. pdev->name);
  1108. if (db->addr_req == NULL) {
  1109. dev_err(db->dev, "cannot claim address reg area\n");
  1110. ret = -EIO;
  1111. goto out;
  1112. }
  1113. db->io_addr = ioremap(db->addr_res->start, iosize);
  1114. if (db->io_addr == NULL) {
  1115. dev_err(db->dev, "failed to ioremap address reg\n");
  1116. ret = -EINVAL;
  1117. goto out;
  1118. }
  1119. iosize = resource_size(db->data_res);
  1120. db->data_req = request_mem_region(db->data_res->start, iosize,
  1121. pdev->name);
  1122. if (db->data_req == NULL) {
  1123. dev_err(db->dev, "cannot claim data reg area\n");
  1124. ret = -EIO;
  1125. goto out;
  1126. }
  1127. db->io_data = ioremap(db->data_res->start, iosize);
  1128. if (db->io_data == NULL) {
  1129. dev_err(db->dev, "failed to ioremap data reg\n");
  1130. ret = -EINVAL;
  1131. goto out;
  1132. }
  1133. /* fill in parameters for net-dev structure */
  1134. ndev->base_addr = (unsigned long)db->io_addr;
  1135. ndev->irq = db->irq_res->start;
  1136. /* ensure at least we have a default set of IO routines */
  1137. dm9000_set_io(db, iosize);
  1138. /* check to see if anything is being over-ridden */
  1139. if (pdata != NULL) {
  1140. /* check to see if the driver wants to over-ride the
  1141. * default IO width */
  1142. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1143. dm9000_set_io(db, 1);
  1144. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1145. dm9000_set_io(db, 2);
  1146. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1147. dm9000_set_io(db, 4);
  1148. /* check to see if there are any IO routine
  1149. * over-rides */
  1150. if (pdata->inblk != NULL)
  1151. db->inblk = pdata->inblk;
  1152. if (pdata->outblk != NULL)
  1153. db->outblk = pdata->outblk;
  1154. if (pdata->dumpblk != NULL)
  1155. db->dumpblk = pdata->dumpblk;
  1156. db->flags = pdata->flags;
  1157. }
  1158. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1159. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1160. #endif
  1161. dm9000_reset(db);
  1162. /* try multiple times, DM9000 sometimes gets the read wrong */
  1163. for (i = 0; i < 8; i++) {
  1164. id_val = ior(db, DM9000_VIDL);
  1165. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1166. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1167. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1168. if (id_val == DM9000_ID)
  1169. break;
  1170. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1171. }
  1172. if (id_val != DM9000_ID) {
  1173. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1174. ret = -ENODEV;
  1175. goto out;
  1176. }
  1177. /* Identify what type of DM9000 we are working on */
  1178. id_val = ior(db, DM9000_CHIPR);
  1179. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1180. switch (id_val) {
  1181. case CHIPR_DM9000A:
  1182. db->type = TYPE_DM9000A;
  1183. break;
  1184. case CHIPR_DM9000B:
  1185. db->type = TYPE_DM9000B;
  1186. break;
  1187. default:
  1188. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1189. db->type = TYPE_DM9000E;
  1190. }
  1191. /* dm9000a/b are capable of hardware checksum offload */
  1192. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1193. db->can_csum = 1;
  1194. db->rx_csum = 1;
  1195. ndev->features |= NETIF_F_IP_CSUM;
  1196. }
  1197. /* from this point we assume that we have found a DM9000 */
  1198. /* driver system function */
  1199. ether_setup(ndev);
  1200. ndev->netdev_ops = &dm9000_netdev_ops;
  1201. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1202. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1203. db->msg_enable = NETIF_MSG_LINK;
  1204. db->mii.phy_id_mask = 0x1f;
  1205. db->mii.reg_num_mask = 0x1f;
  1206. db->mii.force_media = 0;
  1207. db->mii.full_duplex = 0;
  1208. db->mii.dev = ndev;
  1209. db->mii.mdio_read = dm9000_phy_read;
  1210. db->mii.mdio_write = dm9000_phy_write;
  1211. mac_src = "eeprom";
  1212. /* try reading the node address from the attached EEPROM */
  1213. for (i = 0; i < 6; i += 2)
  1214. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  1215. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1216. mac_src = "platform data";
  1217. memcpy(ndev->dev_addr, pdata->dev_addr, 6);
  1218. }
  1219. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1220. /* try reading from mac */
  1221. mac_src = "chip";
  1222. for (i = 0; i < 6; i++)
  1223. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  1224. }
  1225. if (!is_valid_ether_addr(ndev->dev_addr))
  1226. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
  1227. "set using ifconfig\n", ndev->name);
  1228. platform_set_drvdata(pdev, ndev);
  1229. ret = register_netdev(ndev);
  1230. if (ret == 0)
  1231. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1232. ndev->name, dm9000_type_to_char(db->type),
  1233. db->io_addr, db->io_data, ndev->irq,
  1234. ndev->dev_addr, mac_src);
  1235. return 0;
  1236. out:
  1237. dev_err(db->dev, "not found (%d).\n", ret);
  1238. dm9000_release_board(pdev, db);
  1239. free_netdev(ndev);
  1240. return ret;
  1241. }
  1242. static int
  1243. dm9000_drv_suspend(struct device *dev)
  1244. {
  1245. struct platform_device *pdev = to_platform_device(dev);
  1246. struct net_device *ndev = platform_get_drvdata(pdev);
  1247. board_info_t *db;
  1248. if (ndev) {
  1249. db = netdev_priv(ndev);
  1250. db->in_suspend = 1;
  1251. if (!netif_running(ndev))
  1252. return 0;
  1253. netif_device_detach(ndev);
  1254. /* only shutdown if not using WoL */
  1255. if (!db->wake_state)
  1256. dm9000_shutdown(ndev);
  1257. }
  1258. return 0;
  1259. }
  1260. static int
  1261. dm9000_drv_resume(struct device *dev)
  1262. {
  1263. struct platform_device *pdev = to_platform_device(dev);
  1264. struct net_device *ndev = platform_get_drvdata(pdev);
  1265. board_info_t *db = netdev_priv(ndev);
  1266. if (ndev) {
  1267. if (netif_running(ndev)) {
  1268. /* reset if we were not in wake mode to ensure if
  1269. * the device was powered off it is in a known state */
  1270. if (!db->wake_state) {
  1271. dm9000_reset(db);
  1272. dm9000_init_dm9000(ndev);
  1273. }
  1274. netif_device_attach(ndev);
  1275. }
  1276. db->in_suspend = 0;
  1277. }
  1278. return 0;
  1279. }
  1280. static const struct dev_pm_ops dm9000_drv_pm_ops = {
  1281. .suspend = dm9000_drv_suspend,
  1282. .resume = dm9000_drv_resume,
  1283. };
  1284. static int __devexit
  1285. dm9000_drv_remove(struct platform_device *pdev)
  1286. {
  1287. struct net_device *ndev = platform_get_drvdata(pdev);
  1288. platform_set_drvdata(pdev, NULL);
  1289. unregister_netdev(ndev);
  1290. dm9000_release_board(pdev, (board_info_t *) netdev_priv(ndev));
  1291. free_netdev(ndev); /* free device structure */
  1292. dev_dbg(&pdev->dev, "released and freed device\n");
  1293. return 0;
  1294. }
  1295. static struct platform_driver dm9000_driver = {
  1296. .driver = {
  1297. .name = "dm9000",
  1298. .owner = THIS_MODULE,
  1299. .pm = &dm9000_drv_pm_ops,
  1300. },
  1301. .probe = dm9000_probe,
  1302. .remove = __devexit_p(dm9000_drv_remove),
  1303. };
  1304. static int __init
  1305. dm9000_init(void)
  1306. {
  1307. printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
  1308. return platform_driver_register(&dm9000_driver);
  1309. }
  1310. static void __exit
  1311. dm9000_cleanup(void)
  1312. {
  1313. platform_driver_unregister(&dm9000_driver);
  1314. }
  1315. module_init(dm9000_init);
  1316. module_exit(dm9000_cleanup);
  1317. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1318. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1319. MODULE_LICENSE("GPL");
  1320. MODULE_ALIAS("platform:dm9000");