mcp251x.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can.h>
  61. #include <linux/can/core.h>
  62. #include <linux/can/dev.h>
  63. #include <linux/can/platform/mcp251x.h>
  64. #include <linux/completion.h>
  65. #include <linux/delay.h>
  66. #include <linux/device.h>
  67. #include <linux/dma-mapping.h>
  68. #include <linux/freezer.h>
  69. #include <linux/interrupt.h>
  70. #include <linux/io.h>
  71. #include <linux/kernel.h>
  72. #include <linux/module.h>
  73. #include <linux/netdevice.h>
  74. #include <linux/platform_device.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. #define EFLG 0x2d
  126. # define EFLG_EWARN 0x01
  127. # define EFLG_RXWAR 0x02
  128. # define EFLG_TXWAR 0x04
  129. # define EFLG_RXEP 0x08
  130. # define EFLG_TXEP 0x10
  131. # define EFLG_TXBO 0x20
  132. # define EFLG_RX0OVR 0x40
  133. # define EFLG_RX1OVR 0x80
  134. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  135. # define TXBCTRL_ABTF 0x40
  136. # define TXBCTRL_MLOA 0x20
  137. # define TXBCTRL_TXERR 0x10
  138. # define TXBCTRL_TXREQ 0x08
  139. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  140. # define SIDH_SHIFT 3
  141. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  142. # define SIDL_SID_MASK 7
  143. # define SIDL_SID_SHIFT 5
  144. # define SIDL_EXIDE_SHIFT 3
  145. # define SIDL_EID_SHIFT 16
  146. # define SIDL_EID_MASK 3
  147. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  148. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  149. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  150. # define DLC_RTR_SHIFT 6
  151. #define TXBCTRL_OFF 0
  152. #define TXBSIDH_OFF 1
  153. #define TXBSIDL_OFF 2
  154. #define TXBEID8_OFF 3
  155. #define TXBEID0_OFF 4
  156. #define TXBDLC_OFF 5
  157. #define TXBDAT_OFF 6
  158. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  159. # define RXBCTRL_BUKT 0x04
  160. # define RXBCTRL_RXM0 0x20
  161. # define RXBCTRL_RXM1 0x40
  162. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  163. # define RXBSIDH_SHIFT 3
  164. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  165. # define RXBSIDL_IDE 0x08
  166. # define RXBSIDL_EID 3
  167. # define RXBSIDL_SHIFT 5
  168. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  169. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  170. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  171. # define RXBDLC_LEN_MASK 0x0f
  172. # define RXBDLC_RTR 0x40
  173. #define RXBCTRL_OFF 0
  174. #define RXBSIDH_OFF 1
  175. #define RXBSIDL_OFF 2
  176. #define RXBEID8_OFF 3
  177. #define RXBEID0_OFF 4
  178. #define RXBDLC_OFF 5
  179. #define RXBDAT_OFF 6
  180. #define RXFSIDH(n) ((n) * 4)
  181. #define RXFSIDL(n) ((n) * 4 + 1)
  182. #define RXFEID8(n) ((n) * 4 + 2)
  183. #define RXFEID0(n) ((n) * 4 + 3)
  184. #define RXMSIDH(n) ((n) * 4 + 0x20)
  185. #define RXMSIDL(n) ((n) * 4 + 0x21)
  186. #define RXMEID8(n) ((n) * 4 + 0x22)
  187. #define RXMEID0(n) ((n) * 4 + 0x23)
  188. #define GET_BYTE(val, byte) \
  189. (((val) >> ((byte) * 8)) & 0xff)
  190. #define SET_BYTE(val, byte) \
  191. (((val) & 0xff) << ((byte) * 8))
  192. /*
  193. * Buffer size required for the largest SPI transfer (i.e., reading a
  194. * frame)
  195. */
  196. #define CAN_FRAME_MAX_DATA_LEN 8
  197. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  198. #define CAN_FRAME_MAX_BITS 128
  199. #define TX_ECHO_SKB_MAX 1
  200. #define DEVICE_NAME "mcp251x"
  201. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  202. module_param(mcp251x_enable_dma, int, S_IRUGO);
  203. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  204. static struct can_bittiming_const mcp251x_bittiming_const = {
  205. .name = DEVICE_NAME,
  206. .tseg1_min = 3,
  207. .tseg1_max = 16,
  208. .tseg2_min = 2,
  209. .tseg2_max = 8,
  210. .sjw_max = 4,
  211. .brp_min = 1,
  212. .brp_max = 64,
  213. .brp_inc = 1,
  214. };
  215. struct mcp251x_priv {
  216. struct can_priv can;
  217. struct net_device *net;
  218. struct spi_device *spi;
  219. struct mutex mcp_lock; /* SPI device lock */
  220. u8 *spi_tx_buf;
  221. u8 *spi_rx_buf;
  222. dma_addr_t spi_tx_dma;
  223. dma_addr_t spi_rx_dma;
  224. struct sk_buff *tx_skb;
  225. int tx_len;
  226. struct workqueue_struct *wq;
  227. struct work_struct tx_work;
  228. struct work_struct restart_work;
  229. int force_quit;
  230. int after_suspend;
  231. #define AFTER_SUSPEND_UP 1
  232. #define AFTER_SUSPEND_DOWN 2
  233. #define AFTER_SUSPEND_POWER 4
  234. #define AFTER_SUSPEND_RESTART 8
  235. int restart_tx;
  236. };
  237. static void mcp251x_clean(struct net_device *net)
  238. {
  239. struct mcp251x_priv *priv = netdev_priv(net);
  240. if (priv->tx_skb || priv->tx_len)
  241. net->stats.tx_errors++;
  242. if (priv->tx_skb)
  243. dev_kfree_skb(priv->tx_skb);
  244. if (priv->tx_len)
  245. can_free_echo_skb(priv->net, 0);
  246. priv->tx_skb = NULL;
  247. priv->tx_len = 0;
  248. }
  249. /*
  250. * Note about handling of error return of mcp251x_spi_trans: accessing
  251. * registers via SPI is not really different conceptually than using
  252. * normal I/O assembler instructions, although it's much more
  253. * complicated from a practical POV. So it's not advisable to always
  254. * check the return value of this function. Imagine that every
  255. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  256. * error();", it would be a great mess (well there are some situation
  257. * when exception handling C++ like could be useful after all). So we
  258. * just check that transfers are OK at the beginning of our
  259. * conversation with the chip and to avoid doing really nasty things
  260. * (like injecting bogus packets in the network stack).
  261. */
  262. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  263. {
  264. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  265. struct spi_transfer t = {
  266. .tx_buf = priv->spi_tx_buf,
  267. .rx_buf = priv->spi_rx_buf,
  268. .len = len,
  269. .cs_change = 0,
  270. };
  271. struct spi_message m;
  272. int ret;
  273. spi_message_init(&m);
  274. if (mcp251x_enable_dma) {
  275. t.tx_dma = priv->spi_tx_dma;
  276. t.rx_dma = priv->spi_rx_dma;
  277. m.is_dma_mapped = 1;
  278. }
  279. spi_message_add_tail(&t, &m);
  280. ret = spi_sync(spi, &m);
  281. if (ret)
  282. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  283. return ret;
  284. }
  285. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  286. {
  287. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  288. u8 val = 0;
  289. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  290. priv->spi_tx_buf[1] = reg;
  291. mcp251x_spi_trans(spi, 3);
  292. val = priv->spi_rx_buf[2];
  293. return val;
  294. }
  295. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  296. {
  297. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  298. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  299. priv->spi_tx_buf[1] = reg;
  300. priv->spi_tx_buf[2] = val;
  301. mcp251x_spi_trans(spi, 3);
  302. }
  303. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  304. u8 mask, uint8_t val)
  305. {
  306. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  307. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  308. priv->spi_tx_buf[1] = reg;
  309. priv->spi_tx_buf[2] = mask;
  310. priv->spi_tx_buf[3] = val;
  311. mcp251x_spi_trans(spi, 4);
  312. }
  313. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  314. int len, int tx_buf_idx)
  315. {
  316. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  317. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  318. if (pdata->model == CAN_MCP251X_MCP2510) {
  319. int i;
  320. for (i = 1; i < TXBDAT_OFF + len; i++)
  321. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  322. buf[i]);
  323. } else {
  324. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  325. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  326. }
  327. }
  328. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  329. int tx_buf_idx)
  330. {
  331. u32 sid, eid, exide, rtr;
  332. u8 buf[SPI_TRANSFER_BUF_LEN];
  333. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  334. if (exide)
  335. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  336. else
  337. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  338. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  339. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  340. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  341. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  342. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  343. (exide << SIDL_EXIDE_SHIFT) |
  344. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  345. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  346. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  347. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  348. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  349. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  350. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  351. }
  352. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  353. int buf_idx)
  354. {
  355. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  356. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  357. if (pdata->model == CAN_MCP251X_MCP2510) {
  358. int i, len;
  359. for (i = 1; i < RXBDAT_OFF; i++)
  360. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  361. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  362. for (; i < (RXBDAT_OFF + len); i++)
  363. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  364. } else {
  365. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  366. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  367. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  368. }
  369. }
  370. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  371. {
  372. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  373. struct sk_buff *skb;
  374. struct can_frame *frame;
  375. u8 buf[SPI_TRANSFER_BUF_LEN];
  376. skb = alloc_can_skb(priv->net, &frame);
  377. if (!skb) {
  378. dev_err(&spi->dev, "cannot allocate RX skb\n");
  379. priv->net->stats.rx_dropped++;
  380. return;
  381. }
  382. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  383. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  384. /* Extended ID format */
  385. frame->can_id = CAN_EFF_FLAG;
  386. frame->can_id |=
  387. /* Extended ID part */
  388. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  389. SET_BYTE(buf[RXBEID8_OFF], 1) |
  390. SET_BYTE(buf[RXBEID0_OFF], 0) |
  391. /* Standard ID part */
  392. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  393. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  394. /* Remote transmission request */
  395. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  396. frame->can_id |= CAN_RTR_FLAG;
  397. } else {
  398. /* Standard ID format */
  399. frame->can_id =
  400. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  401. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  402. }
  403. /* Data length */
  404. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  405. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  406. priv->net->stats.rx_packets++;
  407. priv->net->stats.rx_bytes += frame->can_dlc;
  408. netif_rx(skb);
  409. }
  410. static void mcp251x_hw_sleep(struct spi_device *spi)
  411. {
  412. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  413. }
  414. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  415. struct net_device *net)
  416. {
  417. struct mcp251x_priv *priv = netdev_priv(net);
  418. struct spi_device *spi = priv->spi;
  419. if (priv->tx_skb || priv->tx_len) {
  420. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  421. return NETDEV_TX_BUSY;
  422. }
  423. if (can_dropped_invalid_skb(net, skb))
  424. return NETDEV_TX_OK;
  425. netif_stop_queue(net);
  426. priv->tx_skb = skb;
  427. net->trans_start = jiffies;
  428. queue_work(priv->wq, &priv->tx_work);
  429. return NETDEV_TX_OK;
  430. }
  431. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  432. {
  433. struct mcp251x_priv *priv = netdev_priv(net);
  434. switch (mode) {
  435. case CAN_MODE_START:
  436. mcp251x_clean(net);
  437. /* We have to delay work since SPI I/O may sleep */
  438. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  439. priv->restart_tx = 1;
  440. if (priv->can.restart_ms == 0)
  441. priv->after_suspend = AFTER_SUSPEND_RESTART;
  442. queue_work(priv->wq, &priv->restart_work);
  443. break;
  444. default:
  445. return -EOPNOTSUPP;
  446. }
  447. return 0;
  448. }
  449. static int mcp251x_set_normal_mode(struct spi_device *spi)
  450. {
  451. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  452. unsigned long timeout;
  453. /* Enable interrupts */
  454. mcp251x_write_reg(spi, CANINTE,
  455. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  456. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  457. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  458. /* Put device into loopback mode */
  459. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  460. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  461. /* Put device into listen-only mode */
  462. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  463. } else {
  464. /* Put device into normal mode */
  465. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  466. /* Wait for the device to enter normal mode */
  467. timeout = jiffies + HZ;
  468. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  469. schedule();
  470. if (time_after(jiffies, timeout)) {
  471. dev_err(&spi->dev, "MCP251x didn't"
  472. " enter in normal mode\n");
  473. return -EBUSY;
  474. }
  475. }
  476. }
  477. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  478. return 0;
  479. }
  480. static int mcp251x_do_set_bittiming(struct net_device *net)
  481. {
  482. struct mcp251x_priv *priv = netdev_priv(net);
  483. struct can_bittiming *bt = &priv->can.bittiming;
  484. struct spi_device *spi = priv->spi;
  485. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  486. (bt->brp - 1));
  487. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  488. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  489. CNF2_SAM : 0) |
  490. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  491. (bt->prop_seg - 1));
  492. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  493. (bt->phase_seg2 - 1));
  494. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  495. mcp251x_read_reg(spi, CNF1),
  496. mcp251x_read_reg(spi, CNF2),
  497. mcp251x_read_reg(spi, CNF3));
  498. return 0;
  499. }
  500. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  501. struct spi_device *spi)
  502. {
  503. mcp251x_do_set_bittiming(net);
  504. mcp251x_write_reg(spi, RXBCTRL(0),
  505. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  506. mcp251x_write_reg(spi, RXBCTRL(1),
  507. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  508. return 0;
  509. }
  510. static int mcp251x_hw_reset(struct spi_device *spi)
  511. {
  512. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  513. int ret;
  514. unsigned long timeout;
  515. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  516. ret = spi_write(spi, priv->spi_tx_buf, 1);
  517. if (ret) {
  518. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  519. return -EIO;
  520. }
  521. /* Wait for reset to finish */
  522. timeout = jiffies + HZ;
  523. mdelay(10);
  524. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  525. != CANCTRL_REQOP_CONF) {
  526. schedule();
  527. if (time_after(jiffies, timeout)) {
  528. dev_err(&spi->dev, "MCP251x didn't"
  529. " enter in conf mode after reset\n");
  530. return -EBUSY;
  531. }
  532. }
  533. return 0;
  534. }
  535. static int mcp251x_hw_probe(struct spi_device *spi)
  536. {
  537. int st1, st2;
  538. mcp251x_hw_reset(spi);
  539. /*
  540. * Please note that these are "magic values" based on after
  541. * reset defaults taken from data sheet which allows us to see
  542. * if we really have a chip on the bus (we avoid common all
  543. * zeroes or all ones situations)
  544. */
  545. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  546. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  547. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  548. /* Check for power up default values */
  549. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  550. }
  551. static void mcp251x_open_clean(struct net_device *net)
  552. {
  553. struct mcp251x_priv *priv = netdev_priv(net);
  554. struct spi_device *spi = priv->spi;
  555. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  556. free_irq(spi->irq, priv);
  557. mcp251x_hw_sleep(spi);
  558. if (pdata->transceiver_enable)
  559. pdata->transceiver_enable(0);
  560. close_candev(net);
  561. }
  562. static int mcp251x_stop(struct net_device *net)
  563. {
  564. struct mcp251x_priv *priv = netdev_priv(net);
  565. struct spi_device *spi = priv->spi;
  566. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  567. close_candev(net);
  568. priv->force_quit = 1;
  569. free_irq(spi->irq, priv);
  570. destroy_workqueue(priv->wq);
  571. priv->wq = NULL;
  572. mutex_lock(&priv->mcp_lock);
  573. /* Disable and clear pending interrupts */
  574. mcp251x_write_reg(spi, CANINTE, 0x00);
  575. mcp251x_write_reg(spi, CANINTF, 0x00);
  576. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  577. mcp251x_clean(net);
  578. mcp251x_hw_sleep(spi);
  579. if (pdata->transceiver_enable)
  580. pdata->transceiver_enable(0);
  581. priv->can.state = CAN_STATE_STOPPED;
  582. mutex_unlock(&priv->mcp_lock);
  583. return 0;
  584. }
  585. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  586. {
  587. struct sk_buff *skb;
  588. struct can_frame *frame;
  589. skb = alloc_can_err_skb(net, &frame);
  590. if (skb) {
  591. frame->can_id = can_id;
  592. frame->data[1] = data1;
  593. netif_rx(skb);
  594. } else {
  595. dev_err(&net->dev,
  596. "cannot allocate error skb\n");
  597. }
  598. }
  599. static void mcp251x_tx_work_handler(struct work_struct *ws)
  600. {
  601. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  602. tx_work);
  603. struct spi_device *spi = priv->spi;
  604. struct net_device *net = priv->net;
  605. struct can_frame *frame;
  606. mutex_lock(&priv->mcp_lock);
  607. if (priv->tx_skb) {
  608. if (priv->can.state == CAN_STATE_BUS_OFF) {
  609. mcp251x_clean(net);
  610. } else {
  611. frame = (struct can_frame *)priv->tx_skb->data;
  612. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  613. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  614. mcp251x_hw_tx(spi, frame, 0);
  615. priv->tx_len = 1 + frame->can_dlc;
  616. can_put_echo_skb(priv->tx_skb, net, 0);
  617. priv->tx_skb = NULL;
  618. }
  619. }
  620. mutex_unlock(&priv->mcp_lock);
  621. }
  622. static void mcp251x_restart_work_handler(struct work_struct *ws)
  623. {
  624. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  625. restart_work);
  626. struct spi_device *spi = priv->spi;
  627. struct net_device *net = priv->net;
  628. mutex_lock(&priv->mcp_lock);
  629. if (priv->after_suspend) {
  630. mdelay(10);
  631. mcp251x_hw_reset(spi);
  632. mcp251x_setup(net, priv, spi);
  633. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  634. mcp251x_set_normal_mode(spi);
  635. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  636. netif_device_attach(net);
  637. mcp251x_clean(net);
  638. mcp251x_set_normal_mode(spi);
  639. netif_wake_queue(net);
  640. } else {
  641. mcp251x_hw_sleep(spi);
  642. }
  643. priv->after_suspend = 0;
  644. priv->force_quit = 0;
  645. }
  646. if (priv->restart_tx) {
  647. priv->restart_tx = 0;
  648. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  649. mcp251x_clean(net);
  650. netif_wake_queue(net);
  651. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  652. }
  653. mutex_unlock(&priv->mcp_lock);
  654. }
  655. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  656. {
  657. struct mcp251x_priv *priv = dev_id;
  658. struct spi_device *spi = priv->spi;
  659. struct net_device *net = priv->net;
  660. mutex_lock(&priv->mcp_lock);
  661. while (!priv->force_quit) {
  662. enum can_state new_state;
  663. u8 intf = mcp251x_read_reg(spi, CANINTF);
  664. u8 eflag;
  665. int can_id = 0, data1 = 0;
  666. if (intf & CANINTF_RX0IF) {
  667. mcp251x_hw_rx(spi, 0);
  668. /* Free one buffer ASAP */
  669. mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
  670. 0x00);
  671. }
  672. if (intf & CANINTF_RX1IF)
  673. mcp251x_hw_rx(spi, 1);
  674. mcp251x_write_bits(spi, CANINTF, intf, 0x00);
  675. eflag = mcp251x_read_reg(spi, EFLG);
  676. mcp251x_write_reg(spi, EFLG, 0x00);
  677. /* Update can state */
  678. if (eflag & EFLG_TXBO) {
  679. new_state = CAN_STATE_BUS_OFF;
  680. can_id |= CAN_ERR_BUSOFF;
  681. } else if (eflag & EFLG_TXEP) {
  682. new_state = CAN_STATE_ERROR_PASSIVE;
  683. can_id |= CAN_ERR_CRTL;
  684. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  685. } else if (eflag & EFLG_RXEP) {
  686. new_state = CAN_STATE_ERROR_PASSIVE;
  687. can_id |= CAN_ERR_CRTL;
  688. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  689. } else if (eflag & EFLG_TXWAR) {
  690. new_state = CAN_STATE_ERROR_WARNING;
  691. can_id |= CAN_ERR_CRTL;
  692. data1 |= CAN_ERR_CRTL_TX_WARNING;
  693. } else if (eflag & EFLG_RXWAR) {
  694. new_state = CAN_STATE_ERROR_WARNING;
  695. can_id |= CAN_ERR_CRTL;
  696. data1 |= CAN_ERR_CRTL_RX_WARNING;
  697. } else {
  698. new_state = CAN_STATE_ERROR_ACTIVE;
  699. }
  700. /* Update can state statistics */
  701. switch (priv->can.state) {
  702. case CAN_STATE_ERROR_ACTIVE:
  703. if (new_state >= CAN_STATE_ERROR_WARNING &&
  704. new_state <= CAN_STATE_BUS_OFF)
  705. priv->can.can_stats.error_warning++;
  706. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  707. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  708. new_state <= CAN_STATE_BUS_OFF)
  709. priv->can.can_stats.error_passive++;
  710. break;
  711. default:
  712. break;
  713. }
  714. priv->can.state = new_state;
  715. if (intf & CANINTF_ERRIF) {
  716. /* Handle overflow counters */
  717. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  718. if (eflag & EFLG_RX0OVR)
  719. net->stats.rx_over_errors++;
  720. if (eflag & EFLG_RX1OVR)
  721. net->stats.rx_over_errors++;
  722. can_id |= CAN_ERR_CRTL;
  723. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  724. }
  725. mcp251x_error_skb(net, can_id, data1);
  726. }
  727. if (priv->can.state == CAN_STATE_BUS_OFF) {
  728. if (priv->can.restart_ms == 0) {
  729. priv->force_quit = 1;
  730. can_bus_off(net);
  731. mcp251x_hw_sleep(spi);
  732. break;
  733. }
  734. }
  735. if (intf == 0)
  736. break;
  737. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  738. net->stats.tx_packets++;
  739. net->stats.tx_bytes += priv->tx_len - 1;
  740. if (priv->tx_len) {
  741. can_get_echo_skb(net, 0);
  742. priv->tx_len = 0;
  743. }
  744. netif_wake_queue(net);
  745. }
  746. }
  747. mutex_unlock(&priv->mcp_lock);
  748. return IRQ_HANDLED;
  749. }
  750. static int mcp251x_open(struct net_device *net)
  751. {
  752. struct mcp251x_priv *priv = netdev_priv(net);
  753. struct spi_device *spi = priv->spi;
  754. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  755. int ret;
  756. ret = open_candev(net);
  757. if (ret) {
  758. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  759. return ret;
  760. }
  761. mutex_lock(&priv->mcp_lock);
  762. if (pdata->transceiver_enable)
  763. pdata->transceiver_enable(1);
  764. priv->force_quit = 0;
  765. priv->tx_skb = NULL;
  766. priv->tx_len = 0;
  767. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  768. IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
  769. if (ret) {
  770. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  771. if (pdata->transceiver_enable)
  772. pdata->transceiver_enable(0);
  773. close_candev(net);
  774. goto open_unlock;
  775. }
  776. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  777. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  778. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  779. ret = mcp251x_hw_reset(spi);
  780. if (ret) {
  781. mcp251x_open_clean(net);
  782. goto open_unlock;
  783. }
  784. ret = mcp251x_setup(net, priv, spi);
  785. if (ret) {
  786. mcp251x_open_clean(net);
  787. goto open_unlock;
  788. }
  789. ret = mcp251x_set_normal_mode(spi);
  790. if (ret) {
  791. mcp251x_open_clean(net);
  792. goto open_unlock;
  793. }
  794. netif_wake_queue(net);
  795. open_unlock:
  796. mutex_unlock(&priv->mcp_lock);
  797. return ret;
  798. }
  799. static const struct net_device_ops mcp251x_netdev_ops = {
  800. .ndo_open = mcp251x_open,
  801. .ndo_stop = mcp251x_stop,
  802. .ndo_start_xmit = mcp251x_hard_start_xmit,
  803. };
  804. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  805. {
  806. struct net_device *net;
  807. struct mcp251x_priv *priv;
  808. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  809. int ret = -ENODEV;
  810. if (!pdata)
  811. /* Platform data is required for osc freq */
  812. goto error_out;
  813. /* Allocate can/net device */
  814. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  815. if (!net) {
  816. ret = -ENOMEM;
  817. goto error_alloc;
  818. }
  819. net->netdev_ops = &mcp251x_netdev_ops;
  820. net->flags |= IFF_ECHO;
  821. priv = netdev_priv(net);
  822. priv->can.bittiming_const = &mcp251x_bittiming_const;
  823. priv->can.do_set_mode = mcp251x_do_set_mode;
  824. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  825. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  826. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  827. priv->net = net;
  828. dev_set_drvdata(&spi->dev, priv);
  829. priv->spi = spi;
  830. mutex_init(&priv->mcp_lock);
  831. /* If requested, allocate DMA buffers */
  832. if (mcp251x_enable_dma) {
  833. spi->dev.coherent_dma_mask = ~0;
  834. /*
  835. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  836. * that much and share it between Tx and Rx DMA buffers.
  837. */
  838. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  839. PAGE_SIZE,
  840. &priv->spi_tx_dma,
  841. GFP_DMA);
  842. if (priv->spi_tx_buf) {
  843. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  844. (PAGE_SIZE / 2));
  845. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  846. (PAGE_SIZE / 2));
  847. } else {
  848. /* Fall back to non-DMA */
  849. mcp251x_enable_dma = 0;
  850. }
  851. }
  852. /* Allocate non-DMA buffers */
  853. if (!mcp251x_enable_dma) {
  854. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  855. if (!priv->spi_tx_buf) {
  856. ret = -ENOMEM;
  857. goto error_tx_buf;
  858. }
  859. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  860. if (!priv->spi_rx_buf) {
  861. ret = -ENOMEM;
  862. goto error_rx_buf;
  863. }
  864. }
  865. if (pdata->power_enable)
  866. pdata->power_enable(1);
  867. /* Call out to platform specific setup */
  868. if (pdata->board_specific_setup)
  869. pdata->board_specific_setup(spi);
  870. SET_NETDEV_DEV(net, &spi->dev);
  871. /* Configure the SPI bus */
  872. spi->mode = SPI_MODE_0;
  873. spi->bits_per_word = 8;
  874. spi_setup(spi);
  875. /* Here is OK to not lock the MCP, no one knows about it yet */
  876. if (!mcp251x_hw_probe(spi)) {
  877. dev_info(&spi->dev, "Probe failed\n");
  878. goto error_probe;
  879. }
  880. mcp251x_hw_sleep(spi);
  881. if (pdata->transceiver_enable)
  882. pdata->transceiver_enable(0);
  883. ret = register_candev(net);
  884. if (!ret) {
  885. dev_info(&spi->dev, "probed\n");
  886. return ret;
  887. }
  888. error_probe:
  889. if (!mcp251x_enable_dma)
  890. kfree(priv->spi_rx_buf);
  891. error_rx_buf:
  892. if (!mcp251x_enable_dma)
  893. kfree(priv->spi_tx_buf);
  894. error_tx_buf:
  895. free_candev(net);
  896. if (mcp251x_enable_dma)
  897. dma_free_coherent(&spi->dev, PAGE_SIZE,
  898. priv->spi_tx_buf, priv->spi_tx_dma);
  899. error_alloc:
  900. if (pdata->power_enable)
  901. pdata->power_enable(0);
  902. dev_err(&spi->dev, "probe failed\n");
  903. error_out:
  904. return ret;
  905. }
  906. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  907. {
  908. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  909. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  910. struct net_device *net = priv->net;
  911. unregister_candev(net);
  912. free_candev(net);
  913. if (mcp251x_enable_dma) {
  914. dma_free_coherent(&spi->dev, PAGE_SIZE,
  915. priv->spi_tx_buf, priv->spi_tx_dma);
  916. } else {
  917. kfree(priv->spi_tx_buf);
  918. kfree(priv->spi_rx_buf);
  919. }
  920. if (pdata->power_enable)
  921. pdata->power_enable(0);
  922. return 0;
  923. }
  924. #ifdef CONFIG_PM
  925. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  926. {
  927. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  928. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  929. struct net_device *net = priv->net;
  930. priv->force_quit = 1;
  931. disable_irq(spi->irq);
  932. /*
  933. * Note: at this point neither IST nor workqueues are running.
  934. * open/stop cannot be called anyway so locking is not needed
  935. */
  936. if (netif_running(net)) {
  937. netif_device_detach(net);
  938. mcp251x_hw_sleep(spi);
  939. if (pdata->transceiver_enable)
  940. pdata->transceiver_enable(0);
  941. priv->after_suspend = AFTER_SUSPEND_UP;
  942. } else {
  943. priv->after_suspend = AFTER_SUSPEND_DOWN;
  944. }
  945. if (pdata->power_enable) {
  946. pdata->power_enable(0);
  947. priv->after_suspend |= AFTER_SUSPEND_POWER;
  948. }
  949. return 0;
  950. }
  951. static int mcp251x_can_resume(struct spi_device *spi)
  952. {
  953. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  954. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  955. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  956. pdata->power_enable(1);
  957. queue_work(priv->wq, &priv->restart_work);
  958. } else {
  959. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  960. if (pdata->transceiver_enable)
  961. pdata->transceiver_enable(1);
  962. queue_work(priv->wq, &priv->restart_work);
  963. } else {
  964. priv->after_suspend = 0;
  965. }
  966. }
  967. priv->force_quit = 0;
  968. enable_irq(spi->irq);
  969. return 0;
  970. }
  971. #else
  972. #define mcp251x_can_suspend NULL
  973. #define mcp251x_can_resume NULL
  974. #endif
  975. static struct spi_driver mcp251x_can_driver = {
  976. .driver = {
  977. .name = DEVICE_NAME,
  978. .bus = &spi_bus_type,
  979. .owner = THIS_MODULE,
  980. },
  981. .probe = mcp251x_can_probe,
  982. .remove = __devexit_p(mcp251x_can_remove),
  983. .suspend = mcp251x_can_suspend,
  984. .resume = mcp251x_can_resume,
  985. };
  986. static int __init mcp251x_can_init(void)
  987. {
  988. return spi_register_driver(&mcp251x_can_driver);
  989. }
  990. static void __exit mcp251x_can_exit(void)
  991. {
  992. spi_unregister_driver(&mcp251x_can_driver);
  993. }
  994. module_init(mcp251x_can_init);
  995. module_exit(mcp251x_can_exit);
  996. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  997. "Christian Pellegrin <chripell@evolware.org>");
  998. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  999. MODULE_LICENSE("GPL v2");