dib8000.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339
  1. /*
  2. * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
  3. *
  4. * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/i2c.h>
  12. #include "dvb_math.h"
  13. #include "dvb_frontend.h"
  14. #include "dib8000.h"
  15. #define LAYER_ALL -1
  16. #define LAYER_A 1
  17. #define LAYER_B 2
  18. #define LAYER_C 3
  19. #define FE_CALLBACK_TIME_NEVER 0xffffffff
  20. static int debug;
  21. module_param(debug, int, 0644);
  22. MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
  23. #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0)
  24. #define FE_STATUS_TUNE_FAILED 0
  25. struct i2c_device {
  26. struct i2c_adapter *adap;
  27. u8 addr;
  28. };
  29. struct dib8000_state {
  30. struct dvb_frontend fe;
  31. struct dib8000_config cfg;
  32. struct i2c_device i2c;
  33. struct dibx000_i2c_master i2c_master;
  34. u16 wbd_ref;
  35. u8 current_band;
  36. u32 current_bandwidth;
  37. struct dibx000_agc_config *current_agc;
  38. u32 timf;
  39. u32 timf_default;
  40. u8 div_force_off:1;
  41. u8 div_state:1;
  42. u16 div_sync_wait;
  43. u8 agc_state;
  44. u8 differential_constellation;
  45. u8 diversity_onoff;
  46. s16 ber_monitored_layer;
  47. u16 gpio_dir;
  48. u16 gpio_val;
  49. u16 revision;
  50. u8 isdbt_cfg_loaded;
  51. enum frontend_tune_state tune_state;
  52. u32 status;
  53. };
  54. enum dib8000_power_mode {
  55. DIB8000M_POWER_ALL = 0,
  56. DIB8000M_POWER_INTERFACE_ONLY,
  57. };
  58. static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
  59. {
  60. u8 wb[2] = { reg >> 8, reg & 0xff };
  61. u8 rb[2];
  62. struct i2c_msg msg[2] = {
  63. {.addr = i2c->addr >> 1,.flags = 0,.buf = wb,.len = 2},
  64. {.addr = i2c->addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
  65. };
  66. if (i2c_transfer(i2c->adap, msg, 2) != 2)
  67. dprintk("i2c read error on %d", reg);
  68. return (rb[0] << 8) | rb[1];
  69. }
  70. static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
  71. {
  72. return dib8000_i2c_read16(&state->i2c, reg);
  73. }
  74. static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
  75. {
  76. u16 rw[2];
  77. rw[0] = dib8000_read_word(state, reg + 0);
  78. rw[1] = dib8000_read_word(state, reg + 1);
  79. return ((rw[0] << 16) | (rw[1]));
  80. }
  81. static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
  82. {
  83. u8 b[4] = {
  84. (reg >> 8) & 0xff, reg & 0xff,
  85. (val >> 8) & 0xff, val & 0xff,
  86. };
  87. struct i2c_msg msg = {
  88. .addr = i2c->addr >> 1,.flags = 0,.buf = b,.len = 4
  89. };
  90. return i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
  91. }
  92. static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
  93. {
  94. return dib8000_i2c_write16(&state->i2c, reg, val);
  95. }
  96. static const int16_t coeff_2k_sb_1seg_dqpsk[8] = {
  97. (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
  98. (920 << 5) | 0x09
  99. };
  100. static const int16_t coeff_2k_sb_1seg[8] = {
  101. (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
  102. };
  103. static const int16_t coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
  104. (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
  105. (-931 << 5) | 0x0f
  106. };
  107. static const int16_t coeff_2k_sb_3seg_0dqpsk[8] = {
  108. (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
  109. (982 << 5) | 0x0c
  110. };
  111. static const int16_t coeff_2k_sb_3seg_1dqpsk[8] = {
  112. (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
  113. (-720 << 5) | 0x0d
  114. };
  115. static const int16_t coeff_2k_sb_3seg[8] = {
  116. (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
  117. (-610 << 5) | 0x0a
  118. };
  119. static const int16_t coeff_4k_sb_1seg_dqpsk[8] = {
  120. (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
  121. (-922 << 5) | 0x0d
  122. };
  123. static const int16_t coeff_4k_sb_1seg[8] = {
  124. (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
  125. (-655 << 5) | 0x0a
  126. };
  127. static const int16_t coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
  128. (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
  129. (-958 << 5) | 0x13
  130. };
  131. static const int16_t coeff_4k_sb_3seg_0dqpsk[8] = {
  132. (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
  133. (-568 << 5) | 0x0f
  134. };
  135. static const int16_t coeff_4k_sb_3seg_1dqpsk[8] = {
  136. (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
  137. (-848 << 5) | 0x13
  138. };
  139. static const int16_t coeff_4k_sb_3seg[8] = {
  140. (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
  141. (-869 << 5) | 0x13
  142. };
  143. static const int16_t coeff_8k_sb_1seg_dqpsk[8] = {
  144. (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
  145. (-598 << 5) | 0x10
  146. };
  147. static const int16_t coeff_8k_sb_1seg[8] = {
  148. (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
  149. (585 << 5) | 0x0f
  150. };
  151. static const int16_t coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
  152. (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
  153. (0 << 5) | 0x14
  154. };
  155. static const int16_t coeff_8k_sb_3seg_0dqpsk[8] = {
  156. (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
  157. (-877 << 5) | 0x15
  158. };
  159. static const int16_t coeff_8k_sb_3seg_1dqpsk[8] = {
  160. (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
  161. (-921 << 5) | 0x14
  162. };
  163. static const int16_t coeff_8k_sb_3seg[8] = {
  164. (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
  165. (690 << 5) | 0x14
  166. };
  167. static const int16_t ana_fe_coeff_3seg[24] = {
  168. 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
  169. };
  170. static const int16_t ana_fe_coeff_1seg[24] = {
  171. 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
  172. };
  173. static const int16_t ana_fe_coeff_13seg[24] = {
  174. 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
  175. };
  176. static u16 fft_to_mode(struct dib8000_state *state)
  177. {
  178. u16 mode;
  179. switch (state->fe.dtv_property_cache.transmission_mode) {
  180. case TRANSMISSION_MODE_2K:
  181. mode = 1;
  182. break;
  183. case TRANSMISSION_MODE_4K:
  184. mode = 2;
  185. break;
  186. default:
  187. case TRANSMISSION_MODE_AUTO:
  188. case TRANSMISSION_MODE_8K:
  189. mode = 3;
  190. break;
  191. }
  192. return mode;
  193. }
  194. static void dib8000_set_acquisition_mode(struct dib8000_state *state)
  195. {
  196. u16 nud = dib8000_read_word(state, 298);
  197. nud |= (1 << 3) | (1 << 0);
  198. dprintk("acquisition mode activated");
  199. dib8000_write_word(state, 298, nud);
  200. }
  201. static int dib8000_set_output_mode(struct dib8000_state *state, int mode)
  202. {
  203. u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */
  204. outreg = 0;
  205. fifo_threshold = 1792;
  206. smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
  207. dprintk("-I- Setting output mode for demod %p to %d", &state->fe, mode);
  208. switch (mode) {
  209. case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
  210. outreg = (1 << 10); /* 0x0400 */
  211. break;
  212. case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
  213. outreg = (1 << 10) | (1 << 6); /* 0x0440 */
  214. break;
  215. case OUTMODE_MPEG2_SERIAL: // STBs with serial input
  216. outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
  217. break;
  218. case OUTMODE_DIVERSITY:
  219. if (state->cfg.hostbus_diversity) {
  220. outreg = (1 << 10) | (4 << 6); /* 0x0500 */
  221. sram &= 0xfdff;
  222. } else
  223. sram |= 0x0c00;
  224. break;
  225. case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
  226. smo_mode |= (3 << 1);
  227. fifo_threshold = 512;
  228. outreg = (1 << 10) | (5 << 6);
  229. break;
  230. case OUTMODE_HIGH_Z: // disable
  231. outreg = 0;
  232. break;
  233. case OUTMODE_ANALOG_ADC:
  234. outreg = (1 << 10) | (3 << 6);
  235. dib8000_set_acquisition_mode(state);
  236. break;
  237. default:
  238. dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe);
  239. return -EINVAL;
  240. }
  241. if (state->cfg.output_mpeg2_in_188_bytes)
  242. smo_mode |= (1 << 5);
  243. dib8000_write_word(state, 299, smo_mode);
  244. dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */
  245. dib8000_write_word(state, 1286, outreg);
  246. dib8000_write_word(state, 1291, sram);
  247. return 0;
  248. }
  249. static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
  250. {
  251. struct dib8000_state *state = fe->demodulator_priv;
  252. u16 sync_wait = dib8000_read_word(state, 273) & 0xfff0;
  253. if (!state->differential_constellation) {
  254. dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1
  255. dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
  256. } else {
  257. dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0
  258. dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0
  259. }
  260. state->diversity_onoff = onoff;
  261. switch (onoff) {
  262. case 0: /* only use the internal way - not the diversity input */
  263. dib8000_write_word(state, 270, 1);
  264. dib8000_write_word(state, 271, 0);
  265. break;
  266. case 1: /* both ways */
  267. dib8000_write_word(state, 270, 6);
  268. dib8000_write_word(state, 271, 6);
  269. break;
  270. case 2: /* only the diversity input */
  271. dib8000_write_word(state, 270, 0);
  272. dib8000_write_word(state, 271, 1);
  273. break;
  274. }
  275. return 0;
  276. }
  277. static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
  278. {
  279. /* by default everything is going to be powered off */
  280. u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
  281. reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
  282. /* now, depending on the requested mode, we power on */
  283. switch (mode) {
  284. /* power up everything in the demod */
  285. case DIB8000M_POWER_ALL:
  286. reg_774 = 0x0000;
  287. reg_775 = 0x0000;
  288. reg_776 = 0x0000;
  289. reg_900 &= 0xfffc;
  290. reg_1280 &= 0x00ff;
  291. break;
  292. case DIB8000M_POWER_INTERFACE_ONLY:
  293. reg_1280 &= 0x00ff;
  294. break;
  295. }
  296. dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774, reg_775, reg_776, reg_900, reg_1280);
  297. dib8000_write_word(state, 774, reg_774);
  298. dib8000_write_word(state, 775, reg_775);
  299. dib8000_write_word(state, 776, reg_776);
  300. dib8000_write_word(state, 900, reg_900);
  301. dib8000_write_word(state, 1280, reg_1280);
  302. }
  303. static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
  304. {
  305. int ret = 0;
  306. u16 reg_907 = dib8000_read_word(state, 907), reg_908 = dib8000_read_word(state, 908);
  307. switch (no) {
  308. case DIBX000_SLOW_ADC_ON:
  309. reg_908 |= (1 << 1) | (1 << 0);
  310. ret |= dib8000_write_word(state, 908, reg_908);
  311. reg_908 &= ~(1 << 1);
  312. break;
  313. case DIBX000_SLOW_ADC_OFF:
  314. reg_908 |= (1 << 1) | (1 << 0);
  315. break;
  316. case DIBX000_ADC_ON:
  317. reg_907 &= 0x0fff;
  318. reg_908 &= 0x0003;
  319. break;
  320. case DIBX000_ADC_OFF: // leave the VBG voltage on
  321. reg_907 |= (1 << 14) | (1 << 13) | (1 << 12);
  322. reg_908 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
  323. break;
  324. case DIBX000_VBG_ENABLE:
  325. reg_907 &= ~(1 << 15);
  326. break;
  327. case DIBX000_VBG_DISABLE:
  328. reg_907 |= (1 << 15);
  329. break;
  330. default:
  331. break;
  332. }
  333. ret |= dib8000_write_word(state, 907, reg_907);
  334. ret |= dib8000_write_word(state, 908, reg_908);
  335. return ret;
  336. }
  337. static int dib8000_set_bandwidth(struct dib8000_state *state, u32 bw)
  338. {
  339. u32 timf;
  340. if (bw == 0)
  341. bw = 6000;
  342. if (state->timf == 0) {
  343. dprintk("using default timf");
  344. timf = state->timf_default;
  345. } else {
  346. dprintk("using updated timf");
  347. timf = state->timf;
  348. }
  349. dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
  350. dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
  351. return 0;
  352. }
  353. static int dib8000_sad_calib(struct dib8000_state *state)
  354. {
  355. /* internal */
  356. dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
  357. dib8000_write_word(state, 924, 776); // 0.625*3.3 / 4096
  358. /* do the calibration */
  359. dib8000_write_word(state, 923, (1 << 0));
  360. dib8000_write_word(state, 923, (0 << 0));
  361. msleep(1);
  362. return 0;
  363. }
  364. int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
  365. {
  366. struct dib8000_state *state = fe->demodulator_priv;
  367. if (value > 4095)
  368. value = 4095;
  369. state->wbd_ref = value;
  370. return dib8000_write_word(state, 106, value);
  371. }
  372. EXPORT_SYMBOL(dib8000_set_wbd_ref);
  373. static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
  374. {
  375. dprintk("ifreq: %d %x, inversion: %d", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
  376. dib8000_write_word(state, 23, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); /* P_sec_len */
  377. dib8000_write_word(state, 24, (u16) ((bw->internal * 1000) & 0xffff));
  378. dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
  379. dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
  380. dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
  381. dib8000_write_word(state, 922, bw->sad_cfg);
  382. }
  383. static void dib8000_reset_pll(struct dib8000_state *state)
  384. {
  385. const struct dibx000_bandwidth_config *pll = state->cfg.pll;
  386. u16 clk_cfg1;
  387. // clk_cfg0
  388. dib8000_write_word(state, 901, (pll->pll_prediv << 8) | (pll->pll_ratio << 0));
  389. // clk_cfg1
  390. clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
  391. (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0);
  392. dib8000_write_word(state, 902, clk_cfg1);
  393. clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
  394. dib8000_write_word(state, 902, clk_cfg1);
  395. dprintk("clk_cfg1: 0x%04x", clk_cfg1); /* 0x507 1 0 1 000 0 0 11 1 */
  396. /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
  397. if (state->cfg.pll->ADClkSrc == 0)
  398. dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
  399. else if (state->cfg.refclksel != 0)
  400. dib8000_write_word(state, 904,
  401. (0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->
  402. ADClkSrc << 7) | (0 << 1));
  403. else
  404. dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
  405. dib8000_reset_pll_common(state, pll);
  406. }
  407. static int dib8000_reset_gpio(struct dib8000_state *st)
  408. {
  409. /* reset the GPIOs */
  410. dib8000_write_word(st, 1029, st->cfg.gpio_dir);
  411. dib8000_write_word(st, 1030, st->cfg.gpio_val);
  412. /* TODO 782 is P_gpio_od */
  413. dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
  414. dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
  415. return 0;
  416. }
  417. static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
  418. {
  419. st->cfg.gpio_dir = dib8000_read_word(st, 1029);
  420. st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */
  421. st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */
  422. dib8000_write_word(st, 1029, st->cfg.gpio_dir);
  423. st->cfg.gpio_val = dib8000_read_word(st, 1030);
  424. st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */
  425. st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */
  426. dib8000_write_word(st, 1030, st->cfg.gpio_val);
  427. dprintk("gpio dir: %x: gpio val: %x", st->cfg.gpio_dir, st->cfg.gpio_val);
  428. return 0;
  429. }
  430. int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
  431. {
  432. struct dib8000_state *state = fe->demodulator_priv;
  433. return dib8000_cfg_gpio(state, num, dir, val);
  434. }
  435. EXPORT_SYMBOL(dib8000_set_gpio);
  436. static const u16 dib8000_defaults[] = {
  437. /* auto search configuration - lock0 by default waiting
  438. * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
  439. 3, 7,
  440. 0x0004,
  441. 0x0400,
  442. 0x0814,
  443. 12, 11,
  444. 0x001b,
  445. 0x7740,
  446. 0x005b,
  447. 0x8d80,
  448. 0x01c9,
  449. 0xc380,
  450. 0x0000,
  451. 0x0080,
  452. 0x0000,
  453. 0x0090,
  454. 0x0001,
  455. 0xd4c0,
  456. /*1, 32,
  457. 0x6680 // P_corm_thres Lock algorithms configuration */
  458. 11, 80, /* set ADC level to -16 */
  459. (1 << 13) - 825 - 117,
  460. (1 << 13) - 837 - 117,
  461. (1 << 13) - 811 - 117,
  462. (1 << 13) - 766 - 117,
  463. (1 << 13) - 737 - 117,
  464. (1 << 13) - 693 - 117,
  465. (1 << 13) - 648 - 117,
  466. (1 << 13) - 619 - 117,
  467. (1 << 13) - 575 - 117,
  468. (1 << 13) - 531 - 117,
  469. (1 << 13) - 501 - 117,
  470. 4, 108,
  471. 0,
  472. 0,
  473. 0,
  474. 0,
  475. 1, 175,
  476. 0x0410,
  477. 1, 179,
  478. 8192, // P_fft_nb_to_cut
  479. 6, 181,
  480. 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
  481. 0x2800,
  482. 0x2800,
  483. 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
  484. 0x2800,
  485. 0x2800,
  486. 2, 193,
  487. 0x0666, // P_pha3_thres
  488. 0x0000, // P_cti_use_cpe, P_cti_use_prog
  489. 2, 205,
  490. 0x200f, // P_cspu_regul, P_cspu_win_cut
  491. 0x000f, // P_des_shift_work
  492. 5, 215,
  493. 0x023d, // P_adp_regul_cnt
  494. 0x00a4, // P_adp_noise_cnt
  495. 0x00a4, // P_adp_regul_ext
  496. 0x7ff0, // P_adp_noise_ext
  497. 0x3ccc, // P_adp_fil
  498. 1, 230,
  499. 0x0000, // P_2d_byp_ti_num
  500. 1, 263,
  501. 0x800, //P_equal_thres_wgn
  502. 1, 268,
  503. (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
  504. 1, 270,
  505. 0x0001, // P_div_lock0_wait
  506. 1, 285,
  507. 0x0020, //p_fec_
  508. 1, 299,
  509. 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
  510. 1, 338,
  511. (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
  512. (1 << 10) | // P_ctrl_pre_freq_mode_sat=1
  513. (0 << 9) | // P_ctrl_pre_freq_inh=0
  514. (3 << 5) | // P_ctrl_pre_freq_step=3
  515. (1 << 0), // P_pre_freq_win_len=1
  516. 1, 903,
  517. (0 << 4) | 2, // P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)
  518. 0,
  519. };
  520. static u16 dib8000_identify(struct i2c_device *client)
  521. {
  522. u16 value;
  523. //because of glitches sometimes
  524. value = dib8000_i2c_read16(client, 896);
  525. if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
  526. dprintk("wrong Vendor ID (read=0x%x)", value);
  527. return 0;
  528. }
  529. value = dib8000_i2c_read16(client, 897);
  530. if (value != 0x8000 && value != 0x8001 && value != 0x8002) {
  531. dprintk("wrong Device ID (%x)", value);
  532. return 0;
  533. }
  534. switch (value) {
  535. case 0x8000:
  536. dprintk("found DiB8000A");
  537. break;
  538. case 0x8001:
  539. dprintk("found DiB8000B");
  540. break;
  541. case 0x8002:
  542. dprintk("found DiB8000C");
  543. break;
  544. }
  545. return value;
  546. }
  547. static int dib8000_reset(struct dvb_frontend *fe)
  548. {
  549. struct dib8000_state *state = fe->demodulator_priv;
  550. dib8000_write_word(state, 1287, 0x0003); /* sram lead in, rdy */
  551. if ((state->revision = dib8000_identify(&state->i2c)) == 0)
  552. return -EINVAL;
  553. if (state->revision == 0x8000)
  554. dprintk("error : dib8000 MA not supported");
  555. dibx000_reset_i2c_master(&state->i2c_master);
  556. dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
  557. /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
  558. dib8000_set_adc_state(state, DIBX000_VBG_ENABLE);
  559. /* restart all parts */
  560. dib8000_write_word(state, 770, 0xffff);
  561. dib8000_write_word(state, 771, 0xffff);
  562. dib8000_write_word(state, 772, 0xfffc);
  563. dib8000_write_word(state, 898, 0x000c); // sad
  564. dib8000_write_word(state, 1280, 0x004d);
  565. dib8000_write_word(state, 1281, 0x000c);
  566. dib8000_write_word(state, 770, 0x0000);
  567. dib8000_write_word(state, 771, 0x0000);
  568. dib8000_write_word(state, 772, 0x0000);
  569. dib8000_write_word(state, 898, 0x0004); // sad
  570. dib8000_write_word(state, 1280, 0x0000);
  571. dib8000_write_word(state, 1281, 0x0000);
  572. /* drives */
  573. if (state->cfg.drives)
  574. dib8000_write_word(state, 906, state->cfg.drives);
  575. else {
  576. dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.");
  577. dib8000_write_word(state, 906, 0x2d98); // min drive SDRAM - not optimal - adjust
  578. }
  579. dib8000_reset_pll(state);
  580. if (dib8000_reset_gpio(state) != 0)
  581. dprintk("GPIO reset was not successful.");
  582. if (dib8000_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
  583. dprintk("OUTPUT_MODE could not be resetted.");
  584. state->current_agc = NULL;
  585. // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
  586. /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
  587. if (state->cfg.pll->ifreq == 0)
  588. dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
  589. else
  590. dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
  591. {
  592. u16 l = 0, r;
  593. const u16 *n;
  594. n = dib8000_defaults;
  595. l = *n++;
  596. while (l) {
  597. r = *n++;
  598. do {
  599. dib8000_write_word(state, r, *n++);
  600. r++;
  601. } while (--l);
  602. l = *n++;
  603. }
  604. }
  605. state->isdbt_cfg_loaded = 0;
  606. //div_cfg override for special configs
  607. if (state->cfg.div_cfg != 0)
  608. dib8000_write_word(state, 903, state->cfg.div_cfg);
  609. /* unforce divstr regardless whether i2c enumeration was done or not */
  610. dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
  611. dib8000_set_bandwidth(state, 6000);
  612. dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
  613. dib8000_sad_calib(state);
  614. dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
  615. dib8000_set_power_mode(state, DIB8000M_POWER_INTERFACE_ONLY);
  616. return 0;
  617. }
  618. static void dib8000_restart_agc(struct dib8000_state *state)
  619. {
  620. // P_restart_iqc & P_restart_agc
  621. dib8000_write_word(state, 770, 0x0a00);
  622. dib8000_write_word(state, 770, 0x0000);
  623. }
  624. static int dib8000_update_lna(struct dib8000_state *state)
  625. {
  626. u16 dyn_gain;
  627. if (state->cfg.update_lna) {
  628. // read dyn_gain here (because it is demod-dependent and not tuner)
  629. dyn_gain = dib8000_read_word(state, 390);
  630. if (state->cfg.update_lna(&state->fe, dyn_gain)) { // LNA has changed
  631. dib8000_restart_agc(state);
  632. return 1;
  633. }
  634. }
  635. return 0;
  636. }
  637. static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
  638. {
  639. struct dibx000_agc_config *agc = NULL;
  640. int i;
  641. if (state->current_band == band && state->current_agc != NULL)
  642. return 0;
  643. state->current_band = band;
  644. for (i = 0; i < state->cfg.agc_config_count; i++)
  645. if (state->cfg.agc[i].band_caps & band) {
  646. agc = &state->cfg.agc[i];
  647. break;
  648. }
  649. if (agc == NULL) {
  650. dprintk("no valid AGC configuration found for band 0x%02x", band);
  651. return -EINVAL;
  652. }
  653. state->current_agc = agc;
  654. /* AGC */
  655. dib8000_write_word(state, 76, agc->setup);
  656. dib8000_write_word(state, 77, agc->inv_gain);
  657. dib8000_write_word(state, 78, agc->time_stabiliz);
  658. dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
  659. // Demod AGC loop configuration
  660. dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
  661. dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
  662. dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
  663. state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
  664. /* AGC continued */
  665. if (state->wbd_ref != 0)
  666. dib8000_write_word(state, 106, state->wbd_ref);
  667. else // use default
  668. dib8000_write_word(state, 106, agc->wbd_ref);
  669. dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
  670. dib8000_write_word(state, 108, agc->agc1_max);
  671. dib8000_write_word(state, 109, agc->agc1_min);
  672. dib8000_write_word(state, 110, agc->agc2_max);
  673. dib8000_write_word(state, 111, agc->agc2_min);
  674. dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
  675. dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
  676. dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
  677. dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
  678. dib8000_write_word(state, 75, agc->agc1_pt3);
  679. dib8000_write_word(state, 923, (dib8000_read_word(state, 923) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); /*LB : 929 -> 923 */
  680. return 0;
  681. }
  682. void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
  683. {
  684. struct dib8000_state *state = fe->demodulator_priv;
  685. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  686. dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
  687. }
  688. EXPORT_SYMBOL(dib8000_pwm_agc_reset);
  689. static int dib8000_agc_soft_split(struct dib8000_state *state)
  690. {
  691. u16 agc, split_offset;
  692. if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
  693. return FE_CALLBACK_TIME_NEVER;
  694. // n_agc_global
  695. agc = dib8000_read_word(state, 390);
  696. if (agc > state->current_agc->split.min_thres)
  697. split_offset = state->current_agc->split.min;
  698. else if (agc < state->current_agc->split.max_thres)
  699. split_offset = state->current_agc->split.max;
  700. else
  701. split_offset = state->current_agc->split.max *
  702. (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
  703. dprintk("AGC split_offset: %d", split_offset);
  704. // P_agc_force_split and P_agc_split_offset
  705. dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
  706. return 5000;
  707. }
  708. static int dib8000_agc_startup(struct dvb_frontend *fe)
  709. {
  710. struct dib8000_state *state = fe->demodulator_priv;
  711. enum frontend_tune_state *tune_state = &state->tune_state;
  712. int ret = 0;
  713. switch (*tune_state) {
  714. case CT_AGC_START:
  715. // set power-up level: interf+analog+AGC
  716. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  717. if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
  718. *tune_state = CT_AGC_STOP;
  719. state->status = FE_STATUS_TUNE_FAILED;
  720. break;
  721. }
  722. ret = 70;
  723. *tune_state = CT_AGC_STEP_0;
  724. break;
  725. case CT_AGC_STEP_0:
  726. //AGC initialization
  727. if (state->cfg.agc_control)
  728. state->cfg.agc_control(&state->fe, 1);
  729. dib8000_restart_agc(state);
  730. // wait AGC rough lock time
  731. ret = 50;
  732. *tune_state = CT_AGC_STEP_1;
  733. break;
  734. case CT_AGC_STEP_1:
  735. // wait AGC accurate lock time
  736. ret = 70;
  737. if (dib8000_update_lna(state))
  738. // wait only AGC rough lock time
  739. ret = 50;
  740. else
  741. *tune_state = CT_AGC_STEP_2;
  742. break;
  743. case CT_AGC_STEP_2:
  744. dib8000_agc_soft_split(state);
  745. if (state->cfg.agc_control)
  746. state->cfg.agc_control(&state->fe, 0);
  747. *tune_state = CT_AGC_STOP;
  748. break;
  749. default:
  750. ret = dib8000_agc_soft_split(state);
  751. break;
  752. }
  753. return ret;
  754. }
  755. static const int32_t lut_1000ln_mant[] =
  756. {
  757. 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
  758. };
  759. int32_t dib8000_get_adc_power(struct dvb_frontend *fe, uint8_t mode)
  760. {
  761. struct dib8000_state *state = fe->demodulator_priv;
  762. uint32_t ix = 0, tmp_val = 0, exp = 0, mant = 0;
  763. int32_t val;
  764. val = dib8000_read32(state, 384);
  765. /* mode = 1 : ln_agcpower calc using mant-exp conversion and mantis look up table */
  766. if (mode) {
  767. tmp_val = val;
  768. while (tmp_val >>= 1)
  769. exp++;
  770. mant = (val * 1000 / (1<<exp));
  771. ix = (uint8_t)((mant-1000)/100); /* index of the LUT */
  772. val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); /* 1000 * ln(adcpower_real) ; 693 = 1000ln(2) ; 6908 = 1000*ln(1000) ; 20 comes from adc_real = adc_pow_int / 2**20 */
  773. val = (val*256)/1000;
  774. }
  775. return val;
  776. }
  777. EXPORT_SYMBOL(dib8000_get_adc_power);
  778. static void dib8000_update_timf(struct dib8000_state *state)
  779. {
  780. u32 timf = state->timf = dib8000_read32(state, 435);
  781. dib8000_write_word(state, 29, (u16) (timf >> 16));
  782. dib8000_write_word(state, 30, (u16) (timf & 0xffff));
  783. dprintk("Updated timing frequency: %d (default: %d)", state->timf, state->timf_default);
  784. }
  785. static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
  786. {
  787. u16 mode, max_constellation, seg_diff_mask = 0, nbseg_diff = 0;
  788. u8 guard, crate, constellation, timeI;
  789. u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
  790. u16 i, coeff[4], P_cfr_left_edge = 0, P_cfr_right_edge = 0, seg_mask13 = 0x1fff; // All 13 segments enabled
  791. const s16 *ncoeff = NULL, *ana_fe;
  792. u16 tmcc_pow = 0;
  793. u16 coff_pow = 0x2800;
  794. u16 init_prbs = 0xfff;
  795. u16 ana_gain = 0;
  796. u16 adc_target_16dB[11] = {
  797. (1 << 13) - 825 - 117,
  798. (1 << 13) - 837 - 117,
  799. (1 << 13) - 811 - 117,
  800. (1 << 13) - 766 - 117,
  801. (1 << 13) - 737 - 117,
  802. (1 << 13) - 693 - 117,
  803. (1 << 13) - 648 - 117,
  804. (1 << 13) - 619 - 117,
  805. (1 << 13) - 575 - 117,
  806. (1 << 13) - 531 - 117,
  807. (1 << 13) - 501 - 117
  808. };
  809. if (state->ber_monitored_layer != LAYER_ALL)
  810. dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & 0x60) | state->ber_monitored_layer);
  811. else
  812. dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
  813. i = dib8000_read_word(state, 26) & 1; // P_dds_invspec
  814. dib8000_write_word(state, 26, state->fe.dtv_property_cache.inversion ^ i);
  815. if (state->fe.dtv_property_cache.isdbt_sb_mode) {
  816. //compute new dds_freq for the seg and adjust prbs
  817. int seg_offset =
  818. state->fe.dtv_property_cache.isdbt_sb_segment_idx - (state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) -
  819. (state->fe.dtv_property_cache.isdbt_sb_segment_count % 2);
  820. int clk = state->cfg.pll->internal;
  821. u32 segtodds = ((u32) (430 << 23) / clk) << 3; // segtodds = SegBW / Fclk * pow(2,26)
  822. int dds_offset = seg_offset * segtodds;
  823. int new_dds, sub_channel;
  824. if ((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0) // if even
  825. dds_offset -= (int)(segtodds / 2);
  826. if (state->cfg.pll->ifreq == 0) {
  827. if ((state->fe.dtv_property_cache.inversion ^ i) == 0) {
  828. dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
  829. new_dds = dds_offset;
  830. } else
  831. new_dds = dds_offset;
  832. // We shift tuning frequency if the wanted segment is :
  833. // - the segment of center frequency with an odd total number of segments
  834. // - the segment to the left of center frequency with an even total number of segments
  835. // - the segment to the right of center frequency with an even total number of segments
  836. if ((state->fe.dtv_property_cache.delivery_system == SYS_ISDBT) && (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
  837. &&
  838. (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2)
  839. && (state->fe.dtv_property_cache.isdbt_sb_segment_idx ==
  840. ((state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
  841. || (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
  842. && (state->fe.dtv_property_cache.isdbt_sb_segment_idx == (state->fe.dtv_property_cache.isdbt_sb_segment_count / 2)))
  843. || (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
  844. && (state->fe.dtv_property_cache.isdbt_sb_segment_idx ==
  845. ((state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
  846. )) {
  847. new_dds -= ((u32) (850 << 22) / clk) << 4; // new_dds = 850 (freq shift in KHz) / Fclk * pow(2,26)
  848. }
  849. } else {
  850. if ((state->fe.dtv_property_cache.inversion ^ i) == 0)
  851. new_dds = state->cfg.pll->ifreq - dds_offset;
  852. else
  853. new_dds = state->cfg.pll->ifreq + dds_offset;
  854. }
  855. dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff));
  856. dib8000_write_word(state, 28, (u16) (new_dds & 0xffff));
  857. if (state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) // if odd
  858. sub_channel = ((state->fe.dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3;
  859. else // if even
  860. sub_channel = ((state->fe.dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3;
  861. sub_channel -= 6;
  862. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K
  863. || state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_4K) {
  864. dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); //adp_pass =1
  865. dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); //pha3_force_pha_shift = 1
  866. } else {
  867. dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); //adp_pass =0
  868. dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); //pha3_force_pha_shift = 0
  869. }
  870. switch (state->fe.dtv_property_cache.transmission_mode) {
  871. case TRANSMISSION_MODE_2K:
  872. switch (sub_channel) {
  873. case -6:
  874. init_prbs = 0x0;
  875. break; // 41, 0, 1
  876. case -5:
  877. init_prbs = 0x423;
  878. break; // 02~04
  879. case -4:
  880. init_prbs = 0x9;
  881. break; // 05~07
  882. case -3:
  883. init_prbs = 0x5C7;
  884. break; // 08~10
  885. case -2:
  886. init_prbs = 0x7A6;
  887. break; // 11~13
  888. case -1:
  889. init_prbs = 0x3D8;
  890. break; // 14~16
  891. case 0:
  892. init_prbs = 0x527;
  893. break; // 17~19
  894. case 1:
  895. init_prbs = 0x7FF;
  896. break; // 20~22
  897. case 2:
  898. init_prbs = 0x79B;
  899. break; // 23~25
  900. case 3:
  901. init_prbs = 0x3D6;
  902. break; // 26~28
  903. case 4:
  904. init_prbs = 0x3A2;
  905. break; // 29~31
  906. case 5:
  907. init_prbs = 0x53B;
  908. break; // 32~34
  909. case 6:
  910. init_prbs = 0x2F4;
  911. break; // 35~37
  912. default:
  913. case 7:
  914. init_prbs = 0x213;
  915. break; // 38~40
  916. }
  917. break;
  918. case TRANSMISSION_MODE_4K:
  919. switch (sub_channel) {
  920. case -6:
  921. init_prbs = 0x0;
  922. break; // 41, 0, 1
  923. case -5:
  924. init_prbs = 0x208;
  925. break; // 02~04
  926. case -4:
  927. init_prbs = 0xC3;
  928. break; // 05~07
  929. case -3:
  930. init_prbs = 0x7B9;
  931. break; // 08~10
  932. case -2:
  933. init_prbs = 0x423;
  934. break; // 11~13
  935. case -1:
  936. init_prbs = 0x5C7;
  937. break; // 14~16
  938. case 0:
  939. init_prbs = 0x3D8;
  940. break; // 17~19
  941. case 1:
  942. init_prbs = 0x7FF;
  943. break; // 20~22
  944. case 2:
  945. init_prbs = 0x3D6;
  946. break; // 23~25
  947. case 3:
  948. init_prbs = 0x53B;
  949. break; // 26~28
  950. case 4:
  951. init_prbs = 0x213;
  952. break; // 29~31
  953. case 5:
  954. init_prbs = 0x29;
  955. break; // 32~34
  956. case 6:
  957. init_prbs = 0xD0;
  958. break; // 35~37
  959. default:
  960. case 7:
  961. init_prbs = 0x48E;
  962. break; // 38~40
  963. }
  964. break;
  965. default:
  966. case TRANSMISSION_MODE_8K:
  967. switch (sub_channel) {
  968. case -6:
  969. init_prbs = 0x0;
  970. break; // 41, 0, 1
  971. case -5:
  972. init_prbs = 0x740;
  973. break; // 02~04
  974. case -4:
  975. init_prbs = 0x069;
  976. break; // 05~07
  977. case -3:
  978. init_prbs = 0x7DD;
  979. break; // 08~10
  980. case -2:
  981. init_prbs = 0x208;
  982. break; // 11~13
  983. case -1:
  984. init_prbs = 0x7B9;
  985. break; // 14~16
  986. case 0:
  987. init_prbs = 0x5C7;
  988. break; // 17~19
  989. case 1:
  990. init_prbs = 0x7FF;
  991. break; // 20~22
  992. case 2:
  993. init_prbs = 0x53B;
  994. break; // 23~25
  995. case 3:
  996. init_prbs = 0x29;
  997. break; // 26~28
  998. case 4:
  999. init_prbs = 0x48E;
  1000. break; // 29~31
  1001. case 5:
  1002. init_prbs = 0x4C4;
  1003. break; // 32~34
  1004. case 6:
  1005. init_prbs = 0x367;
  1006. break; // 33~37
  1007. default:
  1008. case 7:
  1009. init_prbs = 0x684;
  1010. break; // 38~40
  1011. }
  1012. break;
  1013. }
  1014. } else { // if not state->fe.dtv_property_cache.isdbt_sb_mode
  1015. dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff));
  1016. dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff));
  1017. dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003));
  1018. }
  1019. /*P_mode == ?? */
  1020. dib8000_write_word(state, 10, (seq << 4));
  1021. // dib8000_write_word(state, 287, (dib8000_read_word(state, 287) & 0xe000) | 0x1000);
  1022. switch (state->fe.dtv_property_cache.guard_interval) {
  1023. case GUARD_INTERVAL_1_32:
  1024. guard = 0;
  1025. break;
  1026. case GUARD_INTERVAL_1_16:
  1027. guard = 1;
  1028. break;
  1029. case GUARD_INTERVAL_1_8:
  1030. guard = 2;
  1031. break;
  1032. case GUARD_INTERVAL_1_4:
  1033. default:
  1034. guard = 3;
  1035. break;
  1036. }
  1037. dib8000_write_word(state, 1, (init_prbs << 2) | (guard & 0x3)); // ADDR 1
  1038. max_constellation = DQPSK;
  1039. for (i = 0; i < 3; i++) {
  1040. switch (state->fe.dtv_property_cache.layer[i].modulation) {
  1041. case DQPSK:
  1042. constellation = 0;
  1043. break;
  1044. case QPSK:
  1045. constellation = 1;
  1046. break;
  1047. case QAM_16:
  1048. constellation = 2;
  1049. break;
  1050. case QAM_64:
  1051. default:
  1052. constellation = 3;
  1053. break;
  1054. }
  1055. switch (state->fe.dtv_property_cache.layer[i].fec) {
  1056. case FEC_1_2:
  1057. crate = 1;
  1058. break;
  1059. case FEC_2_3:
  1060. crate = 2;
  1061. break;
  1062. case FEC_3_4:
  1063. crate = 3;
  1064. break;
  1065. case FEC_5_6:
  1066. crate = 5;
  1067. break;
  1068. case FEC_7_8:
  1069. default:
  1070. crate = 7;
  1071. break;
  1072. }
  1073. if ((state->fe.dtv_property_cache.layer[i].interleaving > 0) &&
  1074. ((state->fe.dtv_property_cache.layer[i].interleaving <= 3) ||
  1075. (state->fe.dtv_property_cache.layer[i].interleaving == 4 && state->fe.dtv_property_cache.isdbt_sb_mode == 1))
  1076. )
  1077. timeI = state->fe.dtv_property_cache.layer[i].interleaving;
  1078. else
  1079. timeI = 0;
  1080. dib8000_write_word(state, 2 + i, (constellation << 10) | ((state->fe.dtv_property_cache.layer[i].segment_count & 0xf) << 6) |
  1081. (crate << 3) | timeI);
  1082. if (state->fe.dtv_property_cache.layer[i].segment_count > 0) {
  1083. switch (max_constellation) {
  1084. case DQPSK:
  1085. case QPSK:
  1086. if (state->fe.dtv_property_cache.layer[i].modulation == QAM_16 ||
  1087. state->fe.dtv_property_cache.layer[i].modulation == QAM_64)
  1088. max_constellation = state->fe.dtv_property_cache.layer[i].modulation;
  1089. break;
  1090. case QAM_16:
  1091. if (state->fe.dtv_property_cache.layer[i].modulation == QAM_64)
  1092. max_constellation = state->fe.dtv_property_cache.layer[i].modulation;
  1093. break;
  1094. }
  1095. }
  1096. }
  1097. mode = fft_to_mode(state);
  1098. //dib8000_write_word(state, 5, 13); /*p_last_seg = 13*/
  1099. dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) |
  1100. ((state->fe.dtv_property_cache.isdbt_partial_reception & 1) << 5) | ((state->fe.dtv_property_cache.
  1101. isdbt_sb_mode & 1) << 4));
  1102. dprintk("mode = %d ; guard = %d", mode, state->fe.dtv_property_cache.guard_interval);
  1103. /* signal optimization parameter */
  1104. if (state->fe.dtv_property_cache.isdbt_partial_reception) {
  1105. seg_diff_mask = (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) << permu_seg[0];
  1106. for (i = 1; i < 3; i++)
  1107. nbseg_diff +=
  1108. (state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * state->fe.dtv_property_cache.layer[i].segment_count;
  1109. for (i = 0; i < nbseg_diff; i++)
  1110. seg_diff_mask |= 1 << permu_seg[i + 1];
  1111. } else {
  1112. for (i = 0; i < 3; i++)
  1113. nbseg_diff +=
  1114. (state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * state->fe.dtv_property_cache.layer[i].segment_count;
  1115. for (i = 0; i < nbseg_diff; i++)
  1116. seg_diff_mask |= 1 << permu_seg[i];
  1117. }
  1118. dprintk("nbseg_diff = %X (%d)", seg_diff_mask, seg_diff_mask);
  1119. state->differential_constellation = (seg_diff_mask != 0);
  1120. dib8000_set_diversity_in(&state->fe, state->diversity_onoff);
  1121. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
  1122. if (state->fe.dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
  1123. seg_mask13 = 0x00E0;
  1124. else // 1-segment
  1125. seg_mask13 = 0x0040;
  1126. } else
  1127. seg_mask13 = 0x1fff;
  1128. // WRITE: Mode & Diff mask
  1129. dib8000_write_word(state, 0, (mode << 13) | seg_diff_mask);
  1130. if ((seg_diff_mask) || (state->fe.dtv_property_cache.isdbt_sb_mode))
  1131. dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
  1132. else
  1133. dib8000_write_word(state, 268, (2 << 9) | 39); //init value
  1134. // ---- SMALL ----
  1135. // P_small_seg_diff
  1136. dib8000_write_word(state, 352, seg_diff_mask); // ADDR 352
  1137. dib8000_write_word(state, 353, seg_mask13); // ADDR 353
  1138. /* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
  1139. // dib8000_write_word(state, 351, (state->fe.dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5 );
  1140. // ---- SMALL ----
  1141. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1142. switch (state->fe.dtv_property_cache.transmission_mode) {
  1143. case TRANSMISSION_MODE_2K:
  1144. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
  1145. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
  1146. ncoeff = coeff_2k_sb_1seg_dqpsk;
  1147. else // QPSK or QAM
  1148. ncoeff = coeff_2k_sb_1seg;
  1149. } else { // 3-segments
  1150. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
  1151. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
  1152. ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
  1153. else // QPSK or QAM on external segments
  1154. ncoeff = coeff_2k_sb_3seg_0dqpsk;
  1155. } else { // QPSK or QAM on central segment
  1156. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
  1157. ncoeff = coeff_2k_sb_3seg_1dqpsk;
  1158. else // QPSK or QAM on external segments
  1159. ncoeff = coeff_2k_sb_3seg;
  1160. }
  1161. }
  1162. break;
  1163. case TRANSMISSION_MODE_4K:
  1164. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
  1165. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
  1166. ncoeff = coeff_4k_sb_1seg_dqpsk;
  1167. else // QPSK or QAM
  1168. ncoeff = coeff_4k_sb_1seg;
  1169. } else { // 3-segments
  1170. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
  1171. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1172. ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
  1173. } else { // QPSK or QAM on external segments
  1174. ncoeff = coeff_4k_sb_3seg_0dqpsk;
  1175. }
  1176. } else { // QPSK or QAM on central segment
  1177. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1178. ncoeff = coeff_4k_sb_3seg_1dqpsk;
  1179. } else // QPSK or QAM on external segments
  1180. ncoeff = coeff_4k_sb_3seg;
  1181. }
  1182. }
  1183. break;
  1184. case TRANSMISSION_MODE_AUTO:
  1185. case TRANSMISSION_MODE_8K:
  1186. default:
  1187. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
  1188. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
  1189. ncoeff = coeff_8k_sb_1seg_dqpsk;
  1190. else // QPSK or QAM
  1191. ncoeff = coeff_8k_sb_1seg;
  1192. } else { // 3-segments
  1193. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
  1194. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1195. ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
  1196. } else { // QPSK or QAM on external segments
  1197. ncoeff = coeff_8k_sb_3seg_0dqpsk;
  1198. }
  1199. } else { // QPSK or QAM on central segment
  1200. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1201. ncoeff = coeff_8k_sb_3seg_1dqpsk;
  1202. } else // QPSK or QAM on external segments
  1203. ncoeff = coeff_8k_sb_3seg;
  1204. }
  1205. }
  1206. break;
  1207. }
  1208. for (i = 0; i < 8; i++)
  1209. dib8000_write_word(state, 343 + i, ncoeff[i]);
  1210. }
  1211. // P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5
  1212. dib8000_write_word(state, 351,
  1213. (state->fe.dtv_property_cache.isdbt_sb_mode << 9) | (state->fe.dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5);
  1214. // ---- COFF ----
  1215. // Carloff, the most robust
  1216. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) { // Sound Broadcasting mode - use both TMCC and AC pilots
  1217. // P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
  1218. // P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
  1219. dib8000_write_word(state, 187,
  1220. (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~state->fe.dtv_property_cache.isdbt_partial_reception & 1) << 2)
  1221. | 0x3);
  1222. /* // P_small_coef_ext_enable = 1 */
  1223. /* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */
  1224. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
  1225. // P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
  1226. if (mode == 3)
  1227. dib8000_write_word(state, 180, 0x1fcf | ((mode - 1) << 14));
  1228. else
  1229. dib8000_write_word(state, 180, 0x0fcf | ((mode - 1) << 14));
  1230. // P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1,
  1231. // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4
  1232. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
  1233. // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
  1234. dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
  1235. // P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
  1236. dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1237. // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
  1238. dib8000_write_word(state, 181, 300);
  1239. dib8000_write_word(state, 182, 150);
  1240. dib8000_write_word(state, 183, 80);
  1241. dib8000_write_word(state, 184, 300);
  1242. dib8000_write_word(state, 185, 150);
  1243. dib8000_write_word(state, 186, 80);
  1244. } else { // Sound Broadcasting mode 3 seg
  1245. // P_coff_one_seg_sym= 1, P_coff_one_seg_width= 1, P_coff_winlen=63, P_coff_thres_lock=15
  1246. /* if (mode == 3) */
  1247. /* dib8000_write_word(state, 180, 0x2fca | ((0) << 14)); */
  1248. /* else */
  1249. /* dib8000_write_word(state, 180, 0x2fca | ((1) << 14)); */
  1250. dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
  1251. // P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1,
  1252. // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4
  1253. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
  1254. // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
  1255. dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
  1256. //P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
  1257. dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1258. // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
  1259. dib8000_write_word(state, 181, 350);
  1260. dib8000_write_word(state, 182, 300);
  1261. dib8000_write_word(state, 183, 250);
  1262. dib8000_write_word(state, 184, 350);
  1263. dib8000_write_word(state, 185, 300);
  1264. dib8000_write_word(state, 186, 250);
  1265. }
  1266. } else if (state->isdbt_cfg_loaded == 0) { // if not Sound Broadcasting mode : put default values for 13 segments
  1267. dib8000_write_word(state, 180, (16 << 6) | 9);
  1268. dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
  1269. coff_pow = 0x2800;
  1270. for (i = 0; i < 6; i++)
  1271. dib8000_write_word(state, 181 + i, coff_pow);
  1272. // P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1,
  1273. // P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1
  1274. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
  1275. // P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6
  1276. dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
  1277. // P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1
  1278. dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1279. }
  1280. // ---- FFT ----
  1281. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1 && state->fe.dtv_property_cache.isdbt_partial_reception == 0) // 1-seg
  1282. dib8000_write_word(state, 178, 64); // P_fft_powrange=64
  1283. else
  1284. dib8000_write_word(state, 178, 32); // P_fft_powrange=32
  1285. /* make the cpil_coff_lock more robust but slower p_coff_winlen
  1286. * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
  1287. */
  1288. /* if ( ( nbseg_diff>0)&&(nbseg_diff<13))
  1289. dib8000_write_word(state, 187, (dib8000_read_word(state, 187) & 0xfffb) | (1 << 3)); */
  1290. dib8000_write_word(state, 189, ~seg_mask13 | seg_diff_mask); /* P_lmod4_seg_inh */
  1291. dib8000_write_word(state, 192, ~seg_mask13 | seg_diff_mask); /* P_pha3_seg_inh */
  1292. dib8000_write_word(state, 225, ~seg_mask13 | seg_diff_mask); /* P_tac_seg_inh */
  1293. if ((!state->fe.dtv_property_cache.isdbt_sb_mode) && (state->cfg.pll->ifreq == 0))
  1294. dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
  1295. else
  1296. dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask); /* P_equal_noise_seg_inh */
  1297. dib8000_write_word(state, 287, ~seg_mask13 | 0x1000); /* P_tmcc_seg_inh */
  1298. //dib8000_write_word(state, 288, ~seg_mask13 | seg_diff_mask); /* P_tmcc_seg_eq_inh */
  1299. if (!autosearching)
  1300. dib8000_write_word(state, 288, (~seg_mask13 | seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
  1301. else
  1302. dib8000_write_word(state, 288, 0x1fff); //disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels.
  1303. dprintk("287 = %X (%d)", ~seg_mask13 | 0x1000, ~seg_mask13 | 0x1000);
  1304. dib8000_write_word(state, 211, seg_mask13 & (~seg_diff_mask)); /* P_des_seg_enabled */
  1305. /* offset loop parameters */
  1306. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1307. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
  1308. /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
  1309. dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40);
  1310. else // Sound Broadcasting mode 3 seg
  1311. /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
  1312. dib8000_write_word(state, 32, ((10 - mode) << 12) | (6 << 8) | 0x60);
  1313. } else
  1314. // TODO in 13 seg, timf_alpha can always be the same or not ?
  1315. /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
  1316. dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80);
  1317. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1318. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
  1319. /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */
  1320. dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode));
  1321. else // Sound Broadcasting mode 3 seg
  1322. /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
  1323. dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (9 - mode));
  1324. } else
  1325. /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
  1326. dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (8 - mode));
  1327. /* P_dvsy_sync_wait - reuse mode */
  1328. switch (state->fe.dtv_property_cache.transmission_mode) {
  1329. case TRANSMISSION_MODE_8K:
  1330. mode = 256;
  1331. break;
  1332. case TRANSMISSION_MODE_4K:
  1333. mode = 128;
  1334. break;
  1335. default:
  1336. case TRANSMISSION_MODE_2K:
  1337. mode = 64;
  1338. break;
  1339. }
  1340. if (state->cfg.diversity_delay == 0)
  1341. mode = (mode * (1 << (guard)) * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
  1342. else
  1343. mode = (mode * (1 << (guard)) * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for DVSY-fifo
  1344. mode <<= 4;
  1345. dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | mode);
  1346. /* channel estimation fine configuration */
  1347. switch (max_constellation) {
  1348. case QAM_64:
  1349. ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
  1350. coeff[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
  1351. coeff[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
  1352. coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
  1353. coeff[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
  1354. //if (!state->cfg.hostbus_diversity) //if diversity, we should prehaps use the configuration of the max_constallation -1
  1355. break;
  1356. case QAM_16:
  1357. ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
  1358. coeff[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
  1359. coeff[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
  1360. coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
  1361. coeff[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
  1362. //if (!((state->cfg.hostbus_diversity) && (max_constellation == QAM_16)))
  1363. break;
  1364. default:
  1365. ana_gain = 0; // 0 : goes along with ADC target at -22dB to keep good mobile performance and lock at sensitivity level
  1366. coeff[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
  1367. coeff[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
  1368. coeff[2] = 0x0333; /* P_adp_regul_ext 0.1 */
  1369. coeff[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
  1370. break;
  1371. }
  1372. for (mode = 0; mode < 4; mode++)
  1373. dib8000_write_word(state, 215 + mode, coeff[mode]);
  1374. // update ana_gain depending on max constellation
  1375. dib8000_write_word(state, 116, ana_gain);
  1376. // update ADC target depending on ana_gain
  1377. if (ana_gain) { // set -16dB ADC target for ana_gain=-1
  1378. for (i = 0; i < 10; i++)
  1379. dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
  1380. } else { // set -22dB ADC target for ana_gain=0
  1381. for (i = 0; i < 10; i++)
  1382. dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
  1383. }
  1384. // ---- ANA_FE ----
  1385. if (state->fe.dtv_property_cache.isdbt_sb_mode) {
  1386. if (state->fe.dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
  1387. ana_fe = ana_fe_coeff_3seg;
  1388. else // 1-segment
  1389. ana_fe = ana_fe_coeff_1seg;
  1390. } else
  1391. ana_fe = ana_fe_coeff_13seg;
  1392. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1 || state->isdbt_cfg_loaded == 0)
  1393. for (mode = 0; mode < 24; mode++)
  1394. dib8000_write_word(state, 117 + mode, ana_fe[mode]);
  1395. // ---- CHAN_BLK ----
  1396. for (i = 0; i < 13; i++) {
  1397. if ((((~seg_diff_mask) >> i) & 1) == 1) {
  1398. P_cfr_left_edge += (1 << i) * ((i == 0) || ((((seg_mask13 & (~seg_diff_mask)) >> (i - 1)) & 1) == 0));
  1399. P_cfr_right_edge += (1 << i) * ((i == 12) || ((((seg_mask13 & (~seg_diff_mask)) >> (i + 1)) & 1) == 0));
  1400. }
  1401. }
  1402. dib8000_write_word(state, 222, P_cfr_left_edge); // P_cfr_left_edge
  1403. dib8000_write_word(state, 223, P_cfr_right_edge); // P_cfr_right_edge
  1404. // "P_cspu_left_edge" not used => do not care
  1405. // "P_cspu_right_edge" not used => do not care
  1406. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
  1407. dib8000_write_word(state, 228, 1); // P_2d_mode_byp=1
  1408. dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); // P_cspu_win_cut = 0
  1409. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0 // 1-segment
  1410. && state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) {
  1411. //dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
  1412. dib8000_write_word(state, 265, 15); // P_equal_noise_sel = 15
  1413. }
  1414. } else if (state->isdbt_cfg_loaded == 0) {
  1415. dib8000_write_word(state, 228, 0); // default value
  1416. dib8000_write_word(state, 265, 31); // default value
  1417. dib8000_write_word(state, 205, 0x200f); // init value
  1418. }
  1419. // ---- TMCC ----
  1420. for (i = 0; i < 3; i++)
  1421. tmcc_pow +=
  1422. (((state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * 4 + 1) * state->fe.dtv_property_cache.layer[i].segment_count);
  1423. // Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9);
  1424. // Threshold is set at 1/4 of max power.
  1425. tmcc_pow *= (1 << (9 - 2));
  1426. dib8000_write_word(state, 290, tmcc_pow); // P_tmcc_dec_thres_2k
  1427. dib8000_write_word(state, 291, tmcc_pow); // P_tmcc_dec_thres_4k
  1428. dib8000_write_word(state, 292, tmcc_pow); // P_tmcc_dec_thres_8k
  1429. //dib8000_write_word(state, 287, (1 << 13) | 0x1000 );
  1430. // ---- PHA3 ----
  1431. if (state->isdbt_cfg_loaded == 0)
  1432. dib8000_write_word(state, 250, 3285); /*p_2d_hspeed_thr0 */
  1433. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
  1434. state->isdbt_cfg_loaded = 0;
  1435. else
  1436. state->isdbt_cfg_loaded = 1;
  1437. }
  1438. static int dib8000_autosearch_start(struct dvb_frontend *fe)
  1439. {
  1440. u8 factor;
  1441. u32 value;
  1442. struct dib8000_state *state = fe->demodulator_priv;
  1443. int slist = 0;
  1444. state->fe.dtv_property_cache.inversion = 0;
  1445. if (!state->fe.dtv_property_cache.isdbt_sb_mode)
  1446. state->fe.dtv_property_cache.layer[0].segment_count = 13;
  1447. state->fe.dtv_property_cache.layer[0].modulation = QAM_64;
  1448. state->fe.dtv_property_cache.layer[0].fec = FEC_2_3;
  1449. state->fe.dtv_property_cache.layer[0].interleaving = 0;
  1450. //choose the right list, in sb, always do everything
  1451. if (state->fe.dtv_property_cache.isdbt_sb_mode) {
  1452. state->fe.dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
  1453. state->fe.dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
  1454. slist = 7;
  1455. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
  1456. } else {
  1457. if (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) {
  1458. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
  1459. slist = 7;
  1460. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 to have autosearch start ok with mode2
  1461. } else
  1462. slist = 3;
  1463. } else {
  1464. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
  1465. slist = 2;
  1466. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
  1467. } else
  1468. slist = 0;
  1469. }
  1470. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO)
  1471. state->fe.dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
  1472. if (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO)
  1473. state->fe.dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
  1474. dprintk("using list for autosearch : %d", slist);
  1475. dib8000_set_channel(state, (unsigned char)slist, 1);
  1476. //dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
  1477. factor = 1;
  1478. //set lock_mask values
  1479. dib8000_write_word(state, 6, 0x4);
  1480. dib8000_write_word(state, 7, 0x8);
  1481. dib8000_write_word(state, 8, 0x1000);
  1482. //set lock_mask wait time values
  1483. value = 50 * state->cfg.pll->internal * factor;
  1484. dib8000_write_word(state, 11, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
  1485. dib8000_write_word(state, 12, (u16) (value & 0xffff)); // lock0 wait time
  1486. value = 100 * state->cfg.pll->internal * factor;
  1487. dib8000_write_word(state, 13, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
  1488. dib8000_write_word(state, 14, (u16) (value & 0xffff)); // lock1 wait time
  1489. value = 1000 * state->cfg.pll->internal * factor;
  1490. dib8000_write_word(state, 15, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
  1491. dib8000_write_word(state, 16, (u16) (value & 0xffff)); // lock2 wait time
  1492. value = dib8000_read_word(state, 0);
  1493. dib8000_write_word(state, 0, (u16) ((1 << 15) | value));
  1494. dib8000_read_word(state, 1284); // reset the INT. n_irq_pending
  1495. dib8000_write_word(state, 0, (u16) value);
  1496. }
  1497. return 0;
  1498. }
  1499. static int dib8000_autosearch_irq(struct dvb_frontend *fe)
  1500. {
  1501. struct dib8000_state *state = fe->demodulator_priv;
  1502. u16 irq_pending = dib8000_read_word(state, 1284);
  1503. if (irq_pending & 0x1) { // failed
  1504. dprintk("dib8000_autosearch_irq failed");
  1505. return 1;
  1506. }
  1507. if (irq_pending & 0x2) { // succeeded
  1508. dprintk("dib8000_autosearch_irq succeeded");
  1509. return 2;
  1510. }
  1511. return 0; // still pending
  1512. }
  1513. static int dib8000_tune(struct dvb_frontend *fe)
  1514. {
  1515. struct dib8000_state *state = fe->demodulator_priv;
  1516. int ret = 0;
  1517. u16 value, mode = fft_to_mode(state);
  1518. // we are already tuned - just resuming from suspend
  1519. if (state == NULL)
  1520. return -EINVAL;
  1521. dib8000_set_bandwidth(state, state->fe.dtv_property_cache.bandwidth_hz / 1000);
  1522. dib8000_set_channel(state, 0, 0);
  1523. // restart demod
  1524. ret |= dib8000_write_word(state, 770, 0x4000);
  1525. ret |= dib8000_write_word(state, 770, 0x0000);
  1526. msleep(45);
  1527. /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3 */
  1528. /* ret |= dib8000_write_word(state, 29, (0 << 9) | (4 << 5) | (0 << 4) | (3 << 0) ); workaround inh_isi stays at 1 */
  1529. // never achieved a lock before - wait for timfreq to update
  1530. if (state->timf == 0) {
  1531. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1532. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
  1533. msleep(300);
  1534. else // Sound Broadcasting mode 3 seg
  1535. msleep(500);
  1536. } else // 13 seg
  1537. msleep(200);
  1538. }
  1539. //dump_reg(state);
  1540. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1541. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
  1542. /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */
  1543. dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40);
  1544. //dib8000_write_word(state, 32, (8 << 12) | (6 << 8) | 0x80);
  1545. /* P_ctrl_sfreq_step= (12-P_mode) P_ctrl_sfreq_inh =0 P_ctrl_pha_off_max */
  1546. ret |= dib8000_write_word(state, 37, (12 - mode) | ((5 + mode) << 5));
  1547. } else { // Sound Broadcasting mode 3 seg
  1548. /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 alpha to check on board */
  1549. dib8000_write_word(state, 32, ((12 - mode) << 12) | (6 << 8) | 0x60);
  1550. ret |= dib8000_write_word(state, 37, (11 - mode) | ((5 + mode) << 5));
  1551. }
  1552. } else { // 13 seg
  1553. /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 alpha to check on board */
  1554. dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x80);
  1555. ret |= dib8000_write_word(state, 37, (10 - mode) | ((5 + mode) << 5));
  1556. }
  1557. // we achieved a coff_cpil_lock - it's time to update the timf
  1558. if ((dib8000_read_word(state, 568) >> 11) & 0x1)
  1559. dib8000_update_timf(state);
  1560. //now that tune is finished, lock0 should lock on fec_mpeg to output this lock on MP_LOCK. It's changed in autosearch start
  1561. dib8000_write_word(state, 6, 0x200);
  1562. if (state->revision == 0x8002) {
  1563. value = dib8000_read_word(state, 903);
  1564. dib8000_write_word(state, 903, value & ~(1 << 3));
  1565. msleep(1);
  1566. dib8000_write_word(state, 903, value | (1 << 3));
  1567. }
  1568. return ret;
  1569. }
  1570. static int dib8000_wakeup(struct dvb_frontend *fe)
  1571. {
  1572. struct dib8000_state *state = fe->demodulator_priv;
  1573. dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
  1574. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  1575. if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
  1576. dprintk("could not start Slow ADC");
  1577. return 0;
  1578. }
  1579. static int dib8000_sleep(struct dvb_frontend *fe)
  1580. {
  1581. struct dib8000_state *st = fe->demodulator_priv;
  1582. if (1) {
  1583. dib8000_set_output_mode(st, OUTMODE_HIGH_Z);
  1584. dib8000_set_power_mode(st, DIB8000M_POWER_INTERFACE_ONLY);
  1585. return dib8000_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(st, DIBX000_ADC_OFF);
  1586. } else {
  1587. return 0;
  1588. }
  1589. }
  1590. enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
  1591. {
  1592. struct dib8000_state *state = fe->demodulator_priv;
  1593. return state->tune_state;
  1594. }
  1595. EXPORT_SYMBOL(dib8000_get_tune_state);
  1596. int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
  1597. {
  1598. struct dib8000_state *state = fe->demodulator_priv;
  1599. state->tune_state = tune_state;
  1600. return 0;
  1601. }
  1602. EXPORT_SYMBOL(dib8000_set_tune_state);
  1603. static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
  1604. {
  1605. struct dib8000_state *state = fe->demodulator_priv;
  1606. u16 i, val = 0;
  1607. fe->dtv_property_cache.bandwidth_hz = 6000000;
  1608. fe->dtv_property_cache.isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
  1609. val = dib8000_read_word(state, 570);
  1610. fe->dtv_property_cache.inversion = (val & 0x40) >> 6;
  1611. switch ((val & 0x30) >> 4) {
  1612. case 1:
  1613. fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
  1614. break;
  1615. case 3:
  1616. default:
  1617. fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
  1618. break;
  1619. }
  1620. switch (val & 0x3) {
  1621. case 0:
  1622. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
  1623. dprintk("dib8000_get_frontend GI = 1/32 ");
  1624. break;
  1625. case 1:
  1626. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
  1627. dprintk("dib8000_get_frontend GI = 1/16 ");
  1628. break;
  1629. case 2:
  1630. dprintk("dib8000_get_frontend GI = 1/8 ");
  1631. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
  1632. break;
  1633. case 3:
  1634. dprintk("dib8000_get_frontend GI = 1/4 ");
  1635. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
  1636. break;
  1637. }
  1638. val = dib8000_read_word(state, 505);
  1639. fe->dtv_property_cache.isdbt_partial_reception = val & 1;
  1640. dprintk("dib8000_get_frontend : partial_reception = %d ", fe->dtv_property_cache.isdbt_partial_reception);
  1641. for (i = 0; i < 3; i++) {
  1642. val = dib8000_read_word(state, 493 + i);
  1643. fe->dtv_property_cache.layer[i].segment_count = val & 0x0F;
  1644. dprintk("dib8000_get_frontend : Layer %d segments = %d ", i, fe->dtv_property_cache.layer[i].segment_count);
  1645. val = dib8000_read_word(state, 499 + i);
  1646. fe->dtv_property_cache.layer[i].interleaving = val & 0x3;
  1647. dprintk("dib8000_get_frontend : Layer %d time_intlv = %d ", i, fe->dtv_property_cache.layer[i].interleaving);
  1648. val = dib8000_read_word(state, 481 + i);
  1649. switch (val & 0x7) {
  1650. case 1:
  1651. fe->dtv_property_cache.layer[i].fec = FEC_1_2;
  1652. dprintk("dib8000_get_frontend : Layer %d Code Rate = 1/2 ", i);
  1653. break;
  1654. case 2:
  1655. fe->dtv_property_cache.layer[i].fec = FEC_2_3;
  1656. dprintk("dib8000_get_frontend : Layer %d Code Rate = 2/3 ", i);
  1657. break;
  1658. case 3:
  1659. fe->dtv_property_cache.layer[i].fec = FEC_3_4;
  1660. dprintk("dib8000_get_frontend : Layer %d Code Rate = 3/4 ", i);
  1661. break;
  1662. case 5:
  1663. fe->dtv_property_cache.layer[i].fec = FEC_5_6;
  1664. dprintk("dib8000_get_frontend : Layer %d Code Rate = 5/6 ", i);
  1665. break;
  1666. default:
  1667. fe->dtv_property_cache.layer[i].fec = FEC_7_8;
  1668. dprintk("dib8000_get_frontend : Layer %d Code Rate = 7/8 ", i);
  1669. break;
  1670. }
  1671. val = dib8000_read_word(state, 487 + i);
  1672. switch (val & 0x3) {
  1673. case 0:
  1674. dprintk("dib8000_get_frontend : Layer %d DQPSK ", i);
  1675. fe->dtv_property_cache.layer[i].modulation = DQPSK;
  1676. break;
  1677. case 1:
  1678. fe->dtv_property_cache.layer[i].modulation = QPSK;
  1679. dprintk("dib8000_get_frontend : Layer %d QPSK ", i);
  1680. break;
  1681. case 2:
  1682. fe->dtv_property_cache.layer[i].modulation = QAM_16;
  1683. dprintk("dib8000_get_frontend : Layer %d QAM16 ", i);
  1684. break;
  1685. case 3:
  1686. default:
  1687. dprintk("dib8000_get_frontend : Layer %d QAM64 ", i);
  1688. fe->dtv_property_cache.layer[i].modulation = QAM_64;
  1689. break;
  1690. }
  1691. }
  1692. return 0;
  1693. }
  1694. static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
  1695. {
  1696. struct dib8000_state *state = fe->demodulator_priv;
  1697. int time, ret;
  1698. fe->dtv_property_cache.delivery_system = SYS_ISDBT;
  1699. dib8000_set_output_mode(state, OUTMODE_HIGH_Z);
  1700. if (fe->ops.tuner_ops.set_params)
  1701. fe->ops.tuner_ops.set_params(fe, fep);
  1702. /* start up the AGC */
  1703. state->tune_state = CT_AGC_START;
  1704. do {
  1705. time = dib8000_agc_startup(fe);
  1706. if (time != FE_CALLBACK_TIME_NEVER)
  1707. msleep(time / 10);
  1708. else
  1709. break;
  1710. } while (state->tune_state != CT_AGC_STOP);
  1711. if (state->fe.dtv_property_cache.frequency == 0) {
  1712. dprintk("dib8000: must at least specify frequency ");
  1713. return 0;
  1714. }
  1715. if (state->fe.dtv_property_cache.bandwidth_hz == 0) {
  1716. dprintk("dib8000: no bandwidth specified, set to default ");
  1717. state->fe.dtv_property_cache.bandwidth_hz = 6000000;
  1718. }
  1719. state->tune_state = CT_DEMOD_START;
  1720. if ((state->fe.dtv_property_cache.delivery_system != SYS_ISDBT) ||
  1721. (state->fe.dtv_property_cache.inversion == INVERSION_AUTO) ||
  1722. (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) ||
  1723. (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) ||
  1724. (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 0)) != 0) &&
  1725. (state->fe.dtv_property_cache.layer[0].segment_count != 0xff) &&
  1726. (state->fe.dtv_property_cache.layer[0].segment_count != 0) &&
  1727. ((state->fe.dtv_property_cache.layer[0].modulation == QAM_AUTO) ||
  1728. (state->fe.dtv_property_cache.layer[0].fec == FEC_AUTO))) ||
  1729. (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 1)) != 0) &&
  1730. (state->fe.dtv_property_cache.layer[1].segment_count != 0xff) &&
  1731. (state->fe.dtv_property_cache.layer[1].segment_count != 0) &&
  1732. ((state->fe.dtv_property_cache.layer[1].modulation == QAM_AUTO) ||
  1733. (state->fe.dtv_property_cache.layer[1].fec == FEC_AUTO))) ||
  1734. (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 2)) != 0) &&
  1735. (state->fe.dtv_property_cache.layer[2].segment_count != 0xff) &&
  1736. (state->fe.dtv_property_cache.layer[2].segment_count != 0) &&
  1737. ((state->fe.dtv_property_cache.layer[2].modulation == QAM_AUTO) ||
  1738. (state->fe.dtv_property_cache.layer[2].fec == FEC_AUTO))) ||
  1739. (((state->fe.dtv_property_cache.layer[0].segment_count == 0) ||
  1740. ((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 0)) == 0)) &&
  1741. ((state->fe.dtv_property_cache.layer[1].segment_count == 0) ||
  1742. ((state->fe.dtv_property_cache.isdbt_layer_enabled & (2 << 0)) == 0)) &&
  1743. ((state->fe.dtv_property_cache.layer[2].segment_count == 0) || ((state->fe.dtv_property_cache.isdbt_layer_enabled & (3 << 0)) == 0)))) {
  1744. int i = 800, found;
  1745. dib8000_set_bandwidth(state, fe->dtv_property_cache.bandwidth_hz / 1000);
  1746. dib8000_autosearch_start(fe);
  1747. do {
  1748. msleep(10);
  1749. found = dib8000_autosearch_irq(fe);
  1750. } while (found == 0 && i--);
  1751. dprintk("Frequency %d Hz, autosearch returns: %d", fep->frequency, found);
  1752. if (found == 0 || found == 1)
  1753. return 0; // no channel found
  1754. dib8000_get_frontend(fe, fep);
  1755. }
  1756. ret = dib8000_tune(fe);
  1757. /* make this a config parameter */
  1758. dib8000_set_output_mode(state, state->cfg.output_mode);
  1759. return ret;
  1760. }
  1761. static int dib8000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
  1762. {
  1763. struct dib8000_state *state = fe->demodulator_priv;
  1764. u16 lock = dib8000_read_word(state, 568);
  1765. *stat = 0;
  1766. if ((lock >> 13) & 1)
  1767. *stat |= FE_HAS_SIGNAL;
  1768. if ((lock >> 8) & 1) /* Equal */
  1769. *stat |= FE_HAS_CARRIER;
  1770. if (((lock >> 1) & 0xf) == 0xf) /* TMCC_SYNC */
  1771. *stat |= FE_HAS_SYNC;
  1772. if (((lock >> 12) & 1) && ((lock >> 5) & 7)) /* FEC MPEG */
  1773. *stat |= FE_HAS_LOCK;
  1774. if ((lock >> 12) & 1) {
  1775. lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
  1776. if (lock & 0x01)
  1777. *stat |= FE_HAS_VITERBI;
  1778. lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
  1779. if (lock & 0x01)
  1780. *stat |= FE_HAS_VITERBI;
  1781. lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
  1782. if (lock & 0x01)
  1783. *stat |= FE_HAS_VITERBI;
  1784. }
  1785. return 0;
  1786. }
  1787. static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
  1788. {
  1789. struct dib8000_state *state = fe->demodulator_priv;
  1790. *ber = (dib8000_read_word(state, 560) << 16) | dib8000_read_word(state, 561); // 13 segments
  1791. return 0;
  1792. }
  1793. static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
  1794. {
  1795. struct dib8000_state *state = fe->demodulator_priv;
  1796. *unc = dib8000_read_word(state, 565); // packet error on 13 seg
  1797. return 0;
  1798. }
  1799. static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
  1800. {
  1801. struct dib8000_state *state = fe->demodulator_priv;
  1802. u16 val = dib8000_read_word(state, 390);
  1803. *strength = 65535 - val;
  1804. return 0;
  1805. }
  1806. static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
  1807. {
  1808. struct dib8000_state *state = fe->demodulator_priv;
  1809. u16 val;
  1810. s32 signal_mant, signal_exp, noise_mant, noise_exp;
  1811. u32 result = 0;
  1812. val = dib8000_read_word(state, 542);
  1813. noise_mant = (val >> 6) & 0xff;
  1814. noise_exp = (val & 0x3f);
  1815. val = dib8000_read_word(state, 543);
  1816. signal_mant = (val >> 6) & 0xff;
  1817. signal_exp = (val & 0x3f);
  1818. if ((noise_exp & 0x20) != 0)
  1819. noise_exp -= 0x40;
  1820. if ((signal_exp & 0x20) != 0)
  1821. signal_exp -= 0x40;
  1822. if (signal_mant != 0)
  1823. result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
  1824. else
  1825. result = intlog10(2) * 10 * signal_exp - 100;
  1826. if (noise_mant != 0)
  1827. result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
  1828. else
  1829. result -= intlog10(2) * 10 * noise_exp - 100;
  1830. *snr = result / ((1 << 24) / 10);
  1831. return 0;
  1832. }
  1833. int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, u8 default_addr, u8 first_addr)
  1834. {
  1835. int k = 0;
  1836. u8 new_addr = 0;
  1837. struct i2c_device client = {.adap = host };
  1838. for (k = no_of_demods - 1; k >= 0; k--) {
  1839. /* designated i2c address */
  1840. new_addr = first_addr + (k << 1);
  1841. client.addr = new_addr;
  1842. dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
  1843. if (dib8000_identify(&client) == 0) {
  1844. dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
  1845. client.addr = default_addr;
  1846. if (dib8000_identify(&client) == 0) {
  1847. dprintk("#%d: not identified", k);
  1848. return -EINVAL;
  1849. }
  1850. }
  1851. /* start diversity to pull_down div_str - just for i2c-enumeration */
  1852. dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
  1853. /* set new i2c address and force divstart */
  1854. dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
  1855. client.addr = new_addr;
  1856. dib8000_identify(&client);
  1857. dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
  1858. }
  1859. for (k = 0; k < no_of_demods; k++) {
  1860. new_addr = first_addr | (k << 1);
  1861. client.addr = new_addr;
  1862. // unforce divstr
  1863. dib8000_i2c_write16(&client, 1285, new_addr << 2);
  1864. /* deactivate div - it was just for i2c-enumeration */
  1865. dib8000_i2c_write16(&client, 1286, 0);
  1866. }
  1867. return 0;
  1868. }
  1869. EXPORT_SYMBOL(dib8000_i2c_enumeration);
  1870. static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
  1871. {
  1872. tune->min_delay_ms = 1000;
  1873. tune->step_size = 0;
  1874. tune->max_drift = 0;
  1875. return 0;
  1876. }
  1877. static void dib8000_release(struct dvb_frontend *fe)
  1878. {
  1879. struct dib8000_state *st = fe->demodulator_priv;
  1880. dibx000_exit_i2c_master(&st->i2c_master);
  1881. kfree(st);
  1882. }
  1883. struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
  1884. {
  1885. struct dib8000_state *st = fe->demodulator_priv;
  1886. return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
  1887. }
  1888. EXPORT_SYMBOL(dib8000_get_i2c_master);
  1889. int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
  1890. {
  1891. struct dib8000_state *st = fe->demodulator_priv;
  1892. u16 val = dib8000_read_word(st, 299) & 0xffef;
  1893. val |= (onoff & 0x1) << 4;
  1894. dprintk("pid filter enabled %d", onoff);
  1895. return dib8000_write_word(st, 299, val);
  1896. }
  1897. EXPORT_SYMBOL(dib8000_pid_filter_ctrl);
  1898. int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
  1899. {
  1900. struct dib8000_state *st = fe->demodulator_priv;
  1901. dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
  1902. return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
  1903. }
  1904. EXPORT_SYMBOL(dib8000_pid_filter);
  1905. static const struct dvb_frontend_ops dib8000_ops = {
  1906. .info = {
  1907. .name = "DiBcom 8000 ISDB-T",
  1908. .type = FE_OFDM,
  1909. .frequency_min = 44250000,
  1910. .frequency_max = 867250000,
  1911. .frequency_stepsize = 62500,
  1912. .caps = FE_CAN_INVERSION_AUTO |
  1913. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  1914. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  1915. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  1916. FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
  1917. },
  1918. .release = dib8000_release,
  1919. .init = dib8000_wakeup,
  1920. .sleep = dib8000_sleep,
  1921. .set_frontend = dib8000_set_frontend,
  1922. .get_tune_settings = dib8000_fe_get_tune_settings,
  1923. .get_frontend = dib8000_get_frontend,
  1924. .read_status = dib8000_read_status,
  1925. .read_ber = dib8000_read_ber,
  1926. .read_signal_strength = dib8000_read_signal_strength,
  1927. .read_snr = dib8000_read_snr,
  1928. .read_ucblocks = dib8000_read_unc_blocks,
  1929. };
  1930. struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
  1931. {
  1932. struct dvb_frontend *fe;
  1933. struct dib8000_state *state;
  1934. dprintk("dib8000_attach");
  1935. state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
  1936. if (state == NULL)
  1937. return NULL;
  1938. memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
  1939. state->i2c.adap = i2c_adap;
  1940. state->i2c.addr = i2c_addr;
  1941. state->gpio_val = cfg->gpio_val;
  1942. state->gpio_dir = cfg->gpio_dir;
  1943. /* Ensure the output mode remains at the previous default if it's
  1944. * not specifically set by the caller.
  1945. */
  1946. if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
  1947. state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
  1948. fe = &state->fe;
  1949. fe->demodulator_priv = state;
  1950. memcpy(&state->fe.ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
  1951. state->timf_default = cfg->pll->timf;
  1952. if (dib8000_identify(&state->i2c) == 0)
  1953. goto error;
  1954. dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
  1955. dib8000_reset(fe);
  1956. dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
  1957. return fe;
  1958. error:
  1959. kfree(state);
  1960. return NULL;
  1961. }
  1962. EXPORT_SYMBOL(dib8000_attach);
  1963. MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@dibcom.fr, " "Patrick Boettcher <pboettcher@dibcom.fr>");
  1964. MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
  1965. MODULE_LICENSE("GPL");