input.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. #include "input-compat.h"
  26. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  27. MODULE_DESCRIPTION("Input core");
  28. MODULE_LICENSE("GPL");
  29. #define INPUT_DEVICES 256
  30. /*
  31. * EV_ABS events which should not be cached are listed here.
  32. */
  33. static unsigned int input_abs_bypass_init_data[] __initdata = {
  34. ABS_MT_TOUCH_MAJOR,
  35. ABS_MT_TOUCH_MINOR,
  36. ABS_MT_WIDTH_MAJOR,
  37. ABS_MT_WIDTH_MINOR,
  38. ABS_MT_ORIENTATION,
  39. ABS_MT_POSITION_X,
  40. ABS_MT_POSITION_Y,
  41. ABS_MT_TOOL_TYPE,
  42. ABS_MT_BLOB_ID,
  43. ABS_MT_TRACKING_ID,
  44. ABS_MT_PRESSURE,
  45. 0
  46. };
  47. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  48. static LIST_HEAD(input_dev_list);
  49. static LIST_HEAD(input_handler_list);
  50. /*
  51. * input_mutex protects access to both input_dev_list and input_handler_list.
  52. * This also causes input_[un]register_device and input_[un]register_handler
  53. * be mutually exclusive which simplifies locking in drivers implementing
  54. * input handlers.
  55. */
  56. static DEFINE_MUTEX(input_mutex);
  57. static struct input_handler *input_table[8];
  58. static inline int is_event_supported(unsigned int code,
  59. unsigned long *bm, unsigned int max)
  60. {
  61. return code <= max && test_bit(code, bm);
  62. }
  63. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  64. {
  65. if (fuzz) {
  66. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  67. return old_val;
  68. if (value > old_val - fuzz && value < old_val + fuzz)
  69. return (old_val * 3 + value) / 4;
  70. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  71. return (old_val + value) / 2;
  72. }
  73. return value;
  74. }
  75. /*
  76. * Pass event first through all filters and then, if event has not been
  77. * filtered out, through all open handles. This function is called with
  78. * dev->event_lock held and interrupts disabled.
  79. */
  80. static void input_pass_event(struct input_dev *dev,
  81. unsigned int type, unsigned int code, int value)
  82. {
  83. struct input_handler *handler;
  84. struct input_handle *handle;
  85. rcu_read_lock();
  86. handle = rcu_dereference(dev->grab);
  87. if (handle)
  88. handle->handler->event(handle, type, code, value);
  89. else {
  90. bool filtered = false;
  91. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  92. if (!handle->open)
  93. continue;
  94. handler = handle->handler;
  95. if (!handler->filter) {
  96. if (filtered)
  97. break;
  98. handler->event(handle, type, code, value);
  99. } else if (handler->filter(handle, type, code, value))
  100. filtered = true;
  101. }
  102. }
  103. rcu_read_unlock();
  104. }
  105. /*
  106. * Generate software autorepeat event. Note that we take
  107. * dev->event_lock here to avoid racing with input_event
  108. * which may cause keys get "stuck".
  109. */
  110. static void input_repeat_key(unsigned long data)
  111. {
  112. struct input_dev *dev = (void *) data;
  113. unsigned long flags;
  114. spin_lock_irqsave(&dev->event_lock, flags);
  115. if (test_bit(dev->repeat_key, dev->key) &&
  116. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  117. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  118. if (dev->sync) {
  119. /*
  120. * Only send SYN_REPORT if we are not in a middle
  121. * of driver parsing a new hardware packet.
  122. * Otherwise assume that the driver will send
  123. * SYN_REPORT once it's done.
  124. */
  125. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  126. }
  127. if (dev->rep[REP_PERIOD])
  128. mod_timer(&dev->timer, jiffies +
  129. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  130. }
  131. spin_unlock_irqrestore(&dev->event_lock, flags);
  132. }
  133. static void input_start_autorepeat(struct input_dev *dev, int code)
  134. {
  135. if (test_bit(EV_REP, dev->evbit) &&
  136. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  137. dev->timer.data) {
  138. dev->repeat_key = code;
  139. mod_timer(&dev->timer,
  140. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  141. }
  142. }
  143. static void input_stop_autorepeat(struct input_dev *dev)
  144. {
  145. del_timer(&dev->timer);
  146. }
  147. #define INPUT_IGNORE_EVENT 0
  148. #define INPUT_PASS_TO_HANDLERS 1
  149. #define INPUT_PASS_TO_DEVICE 2
  150. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  151. static void input_handle_event(struct input_dev *dev,
  152. unsigned int type, unsigned int code, int value)
  153. {
  154. int disposition = INPUT_IGNORE_EVENT;
  155. switch (type) {
  156. case EV_SYN:
  157. switch (code) {
  158. case SYN_CONFIG:
  159. disposition = INPUT_PASS_TO_ALL;
  160. break;
  161. case SYN_REPORT:
  162. if (!dev->sync) {
  163. dev->sync = 1;
  164. disposition = INPUT_PASS_TO_HANDLERS;
  165. }
  166. break;
  167. case SYN_MT_REPORT:
  168. dev->sync = 0;
  169. disposition = INPUT_PASS_TO_HANDLERS;
  170. break;
  171. }
  172. break;
  173. case EV_KEY:
  174. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  175. !!test_bit(code, dev->key) != value) {
  176. if (value != 2) {
  177. __change_bit(code, dev->key);
  178. if (value)
  179. input_start_autorepeat(dev, code);
  180. else
  181. input_stop_autorepeat(dev);
  182. }
  183. disposition = INPUT_PASS_TO_HANDLERS;
  184. }
  185. break;
  186. case EV_SW:
  187. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  188. !!test_bit(code, dev->sw) != value) {
  189. __change_bit(code, dev->sw);
  190. disposition = INPUT_PASS_TO_HANDLERS;
  191. }
  192. break;
  193. case EV_ABS:
  194. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  195. if (test_bit(code, input_abs_bypass)) {
  196. disposition = INPUT_PASS_TO_HANDLERS;
  197. break;
  198. }
  199. value = input_defuzz_abs_event(value,
  200. dev->abs[code], dev->absfuzz[code]);
  201. if (dev->abs[code] != value) {
  202. dev->abs[code] = value;
  203. disposition = INPUT_PASS_TO_HANDLERS;
  204. }
  205. }
  206. break;
  207. case EV_REL:
  208. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  209. disposition = INPUT_PASS_TO_HANDLERS;
  210. break;
  211. case EV_MSC:
  212. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  213. disposition = INPUT_PASS_TO_ALL;
  214. break;
  215. case EV_LED:
  216. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  217. !!test_bit(code, dev->led) != value) {
  218. __change_bit(code, dev->led);
  219. disposition = INPUT_PASS_TO_ALL;
  220. }
  221. break;
  222. case EV_SND:
  223. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  224. if (!!test_bit(code, dev->snd) != !!value)
  225. __change_bit(code, dev->snd);
  226. disposition = INPUT_PASS_TO_ALL;
  227. }
  228. break;
  229. case EV_REP:
  230. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  231. dev->rep[code] = value;
  232. disposition = INPUT_PASS_TO_ALL;
  233. }
  234. break;
  235. case EV_FF:
  236. if (value >= 0)
  237. disposition = INPUT_PASS_TO_ALL;
  238. break;
  239. case EV_PWR:
  240. disposition = INPUT_PASS_TO_ALL;
  241. break;
  242. }
  243. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  244. dev->sync = 0;
  245. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  246. dev->event(dev, type, code, value);
  247. if (disposition & INPUT_PASS_TO_HANDLERS)
  248. input_pass_event(dev, type, code, value);
  249. }
  250. /**
  251. * input_event() - report new input event
  252. * @dev: device that generated the event
  253. * @type: type of the event
  254. * @code: event code
  255. * @value: value of the event
  256. *
  257. * This function should be used by drivers implementing various input
  258. * devices to report input events. See also input_inject_event().
  259. *
  260. * NOTE: input_event() may be safely used right after input device was
  261. * allocated with input_allocate_device(), even before it is registered
  262. * with input_register_device(), but the event will not reach any of the
  263. * input handlers. Such early invocation of input_event() may be used
  264. * to 'seed' initial state of a switch or initial position of absolute
  265. * axis, etc.
  266. */
  267. void input_event(struct input_dev *dev,
  268. unsigned int type, unsigned int code, int value)
  269. {
  270. unsigned long flags;
  271. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  272. spin_lock_irqsave(&dev->event_lock, flags);
  273. add_input_randomness(type, code, value);
  274. input_handle_event(dev, type, code, value);
  275. spin_unlock_irqrestore(&dev->event_lock, flags);
  276. }
  277. }
  278. EXPORT_SYMBOL(input_event);
  279. /**
  280. * input_inject_event() - send input event from input handler
  281. * @handle: input handle to send event through
  282. * @type: type of the event
  283. * @code: event code
  284. * @value: value of the event
  285. *
  286. * Similar to input_event() but will ignore event if device is
  287. * "grabbed" and handle injecting event is not the one that owns
  288. * the device.
  289. */
  290. void input_inject_event(struct input_handle *handle,
  291. unsigned int type, unsigned int code, int value)
  292. {
  293. struct input_dev *dev = handle->dev;
  294. struct input_handle *grab;
  295. unsigned long flags;
  296. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  297. spin_lock_irqsave(&dev->event_lock, flags);
  298. rcu_read_lock();
  299. grab = rcu_dereference(dev->grab);
  300. if (!grab || grab == handle)
  301. input_handle_event(dev, type, code, value);
  302. rcu_read_unlock();
  303. spin_unlock_irqrestore(&dev->event_lock, flags);
  304. }
  305. }
  306. EXPORT_SYMBOL(input_inject_event);
  307. /**
  308. * input_grab_device - grabs device for exclusive use
  309. * @handle: input handle that wants to own the device
  310. *
  311. * When a device is grabbed by an input handle all events generated by
  312. * the device are delivered only to this handle. Also events injected
  313. * by other input handles are ignored while device is grabbed.
  314. */
  315. int input_grab_device(struct input_handle *handle)
  316. {
  317. struct input_dev *dev = handle->dev;
  318. int retval;
  319. retval = mutex_lock_interruptible(&dev->mutex);
  320. if (retval)
  321. return retval;
  322. if (dev->grab) {
  323. retval = -EBUSY;
  324. goto out;
  325. }
  326. rcu_assign_pointer(dev->grab, handle);
  327. synchronize_rcu();
  328. out:
  329. mutex_unlock(&dev->mutex);
  330. return retval;
  331. }
  332. EXPORT_SYMBOL(input_grab_device);
  333. static void __input_release_device(struct input_handle *handle)
  334. {
  335. struct input_dev *dev = handle->dev;
  336. if (dev->grab == handle) {
  337. rcu_assign_pointer(dev->grab, NULL);
  338. /* Make sure input_pass_event() notices that grab is gone */
  339. synchronize_rcu();
  340. list_for_each_entry(handle, &dev->h_list, d_node)
  341. if (handle->open && handle->handler->start)
  342. handle->handler->start(handle);
  343. }
  344. }
  345. /**
  346. * input_release_device - release previously grabbed device
  347. * @handle: input handle that owns the device
  348. *
  349. * Releases previously grabbed device so that other input handles can
  350. * start receiving input events. Upon release all handlers attached
  351. * to the device have their start() method called so they have a change
  352. * to synchronize device state with the rest of the system.
  353. */
  354. void input_release_device(struct input_handle *handle)
  355. {
  356. struct input_dev *dev = handle->dev;
  357. mutex_lock(&dev->mutex);
  358. __input_release_device(handle);
  359. mutex_unlock(&dev->mutex);
  360. }
  361. EXPORT_SYMBOL(input_release_device);
  362. /**
  363. * input_open_device - open input device
  364. * @handle: handle through which device is being accessed
  365. *
  366. * This function should be called by input handlers when they
  367. * want to start receive events from given input device.
  368. */
  369. int input_open_device(struct input_handle *handle)
  370. {
  371. struct input_dev *dev = handle->dev;
  372. int retval;
  373. retval = mutex_lock_interruptible(&dev->mutex);
  374. if (retval)
  375. return retval;
  376. if (dev->going_away) {
  377. retval = -ENODEV;
  378. goto out;
  379. }
  380. handle->open++;
  381. if (!dev->users++ && dev->open)
  382. retval = dev->open(dev);
  383. if (retval) {
  384. dev->users--;
  385. if (!--handle->open) {
  386. /*
  387. * Make sure we are not delivering any more events
  388. * through this handle
  389. */
  390. synchronize_rcu();
  391. }
  392. }
  393. out:
  394. mutex_unlock(&dev->mutex);
  395. return retval;
  396. }
  397. EXPORT_SYMBOL(input_open_device);
  398. int input_flush_device(struct input_handle *handle, struct file *file)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. int retval;
  402. retval = mutex_lock_interruptible(&dev->mutex);
  403. if (retval)
  404. return retval;
  405. if (dev->flush)
  406. retval = dev->flush(dev, file);
  407. mutex_unlock(&dev->mutex);
  408. return retval;
  409. }
  410. EXPORT_SYMBOL(input_flush_device);
  411. /**
  412. * input_close_device - close input device
  413. * @handle: handle through which device is being accessed
  414. *
  415. * This function should be called by input handlers when they
  416. * want to stop receive events from given input device.
  417. */
  418. void input_close_device(struct input_handle *handle)
  419. {
  420. struct input_dev *dev = handle->dev;
  421. mutex_lock(&dev->mutex);
  422. __input_release_device(handle);
  423. if (!--dev->users && dev->close)
  424. dev->close(dev);
  425. if (!--handle->open) {
  426. /*
  427. * synchronize_rcu() makes sure that input_pass_event()
  428. * completed and that no more input events are delivered
  429. * through this handle
  430. */
  431. synchronize_rcu();
  432. }
  433. mutex_unlock(&dev->mutex);
  434. }
  435. EXPORT_SYMBOL(input_close_device);
  436. /*
  437. * Prepare device for unregistering
  438. */
  439. static void input_disconnect_device(struct input_dev *dev)
  440. {
  441. struct input_handle *handle;
  442. int code;
  443. /*
  444. * Mark device as going away. Note that we take dev->mutex here
  445. * not to protect access to dev->going_away but rather to ensure
  446. * that there are no threads in the middle of input_open_device()
  447. */
  448. mutex_lock(&dev->mutex);
  449. dev->going_away = true;
  450. mutex_unlock(&dev->mutex);
  451. spin_lock_irq(&dev->event_lock);
  452. /*
  453. * Simulate keyup events for all pressed keys so that handlers
  454. * are not left with "stuck" keys. The driver may continue
  455. * generate events even after we done here but they will not
  456. * reach any handlers.
  457. */
  458. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  459. for (code = 0; code <= KEY_MAX; code++) {
  460. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  461. __test_and_clear_bit(code, dev->key)) {
  462. input_pass_event(dev, EV_KEY, code, 0);
  463. }
  464. }
  465. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  466. }
  467. list_for_each_entry(handle, &dev->h_list, d_node)
  468. handle->open = 0;
  469. spin_unlock_irq(&dev->event_lock);
  470. }
  471. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  472. {
  473. switch (dev->keycodesize) {
  474. case 1:
  475. return ((u8 *)dev->keycode)[scancode];
  476. case 2:
  477. return ((u16 *)dev->keycode)[scancode];
  478. default:
  479. return ((u32 *)dev->keycode)[scancode];
  480. }
  481. }
  482. static int input_default_getkeycode(struct input_dev *dev,
  483. int scancode, int *keycode)
  484. {
  485. if (!dev->keycodesize)
  486. return -EINVAL;
  487. if (scancode >= dev->keycodemax)
  488. return -EINVAL;
  489. *keycode = input_fetch_keycode(dev, scancode);
  490. return 0;
  491. }
  492. static int input_default_setkeycode(struct input_dev *dev,
  493. int scancode, int keycode)
  494. {
  495. int old_keycode;
  496. int i;
  497. if (scancode >= dev->keycodemax)
  498. return -EINVAL;
  499. if (!dev->keycodesize)
  500. return -EINVAL;
  501. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  502. return -EINVAL;
  503. switch (dev->keycodesize) {
  504. case 1: {
  505. u8 *k = (u8 *)dev->keycode;
  506. old_keycode = k[scancode];
  507. k[scancode] = keycode;
  508. break;
  509. }
  510. case 2: {
  511. u16 *k = (u16 *)dev->keycode;
  512. old_keycode = k[scancode];
  513. k[scancode] = keycode;
  514. break;
  515. }
  516. default: {
  517. u32 *k = (u32 *)dev->keycode;
  518. old_keycode = k[scancode];
  519. k[scancode] = keycode;
  520. break;
  521. }
  522. }
  523. __clear_bit(old_keycode, dev->keybit);
  524. __set_bit(keycode, dev->keybit);
  525. for (i = 0; i < dev->keycodemax; i++) {
  526. if (input_fetch_keycode(dev, i) == old_keycode) {
  527. __set_bit(old_keycode, dev->keybit);
  528. break; /* Setting the bit twice is useless, so break */
  529. }
  530. }
  531. return 0;
  532. }
  533. /**
  534. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  535. * @dev: input device which keymap is being queried
  536. * @scancode: scancode (or its equivalent for device in question) for which
  537. * keycode is needed
  538. * @keycode: result
  539. *
  540. * This function should be called by anyone interested in retrieving current
  541. * keymap. Presently keyboard and evdev handlers use it.
  542. */
  543. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  544. {
  545. if (scancode < 0)
  546. return -EINVAL;
  547. return dev->getkeycode(dev, scancode, keycode);
  548. }
  549. EXPORT_SYMBOL(input_get_keycode);
  550. /**
  551. * input_get_keycode - assign new keycode to a given scancode
  552. * @dev: input device which keymap is being updated
  553. * @scancode: scancode (or its equivalent for device in question)
  554. * @keycode: new keycode to be assigned to the scancode
  555. *
  556. * This function should be called by anyone needing to update current
  557. * keymap. Presently keyboard and evdev handlers use it.
  558. */
  559. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  560. {
  561. unsigned long flags;
  562. int old_keycode;
  563. int retval;
  564. if (scancode < 0)
  565. return -EINVAL;
  566. if (keycode < 0 || keycode > KEY_MAX)
  567. return -EINVAL;
  568. spin_lock_irqsave(&dev->event_lock, flags);
  569. retval = dev->getkeycode(dev, scancode, &old_keycode);
  570. if (retval)
  571. goto out;
  572. retval = dev->setkeycode(dev, scancode, keycode);
  573. if (retval)
  574. goto out;
  575. /* Make sure KEY_RESERVED did not get enabled. */
  576. __clear_bit(KEY_RESERVED, dev->keybit);
  577. /*
  578. * Simulate keyup event if keycode is not present
  579. * in the keymap anymore
  580. */
  581. if (test_bit(EV_KEY, dev->evbit) &&
  582. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  583. __test_and_clear_bit(old_keycode, dev->key)) {
  584. input_pass_event(dev, EV_KEY, old_keycode, 0);
  585. if (dev->sync)
  586. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  587. }
  588. out:
  589. spin_unlock_irqrestore(&dev->event_lock, flags);
  590. return retval;
  591. }
  592. EXPORT_SYMBOL(input_set_keycode);
  593. #define MATCH_BIT(bit, max) \
  594. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  595. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  596. break; \
  597. if (i != BITS_TO_LONGS(max)) \
  598. continue;
  599. static const struct input_device_id *input_match_device(struct input_handler *handler,
  600. struct input_dev *dev)
  601. {
  602. const struct input_device_id *id;
  603. int i;
  604. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  605. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  606. if (id->bustype != dev->id.bustype)
  607. continue;
  608. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  609. if (id->vendor != dev->id.vendor)
  610. continue;
  611. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  612. if (id->product != dev->id.product)
  613. continue;
  614. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  615. if (id->version != dev->id.version)
  616. continue;
  617. MATCH_BIT(evbit, EV_MAX);
  618. MATCH_BIT(keybit, KEY_MAX);
  619. MATCH_BIT(relbit, REL_MAX);
  620. MATCH_BIT(absbit, ABS_MAX);
  621. MATCH_BIT(mscbit, MSC_MAX);
  622. MATCH_BIT(ledbit, LED_MAX);
  623. MATCH_BIT(sndbit, SND_MAX);
  624. MATCH_BIT(ffbit, FF_MAX);
  625. MATCH_BIT(swbit, SW_MAX);
  626. if (!handler->match || handler->match(handler, dev))
  627. return id;
  628. }
  629. return NULL;
  630. }
  631. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  632. {
  633. const struct input_device_id *id;
  634. int error;
  635. id = input_match_device(handler, dev);
  636. if (!id)
  637. return -ENODEV;
  638. error = handler->connect(handler, dev, id);
  639. if (error && error != -ENODEV)
  640. printk(KERN_ERR
  641. "input: failed to attach handler %s to device %s, "
  642. "error: %d\n",
  643. handler->name, kobject_name(&dev->dev.kobj), error);
  644. return error;
  645. }
  646. #ifdef CONFIG_COMPAT
  647. static int input_bits_to_string(char *buf, int buf_size,
  648. unsigned long bits, bool skip_empty)
  649. {
  650. int len = 0;
  651. if (INPUT_COMPAT_TEST) {
  652. u32 dword = bits >> 32;
  653. if (dword || !skip_empty)
  654. len += snprintf(buf, buf_size, "%x ", dword);
  655. dword = bits & 0xffffffffUL;
  656. if (dword || !skip_empty || len)
  657. len += snprintf(buf + len, max(buf_size - len, 0),
  658. "%x", dword);
  659. } else {
  660. if (bits || !skip_empty)
  661. len += snprintf(buf, buf_size, "%lx", bits);
  662. }
  663. return len;
  664. }
  665. #else /* !CONFIG_COMPAT */
  666. static int input_bits_to_string(char *buf, int buf_size,
  667. unsigned long bits, bool skip_empty)
  668. {
  669. return bits || !skip_empty ?
  670. snprintf(buf, buf_size, "%lx", bits) : 0;
  671. }
  672. #endif
  673. #ifdef CONFIG_PROC_FS
  674. static struct proc_dir_entry *proc_bus_input_dir;
  675. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  676. static int input_devices_state;
  677. static inline void input_wakeup_procfs_readers(void)
  678. {
  679. input_devices_state++;
  680. wake_up(&input_devices_poll_wait);
  681. }
  682. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  683. {
  684. poll_wait(file, &input_devices_poll_wait, wait);
  685. if (file->f_version != input_devices_state) {
  686. file->f_version = input_devices_state;
  687. return POLLIN | POLLRDNORM;
  688. }
  689. return 0;
  690. }
  691. union input_seq_state {
  692. struct {
  693. unsigned short pos;
  694. bool mutex_acquired;
  695. };
  696. void *p;
  697. };
  698. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  699. {
  700. union input_seq_state *state = (union input_seq_state *)&seq->private;
  701. int error;
  702. /* We need to fit into seq->private pointer */
  703. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  704. error = mutex_lock_interruptible(&input_mutex);
  705. if (error) {
  706. state->mutex_acquired = false;
  707. return ERR_PTR(error);
  708. }
  709. state->mutex_acquired = true;
  710. return seq_list_start(&input_dev_list, *pos);
  711. }
  712. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  713. {
  714. return seq_list_next(v, &input_dev_list, pos);
  715. }
  716. static void input_seq_stop(struct seq_file *seq, void *v)
  717. {
  718. union input_seq_state *state = (union input_seq_state *)&seq->private;
  719. if (state->mutex_acquired)
  720. mutex_unlock(&input_mutex);
  721. }
  722. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  723. unsigned long *bitmap, int max)
  724. {
  725. int i;
  726. bool skip_empty = true;
  727. char buf[18];
  728. seq_printf(seq, "B: %s=", name);
  729. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  730. if (input_bits_to_string(buf, sizeof(buf),
  731. bitmap[i], skip_empty)) {
  732. skip_empty = false;
  733. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  734. }
  735. }
  736. /*
  737. * If no output was produced print a single 0.
  738. */
  739. if (skip_empty)
  740. seq_puts(seq, "0");
  741. seq_putc(seq, '\n');
  742. }
  743. static int input_devices_seq_show(struct seq_file *seq, void *v)
  744. {
  745. struct input_dev *dev = container_of(v, struct input_dev, node);
  746. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  747. struct input_handle *handle;
  748. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  749. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  750. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  751. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  752. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  753. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  754. seq_printf(seq, "H: Handlers=");
  755. list_for_each_entry(handle, &dev->h_list, d_node)
  756. seq_printf(seq, "%s ", handle->name);
  757. seq_putc(seq, '\n');
  758. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  759. if (test_bit(EV_KEY, dev->evbit))
  760. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  761. if (test_bit(EV_REL, dev->evbit))
  762. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  763. if (test_bit(EV_ABS, dev->evbit))
  764. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  765. if (test_bit(EV_MSC, dev->evbit))
  766. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  767. if (test_bit(EV_LED, dev->evbit))
  768. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  769. if (test_bit(EV_SND, dev->evbit))
  770. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  771. if (test_bit(EV_FF, dev->evbit))
  772. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  773. if (test_bit(EV_SW, dev->evbit))
  774. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  775. seq_putc(seq, '\n');
  776. kfree(path);
  777. return 0;
  778. }
  779. static const struct seq_operations input_devices_seq_ops = {
  780. .start = input_devices_seq_start,
  781. .next = input_devices_seq_next,
  782. .stop = input_seq_stop,
  783. .show = input_devices_seq_show,
  784. };
  785. static int input_proc_devices_open(struct inode *inode, struct file *file)
  786. {
  787. return seq_open(file, &input_devices_seq_ops);
  788. }
  789. static const struct file_operations input_devices_fileops = {
  790. .owner = THIS_MODULE,
  791. .open = input_proc_devices_open,
  792. .poll = input_proc_devices_poll,
  793. .read = seq_read,
  794. .llseek = seq_lseek,
  795. .release = seq_release,
  796. };
  797. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  798. {
  799. union input_seq_state *state = (union input_seq_state *)&seq->private;
  800. int error;
  801. /* We need to fit into seq->private pointer */
  802. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  803. error = mutex_lock_interruptible(&input_mutex);
  804. if (error) {
  805. state->mutex_acquired = false;
  806. return ERR_PTR(error);
  807. }
  808. state->mutex_acquired = true;
  809. state->pos = *pos;
  810. return seq_list_start(&input_handler_list, *pos);
  811. }
  812. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  813. {
  814. union input_seq_state *state = (union input_seq_state *)&seq->private;
  815. state->pos = *pos + 1;
  816. return seq_list_next(v, &input_handler_list, pos);
  817. }
  818. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  819. {
  820. struct input_handler *handler = container_of(v, struct input_handler, node);
  821. union input_seq_state *state = (union input_seq_state *)&seq->private;
  822. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  823. if (handler->filter)
  824. seq_puts(seq, " (filter)");
  825. if (handler->fops)
  826. seq_printf(seq, " Minor=%d", handler->minor);
  827. seq_putc(seq, '\n');
  828. return 0;
  829. }
  830. static const struct seq_operations input_handlers_seq_ops = {
  831. .start = input_handlers_seq_start,
  832. .next = input_handlers_seq_next,
  833. .stop = input_seq_stop,
  834. .show = input_handlers_seq_show,
  835. };
  836. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  837. {
  838. return seq_open(file, &input_handlers_seq_ops);
  839. }
  840. static const struct file_operations input_handlers_fileops = {
  841. .owner = THIS_MODULE,
  842. .open = input_proc_handlers_open,
  843. .read = seq_read,
  844. .llseek = seq_lseek,
  845. .release = seq_release,
  846. };
  847. static int __init input_proc_init(void)
  848. {
  849. struct proc_dir_entry *entry;
  850. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  851. if (!proc_bus_input_dir)
  852. return -ENOMEM;
  853. entry = proc_create("devices", 0, proc_bus_input_dir,
  854. &input_devices_fileops);
  855. if (!entry)
  856. goto fail1;
  857. entry = proc_create("handlers", 0, proc_bus_input_dir,
  858. &input_handlers_fileops);
  859. if (!entry)
  860. goto fail2;
  861. return 0;
  862. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  863. fail1: remove_proc_entry("bus/input", NULL);
  864. return -ENOMEM;
  865. }
  866. static void input_proc_exit(void)
  867. {
  868. remove_proc_entry("devices", proc_bus_input_dir);
  869. remove_proc_entry("handlers", proc_bus_input_dir);
  870. remove_proc_entry("bus/input", NULL);
  871. }
  872. #else /* !CONFIG_PROC_FS */
  873. static inline void input_wakeup_procfs_readers(void) { }
  874. static inline int input_proc_init(void) { return 0; }
  875. static inline void input_proc_exit(void) { }
  876. #endif
  877. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  878. static ssize_t input_dev_show_##name(struct device *dev, \
  879. struct device_attribute *attr, \
  880. char *buf) \
  881. { \
  882. struct input_dev *input_dev = to_input_dev(dev); \
  883. \
  884. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  885. input_dev->name ? input_dev->name : ""); \
  886. } \
  887. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  888. INPUT_DEV_STRING_ATTR_SHOW(name);
  889. INPUT_DEV_STRING_ATTR_SHOW(phys);
  890. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  891. static int input_print_modalias_bits(char *buf, int size,
  892. char name, unsigned long *bm,
  893. unsigned int min_bit, unsigned int max_bit)
  894. {
  895. int len = 0, i;
  896. len += snprintf(buf, max(size, 0), "%c", name);
  897. for (i = min_bit; i < max_bit; i++)
  898. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  899. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  900. return len;
  901. }
  902. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  903. int add_cr)
  904. {
  905. int len;
  906. len = snprintf(buf, max(size, 0),
  907. "input:b%04Xv%04Xp%04Xe%04X-",
  908. id->id.bustype, id->id.vendor,
  909. id->id.product, id->id.version);
  910. len += input_print_modalias_bits(buf + len, size - len,
  911. 'e', id->evbit, 0, EV_MAX);
  912. len += input_print_modalias_bits(buf + len, size - len,
  913. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  914. len += input_print_modalias_bits(buf + len, size - len,
  915. 'r', id->relbit, 0, REL_MAX);
  916. len += input_print_modalias_bits(buf + len, size - len,
  917. 'a', id->absbit, 0, ABS_MAX);
  918. len += input_print_modalias_bits(buf + len, size - len,
  919. 'm', id->mscbit, 0, MSC_MAX);
  920. len += input_print_modalias_bits(buf + len, size - len,
  921. 'l', id->ledbit, 0, LED_MAX);
  922. len += input_print_modalias_bits(buf + len, size - len,
  923. 's', id->sndbit, 0, SND_MAX);
  924. len += input_print_modalias_bits(buf + len, size - len,
  925. 'f', id->ffbit, 0, FF_MAX);
  926. len += input_print_modalias_bits(buf + len, size - len,
  927. 'w', id->swbit, 0, SW_MAX);
  928. if (add_cr)
  929. len += snprintf(buf + len, max(size - len, 0), "\n");
  930. return len;
  931. }
  932. static ssize_t input_dev_show_modalias(struct device *dev,
  933. struct device_attribute *attr,
  934. char *buf)
  935. {
  936. struct input_dev *id = to_input_dev(dev);
  937. ssize_t len;
  938. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  939. return min_t(int, len, PAGE_SIZE);
  940. }
  941. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  942. static struct attribute *input_dev_attrs[] = {
  943. &dev_attr_name.attr,
  944. &dev_attr_phys.attr,
  945. &dev_attr_uniq.attr,
  946. &dev_attr_modalias.attr,
  947. NULL
  948. };
  949. static struct attribute_group input_dev_attr_group = {
  950. .attrs = input_dev_attrs,
  951. };
  952. #define INPUT_DEV_ID_ATTR(name) \
  953. static ssize_t input_dev_show_id_##name(struct device *dev, \
  954. struct device_attribute *attr, \
  955. char *buf) \
  956. { \
  957. struct input_dev *input_dev = to_input_dev(dev); \
  958. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  959. } \
  960. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  961. INPUT_DEV_ID_ATTR(bustype);
  962. INPUT_DEV_ID_ATTR(vendor);
  963. INPUT_DEV_ID_ATTR(product);
  964. INPUT_DEV_ID_ATTR(version);
  965. static struct attribute *input_dev_id_attrs[] = {
  966. &dev_attr_bustype.attr,
  967. &dev_attr_vendor.attr,
  968. &dev_attr_product.attr,
  969. &dev_attr_version.attr,
  970. NULL
  971. };
  972. static struct attribute_group input_dev_id_attr_group = {
  973. .name = "id",
  974. .attrs = input_dev_id_attrs,
  975. };
  976. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  977. int max, int add_cr)
  978. {
  979. int i;
  980. int len = 0;
  981. bool skip_empty = true;
  982. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  983. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  984. bitmap[i], skip_empty);
  985. if (len) {
  986. skip_empty = false;
  987. if (i > 0)
  988. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  989. }
  990. }
  991. /*
  992. * If no output was produced print a single 0.
  993. */
  994. if (len == 0)
  995. len = snprintf(buf, buf_size, "%d", 0);
  996. if (add_cr)
  997. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  998. return len;
  999. }
  1000. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1001. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1002. struct device_attribute *attr, \
  1003. char *buf) \
  1004. { \
  1005. struct input_dev *input_dev = to_input_dev(dev); \
  1006. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1007. input_dev->bm##bit, ev##_MAX, \
  1008. true); \
  1009. return min_t(int, len, PAGE_SIZE); \
  1010. } \
  1011. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1012. INPUT_DEV_CAP_ATTR(EV, ev);
  1013. INPUT_DEV_CAP_ATTR(KEY, key);
  1014. INPUT_DEV_CAP_ATTR(REL, rel);
  1015. INPUT_DEV_CAP_ATTR(ABS, abs);
  1016. INPUT_DEV_CAP_ATTR(MSC, msc);
  1017. INPUT_DEV_CAP_ATTR(LED, led);
  1018. INPUT_DEV_CAP_ATTR(SND, snd);
  1019. INPUT_DEV_CAP_ATTR(FF, ff);
  1020. INPUT_DEV_CAP_ATTR(SW, sw);
  1021. static struct attribute *input_dev_caps_attrs[] = {
  1022. &dev_attr_ev.attr,
  1023. &dev_attr_key.attr,
  1024. &dev_attr_rel.attr,
  1025. &dev_attr_abs.attr,
  1026. &dev_attr_msc.attr,
  1027. &dev_attr_led.attr,
  1028. &dev_attr_snd.attr,
  1029. &dev_attr_ff.attr,
  1030. &dev_attr_sw.attr,
  1031. NULL
  1032. };
  1033. static struct attribute_group input_dev_caps_attr_group = {
  1034. .name = "capabilities",
  1035. .attrs = input_dev_caps_attrs,
  1036. };
  1037. static const struct attribute_group *input_dev_attr_groups[] = {
  1038. &input_dev_attr_group,
  1039. &input_dev_id_attr_group,
  1040. &input_dev_caps_attr_group,
  1041. NULL
  1042. };
  1043. static void input_dev_release(struct device *device)
  1044. {
  1045. struct input_dev *dev = to_input_dev(device);
  1046. input_ff_destroy(dev);
  1047. kfree(dev);
  1048. module_put(THIS_MODULE);
  1049. }
  1050. /*
  1051. * Input uevent interface - loading event handlers based on
  1052. * device bitfields.
  1053. */
  1054. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1055. const char *name, unsigned long *bitmap, int max)
  1056. {
  1057. int len;
  1058. if (add_uevent_var(env, "%s=", name))
  1059. return -ENOMEM;
  1060. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1061. sizeof(env->buf) - env->buflen,
  1062. bitmap, max, false);
  1063. if (len >= (sizeof(env->buf) - env->buflen))
  1064. return -ENOMEM;
  1065. env->buflen += len;
  1066. return 0;
  1067. }
  1068. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1069. struct input_dev *dev)
  1070. {
  1071. int len;
  1072. if (add_uevent_var(env, "MODALIAS="))
  1073. return -ENOMEM;
  1074. len = input_print_modalias(&env->buf[env->buflen - 1],
  1075. sizeof(env->buf) - env->buflen,
  1076. dev, 0);
  1077. if (len >= (sizeof(env->buf) - env->buflen))
  1078. return -ENOMEM;
  1079. env->buflen += len;
  1080. return 0;
  1081. }
  1082. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1083. do { \
  1084. int err = add_uevent_var(env, fmt, val); \
  1085. if (err) \
  1086. return err; \
  1087. } while (0)
  1088. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1089. do { \
  1090. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1091. if (err) \
  1092. return err; \
  1093. } while (0)
  1094. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1095. do { \
  1096. int err = input_add_uevent_modalias_var(env, dev); \
  1097. if (err) \
  1098. return err; \
  1099. } while (0)
  1100. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1101. {
  1102. struct input_dev *dev = to_input_dev(device);
  1103. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1104. dev->id.bustype, dev->id.vendor,
  1105. dev->id.product, dev->id.version);
  1106. if (dev->name)
  1107. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1108. if (dev->phys)
  1109. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1110. if (dev->uniq)
  1111. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1112. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1113. if (test_bit(EV_KEY, dev->evbit))
  1114. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1115. if (test_bit(EV_REL, dev->evbit))
  1116. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1117. if (test_bit(EV_ABS, dev->evbit))
  1118. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1119. if (test_bit(EV_MSC, dev->evbit))
  1120. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1121. if (test_bit(EV_LED, dev->evbit))
  1122. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1123. if (test_bit(EV_SND, dev->evbit))
  1124. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1125. if (test_bit(EV_FF, dev->evbit))
  1126. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1127. if (test_bit(EV_SW, dev->evbit))
  1128. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1129. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1130. return 0;
  1131. }
  1132. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1133. do { \
  1134. int i; \
  1135. bool active; \
  1136. \
  1137. if (!test_bit(EV_##type, dev->evbit)) \
  1138. break; \
  1139. \
  1140. for (i = 0; i < type##_MAX; i++) { \
  1141. if (!test_bit(i, dev->bits##bit)) \
  1142. continue; \
  1143. \
  1144. active = test_bit(i, dev->bits); \
  1145. if (!active && !on) \
  1146. continue; \
  1147. \
  1148. dev->event(dev, EV_##type, i, on ? active : 0); \
  1149. } \
  1150. } while (0)
  1151. #ifdef CONFIG_PM
  1152. static void input_dev_reset(struct input_dev *dev, bool activate)
  1153. {
  1154. if (!dev->event)
  1155. return;
  1156. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1157. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1158. if (activate && test_bit(EV_REP, dev->evbit)) {
  1159. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1160. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1161. }
  1162. }
  1163. static int input_dev_suspend(struct device *dev)
  1164. {
  1165. struct input_dev *input_dev = to_input_dev(dev);
  1166. mutex_lock(&input_dev->mutex);
  1167. input_dev_reset(input_dev, false);
  1168. mutex_unlock(&input_dev->mutex);
  1169. return 0;
  1170. }
  1171. static int input_dev_resume(struct device *dev)
  1172. {
  1173. struct input_dev *input_dev = to_input_dev(dev);
  1174. mutex_lock(&input_dev->mutex);
  1175. input_dev_reset(input_dev, true);
  1176. mutex_unlock(&input_dev->mutex);
  1177. return 0;
  1178. }
  1179. static const struct dev_pm_ops input_dev_pm_ops = {
  1180. .suspend = input_dev_suspend,
  1181. .resume = input_dev_resume,
  1182. .poweroff = input_dev_suspend,
  1183. .restore = input_dev_resume,
  1184. };
  1185. #endif /* CONFIG_PM */
  1186. static struct device_type input_dev_type = {
  1187. .groups = input_dev_attr_groups,
  1188. .release = input_dev_release,
  1189. .uevent = input_dev_uevent,
  1190. #ifdef CONFIG_PM
  1191. .pm = &input_dev_pm_ops,
  1192. #endif
  1193. };
  1194. static char *input_devnode(struct device *dev, mode_t *mode)
  1195. {
  1196. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1197. }
  1198. struct class input_class = {
  1199. .name = "input",
  1200. .devnode = input_devnode,
  1201. };
  1202. EXPORT_SYMBOL_GPL(input_class);
  1203. /**
  1204. * input_allocate_device - allocate memory for new input device
  1205. *
  1206. * Returns prepared struct input_dev or NULL.
  1207. *
  1208. * NOTE: Use input_free_device() to free devices that have not been
  1209. * registered; input_unregister_device() should be used for already
  1210. * registered devices.
  1211. */
  1212. struct input_dev *input_allocate_device(void)
  1213. {
  1214. struct input_dev *dev;
  1215. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1216. if (dev) {
  1217. dev->dev.type = &input_dev_type;
  1218. dev->dev.class = &input_class;
  1219. device_initialize(&dev->dev);
  1220. mutex_init(&dev->mutex);
  1221. spin_lock_init(&dev->event_lock);
  1222. INIT_LIST_HEAD(&dev->h_list);
  1223. INIT_LIST_HEAD(&dev->node);
  1224. __module_get(THIS_MODULE);
  1225. }
  1226. return dev;
  1227. }
  1228. EXPORT_SYMBOL(input_allocate_device);
  1229. /**
  1230. * input_free_device - free memory occupied by input_dev structure
  1231. * @dev: input device to free
  1232. *
  1233. * This function should only be used if input_register_device()
  1234. * was not called yet or if it failed. Once device was registered
  1235. * use input_unregister_device() and memory will be freed once last
  1236. * reference to the device is dropped.
  1237. *
  1238. * Device should be allocated by input_allocate_device().
  1239. *
  1240. * NOTE: If there are references to the input device then memory
  1241. * will not be freed until last reference is dropped.
  1242. */
  1243. void input_free_device(struct input_dev *dev)
  1244. {
  1245. if (dev)
  1246. input_put_device(dev);
  1247. }
  1248. EXPORT_SYMBOL(input_free_device);
  1249. /**
  1250. * input_set_capability - mark device as capable of a certain event
  1251. * @dev: device that is capable of emitting or accepting event
  1252. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1253. * @code: event code
  1254. *
  1255. * In addition to setting up corresponding bit in appropriate capability
  1256. * bitmap the function also adjusts dev->evbit.
  1257. */
  1258. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1259. {
  1260. switch (type) {
  1261. case EV_KEY:
  1262. __set_bit(code, dev->keybit);
  1263. break;
  1264. case EV_REL:
  1265. __set_bit(code, dev->relbit);
  1266. break;
  1267. case EV_ABS:
  1268. __set_bit(code, dev->absbit);
  1269. break;
  1270. case EV_MSC:
  1271. __set_bit(code, dev->mscbit);
  1272. break;
  1273. case EV_SW:
  1274. __set_bit(code, dev->swbit);
  1275. break;
  1276. case EV_LED:
  1277. __set_bit(code, dev->ledbit);
  1278. break;
  1279. case EV_SND:
  1280. __set_bit(code, dev->sndbit);
  1281. break;
  1282. case EV_FF:
  1283. __set_bit(code, dev->ffbit);
  1284. break;
  1285. case EV_PWR:
  1286. /* do nothing */
  1287. break;
  1288. default:
  1289. printk(KERN_ERR
  1290. "input_set_capability: unknown type %u (code %u)\n",
  1291. type, code);
  1292. dump_stack();
  1293. return;
  1294. }
  1295. __set_bit(type, dev->evbit);
  1296. }
  1297. EXPORT_SYMBOL(input_set_capability);
  1298. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1299. do { \
  1300. if (!test_bit(EV_##type, dev->evbit)) \
  1301. memset(dev->bits##bit, 0, \
  1302. sizeof(dev->bits##bit)); \
  1303. } while (0)
  1304. static void input_cleanse_bitmasks(struct input_dev *dev)
  1305. {
  1306. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1307. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1308. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1309. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1310. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1311. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1312. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1313. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1314. }
  1315. /**
  1316. * input_register_device - register device with input core
  1317. * @dev: device to be registered
  1318. *
  1319. * This function registers device with input core. The device must be
  1320. * allocated with input_allocate_device() and all it's capabilities
  1321. * set up before registering.
  1322. * If function fails the device must be freed with input_free_device().
  1323. * Once device has been successfully registered it can be unregistered
  1324. * with input_unregister_device(); input_free_device() should not be
  1325. * called in this case.
  1326. */
  1327. int input_register_device(struct input_dev *dev)
  1328. {
  1329. static atomic_t input_no = ATOMIC_INIT(0);
  1330. struct input_handler *handler;
  1331. const char *path;
  1332. int error;
  1333. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1334. __set_bit(EV_SYN, dev->evbit);
  1335. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1336. __clear_bit(KEY_RESERVED, dev->keybit);
  1337. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1338. input_cleanse_bitmasks(dev);
  1339. /*
  1340. * If delay and period are pre-set by the driver, then autorepeating
  1341. * is handled by the driver itself and we don't do it in input.c.
  1342. */
  1343. init_timer(&dev->timer);
  1344. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1345. dev->timer.data = (long) dev;
  1346. dev->timer.function = input_repeat_key;
  1347. dev->rep[REP_DELAY] = 250;
  1348. dev->rep[REP_PERIOD] = 33;
  1349. }
  1350. if (!dev->getkeycode)
  1351. dev->getkeycode = input_default_getkeycode;
  1352. if (!dev->setkeycode)
  1353. dev->setkeycode = input_default_setkeycode;
  1354. dev_set_name(&dev->dev, "input%ld",
  1355. (unsigned long) atomic_inc_return(&input_no) - 1);
  1356. error = device_add(&dev->dev);
  1357. if (error)
  1358. return error;
  1359. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1360. printk(KERN_INFO "input: %s as %s\n",
  1361. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1362. kfree(path);
  1363. error = mutex_lock_interruptible(&input_mutex);
  1364. if (error) {
  1365. device_del(&dev->dev);
  1366. return error;
  1367. }
  1368. list_add_tail(&dev->node, &input_dev_list);
  1369. list_for_each_entry(handler, &input_handler_list, node)
  1370. input_attach_handler(dev, handler);
  1371. input_wakeup_procfs_readers();
  1372. mutex_unlock(&input_mutex);
  1373. return 0;
  1374. }
  1375. EXPORT_SYMBOL(input_register_device);
  1376. /**
  1377. * input_unregister_device - unregister previously registered device
  1378. * @dev: device to be unregistered
  1379. *
  1380. * This function unregisters an input device. Once device is unregistered
  1381. * the caller should not try to access it as it may get freed at any moment.
  1382. */
  1383. void input_unregister_device(struct input_dev *dev)
  1384. {
  1385. struct input_handle *handle, *next;
  1386. input_disconnect_device(dev);
  1387. mutex_lock(&input_mutex);
  1388. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1389. handle->handler->disconnect(handle);
  1390. WARN_ON(!list_empty(&dev->h_list));
  1391. del_timer_sync(&dev->timer);
  1392. list_del_init(&dev->node);
  1393. input_wakeup_procfs_readers();
  1394. mutex_unlock(&input_mutex);
  1395. device_unregister(&dev->dev);
  1396. }
  1397. EXPORT_SYMBOL(input_unregister_device);
  1398. /**
  1399. * input_register_handler - register a new input handler
  1400. * @handler: handler to be registered
  1401. *
  1402. * This function registers a new input handler (interface) for input
  1403. * devices in the system and attaches it to all input devices that
  1404. * are compatible with the handler.
  1405. */
  1406. int input_register_handler(struct input_handler *handler)
  1407. {
  1408. struct input_dev *dev;
  1409. int retval;
  1410. retval = mutex_lock_interruptible(&input_mutex);
  1411. if (retval)
  1412. return retval;
  1413. INIT_LIST_HEAD(&handler->h_list);
  1414. if (handler->fops != NULL) {
  1415. if (input_table[handler->minor >> 5]) {
  1416. retval = -EBUSY;
  1417. goto out;
  1418. }
  1419. input_table[handler->minor >> 5] = handler;
  1420. }
  1421. list_add_tail(&handler->node, &input_handler_list);
  1422. list_for_each_entry(dev, &input_dev_list, node)
  1423. input_attach_handler(dev, handler);
  1424. input_wakeup_procfs_readers();
  1425. out:
  1426. mutex_unlock(&input_mutex);
  1427. return retval;
  1428. }
  1429. EXPORT_SYMBOL(input_register_handler);
  1430. /**
  1431. * input_unregister_handler - unregisters an input handler
  1432. * @handler: handler to be unregistered
  1433. *
  1434. * This function disconnects a handler from its input devices and
  1435. * removes it from lists of known handlers.
  1436. */
  1437. void input_unregister_handler(struct input_handler *handler)
  1438. {
  1439. struct input_handle *handle, *next;
  1440. mutex_lock(&input_mutex);
  1441. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1442. handler->disconnect(handle);
  1443. WARN_ON(!list_empty(&handler->h_list));
  1444. list_del_init(&handler->node);
  1445. if (handler->fops != NULL)
  1446. input_table[handler->minor >> 5] = NULL;
  1447. input_wakeup_procfs_readers();
  1448. mutex_unlock(&input_mutex);
  1449. }
  1450. EXPORT_SYMBOL(input_unregister_handler);
  1451. /**
  1452. * input_handler_for_each_handle - handle iterator
  1453. * @handler: input handler to iterate
  1454. * @data: data for the callback
  1455. * @fn: function to be called for each handle
  1456. *
  1457. * Iterate over @bus's list of devices, and call @fn for each, passing
  1458. * it @data and stop when @fn returns a non-zero value. The function is
  1459. * using RCU to traverse the list and therefore may be usind in atonic
  1460. * contexts. The @fn callback is invoked from RCU critical section and
  1461. * thus must not sleep.
  1462. */
  1463. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1464. int (*fn)(struct input_handle *, void *))
  1465. {
  1466. struct input_handle *handle;
  1467. int retval = 0;
  1468. rcu_read_lock();
  1469. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1470. retval = fn(handle, data);
  1471. if (retval)
  1472. break;
  1473. }
  1474. rcu_read_unlock();
  1475. return retval;
  1476. }
  1477. EXPORT_SYMBOL(input_handler_for_each_handle);
  1478. /**
  1479. * input_register_handle - register a new input handle
  1480. * @handle: handle to register
  1481. *
  1482. * This function puts a new input handle onto device's
  1483. * and handler's lists so that events can flow through
  1484. * it once it is opened using input_open_device().
  1485. *
  1486. * This function is supposed to be called from handler's
  1487. * connect() method.
  1488. */
  1489. int input_register_handle(struct input_handle *handle)
  1490. {
  1491. struct input_handler *handler = handle->handler;
  1492. struct input_dev *dev = handle->dev;
  1493. int error;
  1494. /*
  1495. * We take dev->mutex here to prevent race with
  1496. * input_release_device().
  1497. */
  1498. error = mutex_lock_interruptible(&dev->mutex);
  1499. if (error)
  1500. return error;
  1501. /*
  1502. * Filters go to the head of the list, normal handlers
  1503. * to the tail.
  1504. */
  1505. if (handler->filter)
  1506. list_add_rcu(&handle->d_node, &dev->h_list);
  1507. else
  1508. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1509. mutex_unlock(&dev->mutex);
  1510. /*
  1511. * Since we are supposed to be called from ->connect()
  1512. * which is mutually exclusive with ->disconnect()
  1513. * we can't be racing with input_unregister_handle()
  1514. * and so separate lock is not needed here.
  1515. */
  1516. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1517. if (handler->start)
  1518. handler->start(handle);
  1519. return 0;
  1520. }
  1521. EXPORT_SYMBOL(input_register_handle);
  1522. /**
  1523. * input_unregister_handle - unregister an input handle
  1524. * @handle: handle to unregister
  1525. *
  1526. * This function removes input handle from device's
  1527. * and handler's lists.
  1528. *
  1529. * This function is supposed to be called from handler's
  1530. * disconnect() method.
  1531. */
  1532. void input_unregister_handle(struct input_handle *handle)
  1533. {
  1534. struct input_dev *dev = handle->dev;
  1535. list_del_rcu(&handle->h_node);
  1536. /*
  1537. * Take dev->mutex to prevent race with input_release_device().
  1538. */
  1539. mutex_lock(&dev->mutex);
  1540. list_del_rcu(&handle->d_node);
  1541. mutex_unlock(&dev->mutex);
  1542. synchronize_rcu();
  1543. }
  1544. EXPORT_SYMBOL(input_unregister_handle);
  1545. static int input_open_file(struct inode *inode, struct file *file)
  1546. {
  1547. struct input_handler *handler;
  1548. const struct file_operations *old_fops, *new_fops = NULL;
  1549. int err;
  1550. lock_kernel();
  1551. /* No load-on-demand here? */
  1552. handler = input_table[iminor(inode) >> 5];
  1553. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1554. err = -ENODEV;
  1555. goto out;
  1556. }
  1557. /*
  1558. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1559. * not "no device". Oh, well...
  1560. */
  1561. if (!new_fops->open) {
  1562. fops_put(new_fops);
  1563. err = -ENODEV;
  1564. goto out;
  1565. }
  1566. old_fops = file->f_op;
  1567. file->f_op = new_fops;
  1568. err = new_fops->open(inode, file);
  1569. if (err) {
  1570. fops_put(file->f_op);
  1571. file->f_op = fops_get(old_fops);
  1572. }
  1573. fops_put(old_fops);
  1574. out:
  1575. unlock_kernel();
  1576. return err;
  1577. }
  1578. static const struct file_operations input_fops = {
  1579. .owner = THIS_MODULE,
  1580. .open = input_open_file,
  1581. };
  1582. static void __init input_init_abs_bypass(void)
  1583. {
  1584. const unsigned int *p;
  1585. for (p = input_abs_bypass_init_data; *p; p++)
  1586. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1587. }
  1588. static int __init input_init(void)
  1589. {
  1590. int err;
  1591. input_init_abs_bypass();
  1592. err = class_register(&input_class);
  1593. if (err) {
  1594. printk(KERN_ERR "input: unable to register input_dev class\n");
  1595. return err;
  1596. }
  1597. err = input_proc_init();
  1598. if (err)
  1599. goto fail1;
  1600. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1601. if (err) {
  1602. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1603. goto fail2;
  1604. }
  1605. return 0;
  1606. fail2: input_proc_exit();
  1607. fail1: class_unregister(&input_class);
  1608. return err;
  1609. }
  1610. static void __exit input_exit(void)
  1611. {
  1612. input_proc_exit();
  1613. unregister_chrdev(INPUT_MAJOR, "input");
  1614. class_unregister(&input_class);
  1615. }
  1616. subsys_initcall(input_init);
  1617. module_exit(input_exit);