shdma.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. /*
  2. * Renesas SuperH DMA Engine support
  3. *
  4. * base is drivers/dma/flsdma.c
  5. *
  6. * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
  7. * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
  8. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  9. *
  10. * This is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * - DMA of SuperH does not have Hardware DMA chain mode.
  16. * - MAX DMA size is 16MB.
  17. *
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/delay.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/pm_runtime.h>
  27. #include <asm/dmaengine.h>
  28. #include "shdma.h"
  29. /* DMA descriptor control */
  30. enum sh_dmae_desc_status {
  31. DESC_IDLE,
  32. DESC_PREPARED,
  33. DESC_SUBMITTED,
  34. DESC_COMPLETED, /* completed, have to call callback */
  35. DESC_WAITING, /* callback called, waiting for ack / re-submit */
  36. };
  37. #define NR_DESCS_PER_CHANNEL 32
  38. /* Default MEMCPY transfer size = 2^2 = 4 bytes */
  39. #define LOG2_DEFAULT_XFER_SIZE 2
  40. /* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
  41. static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SHDMA_SLAVE_NUMBER)];
  42. static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);
  43. static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
  44. {
  45. __raw_writel(data, sh_dc->base + reg / sizeof(u32));
  46. }
  47. static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
  48. {
  49. return __raw_readl(sh_dc->base + reg / sizeof(u32));
  50. }
  51. static u16 dmaor_read(struct sh_dmae_device *shdev)
  52. {
  53. return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
  54. }
  55. static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
  56. {
  57. __raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
  58. }
  59. /*
  60. * Reset DMA controller
  61. *
  62. * SH7780 has two DMAOR register
  63. */
  64. static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
  65. {
  66. unsigned short dmaor = dmaor_read(shdev);
  67. dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
  68. }
  69. static int sh_dmae_rst(struct sh_dmae_device *shdev)
  70. {
  71. unsigned short dmaor;
  72. sh_dmae_ctl_stop(shdev);
  73. dmaor = dmaor_read(shdev) | shdev->pdata->dmaor_init;
  74. dmaor_write(shdev, dmaor);
  75. if (dmaor_read(shdev) & (DMAOR_AE | DMAOR_NMIF)) {
  76. pr_warning("dma-sh: Can't initialize DMAOR.\n");
  77. return -EINVAL;
  78. }
  79. return 0;
  80. }
  81. static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
  82. {
  83. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  84. if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
  85. return true; /* working */
  86. return false; /* waiting */
  87. }
  88. static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
  89. {
  90. struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
  91. struct sh_dmae_device, common);
  92. struct sh_dmae_pdata *pdata = shdev->pdata;
  93. int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
  94. ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
  95. if (cnt >= pdata->ts_shift_num)
  96. cnt = 0;
  97. return pdata->ts_shift[cnt];
  98. }
  99. static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
  100. {
  101. struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
  102. struct sh_dmae_device, common);
  103. struct sh_dmae_pdata *pdata = shdev->pdata;
  104. int i;
  105. for (i = 0; i < pdata->ts_shift_num; i++)
  106. if (pdata->ts_shift[i] == l2size)
  107. break;
  108. if (i == pdata->ts_shift_num)
  109. i = 0;
  110. return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
  111. ((i << pdata->ts_high_shift) & pdata->ts_high_mask);
  112. }
  113. static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
  114. {
  115. sh_dmae_writel(sh_chan, hw->sar, SAR);
  116. sh_dmae_writel(sh_chan, hw->dar, DAR);
  117. sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
  118. }
  119. static void dmae_start(struct sh_dmae_chan *sh_chan)
  120. {
  121. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  122. chcr |= CHCR_DE | CHCR_IE;
  123. sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
  124. }
  125. static void dmae_halt(struct sh_dmae_chan *sh_chan)
  126. {
  127. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  128. chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
  129. sh_dmae_writel(sh_chan, chcr, CHCR);
  130. }
  131. static void dmae_init(struct sh_dmae_chan *sh_chan)
  132. {
  133. /*
  134. * Default configuration for dual address memory-memory transfer.
  135. * 0x400 represents auto-request.
  136. */
  137. u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
  138. LOG2_DEFAULT_XFER_SIZE);
  139. sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
  140. sh_dmae_writel(sh_chan, chcr, CHCR);
  141. }
  142. static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
  143. {
  144. /* When DMA was working, can not set data to CHCR */
  145. if (dmae_is_busy(sh_chan))
  146. return -EBUSY;
  147. sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
  148. sh_dmae_writel(sh_chan, val, CHCR);
  149. return 0;
  150. }
  151. static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
  152. {
  153. struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
  154. struct sh_dmae_device, common);
  155. struct sh_dmae_pdata *pdata = shdev->pdata;
  156. struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
  157. u16 __iomem *addr = shdev->dmars + chan_pdata->dmars / sizeof(u16);
  158. int shift = chan_pdata->dmars_bit;
  159. if (dmae_is_busy(sh_chan))
  160. return -EBUSY;
  161. __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
  162. addr);
  163. return 0;
  164. }
  165. static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
  166. {
  167. struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
  168. struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
  169. dma_async_tx_callback callback = tx->callback;
  170. dma_cookie_t cookie;
  171. spin_lock_bh(&sh_chan->desc_lock);
  172. cookie = sh_chan->common.cookie;
  173. cookie++;
  174. if (cookie < 0)
  175. cookie = 1;
  176. sh_chan->common.cookie = cookie;
  177. tx->cookie = cookie;
  178. /* Mark all chunks of this descriptor as submitted, move to the queue */
  179. list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
  180. /*
  181. * All chunks are on the global ld_free, so, we have to find
  182. * the end of the chain ourselves
  183. */
  184. if (chunk != desc && (chunk->mark == DESC_IDLE ||
  185. chunk->async_tx.cookie > 0 ||
  186. chunk->async_tx.cookie == -EBUSY ||
  187. &chunk->node == &sh_chan->ld_free))
  188. break;
  189. chunk->mark = DESC_SUBMITTED;
  190. /* Callback goes to the last chunk */
  191. chunk->async_tx.callback = NULL;
  192. chunk->cookie = cookie;
  193. list_move_tail(&chunk->node, &sh_chan->ld_queue);
  194. last = chunk;
  195. }
  196. last->async_tx.callback = callback;
  197. last->async_tx.callback_param = tx->callback_param;
  198. dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
  199. tx->cookie, &last->async_tx, sh_chan->id,
  200. desc->hw.sar, desc->hw.tcr, desc->hw.dar);
  201. spin_unlock_bh(&sh_chan->desc_lock);
  202. return cookie;
  203. }
  204. /* Called with desc_lock held */
  205. static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
  206. {
  207. struct sh_desc *desc;
  208. list_for_each_entry(desc, &sh_chan->ld_free, node)
  209. if (desc->mark != DESC_PREPARED) {
  210. BUG_ON(desc->mark != DESC_IDLE);
  211. list_del(&desc->node);
  212. return desc;
  213. }
  214. return NULL;
  215. }
  216. static struct sh_dmae_slave_config *sh_dmae_find_slave(
  217. struct sh_dmae_chan *sh_chan, enum sh_dmae_slave_chan_id slave_id)
  218. {
  219. struct dma_device *dma_dev = sh_chan->common.device;
  220. struct sh_dmae_device *shdev = container_of(dma_dev,
  221. struct sh_dmae_device, common);
  222. struct sh_dmae_pdata *pdata = shdev->pdata;
  223. int i;
  224. if ((unsigned)slave_id >= SHDMA_SLAVE_NUMBER)
  225. return NULL;
  226. for (i = 0; i < pdata->slave_num; i++)
  227. if (pdata->slave[i].slave_id == slave_id)
  228. return pdata->slave + i;
  229. return NULL;
  230. }
  231. static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
  232. {
  233. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  234. struct sh_desc *desc;
  235. struct sh_dmae_slave *param = chan->private;
  236. pm_runtime_get_sync(sh_chan->dev);
  237. /*
  238. * This relies on the guarantee from dmaengine that alloc_chan_resources
  239. * never runs concurrently with itself or free_chan_resources.
  240. */
  241. if (param) {
  242. struct sh_dmae_slave_config *cfg;
  243. cfg = sh_dmae_find_slave(sh_chan, param->slave_id);
  244. if (!cfg)
  245. return -EINVAL;
  246. if (test_and_set_bit(param->slave_id, sh_dmae_slave_used))
  247. return -EBUSY;
  248. param->config = cfg;
  249. dmae_set_dmars(sh_chan, cfg->mid_rid);
  250. dmae_set_chcr(sh_chan, cfg->chcr);
  251. } else if ((sh_dmae_readl(sh_chan, CHCR) & 0xf00) != 0x400) {
  252. dmae_init(sh_chan);
  253. }
  254. spin_lock_bh(&sh_chan->desc_lock);
  255. while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
  256. spin_unlock_bh(&sh_chan->desc_lock);
  257. desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
  258. if (!desc) {
  259. spin_lock_bh(&sh_chan->desc_lock);
  260. break;
  261. }
  262. dma_async_tx_descriptor_init(&desc->async_tx,
  263. &sh_chan->common);
  264. desc->async_tx.tx_submit = sh_dmae_tx_submit;
  265. desc->mark = DESC_IDLE;
  266. spin_lock_bh(&sh_chan->desc_lock);
  267. list_add(&desc->node, &sh_chan->ld_free);
  268. sh_chan->descs_allocated++;
  269. }
  270. spin_unlock_bh(&sh_chan->desc_lock);
  271. if (!sh_chan->descs_allocated)
  272. pm_runtime_put(sh_chan->dev);
  273. return sh_chan->descs_allocated;
  274. }
  275. /*
  276. * sh_dma_free_chan_resources - Free all resources of the channel.
  277. */
  278. static void sh_dmae_free_chan_resources(struct dma_chan *chan)
  279. {
  280. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  281. struct sh_desc *desc, *_desc;
  282. LIST_HEAD(list);
  283. int descs = sh_chan->descs_allocated;
  284. dmae_halt(sh_chan);
  285. /* Prepared and not submitted descriptors can still be on the queue */
  286. if (!list_empty(&sh_chan->ld_queue))
  287. sh_dmae_chan_ld_cleanup(sh_chan, true);
  288. if (chan->private) {
  289. /* The caller is holding dma_list_mutex */
  290. struct sh_dmae_slave *param = chan->private;
  291. clear_bit(param->slave_id, sh_dmae_slave_used);
  292. }
  293. spin_lock_bh(&sh_chan->desc_lock);
  294. list_splice_init(&sh_chan->ld_free, &list);
  295. sh_chan->descs_allocated = 0;
  296. spin_unlock_bh(&sh_chan->desc_lock);
  297. if (descs > 0)
  298. pm_runtime_put(sh_chan->dev);
  299. list_for_each_entry_safe(desc, _desc, &list, node)
  300. kfree(desc);
  301. }
  302. /**
  303. * sh_dmae_add_desc - get, set up and return one transfer descriptor
  304. * @sh_chan: DMA channel
  305. * @flags: DMA transfer flags
  306. * @dest: destination DMA address, incremented when direction equals
  307. * DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
  308. * @src: source DMA address, incremented when direction equals
  309. * DMA_TO_DEVICE or DMA_BIDIRECTIONAL
  310. * @len: DMA transfer length
  311. * @first: if NULL, set to the current descriptor and cookie set to -EBUSY
  312. * @direction: needed for slave DMA to decide which address to keep constant,
  313. * equals DMA_BIDIRECTIONAL for MEMCPY
  314. * Returns 0 or an error
  315. * Locks: called with desc_lock held
  316. */
  317. static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
  318. unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
  319. struct sh_desc **first, enum dma_data_direction direction)
  320. {
  321. struct sh_desc *new;
  322. size_t copy_size;
  323. if (!*len)
  324. return NULL;
  325. /* Allocate the link descriptor from the free list */
  326. new = sh_dmae_get_desc(sh_chan);
  327. if (!new) {
  328. dev_err(sh_chan->dev, "No free link descriptor available\n");
  329. return NULL;
  330. }
  331. copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);
  332. new->hw.sar = *src;
  333. new->hw.dar = *dest;
  334. new->hw.tcr = copy_size;
  335. if (!*first) {
  336. /* First desc */
  337. new->async_tx.cookie = -EBUSY;
  338. *first = new;
  339. } else {
  340. /* Other desc - invisible to the user */
  341. new->async_tx.cookie = -EINVAL;
  342. }
  343. dev_dbg(sh_chan->dev,
  344. "chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
  345. copy_size, *len, *src, *dest, &new->async_tx,
  346. new->async_tx.cookie, sh_chan->xmit_shift);
  347. new->mark = DESC_PREPARED;
  348. new->async_tx.flags = flags;
  349. new->direction = direction;
  350. *len -= copy_size;
  351. if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
  352. *src += copy_size;
  353. if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
  354. *dest += copy_size;
  355. return new;
  356. }
  357. /*
  358. * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
  359. *
  360. * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
  361. * converted to scatter-gather to guarantee consistent locking and a correct
  362. * list manipulation. For slave DMA direction carries the usual meaning, and,
  363. * logically, the SG list is RAM and the addr variable contains slave address,
  364. * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
  365. * and the SG list contains only one element and points at the source buffer.
  366. */
  367. static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
  368. struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
  369. enum dma_data_direction direction, unsigned long flags)
  370. {
  371. struct scatterlist *sg;
  372. struct sh_desc *first = NULL, *new = NULL /* compiler... */;
  373. LIST_HEAD(tx_list);
  374. int chunks = 0;
  375. int i;
  376. if (!sg_len)
  377. return NULL;
  378. for_each_sg(sgl, sg, sg_len, i)
  379. chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
  380. (SH_DMA_TCR_MAX + 1);
  381. /* Have to lock the whole loop to protect against concurrent release */
  382. spin_lock_bh(&sh_chan->desc_lock);
  383. /*
  384. * Chaining:
  385. * first descriptor is what user is dealing with in all API calls, its
  386. * cookie is at first set to -EBUSY, at tx-submit to a positive
  387. * number
  388. * if more than one chunk is needed further chunks have cookie = -EINVAL
  389. * the last chunk, if not equal to the first, has cookie = -ENOSPC
  390. * all chunks are linked onto the tx_list head with their .node heads
  391. * only during this function, then they are immediately spliced
  392. * back onto the free list in form of a chain
  393. */
  394. for_each_sg(sgl, sg, sg_len, i) {
  395. dma_addr_t sg_addr = sg_dma_address(sg);
  396. size_t len = sg_dma_len(sg);
  397. if (!len)
  398. goto err_get_desc;
  399. do {
  400. dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
  401. i, sg, len, (unsigned long long)sg_addr);
  402. if (direction == DMA_FROM_DEVICE)
  403. new = sh_dmae_add_desc(sh_chan, flags,
  404. &sg_addr, addr, &len, &first,
  405. direction);
  406. else
  407. new = sh_dmae_add_desc(sh_chan, flags,
  408. addr, &sg_addr, &len, &first,
  409. direction);
  410. if (!new)
  411. goto err_get_desc;
  412. new->chunks = chunks--;
  413. list_add_tail(&new->node, &tx_list);
  414. } while (len);
  415. }
  416. if (new != first)
  417. new->async_tx.cookie = -ENOSPC;
  418. /* Put them back on the free list, so, they don't get lost */
  419. list_splice_tail(&tx_list, &sh_chan->ld_free);
  420. spin_unlock_bh(&sh_chan->desc_lock);
  421. return &first->async_tx;
  422. err_get_desc:
  423. list_for_each_entry(new, &tx_list, node)
  424. new->mark = DESC_IDLE;
  425. list_splice(&tx_list, &sh_chan->ld_free);
  426. spin_unlock_bh(&sh_chan->desc_lock);
  427. return NULL;
  428. }
  429. static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
  430. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  431. size_t len, unsigned long flags)
  432. {
  433. struct sh_dmae_chan *sh_chan;
  434. struct scatterlist sg;
  435. if (!chan || !len)
  436. return NULL;
  437. chan->private = NULL;
  438. sh_chan = to_sh_chan(chan);
  439. sg_init_table(&sg, 1);
  440. sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
  441. offset_in_page(dma_src));
  442. sg_dma_address(&sg) = dma_src;
  443. sg_dma_len(&sg) = len;
  444. return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
  445. flags);
  446. }
  447. static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
  448. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  449. enum dma_data_direction direction, unsigned long flags)
  450. {
  451. struct sh_dmae_slave *param;
  452. struct sh_dmae_chan *sh_chan;
  453. if (!chan)
  454. return NULL;
  455. sh_chan = to_sh_chan(chan);
  456. param = chan->private;
  457. /* Someone calling slave DMA on a public channel? */
  458. if (!param || !sg_len) {
  459. dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
  460. __func__, param, sg_len, param ? param->slave_id : -1);
  461. return NULL;
  462. }
  463. /*
  464. * if (param != NULL), this is a successfully requested slave channel,
  465. * therefore param->config != NULL too.
  466. */
  467. return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &param->config->addr,
  468. direction, flags);
  469. }
  470. static void sh_dmae_terminate_all(struct dma_chan *chan)
  471. {
  472. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  473. if (!chan)
  474. return;
  475. dmae_halt(sh_chan);
  476. spin_lock_bh(&sh_chan->desc_lock);
  477. if (!list_empty(&sh_chan->ld_queue)) {
  478. /* Record partial transfer */
  479. struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
  480. struct sh_desc, node);
  481. desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
  482. sh_chan->xmit_shift;
  483. }
  484. spin_unlock_bh(&sh_chan->desc_lock);
  485. sh_dmae_chan_ld_cleanup(sh_chan, true);
  486. }
  487. static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
  488. {
  489. struct sh_desc *desc, *_desc;
  490. /* Is the "exposed" head of a chain acked? */
  491. bool head_acked = false;
  492. dma_cookie_t cookie = 0;
  493. dma_async_tx_callback callback = NULL;
  494. void *param = NULL;
  495. spin_lock_bh(&sh_chan->desc_lock);
  496. list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
  497. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  498. BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
  499. BUG_ON(desc->mark != DESC_SUBMITTED &&
  500. desc->mark != DESC_COMPLETED &&
  501. desc->mark != DESC_WAITING);
  502. /*
  503. * queue is ordered, and we use this loop to (1) clean up all
  504. * completed descriptors, and to (2) update descriptor flags of
  505. * any chunks in a (partially) completed chain
  506. */
  507. if (!all && desc->mark == DESC_SUBMITTED &&
  508. desc->cookie != cookie)
  509. break;
  510. if (tx->cookie > 0)
  511. cookie = tx->cookie;
  512. if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
  513. if (sh_chan->completed_cookie != desc->cookie - 1)
  514. dev_dbg(sh_chan->dev,
  515. "Completing cookie %d, expected %d\n",
  516. desc->cookie,
  517. sh_chan->completed_cookie + 1);
  518. sh_chan->completed_cookie = desc->cookie;
  519. }
  520. /* Call callback on the last chunk */
  521. if (desc->mark == DESC_COMPLETED && tx->callback) {
  522. desc->mark = DESC_WAITING;
  523. callback = tx->callback;
  524. param = tx->callback_param;
  525. dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
  526. tx->cookie, tx, sh_chan->id);
  527. BUG_ON(desc->chunks != 1);
  528. break;
  529. }
  530. if (tx->cookie > 0 || tx->cookie == -EBUSY) {
  531. if (desc->mark == DESC_COMPLETED) {
  532. BUG_ON(tx->cookie < 0);
  533. desc->mark = DESC_WAITING;
  534. }
  535. head_acked = async_tx_test_ack(tx);
  536. } else {
  537. switch (desc->mark) {
  538. case DESC_COMPLETED:
  539. desc->mark = DESC_WAITING;
  540. /* Fall through */
  541. case DESC_WAITING:
  542. if (head_acked)
  543. async_tx_ack(&desc->async_tx);
  544. }
  545. }
  546. dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
  547. tx, tx->cookie);
  548. if (((desc->mark == DESC_COMPLETED ||
  549. desc->mark == DESC_WAITING) &&
  550. async_tx_test_ack(&desc->async_tx)) || all) {
  551. /* Remove from ld_queue list */
  552. desc->mark = DESC_IDLE;
  553. list_move(&desc->node, &sh_chan->ld_free);
  554. }
  555. }
  556. spin_unlock_bh(&sh_chan->desc_lock);
  557. if (callback)
  558. callback(param);
  559. return callback;
  560. }
  561. /*
  562. * sh_chan_ld_cleanup - Clean up link descriptors
  563. *
  564. * This function cleans up the ld_queue of DMA channel.
  565. */
  566. static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
  567. {
  568. while (__ld_cleanup(sh_chan, all))
  569. ;
  570. }
  571. static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
  572. {
  573. struct sh_desc *desc;
  574. spin_lock_bh(&sh_chan->desc_lock);
  575. /* DMA work check */
  576. if (dmae_is_busy(sh_chan)) {
  577. spin_unlock_bh(&sh_chan->desc_lock);
  578. return;
  579. }
  580. /* Find the first not transferred desciptor */
  581. list_for_each_entry(desc, &sh_chan->ld_queue, node)
  582. if (desc->mark == DESC_SUBMITTED) {
  583. dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
  584. desc->async_tx.cookie, sh_chan->id,
  585. desc->hw.tcr, desc->hw.sar, desc->hw.dar);
  586. /* Get the ld start address from ld_queue */
  587. dmae_set_reg(sh_chan, &desc->hw);
  588. dmae_start(sh_chan);
  589. break;
  590. }
  591. spin_unlock_bh(&sh_chan->desc_lock);
  592. }
  593. static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
  594. {
  595. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  596. sh_chan_xfer_ld_queue(sh_chan);
  597. }
  598. static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
  599. dma_cookie_t cookie,
  600. dma_cookie_t *done,
  601. dma_cookie_t *used)
  602. {
  603. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  604. dma_cookie_t last_used;
  605. dma_cookie_t last_complete;
  606. enum dma_status status;
  607. sh_dmae_chan_ld_cleanup(sh_chan, false);
  608. last_used = chan->cookie;
  609. last_complete = sh_chan->completed_cookie;
  610. BUG_ON(last_complete < 0);
  611. if (done)
  612. *done = last_complete;
  613. if (used)
  614. *used = last_used;
  615. spin_lock_bh(&sh_chan->desc_lock);
  616. status = dma_async_is_complete(cookie, last_complete, last_used);
  617. /*
  618. * If we don't find cookie on the queue, it has been aborted and we have
  619. * to report error
  620. */
  621. if (status != DMA_SUCCESS) {
  622. struct sh_desc *desc;
  623. status = DMA_ERROR;
  624. list_for_each_entry(desc, &sh_chan->ld_queue, node)
  625. if (desc->cookie == cookie) {
  626. status = DMA_IN_PROGRESS;
  627. break;
  628. }
  629. }
  630. spin_unlock_bh(&sh_chan->desc_lock);
  631. return status;
  632. }
  633. static irqreturn_t sh_dmae_interrupt(int irq, void *data)
  634. {
  635. irqreturn_t ret = IRQ_NONE;
  636. struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
  637. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  638. if (chcr & CHCR_TE) {
  639. /* DMA stop */
  640. dmae_halt(sh_chan);
  641. ret = IRQ_HANDLED;
  642. tasklet_schedule(&sh_chan->tasklet);
  643. }
  644. return ret;
  645. }
  646. #if defined(CONFIG_CPU_SH4)
  647. static irqreturn_t sh_dmae_err(int irq, void *data)
  648. {
  649. struct sh_dmae_device *shdev = (struct sh_dmae_device *)data;
  650. int i;
  651. /* halt the dma controller */
  652. sh_dmae_ctl_stop(shdev);
  653. /* We cannot detect, which channel caused the error, have to reset all */
  654. for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
  655. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  656. if (sh_chan) {
  657. struct sh_desc *desc;
  658. /* Stop the channel */
  659. dmae_halt(sh_chan);
  660. /* Complete all */
  661. list_for_each_entry(desc, &sh_chan->ld_queue, node) {
  662. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  663. desc->mark = DESC_IDLE;
  664. if (tx->callback)
  665. tx->callback(tx->callback_param);
  666. }
  667. list_splice_init(&sh_chan->ld_queue, &sh_chan->ld_free);
  668. }
  669. }
  670. sh_dmae_rst(shdev);
  671. return IRQ_HANDLED;
  672. }
  673. #endif
  674. static void dmae_do_tasklet(unsigned long data)
  675. {
  676. struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
  677. struct sh_desc *desc;
  678. u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
  679. u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
  680. spin_lock(&sh_chan->desc_lock);
  681. list_for_each_entry(desc, &sh_chan->ld_queue, node) {
  682. if (desc->mark == DESC_SUBMITTED &&
  683. ((desc->direction == DMA_FROM_DEVICE &&
  684. (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
  685. (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
  686. dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
  687. desc->async_tx.cookie, &desc->async_tx,
  688. desc->hw.dar);
  689. desc->mark = DESC_COMPLETED;
  690. break;
  691. }
  692. }
  693. spin_unlock(&sh_chan->desc_lock);
  694. /* Next desc */
  695. sh_chan_xfer_ld_queue(sh_chan);
  696. sh_dmae_chan_ld_cleanup(sh_chan, false);
  697. }
  698. static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
  699. int irq, unsigned long flags)
  700. {
  701. int err;
  702. struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
  703. struct platform_device *pdev = to_platform_device(shdev->common.dev);
  704. struct sh_dmae_chan *new_sh_chan;
  705. /* alloc channel */
  706. new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
  707. if (!new_sh_chan) {
  708. dev_err(shdev->common.dev,
  709. "No free memory for allocating dma channels!\n");
  710. return -ENOMEM;
  711. }
  712. /* copy struct dma_device */
  713. new_sh_chan->common.device = &shdev->common;
  714. new_sh_chan->dev = shdev->common.dev;
  715. new_sh_chan->id = id;
  716. new_sh_chan->irq = irq;
  717. new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
  718. /* Init DMA tasklet */
  719. tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
  720. (unsigned long)new_sh_chan);
  721. /* Init the channel */
  722. dmae_init(new_sh_chan);
  723. spin_lock_init(&new_sh_chan->desc_lock);
  724. /* Init descripter manage list */
  725. INIT_LIST_HEAD(&new_sh_chan->ld_queue);
  726. INIT_LIST_HEAD(&new_sh_chan->ld_free);
  727. /* Add the channel to DMA device channel list */
  728. list_add_tail(&new_sh_chan->common.device_node,
  729. &shdev->common.channels);
  730. shdev->common.chancnt++;
  731. if (pdev->id >= 0)
  732. snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
  733. "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
  734. else
  735. snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
  736. "sh-dma%d", new_sh_chan->id);
  737. /* set up channel irq */
  738. err = request_irq(irq, &sh_dmae_interrupt, flags,
  739. new_sh_chan->dev_id, new_sh_chan);
  740. if (err) {
  741. dev_err(shdev->common.dev, "DMA channel %d request_irq error "
  742. "with return %d\n", id, err);
  743. goto err_no_irq;
  744. }
  745. shdev->chan[id] = new_sh_chan;
  746. return 0;
  747. err_no_irq:
  748. /* remove from dmaengine device node */
  749. list_del(&new_sh_chan->common.device_node);
  750. kfree(new_sh_chan);
  751. return err;
  752. }
  753. static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
  754. {
  755. int i;
  756. for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
  757. if (shdev->chan[i]) {
  758. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  759. free_irq(sh_chan->irq, sh_chan);
  760. list_del(&sh_chan->common.device_node);
  761. kfree(sh_chan);
  762. shdev->chan[i] = NULL;
  763. }
  764. }
  765. shdev->common.chancnt = 0;
  766. }
  767. static int __init sh_dmae_probe(struct platform_device *pdev)
  768. {
  769. struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
  770. unsigned long irqflags = IRQF_DISABLED,
  771. chan_flag[SH_DMAC_MAX_CHANNELS] = {};
  772. int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
  773. int err, i, irq_cnt = 0, irqres = 0;
  774. struct sh_dmae_device *shdev;
  775. struct resource *chan, *dmars, *errirq_res, *chanirq_res;
  776. /* get platform data */
  777. if (!pdata || !pdata->channel_num)
  778. return -ENODEV;
  779. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  780. /* DMARS area is optional, if absent, this controller cannot do slave DMA */
  781. dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  782. /*
  783. * IRQ resources:
  784. * 1. there always must be at least one IRQ IO-resource. On SH4 it is
  785. * the error IRQ, in which case it is the only IRQ in this resource:
  786. * start == end. If it is the only IRQ resource, all channels also
  787. * use the same IRQ.
  788. * 2. DMA channel IRQ resources can be specified one per resource or in
  789. * ranges (start != end)
  790. * 3. iff all events (channels and, optionally, error) on this
  791. * controller use the same IRQ, only one IRQ resource can be
  792. * specified, otherwise there must be one IRQ per channel, even if
  793. * some of them are equal
  794. * 4. if all IRQs on this controller are equal or if some specific IRQs
  795. * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
  796. * requested with the IRQF_SHARED flag
  797. */
  798. errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  799. if (!chan || !errirq_res)
  800. return -ENODEV;
  801. if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
  802. dev_err(&pdev->dev, "DMAC register region already claimed\n");
  803. return -EBUSY;
  804. }
  805. if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
  806. dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
  807. err = -EBUSY;
  808. goto ermrdmars;
  809. }
  810. err = -ENOMEM;
  811. shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
  812. if (!shdev) {
  813. dev_err(&pdev->dev, "Not enough memory\n");
  814. goto ealloc;
  815. }
  816. shdev->chan_reg = ioremap(chan->start, resource_size(chan));
  817. if (!shdev->chan_reg)
  818. goto emapchan;
  819. if (dmars) {
  820. shdev->dmars = ioremap(dmars->start, resource_size(dmars));
  821. if (!shdev->dmars)
  822. goto emapdmars;
  823. }
  824. /* platform data */
  825. shdev->pdata = pdata;
  826. pm_runtime_enable(&pdev->dev);
  827. pm_runtime_get_sync(&pdev->dev);
  828. /* reset dma controller */
  829. err = sh_dmae_rst(shdev);
  830. if (err)
  831. goto rst_err;
  832. INIT_LIST_HEAD(&shdev->common.channels);
  833. dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
  834. if (dmars)
  835. dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
  836. shdev->common.device_alloc_chan_resources
  837. = sh_dmae_alloc_chan_resources;
  838. shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
  839. shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
  840. shdev->common.device_is_tx_complete = sh_dmae_is_complete;
  841. shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
  842. /* Compulsory for DMA_SLAVE fields */
  843. shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
  844. shdev->common.device_terminate_all = sh_dmae_terminate_all;
  845. shdev->common.dev = &pdev->dev;
  846. /* Default transfer size of 32 bytes requires 32-byte alignment */
  847. shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
  848. #if defined(CONFIG_CPU_SH4)
  849. chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
  850. if (!chanirq_res)
  851. chanirq_res = errirq_res;
  852. else
  853. irqres++;
  854. if (chanirq_res == errirq_res ||
  855. (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
  856. irqflags = IRQF_SHARED;
  857. errirq = errirq_res->start;
  858. err = request_irq(errirq, sh_dmae_err, irqflags,
  859. "DMAC Address Error", shdev);
  860. if (err) {
  861. dev_err(&pdev->dev,
  862. "DMA failed requesting irq #%d, error %d\n",
  863. errirq, err);
  864. goto eirq_err;
  865. }
  866. #else
  867. chanirq_res = errirq_res;
  868. #endif /* CONFIG_CPU_SH4 */
  869. if (chanirq_res->start == chanirq_res->end &&
  870. !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
  871. /* Special case - all multiplexed */
  872. for (; irq_cnt < pdata->channel_num; irq_cnt++) {
  873. chan_irq[irq_cnt] = chanirq_res->start;
  874. chan_flag[irq_cnt] = IRQF_SHARED;
  875. }
  876. } else {
  877. do {
  878. for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
  879. if ((errirq_res->flags & IORESOURCE_BITS) ==
  880. IORESOURCE_IRQ_SHAREABLE)
  881. chan_flag[irq_cnt] = IRQF_SHARED;
  882. else
  883. chan_flag[irq_cnt] = IRQF_DISABLED;
  884. dev_dbg(&pdev->dev,
  885. "Found IRQ %d for channel %d\n",
  886. i, irq_cnt);
  887. chan_irq[irq_cnt++] = i;
  888. }
  889. chanirq_res = platform_get_resource(pdev,
  890. IORESOURCE_IRQ, ++irqres);
  891. } while (irq_cnt < pdata->channel_num && chanirq_res);
  892. }
  893. if (irq_cnt < pdata->channel_num)
  894. goto eirqres;
  895. /* Create DMA Channel */
  896. for (i = 0; i < pdata->channel_num; i++) {
  897. err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
  898. if (err)
  899. goto chan_probe_err;
  900. }
  901. pm_runtime_put(&pdev->dev);
  902. platform_set_drvdata(pdev, shdev);
  903. dma_async_device_register(&shdev->common);
  904. return err;
  905. chan_probe_err:
  906. sh_dmae_chan_remove(shdev);
  907. eirqres:
  908. #if defined(CONFIG_CPU_SH4)
  909. free_irq(errirq, shdev);
  910. eirq_err:
  911. #endif
  912. rst_err:
  913. pm_runtime_put(&pdev->dev);
  914. if (dmars)
  915. iounmap(shdev->dmars);
  916. emapdmars:
  917. iounmap(shdev->chan_reg);
  918. emapchan:
  919. kfree(shdev);
  920. ealloc:
  921. if (dmars)
  922. release_mem_region(dmars->start, resource_size(dmars));
  923. ermrdmars:
  924. release_mem_region(chan->start, resource_size(chan));
  925. return err;
  926. }
  927. static int __exit sh_dmae_remove(struct platform_device *pdev)
  928. {
  929. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  930. struct resource *res;
  931. int errirq = platform_get_irq(pdev, 0);
  932. dma_async_device_unregister(&shdev->common);
  933. if (errirq > 0)
  934. free_irq(errirq, shdev);
  935. /* channel data remove */
  936. sh_dmae_chan_remove(shdev);
  937. pm_runtime_disable(&pdev->dev);
  938. if (shdev->dmars)
  939. iounmap(shdev->dmars);
  940. iounmap(shdev->chan_reg);
  941. kfree(shdev);
  942. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  943. if (res)
  944. release_mem_region(res->start, resource_size(res));
  945. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  946. if (res)
  947. release_mem_region(res->start, resource_size(res));
  948. return 0;
  949. }
  950. static void sh_dmae_shutdown(struct platform_device *pdev)
  951. {
  952. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  953. sh_dmae_ctl_stop(shdev);
  954. }
  955. static struct platform_driver sh_dmae_driver = {
  956. .remove = __exit_p(sh_dmae_remove),
  957. .shutdown = sh_dmae_shutdown,
  958. .driver = {
  959. .name = "sh-dma-engine",
  960. },
  961. };
  962. static int __init sh_dmae_init(void)
  963. {
  964. return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
  965. }
  966. module_init(sh_dmae_init);
  967. static void __exit sh_dmae_exit(void)
  968. {
  969. platform_driver_unregister(&sh_dmae_driver);
  970. }
  971. module_exit(sh_dmae_exit);
  972. MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
  973. MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
  974. MODULE_LICENSE("GPL");