adma.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027
  1. /*
  2. * Copyright (C) 2006-2009 DENX Software Engineering.
  3. *
  4. * Author: Yuri Tikhonov <yur@emcraft.com>
  5. *
  6. * Further porting to arch/powerpc by
  7. * Anatolij Gustschin <agust@denx.de>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. */
  26. /*
  27. * This driver supports the asynchrounous DMA copy and RAID engines available
  28. * on the AMCC PPC440SPe Processors.
  29. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  30. * ADMA driver written by D.Williams.
  31. */
  32. #include <linux/init.h>
  33. #include <linux/module.h>
  34. #include <linux/async_tx.h>
  35. #include <linux/delay.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/uaccess.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/of.h>
  42. #include <linux/of_platform.h>
  43. #include <asm/dcr.h>
  44. #include <asm/dcr-regs.h>
  45. #include "adma.h"
  46. enum ppc_adma_init_code {
  47. PPC_ADMA_INIT_OK = 0,
  48. PPC_ADMA_INIT_MEMRES,
  49. PPC_ADMA_INIT_MEMREG,
  50. PPC_ADMA_INIT_ALLOC,
  51. PPC_ADMA_INIT_COHERENT,
  52. PPC_ADMA_INIT_CHANNEL,
  53. PPC_ADMA_INIT_IRQ1,
  54. PPC_ADMA_INIT_IRQ2,
  55. PPC_ADMA_INIT_REGISTER
  56. };
  57. static char *ppc_adma_errors[] = {
  58. [PPC_ADMA_INIT_OK] = "ok",
  59. [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  60. [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  61. [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  62. "structure",
  63. [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  64. "hardware descriptors",
  65. [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  66. [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  67. [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  68. [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  69. };
  70. static enum ppc_adma_init_code
  71. ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  72. struct ppc_dma_chan_ref {
  73. struct dma_chan *chan;
  74. struct list_head node;
  75. };
  76. /* The list of channels exported by ppc440spe ADMA */
  77. struct list_head
  78. ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  79. /* This flag is set when want to refetch the xor chain in the interrupt
  80. * handler
  81. */
  82. static u32 do_xor_refetch;
  83. /* Pointer to DMA0, DMA1 CP/CS FIFO */
  84. static void *ppc440spe_dma_fifo_buf;
  85. /* Pointers to last submitted to DMA0, DMA1 CDBs */
  86. static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  87. static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  88. /* Pointer to last linked and submitted xor CB */
  89. static struct ppc440spe_adma_desc_slot *xor_last_linked;
  90. static struct ppc440spe_adma_desc_slot *xor_last_submit;
  91. /* This array is used in data-check operations for storing a pattern */
  92. static char ppc440spe_qword[16];
  93. static atomic_t ppc440spe_adma_err_irq_ref;
  94. static dcr_host_t ppc440spe_mq_dcr_host;
  95. static unsigned int ppc440spe_mq_dcr_len;
  96. /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  97. * the block size in transactions, then we do not allow to activate more than
  98. * only one RXOR transactions simultaneously. So use this var to store
  99. * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
  100. * set) or not (PPC440SPE_RXOR_RUN is clear).
  101. */
  102. static unsigned long ppc440spe_rxor_state;
  103. /* These are used in enable & check routines
  104. */
  105. static u32 ppc440spe_r6_enabled;
  106. static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
  107. static struct completion ppc440spe_r6_test_comp;
  108. static int ppc440spe_adma_dma2rxor_prep_src(
  109. struct ppc440spe_adma_desc_slot *desc,
  110. struct ppc440spe_rxor *cursor, int index,
  111. int src_cnt, u32 addr);
  112. static void ppc440spe_adma_dma2rxor_set_src(
  113. struct ppc440spe_adma_desc_slot *desc,
  114. int index, dma_addr_t addr);
  115. static void ppc440spe_adma_dma2rxor_set_mult(
  116. struct ppc440spe_adma_desc_slot *desc,
  117. int index, u8 mult);
  118. #ifdef ADMA_LL_DEBUG
  119. #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
  120. #else
  121. #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
  122. #endif
  123. static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
  124. {
  125. struct dma_cdb *cdb;
  126. struct xor_cb *cb;
  127. int i;
  128. switch (chan->device->id) {
  129. case 0:
  130. case 1:
  131. cdb = block;
  132. pr_debug("CDB at %p [%d]:\n"
  133. "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
  134. "\t sg1u 0x%08x sg1l 0x%08x\n"
  135. "\t sg2u 0x%08x sg2l 0x%08x\n"
  136. "\t sg3u 0x%08x sg3l 0x%08x\n",
  137. cdb, chan->device->id,
  138. cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
  139. le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
  140. le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
  141. le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
  142. );
  143. break;
  144. case 2:
  145. cb = block;
  146. pr_debug("CB at %p [%d]:\n"
  147. "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
  148. "\t cbtah 0x%08x cbtal 0x%08x\n"
  149. "\t cblah 0x%08x cblal 0x%08x\n",
  150. cb, chan->device->id,
  151. cb->cbc, cb->cbbc, cb->cbs,
  152. cb->cbtah, cb->cbtal,
  153. cb->cblah, cb->cblal);
  154. for (i = 0; i < 16; i++) {
  155. if (i && !cb->ops[i].h && !cb->ops[i].l)
  156. continue;
  157. pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
  158. i, cb->ops[i].h, cb->ops[i].l);
  159. }
  160. break;
  161. }
  162. }
  163. static void print_cb_list(struct ppc440spe_adma_chan *chan,
  164. struct ppc440spe_adma_desc_slot *iter)
  165. {
  166. for (; iter; iter = iter->hw_next)
  167. print_cb(chan, iter->hw_desc);
  168. }
  169. static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
  170. unsigned int src_cnt)
  171. {
  172. int i;
  173. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  174. for (i = 0; i < src_cnt; i++)
  175. pr_debug("\t0x%016llx ", src[i]);
  176. pr_debug("dst:\n\t0x%016llx\n", dst);
  177. }
  178. static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
  179. unsigned int src_cnt)
  180. {
  181. int i;
  182. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  183. for (i = 0; i < src_cnt; i++)
  184. pr_debug("\t0x%016llx ", src[i]);
  185. pr_debug("dst: ");
  186. for (i = 0; i < 2; i++)
  187. pr_debug("\t0x%016llx ", dst[i]);
  188. }
  189. static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
  190. unsigned int src_cnt,
  191. const unsigned char *scf)
  192. {
  193. int i;
  194. pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
  195. if (scf) {
  196. for (i = 0; i < src_cnt; i++)
  197. pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
  198. } else {
  199. for (i = 0; i < src_cnt; i++)
  200. pr_debug("\t0x%016llx(no) ", src[i]);
  201. }
  202. pr_debug("dst: ");
  203. for (i = 0; i < 2; i++)
  204. pr_debug("\t0x%016llx ", src[src_cnt + i]);
  205. }
  206. /******************************************************************************
  207. * Command (Descriptor) Blocks low-level routines
  208. ******************************************************************************/
  209. /**
  210. * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
  211. * pseudo operation
  212. */
  213. static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
  214. struct ppc440spe_adma_chan *chan)
  215. {
  216. struct xor_cb *p;
  217. switch (chan->device->id) {
  218. case PPC440SPE_XOR_ID:
  219. p = desc->hw_desc;
  220. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  221. /* NOP with Command Block Complete Enable */
  222. p->cbc = XOR_CBCR_CBCE_BIT;
  223. break;
  224. case PPC440SPE_DMA0_ID:
  225. case PPC440SPE_DMA1_ID:
  226. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  227. /* NOP with interrupt */
  228. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  229. break;
  230. default:
  231. printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
  232. __func__);
  233. break;
  234. }
  235. }
  236. /**
  237. * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
  238. * pseudo operation
  239. */
  240. static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
  241. {
  242. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  243. desc->hw_next = NULL;
  244. desc->src_cnt = 0;
  245. desc->dst_cnt = 1;
  246. }
  247. /**
  248. * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
  249. */
  250. static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
  251. int src_cnt, unsigned long flags)
  252. {
  253. struct xor_cb *hw_desc = desc->hw_desc;
  254. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  255. desc->hw_next = NULL;
  256. desc->src_cnt = src_cnt;
  257. desc->dst_cnt = 1;
  258. hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
  259. if (flags & DMA_PREP_INTERRUPT)
  260. /* Enable interrupt on completion */
  261. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  262. }
  263. /**
  264. * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
  265. * operation in DMA2 controller
  266. */
  267. static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
  268. int dst_cnt, int src_cnt, unsigned long flags)
  269. {
  270. struct xor_cb *hw_desc = desc->hw_desc;
  271. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  272. desc->hw_next = NULL;
  273. desc->src_cnt = src_cnt;
  274. desc->dst_cnt = dst_cnt;
  275. memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
  276. desc->descs_per_op = 0;
  277. hw_desc->cbc = XOR_CBCR_TGT_BIT;
  278. if (flags & DMA_PREP_INTERRUPT)
  279. /* Enable interrupt on completion */
  280. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  281. }
  282. #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
  283. #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
  284. #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
  285. /**
  286. * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
  287. * with DMA0/1
  288. */
  289. static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
  290. int dst_cnt, int src_cnt, unsigned long flags,
  291. unsigned long op)
  292. {
  293. struct dma_cdb *hw_desc;
  294. struct ppc440spe_adma_desc_slot *iter;
  295. u8 dopc;
  296. /* Common initialization of a PQ descriptors chain */
  297. set_bits(op, &desc->flags);
  298. desc->src_cnt = src_cnt;
  299. desc->dst_cnt = dst_cnt;
  300. /* WXOR MULTICAST if both P and Q are being computed
  301. * MV_SG1_SG2 if Q only
  302. */
  303. dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
  304. DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
  305. list_for_each_entry(iter, &desc->group_list, chain_node) {
  306. hw_desc = iter->hw_desc;
  307. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  308. if (likely(!list_is_last(&iter->chain_node,
  309. &desc->group_list))) {
  310. /* set 'next' pointer */
  311. iter->hw_next = list_entry(iter->chain_node.next,
  312. struct ppc440spe_adma_desc_slot, chain_node);
  313. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  314. } else {
  315. /* this is the last descriptor.
  316. * this slot will be pasted from ADMA level
  317. * each time it wants to configure parameters
  318. * of the transaction (src, dst, ...)
  319. */
  320. iter->hw_next = NULL;
  321. if (flags & DMA_PREP_INTERRUPT)
  322. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  323. else
  324. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  325. }
  326. }
  327. /* Set OPS depending on WXOR/RXOR type of operation */
  328. if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
  329. /* This is a WXOR only chain:
  330. * - first descriptors are for zeroing destinations
  331. * if PPC440SPE_ZERO_P/Q set;
  332. * - descriptors remained are for GF-XOR operations.
  333. */
  334. iter = list_first_entry(&desc->group_list,
  335. struct ppc440spe_adma_desc_slot,
  336. chain_node);
  337. if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
  338. hw_desc = iter->hw_desc;
  339. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  340. iter = list_first_entry(&iter->chain_node,
  341. struct ppc440spe_adma_desc_slot,
  342. chain_node);
  343. }
  344. if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
  345. hw_desc = iter->hw_desc;
  346. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  347. iter = list_first_entry(&iter->chain_node,
  348. struct ppc440spe_adma_desc_slot,
  349. chain_node);
  350. }
  351. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  352. hw_desc = iter->hw_desc;
  353. hw_desc->opc = dopc;
  354. }
  355. } else {
  356. /* This is either RXOR-only or mixed RXOR/WXOR */
  357. /* The first 1 or 2 slots in chain are always RXOR,
  358. * if need to calculate P & Q, then there are two
  359. * RXOR slots; if only P or only Q, then there is one
  360. */
  361. iter = list_first_entry(&desc->group_list,
  362. struct ppc440spe_adma_desc_slot,
  363. chain_node);
  364. hw_desc = iter->hw_desc;
  365. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  366. if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
  367. iter = list_first_entry(&iter->chain_node,
  368. struct ppc440spe_adma_desc_slot,
  369. chain_node);
  370. hw_desc = iter->hw_desc;
  371. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  372. }
  373. /* The remaining descs (if any) are WXORs */
  374. if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
  375. iter = list_first_entry(&iter->chain_node,
  376. struct ppc440spe_adma_desc_slot,
  377. chain_node);
  378. list_for_each_entry_from(iter, &desc->group_list,
  379. chain_node) {
  380. hw_desc = iter->hw_desc;
  381. hw_desc->opc = dopc;
  382. }
  383. }
  384. }
  385. }
  386. /**
  387. * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
  388. * for PQ_ZERO_SUM operation
  389. */
  390. static void ppc440spe_desc_init_dma01pqzero_sum(
  391. struct ppc440spe_adma_desc_slot *desc,
  392. int dst_cnt, int src_cnt)
  393. {
  394. struct dma_cdb *hw_desc;
  395. struct ppc440spe_adma_desc_slot *iter;
  396. int i = 0;
  397. u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
  398. DMA_CDB_OPC_MV_SG1_SG2;
  399. /*
  400. * Initialize starting from 2nd or 3rd descriptor dependent
  401. * on dst_cnt. First one or two slots are for cloning P
  402. * and/or Q to chan->pdest and/or chan->qdest as we have
  403. * to preserve original P/Q.
  404. */
  405. iter = list_first_entry(&desc->group_list,
  406. struct ppc440spe_adma_desc_slot, chain_node);
  407. iter = list_entry(iter->chain_node.next,
  408. struct ppc440spe_adma_desc_slot, chain_node);
  409. if (dst_cnt > 1) {
  410. iter = list_entry(iter->chain_node.next,
  411. struct ppc440spe_adma_desc_slot, chain_node);
  412. }
  413. /* initialize each source descriptor in chain */
  414. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  415. hw_desc = iter->hw_desc;
  416. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  417. iter->src_cnt = 0;
  418. iter->dst_cnt = 0;
  419. /* This is a ZERO_SUM operation:
  420. * - <src_cnt> descriptors starting from 2nd or 3rd
  421. * descriptor are for GF-XOR operations;
  422. * - remaining <dst_cnt> descriptors are for checking the result
  423. */
  424. if (i++ < src_cnt)
  425. /* MV_SG1_SG2 if only Q is being verified
  426. * MULTICAST if both P and Q are being verified
  427. */
  428. hw_desc->opc = dopc;
  429. else
  430. /* DMA_CDB_OPC_DCHECK128 operation */
  431. hw_desc->opc = DMA_CDB_OPC_DCHECK128;
  432. if (likely(!list_is_last(&iter->chain_node,
  433. &desc->group_list))) {
  434. /* set 'next' pointer */
  435. iter->hw_next = list_entry(iter->chain_node.next,
  436. struct ppc440spe_adma_desc_slot,
  437. chain_node);
  438. } else {
  439. /* this is the last descriptor.
  440. * this slot will be pasted from ADMA level
  441. * each time it wants to configure parameters
  442. * of the transaction (src, dst, ...)
  443. */
  444. iter->hw_next = NULL;
  445. /* always enable interrupt generation since we get
  446. * the status of pqzero from the handler
  447. */
  448. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  449. }
  450. }
  451. desc->src_cnt = src_cnt;
  452. desc->dst_cnt = dst_cnt;
  453. }
  454. /**
  455. * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
  456. */
  457. static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
  458. unsigned long flags)
  459. {
  460. struct dma_cdb *hw_desc = desc->hw_desc;
  461. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  462. desc->hw_next = NULL;
  463. desc->src_cnt = 1;
  464. desc->dst_cnt = 1;
  465. if (flags & DMA_PREP_INTERRUPT)
  466. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  467. else
  468. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  469. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  470. }
  471. /**
  472. * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
  473. */
  474. static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
  475. int value, unsigned long flags)
  476. {
  477. struct dma_cdb *hw_desc = desc->hw_desc;
  478. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  479. desc->hw_next = NULL;
  480. desc->src_cnt = 1;
  481. desc->dst_cnt = 1;
  482. if (flags & DMA_PREP_INTERRUPT)
  483. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  484. else
  485. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  486. hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
  487. hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
  488. hw_desc->opc = DMA_CDB_OPC_DFILL128;
  489. }
  490. /**
  491. * ppc440spe_desc_set_src_addr - set source address into the descriptor
  492. */
  493. static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
  494. struct ppc440spe_adma_chan *chan,
  495. int src_idx, dma_addr_t addrh,
  496. dma_addr_t addrl)
  497. {
  498. struct dma_cdb *dma_hw_desc;
  499. struct xor_cb *xor_hw_desc;
  500. phys_addr_t addr64, tmplow, tmphi;
  501. switch (chan->device->id) {
  502. case PPC440SPE_DMA0_ID:
  503. case PPC440SPE_DMA1_ID:
  504. if (!addrh) {
  505. addr64 = addrl;
  506. tmphi = (addr64 >> 32);
  507. tmplow = (addr64 & 0xFFFFFFFF);
  508. } else {
  509. tmphi = addrh;
  510. tmplow = addrl;
  511. }
  512. dma_hw_desc = desc->hw_desc;
  513. dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
  514. dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
  515. break;
  516. case PPC440SPE_XOR_ID:
  517. xor_hw_desc = desc->hw_desc;
  518. xor_hw_desc->ops[src_idx].l = addrl;
  519. xor_hw_desc->ops[src_idx].h |= addrh;
  520. break;
  521. }
  522. }
  523. /**
  524. * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
  525. */
  526. static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
  527. struct ppc440spe_adma_chan *chan, u32 mult_index,
  528. int sg_index, unsigned char mult_value)
  529. {
  530. struct dma_cdb *dma_hw_desc;
  531. struct xor_cb *xor_hw_desc;
  532. u32 *psgu;
  533. switch (chan->device->id) {
  534. case PPC440SPE_DMA0_ID:
  535. case PPC440SPE_DMA1_ID:
  536. dma_hw_desc = desc->hw_desc;
  537. switch (sg_index) {
  538. /* for RXOR operations set multiplier
  539. * into source cued address
  540. */
  541. case DMA_CDB_SG_SRC:
  542. psgu = &dma_hw_desc->sg1u;
  543. break;
  544. /* for WXOR operations set multiplier
  545. * into destination cued address(es)
  546. */
  547. case DMA_CDB_SG_DST1:
  548. psgu = &dma_hw_desc->sg2u;
  549. break;
  550. case DMA_CDB_SG_DST2:
  551. psgu = &dma_hw_desc->sg3u;
  552. break;
  553. default:
  554. BUG();
  555. }
  556. *psgu |= cpu_to_le32(mult_value << mult_index);
  557. break;
  558. case PPC440SPE_XOR_ID:
  559. xor_hw_desc = desc->hw_desc;
  560. break;
  561. default:
  562. BUG();
  563. }
  564. }
  565. /**
  566. * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
  567. */
  568. static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  569. struct ppc440spe_adma_chan *chan,
  570. dma_addr_t addrh, dma_addr_t addrl,
  571. u32 dst_idx)
  572. {
  573. struct dma_cdb *dma_hw_desc;
  574. struct xor_cb *xor_hw_desc;
  575. phys_addr_t addr64, tmphi, tmplow;
  576. u32 *psgu, *psgl;
  577. switch (chan->device->id) {
  578. case PPC440SPE_DMA0_ID:
  579. case PPC440SPE_DMA1_ID:
  580. if (!addrh) {
  581. addr64 = addrl;
  582. tmphi = (addr64 >> 32);
  583. tmplow = (addr64 & 0xFFFFFFFF);
  584. } else {
  585. tmphi = addrh;
  586. tmplow = addrl;
  587. }
  588. dma_hw_desc = desc->hw_desc;
  589. psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
  590. psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
  591. *psgl = cpu_to_le32((u32)tmplow);
  592. *psgu |= cpu_to_le32((u32)tmphi);
  593. break;
  594. case PPC440SPE_XOR_ID:
  595. xor_hw_desc = desc->hw_desc;
  596. xor_hw_desc->cbtal = addrl;
  597. xor_hw_desc->cbtah |= addrh;
  598. break;
  599. }
  600. }
  601. /**
  602. * ppc440spe_desc_set_byte_count - set number of data bytes involved
  603. * into the operation
  604. */
  605. static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
  606. struct ppc440spe_adma_chan *chan,
  607. u32 byte_count)
  608. {
  609. struct dma_cdb *dma_hw_desc;
  610. struct xor_cb *xor_hw_desc;
  611. switch (chan->device->id) {
  612. case PPC440SPE_DMA0_ID:
  613. case PPC440SPE_DMA1_ID:
  614. dma_hw_desc = desc->hw_desc;
  615. dma_hw_desc->cnt = cpu_to_le32(byte_count);
  616. break;
  617. case PPC440SPE_XOR_ID:
  618. xor_hw_desc = desc->hw_desc;
  619. xor_hw_desc->cbbc = byte_count;
  620. break;
  621. }
  622. }
  623. /**
  624. * ppc440spe_desc_set_rxor_block_size - set RXOR block size
  625. */
  626. static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
  627. {
  628. /* assume that byte_count is aligned on the 512-boundary;
  629. * thus write it directly to the register (bits 23:31 are
  630. * reserved there).
  631. */
  632. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
  633. }
  634. /**
  635. * ppc440spe_desc_set_dcheck - set CHECK pattern
  636. */
  637. static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
  638. struct ppc440spe_adma_chan *chan, u8 *qword)
  639. {
  640. struct dma_cdb *dma_hw_desc;
  641. switch (chan->device->id) {
  642. case PPC440SPE_DMA0_ID:
  643. case PPC440SPE_DMA1_ID:
  644. dma_hw_desc = desc->hw_desc;
  645. iowrite32(qword[0], &dma_hw_desc->sg3l);
  646. iowrite32(qword[4], &dma_hw_desc->sg3u);
  647. iowrite32(qword[8], &dma_hw_desc->sg2l);
  648. iowrite32(qword[12], &dma_hw_desc->sg2u);
  649. break;
  650. default:
  651. BUG();
  652. }
  653. }
  654. /**
  655. * ppc440spe_xor_set_link - set link address in xor CB
  656. */
  657. static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
  658. struct ppc440spe_adma_desc_slot *next_desc)
  659. {
  660. struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
  661. if (unlikely(!next_desc || !(next_desc->phys))) {
  662. printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
  663. __func__, next_desc,
  664. next_desc ? next_desc->phys : 0);
  665. BUG();
  666. }
  667. xor_hw_desc->cbs = 0;
  668. xor_hw_desc->cblal = next_desc->phys;
  669. xor_hw_desc->cblah = 0;
  670. xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
  671. }
  672. /**
  673. * ppc440spe_desc_set_link - set the address of descriptor following this
  674. * descriptor in chain
  675. */
  676. static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
  677. struct ppc440spe_adma_desc_slot *prev_desc,
  678. struct ppc440spe_adma_desc_slot *next_desc)
  679. {
  680. unsigned long flags;
  681. struct ppc440spe_adma_desc_slot *tail = next_desc;
  682. if (unlikely(!prev_desc || !next_desc ||
  683. (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
  684. /* If previous next is overwritten something is wrong.
  685. * though we may refetch from append to initiate list
  686. * processing; in this case - it's ok.
  687. */
  688. printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
  689. "prev->hw_next=0x%p\n", __func__, prev_desc,
  690. next_desc, prev_desc ? prev_desc->hw_next : 0);
  691. BUG();
  692. }
  693. local_irq_save(flags);
  694. /* do s/w chaining both for DMA and XOR descriptors */
  695. prev_desc->hw_next = next_desc;
  696. switch (chan->device->id) {
  697. case PPC440SPE_DMA0_ID:
  698. case PPC440SPE_DMA1_ID:
  699. break;
  700. case PPC440SPE_XOR_ID:
  701. /* bind descriptor to the chain */
  702. while (tail->hw_next)
  703. tail = tail->hw_next;
  704. xor_last_linked = tail;
  705. if (prev_desc == xor_last_submit)
  706. /* do not link to the last submitted CB */
  707. break;
  708. ppc440spe_xor_set_link(prev_desc, next_desc);
  709. break;
  710. }
  711. local_irq_restore(flags);
  712. }
  713. /**
  714. * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
  715. */
  716. static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
  717. struct ppc440spe_adma_chan *chan, int src_idx)
  718. {
  719. struct dma_cdb *dma_hw_desc;
  720. struct xor_cb *xor_hw_desc;
  721. switch (chan->device->id) {
  722. case PPC440SPE_DMA0_ID:
  723. case PPC440SPE_DMA1_ID:
  724. dma_hw_desc = desc->hw_desc;
  725. /* May have 0, 1, 2, or 3 sources */
  726. switch (dma_hw_desc->opc) {
  727. case DMA_CDB_OPC_NO_OP:
  728. case DMA_CDB_OPC_DFILL128:
  729. return 0;
  730. case DMA_CDB_OPC_DCHECK128:
  731. if (unlikely(src_idx)) {
  732. printk(KERN_ERR "%s: try to get %d source for"
  733. " DCHECK128\n", __func__, src_idx);
  734. BUG();
  735. }
  736. return le32_to_cpu(dma_hw_desc->sg1l);
  737. case DMA_CDB_OPC_MULTICAST:
  738. case DMA_CDB_OPC_MV_SG1_SG2:
  739. if (unlikely(src_idx > 2)) {
  740. printk(KERN_ERR "%s: try to get %d source from"
  741. " DMA descr\n", __func__, src_idx);
  742. BUG();
  743. }
  744. if (src_idx) {
  745. if (le32_to_cpu(dma_hw_desc->sg1u) &
  746. DMA_CUED_XOR_WIN_MSK) {
  747. u8 region;
  748. if (src_idx == 1)
  749. return le32_to_cpu(
  750. dma_hw_desc->sg1l) +
  751. desc->unmap_len;
  752. region = (le32_to_cpu(
  753. dma_hw_desc->sg1u)) >>
  754. DMA_CUED_REGION_OFF;
  755. region &= DMA_CUED_REGION_MSK;
  756. switch (region) {
  757. case DMA_RXOR123:
  758. return le32_to_cpu(
  759. dma_hw_desc->sg1l) +
  760. (desc->unmap_len << 1);
  761. case DMA_RXOR124:
  762. return le32_to_cpu(
  763. dma_hw_desc->sg1l) +
  764. (desc->unmap_len * 3);
  765. case DMA_RXOR125:
  766. return le32_to_cpu(
  767. dma_hw_desc->sg1l) +
  768. (desc->unmap_len << 2);
  769. default:
  770. printk(KERN_ERR
  771. "%s: try to"
  772. " get src3 for region %02x"
  773. "PPC440SPE_DESC_RXOR12?\n",
  774. __func__, region);
  775. BUG();
  776. }
  777. } else {
  778. printk(KERN_ERR
  779. "%s: try to get %d"
  780. " source for non-cued descr\n",
  781. __func__, src_idx);
  782. BUG();
  783. }
  784. }
  785. return le32_to_cpu(dma_hw_desc->sg1l);
  786. default:
  787. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  788. __func__, dma_hw_desc->opc);
  789. BUG();
  790. }
  791. return le32_to_cpu(dma_hw_desc->sg1l);
  792. case PPC440SPE_XOR_ID:
  793. /* May have up to 16 sources */
  794. xor_hw_desc = desc->hw_desc;
  795. return xor_hw_desc->ops[src_idx].l;
  796. }
  797. return 0;
  798. }
  799. /**
  800. * ppc440spe_desc_get_dest_addr - extract the destination address from the
  801. * descriptor
  802. */
  803. static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  804. struct ppc440spe_adma_chan *chan, int idx)
  805. {
  806. struct dma_cdb *dma_hw_desc;
  807. struct xor_cb *xor_hw_desc;
  808. switch (chan->device->id) {
  809. case PPC440SPE_DMA0_ID:
  810. case PPC440SPE_DMA1_ID:
  811. dma_hw_desc = desc->hw_desc;
  812. if (likely(!idx))
  813. return le32_to_cpu(dma_hw_desc->sg2l);
  814. return le32_to_cpu(dma_hw_desc->sg3l);
  815. case PPC440SPE_XOR_ID:
  816. xor_hw_desc = desc->hw_desc;
  817. return xor_hw_desc->cbtal;
  818. }
  819. return 0;
  820. }
  821. /**
  822. * ppc440spe_desc_get_src_num - extract the number of source addresses from
  823. * the descriptor
  824. */
  825. static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
  826. struct ppc440spe_adma_chan *chan)
  827. {
  828. struct dma_cdb *dma_hw_desc;
  829. struct xor_cb *xor_hw_desc;
  830. switch (chan->device->id) {
  831. case PPC440SPE_DMA0_ID:
  832. case PPC440SPE_DMA1_ID:
  833. dma_hw_desc = desc->hw_desc;
  834. switch (dma_hw_desc->opc) {
  835. case DMA_CDB_OPC_NO_OP:
  836. case DMA_CDB_OPC_DFILL128:
  837. return 0;
  838. case DMA_CDB_OPC_DCHECK128:
  839. return 1;
  840. case DMA_CDB_OPC_MV_SG1_SG2:
  841. case DMA_CDB_OPC_MULTICAST:
  842. /*
  843. * Only for RXOR operations we have more than
  844. * one source
  845. */
  846. if (le32_to_cpu(dma_hw_desc->sg1u) &
  847. DMA_CUED_XOR_WIN_MSK) {
  848. /* RXOR op, there are 2 or 3 sources */
  849. if (((le32_to_cpu(dma_hw_desc->sg1u) >>
  850. DMA_CUED_REGION_OFF) &
  851. DMA_CUED_REGION_MSK) == DMA_RXOR12) {
  852. /* RXOR 1-2 */
  853. return 2;
  854. } else {
  855. /* RXOR 1-2-3/1-2-4/1-2-5 */
  856. return 3;
  857. }
  858. }
  859. return 1;
  860. default:
  861. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  862. __func__, dma_hw_desc->opc);
  863. BUG();
  864. }
  865. case PPC440SPE_XOR_ID:
  866. /* up to 16 sources */
  867. xor_hw_desc = desc->hw_desc;
  868. return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
  869. default:
  870. BUG();
  871. }
  872. return 0;
  873. }
  874. /**
  875. * ppc440spe_desc_get_dst_num - get the number of destination addresses in
  876. * this descriptor
  877. */
  878. static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
  879. struct ppc440spe_adma_chan *chan)
  880. {
  881. struct dma_cdb *dma_hw_desc;
  882. switch (chan->device->id) {
  883. case PPC440SPE_DMA0_ID:
  884. case PPC440SPE_DMA1_ID:
  885. /* May be 1 or 2 destinations */
  886. dma_hw_desc = desc->hw_desc;
  887. switch (dma_hw_desc->opc) {
  888. case DMA_CDB_OPC_NO_OP:
  889. case DMA_CDB_OPC_DCHECK128:
  890. return 0;
  891. case DMA_CDB_OPC_MV_SG1_SG2:
  892. case DMA_CDB_OPC_DFILL128:
  893. return 1;
  894. case DMA_CDB_OPC_MULTICAST:
  895. if (desc->dst_cnt == 2)
  896. return 2;
  897. else
  898. return 1;
  899. default:
  900. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  901. __func__, dma_hw_desc->opc);
  902. BUG();
  903. }
  904. case PPC440SPE_XOR_ID:
  905. /* Always only 1 destination */
  906. return 1;
  907. default:
  908. BUG();
  909. }
  910. return 0;
  911. }
  912. /**
  913. * ppc440spe_desc_get_link - get the address of the descriptor that
  914. * follows this one
  915. */
  916. static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
  917. struct ppc440spe_adma_chan *chan)
  918. {
  919. if (!desc->hw_next)
  920. return 0;
  921. return desc->hw_next->phys;
  922. }
  923. /**
  924. * ppc440spe_desc_is_aligned - check alignment
  925. */
  926. static inline int ppc440spe_desc_is_aligned(
  927. struct ppc440spe_adma_desc_slot *desc, int num_slots)
  928. {
  929. return (desc->idx & (num_slots - 1)) ? 0 : 1;
  930. }
  931. /**
  932. * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
  933. * XOR operation
  934. */
  935. static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
  936. int *slots_per_op)
  937. {
  938. int slot_cnt;
  939. /* each XOR descriptor provides up to 16 source operands */
  940. slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
  941. if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
  942. return slot_cnt;
  943. printk(KERN_ERR "%s: len %d > max %d !!\n",
  944. __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  945. BUG();
  946. return slot_cnt;
  947. }
  948. /**
  949. * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
  950. * DMA2 PQ operation
  951. */
  952. static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
  953. int src_cnt, size_t len)
  954. {
  955. signed long long order = 0;
  956. int state = 0;
  957. int addr_count = 0;
  958. int i;
  959. for (i = 1; i < src_cnt; i++) {
  960. dma_addr_t cur_addr = srcs[i];
  961. dma_addr_t old_addr = srcs[i-1];
  962. switch (state) {
  963. case 0:
  964. if (cur_addr == old_addr + len) {
  965. /* direct RXOR */
  966. order = 1;
  967. state = 1;
  968. if (i == src_cnt-1)
  969. addr_count++;
  970. } else if (old_addr == cur_addr + len) {
  971. /* reverse RXOR */
  972. order = -1;
  973. state = 1;
  974. if (i == src_cnt-1)
  975. addr_count++;
  976. } else {
  977. state = 3;
  978. }
  979. break;
  980. case 1:
  981. if (i == src_cnt-2 || (order == -1
  982. && cur_addr != old_addr - len)) {
  983. order = 0;
  984. state = 0;
  985. addr_count++;
  986. } else if (cur_addr == old_addr + len*order) {
  987. state = 2;
  988. if (i == src_cnt-1)
  989. addr_count++;
  990. } else if (cur_addr == old_addr + 2*len) {
  991. state = 2;
  992. if (i == src_cnt-1)
  993. addr_count++;
  994. } else if (cur_addr == old_addr + 3*len) {
  995. state = 2;
  996. if (i == src_cnt-1)
  997. addr_count++;
  998. } else {
  999. order = 0;
  1000. state = 0;
  1001. addr_count++;
  1002. }
  1003. break;
  1004. case 2:
  1005. order = 0;
  1006. state = 0;
  1007. addr_count++;
  1008. break;
  1009. }
  1010. if (state == 3)
  1011. break;
  1012. }
  1013. if (src_cnt <= 1 || (state != 1 && state != 2)) {
  1014. pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
  1015. __func__, src_cnt, state, addr_count, order);
  1016. for (i = 0; i < src_cnt; i++)
  1017. pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
  1018. BUG();
  1019. }
  1020. return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
  1021. }
  1022. /******************************************************************************
  1023. * ADMA channel low-level routines
  1024. ******************************************************************************/
  1025. static u32
  1026. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
  1027. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
  1028. /**
  1029. * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
  1030. */
  1031. static void ppc440spe_adma_device_clear_eot_status(
  1032. struct ppc440spe_adma_chan *chan)
  1033. {
  1034. struct dma_regs *dma_reg;
  1035. struct xor_regs *xor_reg;
  1036. u8 *p = chan->device->dma_desc_pool_virt;
  1037. struct dma_cdb *cdb;
  1038. u32 rv, i;
  1039. switch (chan->device->id) {
  1040. case PPC440SPE_DMA0_ID:
  1041. case PPC440SPE_DMA1_ID:
  1042. /* read FIFO to ack */
  1043. dma_reg = chan->device->dma_reg;
  1044. while ((rv = ioread32(&dma_reg->csfpl))) {
  1045. i = rv & DMA_CDB_ADDR_MSK;
  1046. cdb = (struct dma_cdb *)&p[i -
  1047. (u32)chan->device->dma_desc_pool];
  1048. /* Clear opcode to ack. This is necessary for
  1049. * ZeroSum operations only
  1050. */
  1051. cdb->opc = 0;
  1052. if (test_bit(PPC440SPE_RXOR_RUN,
  1053. &ppc440spe_rxor_state)) {
  1054. /* probably this is a completed RXOR op,
  1055. * get pointer to CDB using the fact that
  1056. * physical and virtual addresses of CDB
  1057. * in pools have the same offsets
  1058. */
  1059. if (le32_to_cpu(cdb->sg1u) &
  1060. DMA_CUED_XOR_BASE) {
  1061. /* this is a RXOR */
  1062. clear_bit(PPC440SPE_RXOR_RUN,
  1063. &ppc440spe_rxor_state);
  1064. }
  1065. }
  1066. if (rv & DMA_CDB_STATUS_MSK) {
  1067. /* ZeroSum check failed
  1068. */
  1069. struct ppc440spe_adma_desc_slot *iter;
  1070. dma_addr_t phys = rv & ~DMA_CDB_MSK;
  1071. /*
  1072. * Update the status of corresponding
  1073. * descriptor.
  1074. */
  1075. list_for_each_entry(iter, &chan->chain,
  1076. chain_node) {
  1077. if (iter->phys == phys)
  1078. break;
  1079. }
  1080. /*
  1081. * if cannot find the corresponding
  1082. * slot it's a bug
  1083. */
  1084. BUG_ON(&iter->chain_node == &chan->chain);
  1085. if (iter->xor_check_result) {
  1086. if (test_bit(PPC440SPE_DESC_PCHECK,
  1087. &iter->flags)) {
  1088. *iter->xor_check_result |=
  1089. SUM_CHECK_P_RESULT;
  1090. } else
  1091. if (test_bit(PPC440SPE_DESC_QCHECK,
  1092. &iter->flags)) {
  1093. *iter->xor_check_result |=
  1094. SUM_CHECK_Q_RESULT;
  1095. } else
  1096. BUG();
  1097. }
  1098. }
  1099. }
  1100. rv = ioread32(&dma_reg->dsts);
  1101. if (rv) {
  1102. pr_err("DMA%d err status: 0x%x\n",
  1103. chan->device->id, rv);
  1104. /* write back to clear */
  1105. iowrite32(rv, &dma_reg->dsts);
  1106. }
  1107. break;
  1108. case PPC440SPE_XOR_ID:
  1109. /* reset status bits to ack */
  1110. xor_reg = chan->device->xor_reg;
  1111. rv = ioread32be(&xor_reg->sr);
  1112. iowrite32be(rv, &xor_reg->sr);
  1113. if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
  1114. if (rv & XOR_IE_RPTIE_BIT) {
  1115. /* Read PLB Timeout Error.
  1116. * Try to resubmit the CB
  1117. */
  1118. u32 val = ioread32be(&xor_reg->ccbalr);
  1119. iowrite32be(val, &xor_reg->cblalr);
  1120. val = ioread32be(&xor_reg->crsr);
  1121. iowrite32be(val | XOR_CRSR_XAE_BIT,
  1122. &xor_reg->crsr);
  1123. } else
  1124. pr_err("XOR ERR 0x%x status\n", rv);
  1125. break;
  1126. }
  1127. /* if the XORcore is idle, but there are unprocessed CBs
  1128. * then refetch the s/w chain here
  1129. */
  1130. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
  1131. do_xor_refetch)
  1132. ppc440spe_chan_append(chan);
  1133. break;
  1134. }
  1135. }
  1136. /**
  1137. * ppc440spe_chan_is_busy - get the channel status
  1138. */
  1139. static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
  1140. {
  1141. struct dma_regs *dma_reg;
  1142. struct xor_regs *xor_reg;
  1143. int busy = 0;
  1144. switch (chan->device->id) {
  1145. case PPC440SPE_DMA0_ID:
  1146. case PPC440SPE_DMA1_ID:
  1147. dma_reg = chan->device->dma_reg;
  1148. /* if command FIFO's head and tail pointers are equal and
  1149. * status tail is the same as command, then channel is free
  1150. */
  1151. if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
  1152. ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
  1153. busy = 1;
  1154. break;
  1155. case PPC440SPE_XOR_ID:
  1156. /* use the special status bit for the XORcore
  1157. */
  1158. xor_reg = chan->device->xor_reg;
  1159. busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
  1160. break;
  1161. }
  1162. return busy;
  1163. }
  1164. /**
  1165. * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
  1166. */
  1167. static void ppc440spe_chan_set_first_xor_descriptor(
  1168. struct ppc440spe_adma_chan *chan,
  1169. struct ppc440spe_adma_desc_slot *next_desc)
  1170. {
  1171. struct xor_regs *xor_reg = chan->device->xor_reg;
  1172. if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
  1173. printk(KERN_INFO "%s: Warn: XORcore is running "
  1174. "when try to set the first CDB!\n",
  1175. __func__);
  1176. xor_last_submit = xor_last_linked = next_desc;
  1177. iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
  1178. iowrite32be(next_desc->phys, &xor_reg->cblalr);
  1179. iowrite32be(0, &xor_reg->cblahr);
  1180. iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
  1181. &xor_reg->cbcr);
  1182. chan->hw_chain_inited = 1;
  1183. }
  1184. /**
  1185. * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
  1186. * called with irqs disabled
  1187. */
  1188. static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
  1189. struct ppc440spe_adma_desc_slot *desc)
  1190. {
  1191. u32 pcdb;
  1192. struct dma_regs *dma_reg = chan->device->dma_reg;
  1193. pcdb = desc->phys;
  1194. if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
  1195. pcdb |= DMA_CDB_NO_INT;
  1196. chan_last_sub[chan->device->id] = desc;
  1197. ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
  1198. iowrite32(pcdb, &dma_reg->cpfpl);
  1199. }
  1200. /**
  1201. * ppc440spe_chan_append - update the h/w chain in the channel
  1202. */
  1203. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
  1204. {
  1205. struct xor_regs *xor_reg;
  1206. struct ppc440spe_adma_desc_slot *iter;
  1207. struct xor_cb *xcb;
  1208. u32 cur_desc;
  1209. unsigned long flags;
  1210. local_irq_save(flags);
  1211. switch (chan->device->id) {
  1212. case PPC440SPE_DMA0_ID:
  1213. case PPC440SPE_DMA1_ID:
  1214. cur_desc = ppc440spe_chan_get_current_descriptor(chan);
  1215. if (likely(cur_desc)) {
  1216. iter = chan_last_sub[chan->device->id];
  1217. BUG_ON(!iter);
  1218. } else {
  1219. /* first peer */
  1220. iter = chan_first_cdb[chan->device->id];
  1221. BUG_ON(!iter);
  1222. ppc440spe_dma_put_desc(chan, iter);
  1223. chan->hw_chain_inited = 1;
  1224. }
  1225. /* is there something new to append */
  1226. if (!iter->hw_next)
  1227. break;
  1228. /* flush descriptors from the s/w queue to fifo */
  1229. list_for_each_entry_continue(iter, &chan->chain, chain_node) {
  1230. ppc440spe_dma_put_desc(chan, iter);
  1231. if (!iter->hw_next)
  1232. break;
  1233. }
  1234. break;
  1235. case PPC440SPE_XOR_ID:
  1236. /* update h/w links and refetch */
  1237. if (!xor_last_submit->hw_next)
  1238. break;
  1239. xor_reg = chan->device->xor_reg;
  1240. /* the last linked CDB has to generate an interrupt
  1241. * that we'd be able to append the next lists to h/w
  1242. * regardless of the XOR engine state at the moment of
  1243. * appending of these next lists
  1244. */
  1245. xcb = xor_last_linked->hw_desc;
  1246. xcb->cbc |= XOR_CBCR_CBCE_BIT;
  1247. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
  1248. /* XORcore is idle. Refetch now */
  1249. do_xor_refetch = 0;
  1250. ppc440spe_xor_set_link(xor_last_submit,
  1251. xor_last_submit->hw_next);
  1252. ADMA_LL_DBG(print_cb_list(chan,
  1253. xor_last_submit->hw_next));
  1254. xor_last_submit = xor_last_linked;
  1255. iowrite32be(ioread32be(&xor_reg->crsr) |
  1256. XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
  1257. &xor_reg->crsr);
  1258. } else {
  1259. /* XORcore is running. Refetch later in the handler */
  1260. do_xor_refetch = 1;
  1261. }
  1262. break;
  1263. }
  1264. local_irq_restore(flags);
  1265. }
  1266. /**
  1267. * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
  1268. */
  1269. static u32
  1270. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
  1271. {
  1272. struct dma_regs *dma_reg;
  1273. struct xor_regs *xor_reg;
  1274. if (unlikely(!chan->hw_chain_inited))
  1275. /* h/w descriptor chain is not initialized yet */
  1276. return 0;
  1277. switch (chan->device->id) {
  1278. case PPC440SPE_DMA0_ID:
  1279. case PPC440SPE_DMA1_ID:
  1280. dma_reg = chan->device->dma_reg;
  1281. return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
  1282. case PPC440SPE_XOR_ID:
  1283. xor_reg = chan->device->xor_reg;
  1284. return ioread32be(&xor_reg->ccbalr);
  1285. }
  1286. return 0;
  1287. }
  1288. /**
  1289. * ppc440spe_chan_run - enable the channel
  1290. */
  1291. static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
  1292. {
  1293. struct xor_regs *xor_reg;
  1294. switch (chan->device->id) {
  1295. case PPC440SPE_DMA0_ID:
  1296. case PPC440SPE_DMA1_ID:
  1297. /* DMAs are always enabled, do nothing */
  1298. break;
  1299. case PPC440SPE_XOR_ID:
  1300. /* drain write buffer */
  1301. xor_reg = chan->device->xor_reg;
  1302. /* fetch descriptor pointed to in <link> */
  1303. iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
  1304. &xor_reg->crsr);
  1305. break;
  1306. }
  1307. }
  1308. /******************************************************************************
  1309. * ADMA device level
  1310. ******************************************************************************/
  1311. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
  1312. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
  1313. static dma_cookie_t
  1314. ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
  1315. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1316. dma_addr_t addr, int index);
  1317. static void
  1318. ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
  1319. dma_addr_t addr, int index);
  1320. static void
  1321. ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1322. dma_addr_t *paddr, unsigned long flags);
  1323. static void
  1324. ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
  1325. dma_addr_t addr, int index);
  1326. static void
  1327. ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
  1328. unsigned char mult, int index, int dst_pos);
  1329. static void
  1330. ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1331. dma_addr_t paddr, dma_addr_t qaddr);
  1332. static struct page *ppc440spe_rxor_srcs[32];
  1333. /**
  1334. * ppc440spe_can_rxor - check if the operands may be processed with RXOR
  1335. */
  1336. static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
  1337. {
  1338. int i, order = 0, state = 0;
  1339. int idx = 0;
  1340. if (unlikely(!(src_cnt > 1)))
  1341. return 0;
  1342. BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
  1343. /* Skip holes in the source list before checking */
  1344. for (i = 0; i < src_cnt; i++) {
  1345. if (!srcs[i])
  1346. continue;
  1347. ppc440spe_rxor_srcs[idx++] = srcs[i];
  1348. }
  1349. src_cnt = idx;
  1350. for (i = 1; i < src_cnt; i++) {
  1351. char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
  1352. char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
  1353. switch (state) {
  1354. case 0:
  1355. if (cur_addr == old_addr + len) {
  1356. /* direct RXOR */
  1357. order = 1;
  1358. state = 1;
  1359. } else if (old_addr == cur_addr + len) {
  1360. /* reverse RXOR */
  1361. order = -1;
  1362. state = 1;
  1363. } else
  1364. goto out;
  1365. break;
  1366. case 1:
  1367. if ((i == src_cnt - 2) ||
  1368. (order == -1 && cur_addr != old_addr - len)) {
  1369. order = 0;
  1370. state = 0;
  1371. } else if ((cur_addr == old_addr + len * order) ||
  1372. (cur_addr == old_addr + 2 * len) ||
  1373. (cur_addr == old_addr + 3 * len)) {
  1374. state = 2;
  1375. } else {
  1376. order = 0;
  1377. state = 0;
  1378. }
  1379. break;
  1380. case 2:
  1381. order = 0;
  1382. state = 0;
  1383. break;
  1384. }
  1385. }
  1386. out:
  1387. if (state == 1 || state == 2)
  1388. return 1;
  1389. return 0;
  1390. }
  1391. /**
  1392. * ppc440spe_adma_device_estimate - estimate the efficiency of processing
  1393. * the operation given on this channel. It's assumed that 'chan' is
  1394. * capable to process 'cap' type of operation.
  1395. * @chan: channel to use
  1396. * @cap: type of transaction
  1397. * @dst_lst: array of destination pointers
  1398. * @dst_cnt: number of destination operands
  1399. * @src_lst: array of source pointers
  1400. * @src_cnt: number of source operands
  1401. * @src_sz: size of each source operand
  1402. */
  1403. static int ppc440spe_adma_estimate(struct dma_chan *chan,
  1404. enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
  1405. struct page **src_lst, int src_cnt, size_t src_sz)
  1406. {
  1407. int ef = 1;
  1408. if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
  1409. /* If RAID-6 capabilities were not activated don't try
  1410. * to use them
  1411. */
  1412. if (unlikely(!ppc440spe_r6_enabled))
  1413. return -1;
  1414. }
  1415. /* In the current implementation of ppc440spe ADMA driver it
  1416. * makes sense to pick out only pq case, because it may be
  1417. * processed:
  1418. * (1) either using Biskup method on DMA2;
  1419. * (2) or on DMA0/1.
  1420. * Thus we give a favour to (1) if the sources are suitable;
  1421. * else let it be processed on one of the DMA0/1 engines.
  1422. * In the sum_product case where destination is also the
  1423. * source process it on DMA0/1 only.
  1424. */
  1425. if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
  1426. if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
  1427. ef = 0; /* sum_product case, process on DMA0/1 */
  1428. else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
  1429. ef = 3; /* override (DMA0/1 + idle) */
  1430. else
  1431. ef = 0; /* can't process on DMA2 if !rxor */
  1432. }
  1433. /* channel idleness increases the priority */
  1434. if (likely(ef) &&
  1435. !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
  1436. ef++;
  1437. return ef;
  1438. }
  1439. struct dma_chan *
  1440. ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
  1441. struct page **dst_lst, int dst_cnt, struct page **src_lst,
  1442. int src_cnt, size_t src_sz)
  1443. {
  1444. struct dma_chan *best_chan = NULL;
  1445. struct ppc_dma_chan_ref *ref;
  1446. int best_rank = -1;
  1447. if (unlikely(!src_sz))
  1448. return NULL;
  1449. if (src_sz > PAGE_SIZE) {
  1450. /*
  1451. * should a user of the api ever pass > PAGE_SIZE requests
  1452. * we sort out cases where temporary page-sized buffers
  1453. * are used.
  1454. */
  1455. switch (cap) {
  1456. case DMA_PQ:
  1457. if (src_cnt == 1 && dst_lst[1] == src_lst[0])
  1458. return NULL;
  1459. if (src_cnt == 2 && dst_lst[1] == src_lst[1])
  1460. return NULL;
  1461. break;
  1462. case DMA_PQ_VAL:
  1463. case DMA_XOR_VAL:
  1464. return NULL;
  1465. default:
  1466. break;
  1467. }
  1468. }
  1469. list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
  1470. if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
  1471. int rank;
  1472. rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
  1473. dst_cnt, src_lst, src_cnt, src_sz);
  1474. if (rank > best_rank) {
  1475. best_rank = rank;
  1476. best_chan = ref->chan;
  1477. }
  1478. }
  1479. }
  1480. return best_chan;
  1481. }
  1482. EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
  1483. /**
  1484. * ppc440spe_get_group_entry - get group entry with index idx
  1485. * @tdesc: is the last allocated slot in the group.
  1486. */
  1487. static struct ppc440spe_adma_desc_slot *
  1488. ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
  1489. {
  1490. struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
  1491. int i = 0;
  1492. if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
  1493. printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
  1494. __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
  1495. BUG();
  1496. }
  1497. list_for_each_entry(iter, &tdesc->group_list, chain_node) {
  1498. if (i++ == entry_idx)
  1499. break;
  1500. }
  1501. return iter;
  1502. }
  1503. /**
  1504. * ppc440spe_adma_free_slots - flags descriptor slots for reuse
  1505. * @slot: Slot to free
  1506. * Caller must hold &ppc440spe_chan->lock while calling this function
  1507. */
  1508. static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
  1509. struct ppc440spe_adma_chan *chan)
  1510. {
  1511. int stride = slot->slots_per_op;
  1512. while (stride--) {
  1513. slot->slots_per_op = 0;
  1514. slot = list_entry(slot->slot_node.next,
  1515. struct ppc440spe_adma_desc_slot,
  1516. slot_node);
  1517. }
  1518. }
  1519. static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
  1520. struct ppc440spe_adma_desc_slot *desc)
  1521. {
  1522. u32 src_cnt, dst_cnt;
  1523. dma_addr_t addr;
  1524. /*
  1525. * get the number of sources & destination
  1526. * included in this descriptor and unmap
  1527. * them all
  1528. */
  1529. src_cnt = ppc440spe_desc_get_src_num(desc, chan);
  1530. dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
  1531. /* unmap destinations */
  1532. if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1533. while (dst_cnt--) {
  1534. addr = ppc440spe_desc_get_dest_addr(
  1535. desc, chan, dst_cnt);
  1536. dma_unmap_page(chan->device->dev,
  1537. addr, desc->unmap_len,
  1538. DMA_FROM_DEVICE);
  1539. }
  1540. }
  1541. /* unmap sources */
  1542. if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1543. while (src_cnt--) {
  1544. addr = ppc440spe_desc_get_src_addr(
  1545. desc, chan, src_cnt);
  1546. dma_unmap_page(chan->device->dev,
  1547. addr, desc->unmap_len,
  1548. DMA_TO_DEVICE);
  1549. }
  1550. }
  1551. }
  1552. /**
  1553. * ppc440spe_adma_run_tx_complete_actions - call functions to be called
  1554. * upon completion
  1555. */
  1556. static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
  1557. struct ppc440spe_adma_desc_slot *desc,
  1558. struct ppc440spe_adma_chan *chan,
  1559. dma_cookie_t cookie)
  1560. {
  1561. int i;
  1562. BUG_ON(desc->async_tx.cookie < 0);
  1563. if (desc->async_tx.cookie > 0) {
  1564. cookie = desc->async_tx.cookie;
  1565. desc->async_tx.cookie = 0;
  1566. /* call the callback (must not sleep or submit new
  1567. * operations to this channel)
  1568. */
  1569. if (desc->async_tx.callback)
  1570. desc->async_tx.callback(
  1571. desc->async_tx.callback_param);
  1572. /* unmap dma addresses
  1573. * (unmap_single vs unmap_page?)
  1574. *
  1575. * actually, ppc's dma_unmap_page() functions are empty, so
  1576. * the following code is just for the sake of completeness
  1577. */
  1578. if (chan && chan->needs_unmap && desc->group_head &&
  1579. desc->unmap_len) {
  1580. struct ppc440spe_adma_desc_slot *unmap =
  1581. desc->group_head;
  1582. /* assume 1 slot per op always */
  1583. u32 slot_count = unmap->slot_cnt;
  1584. /* Run through the group list and unmap addresses */
  1585. for (i = 0; i < slot_count; i++) {
  1586. BUG_ON(!unmap);
  1587. ppc440spe_adma_unmap(chan, unmap);
  1588. unmap = unmap->hw_next;
  1589. }
  1590. }
  1591. }
  1592. /* run dependent operations */
  1593. dma_run_dependencies(&desc->async_tx);
  1594. return cookie;
  1595. }
  1596. /**
  1597. * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
  1598. */
  1599. static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
  1600. struct ppc440spe_adma_chan *chan)
  1601. {
  1602. /* the client is allowed to attach dependent operations
  1603. * until 'ack' is set
  1604. */
  1605. if (!async_tx_test_ack(&desc->async_tx))
  1606. return 0;
  1607. /* leave the last descriptor in the chain
  1608. * so we can append to it
  1609. */
  1610. if (list_is_last(&desc->chain_node, &chan->chain) ||
  1611. desc->phys == ppc440spe_chan_get_current_descriptor(chan))
  1612. return 1;
  1613. if (chan->device->id != PPC440SPE_XOR_ID) {
  1614. /* our DMA interrupt handler clears opc field of
  1615. * each processed descriptor. For all types of
  1616. * operations except for ZeroSum we do not actually
  1617. * need ack from the interrupt handler. ZeroSum is a
  1618. * special case since the result of this operation
  1619. * is available from the handler only, so if we see
  1620. * such type of descriptor (which is unprocessed yet)
  1621. * then leave it in chain.
  1622. */
  1623. struct dma_cdb *cdb = desc->hw_desc;
  1624. if (cdb->opc == DMA_CDB_OPC_DCHECK128)
  1625. return 1;
  1626. }
  1627. dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
  1628. desc->phys, desc->idx, desc->slots_per_op);
  1629. list_del(&desc->chain_node);
  1630. ppc440spe_adma_free_slots(desc, chan);
  1631. return 0;
  1632. }
  1633. /**
  1634. * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
  1635. * which runs through the channel CDBs list until reach the descriptor
  1636. * currently processed. When routine determines that all CDBs of group
  1637. * are completed then corresponding callbacks (if any) are called and slots
  1638. * are freed.
  1639. */
  1640. static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1641. {
  1642. struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
  1643. dma_cookie_t cookie = 0;
  1644. u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
  1645. int busy = ppc440spe_chan_is_busy(chan);
  1646. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  1647. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
  1648. chan->device->id, __func__);
  1649. if (!current_desc) {
  1650. /* There were no transactions yet, so
  1651. * nothing to clean
  1652. */
  1653. return;
  1654. }
  1655. /* free completed slots from the chain starting with
  1656. * the oldest descriptor
  1657. */
  1658. list_for_each_entry_safe(iter, _iter, &chan->chain,
  1659. chain_node) {
  1660. dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
  1661. "busy: %d this_desc: %#llx next_desc: %#x "
  1662. "cur: %#x ack: %d\n",
  1663. iter->async_tx.cookie, iter->idx, busy, iter->phys,
  1664. ppc440spe_desc_get_link(iter, chan), current_desc,
  1665. async_tx_test_ack(&iter->async_tx));
  1666. prefetch(_iter);
  1667. prefetch(&_iter->async_tx);
  1668. /* do not advance past the current descriptor loaded into the
  1669. * hardware channel,subsequent descriptors are either in process
  1670. * or have not been submitted
  1671. */
  1672. if (seen_current)
  1673. break;
  1674. /* stop the search if we reach the current descriptor and the
  1675. * channel is busy, or if it appears that the current descriptor
  1676. * needs to be re-read (i.e. has been appended to)
  1677. */
  1678. if (iter->phys == current_desc) {
  1679. BUG_ON(seen_current++);
  1680. if (busy || ppc440spe_desc_get_link(iter, chan)) {
  1681. /* not all descriptors of the group have
  1682. * been completed; exit.
  1683. */
  1684. break;
  1685. }
  1686. }
  1687. /* detect the start of a group transaction */
  1688. if (!slot_cnt && !slots_per_op) {
  1689. slot_cnt = iter->slot_cnt;
  1690. slots_per_op = iter->slots_per_op;
  1691. if (slot_cnt <= slots_per_op) {
  1692. slot_cnt = 0;
  1693. slots_per_op = 0;
  1694. }
  1695. }
  1696. if (slot_cnt) {
  1697. if (!group_start)
  1698. group_start = iter;
  1699. slot_cnt -= slots_per_op;
  1700. }
  1701. /* all the members of a group are complete */
  1702. if (slots_per_op != 0 && slot_cnt == 0) {
  1703. struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
  1704. int end_of_chain = 0;
  1705. /* clean up the group */
  1706. slot_cnt = group_start->slot_cnt;
  1707. grp_iter = group_start;
  1708. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  1709. &chan->chain, chain_node) {
  1710. cookie = ppc440spe_adma_run_tx_complete_actions(
  1711. grp_iter, chan, cookie);
  1712. slot_cnt -= slots_per_op;
  1713. end_of_chain = ppc440spe_adma_clean_slot(
  1714. grp_iter, chan);
  1715. if (end_of_chain && slot_cnt) {
  1716. /* Should wait for ZeroSum completion */
  1717. if (cookie > 0)
  1718. chan->completed_cookie = cookie;
  1719. return;
  1720. }
  1721. if (slot_cnt == 0 || end_of_chain)
  1722. break;
  1723. }
  1724. /* the group should be complete at this point */
  1725. BUG_ON(slot_cnt);
  1726. slots_per_op = 0;
  1727. group_start = NULL;
  1728. if (end_of_chain)
  1729. break;
  1730. else
  1731. continue;
  1732. } else if (slots_per_op) /* wait for group completion */
  1733. continue;
  1734. cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
  1735. cookie);
  1736. if (ppc440spe_adma_clean_slot(iter, chan))
  1737. break;
  1738. }
  1739. BUG_ON(!seen_current);
  1740. if (cookie > 0) {
  1741. chan->completed_cookie = cookie;
  1742. pr_debug("\tcompleted cookie %d\n", cookie);
  1743. }
  1744. }
  1745. /**
  1746. * ppc440spe_adma_tasklet - clean up watch-dog initiator
  1747. */
  1748. static void ppc440spe_adma_tasklet(unsigned long data)
  1749. {
  1750. struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
  1751. spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
  1752. __ppc440spe_adma_slot_cleanup(chan);
  1753. spin_unlock(&chan->lock);
  1754. }
  1755. /**
  1756. * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
  1757. */
  1758. static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1759. {
  1760. spin_lock_bh(&chan->lock);
  1761. __ppc440spe_adma_slot_cleanup(chan);
  1762. spin_unlock_bh(&chan->lock);
  1763. }
  1764. /**
  1765. * ppc440spe_adma_alloc_slots - allocate free slots (if any)
  1766. */
  1767. static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
  1768. struct ppc440spe_adma_chan *chan, int num_slots,
  1769. int slots_per_op)
  1770. {
  1771. struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
  1772. struct ppc440spe_adma_desc_slot *alloc_start = NULL;
  1773. struct list_head chain = LIST_HEAD_INIT(chain);
  1774. int slots_found, retry = 0;
  1775. BUG_ON(!num_slots || !slots_per_op);
  1776. /* start search from the last allocated descrtiptor
  1777. * if a contiguous allocation can not be found start searching
  1778. * from the beginning of the list
  1779. */
  1780. retry:
  1781. slots_found = 0;
  1782. if (retry == 0)
  1783. iter = chan->last_used;
  1784. else
  1785. iter = list_entry(&chan->all_slots,
  1786. struct ppc440spe_adma_desc_slot,
  1787. slot_node);
  1788. list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
  1789. slot_node) {
  1790. prefetch(_iter);
  1791. prefetch(&_iter->async_tx);
  1792. if (iter->slots_per_op) {
  1793. slots_found = 0;
  1794. continue;
  1795. }
  1796. /* start the allocation if the slot is correctly aligned */
  1797. if (!slots_found++)
  1798. alloc_start = iter;
  1799. if (slots_found == num_slots) {
  1800. struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
  1801. struct ppc440spe_adma_desc_slot *last_used = NULL;
  1802. iter = alloc_start;
  1803. while (num_slots) {
  1804. int i;
  1805. /* pre-ack all but the last descriptor */
  1806. if (num_slots != slots_per_op)
  1807. async_tx_ack(&iter->async_tx);
  1808. list_add_tail(&iter->chain_node, &chain);
  1809. alloc_tail = iter;
  1810. iter->async_tx.cookie = 0;
  1811. iter->hw_next = NULL;
  1812. iter->flags = 0;
  1813. iter->slot_cnt = num_slots;
  1814. iter->xor_check_result = NULL;
  1815. for (i = 0; i < slots_per_op; i++) {
  1816. iter->slots_per_op = slots_per_op - i;
  1817. last_used = iter;
  1818. iter = list_entry(iter->slot_node.next,
  1819. struct ppc440spe_adma_desc_slot,
  1820. slot_node);
  1821. }
  1822. num_slots -= slots_per_op;
  1823. }
  1824. alloc_tail->group_head = alloc_start;
  1825. alloc_tail->async_tx.cookie = -EBUSY;
  1826. list_splice(&chain, &alloc_tail->group_list);
  1827. chan->last_used = last_used;
  1828. return alloc_tail;
  1829. }
  1830. }
  1831. if (!retry++)
  1832. goto retry;
  1833. /* try to free some slots if the allocation fails */
  1834. tasklet_schedule(&chan->irq_tasklet);
  1835. return NULL;
  1836. }
  1837. /**
  1838. * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
  1839. */
  1840. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
  1841. {
  1842. struct ppc440spe_adma_chan *ppc440spe_chan;
  1843. struct ppc440spe_adma_desc_slot *slot = NULL;
  1844. char *hw_desc;
  1845. int i, db_sz;
  1846. int init;
  1847. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1848. init = ppc440spe_chan->slots_allocated ? 0 : 1;
  1849. chan->chan_id = ppc440spe_chan->device->id;
  1850. /* Allocate descriptor slots */
  1851. i = ppc440spe_chan->slots_allocated;
  1852. if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
  1853. db_sz = sizeof(struct dma_cdb);
  1854. else
  1855. db_sz = sizeof(struct xor_cb);
  1856. for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
  1857. slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
  1858. GFP_KERNEL);
  1859. if (!slot) {
  1860. printk(KERN_INFO "SPE ADMA Channel only initialized"
  1861. " %d descriptor slots", i--);
  1862. break;
  1863. }
  1864. hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
  1865. slot->hw_desc = (void *) &hw_desc[i * db_sz];
  1866. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  1867. slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
  1868. INIT_LIST_HEAD(&slot->chain_node);
  1869. INIT_LIST_HEAD(&slot->slot_node);
  1870. INIT_LIST_HEAD(&slot->group_list);
  1871. slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
  1872. slot->idx = i;
  1873. spin_lock_bh(&ppc440spe_chan->lock);
  1874. ppc440spe_chan->slots_allocated++;
  1875. list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
  1876. spin_unlock_bh(&ppc440spe_chan->lock);
  1877. }
  1878. if (i && !ppc440spe_chan->last_used) {
  1879. ppc440spe_chan->last_used =
  1880. list_entry(ppc440spe_chan->all_slots.next,
  1881. struct ppc440spe_adma_desc_slot,
  1882. slot_node);
  1883. }
  1884. dev_dbg(ppc440spe_chan->device->common.dev,
  1885. "ppc440spe adma%d: allocated %d descriptor slots\n",
  1886. ppc440spe_chan->device->id, i);
  1887. /* initialize the channel and the chain with a null operation */
  1888. if (init) {
  1889. switch (ppc440spe_chan->device->id) {
  1890. case PPC440SPE_DMA0_ID:
  1891. case PPC440SPE_DMA1_ID:
  1892. ppc440spe_chan->hw_chain_inited = 0;
  1893. /* Use WXOR for self-testing */
  1894. if (!ppc440spe_r6_tchan)
  1895. ppc440spe_r6_tchan = ppc440spe_chan;
  1896. break;
  1897. case PPC440SPE_XOR_ID:
  1898. ppc440spe_chan_start_null_xor(ppc440spe_chan);
  1899. break;
  1900. default:
  1901. BUG();
  1902. }
  1903. ppc440spe_chan->needs_unmap = 1;
  1904. }
  1905. return (i > 0) ? i : -ENOMEM;
  1906. }
  1907. /**
  1908. * ppc440spe_desc_assign_cookie - assign a cookie
  1909. */
  1910. static dma_cookie_t ppc440spe_desc_assign_cookie(
  1911. struct ppc440spe_adma_chan *chan,
  1912. struct ppc440spe_adma_desc_slot *desc)
  1913. {
  1914. dma_cookie_t cookie = chan->common.cookie;
  1915. cookie++;
  1916. if (cookie < 0)
  1917. cookie = 1;
  1918. chan->common.cookie = desc->async_tx.cookie = cookie;
  1919. return cookie;
  1920. }
  1921. /**
  1922. * ppc440spe_rxor_set_region_data -
  1923. */
  1924. static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
  1925. u8 xor_arg_no, u32 mask)
  1926. {
  1927. struct xor_cb *xcb = desc->hw_desc;
  1928. xcb->ops[xor_arg_no].h |= mask;
  1929. }
  1930. /**
  1931. * ppc440spe_rxor_set_src -
  1932. */
  1933. static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
  1934. u8 xor_arg_no, dma_addr_t addr)
  1935. {
  1936. struct xor_cb *xcb = desc->hw_desc;
  1937. xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
  1938. xcb->ops[xor_arg_no].l = addr;
  1939. }
  1940. /**
  1941. * ppc440spe_rxor_set_mult -
  1942. */
  1943. static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
  1944. u8 xor_arg_no, u8 idx, u8 mult)
  1945. {
  1946. struct xor_cb *xcb = desc->hw_desc;
  1947. xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
  1948. }
  1949. /**
  1950. * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
  1951. * has been achieved
  1952. */
  1953. static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
  1954. {
  1955. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
  1956. chan->device->id, chan->pending);
  1957. if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
  1958. chan->pending = 0;
  1959. ppc440spe_chan_append(chan);
  1960. }
  1961. }
  1962. /**
  1963. * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
  1964. * (it's not necessary that descriptors will be submitted to the h/w
  1965. * chains too right now)
  1966. */
  1967. static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  1968. {
  1969. struct ppc440spe_adma_desc_slot *sw_desc;
  1970. struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
  1971. struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
  1972. int slot_cnt;
  1973. int slots_per_op;
  1974. dma_cookie_t cookie;
  1975. sw_desc = tx_to_ppc440spe_adma_slot(tx);
  1976. group_start = sw_desc->group_head;
  1977. slot_cnt = group_start->slot_cnt;
  1978. slots_per_op = group_start->slots_per_op;
  1979. spin_lock_bh(&chan->lock);
  1980. cookie = ppc440spe_desc_assign_cookie(chan, sw_desc);
  1981. if (unlikely(list_empty(&chan->chain))) {
  1982. /* first peer */
  1983. list_splice_init(&sw_desc->group_list, &chan->chain);
  1984. chan_first_cdb[chan->device->id] = group_start;
  1985. } else {
  1986. /* isn't first peer, bind CDBs to chain */
  1987. old_chain_tail = list_entry(chan->chain.prev,
  1988. struct ppc440spe_adma_desc_slot,
  1989. chain_node);
  1990. list_splice_init(&sw_desc->group_list,
  1991. &old_chain_tail->chain_node);
  1992. /* fix up the hardware chain */
  1993. ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
  1994. }
  1995. /* increment the pending count by the number of operations */
  1996. chan->pending += slot_cnt / slots_per_op;
  1997. ppc440spe_adma_check_threshold(chan);
  1998. spin_unlock_bh(&chan->lock);
  1999. dev_dbg(chan->device->common.dev,
  2000. "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
  2001. chan->device->id, __func__,
  2002. sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
  2003. return cookie;
  2004. }
  2005. /**
  2006. * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
  2007. */
  2008. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
  2009. struct dma_chan *chan, unsigned long flags)
  2010. {
  2011. struct ppc440spe_adma_chan *ppc440spe_chan;
  2012. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2013. int slot_cnt, slots_per_op;
  2014. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2015. dev_dbg(ppc440spe_chan->device->common.dev,
  2016. "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
  2017. __func__);
  2018. spin_lock_bh(&ppc440spe_chan->lock);
  2019. slot_cnt = slots_per_op = 1;
  2020. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2021. slots_per_op);
  2022. if (sw_desc) {
  2023. group_start = sw_desc->group_head;
  2024. ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
  2025. group_start->unmap_len = 0;
  2026. sw_desc->async_tx.flags = flags;
  2027. }
  2028. spin_unlock_bh(&ppc440spe_chan->lock);
  2029. return sw_desc ? &sw_desc->async_tx : NULL;
  2030. }
  2031. /**
  2032. * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
  2033. */
  2034. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
  2035. struct dma_chan *chan, dma_addr_t dma_dest,
  2036. dma_addr_t dma_src, size_t len, unsigned long flags)
  2037. {
  2038. struct ppc440spe_adma_chan *ppc440spe_chan;
  2039. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2040. int slot_cnt, slots_per_op;
  2041. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2042. if (unlikely(!len))
  2043. return NULL;
  2044. BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
  2045. spin_lock_bh(&ppc440spe_chan->lock);
  2046. dev_dbg(ppc440spe_chan->device->common.dev,
  2047. "ppc440spe adma%d: %s len: %u int_en %d\n",
  2048. ppc440spe_chan->device->id, __func__, len,
  2049. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2050. slot_cnt = slots_per_op = 1;
  2051. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2052. slots_per_op);
  2053. if (sw_desc) {
  2054. group_start = sw_desc->group_head;
  2055. ppc440spe_desc_init_memcpy(group_start, flags);
  2056. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2057. ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
  2058. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2059. sw_desc->unmap_len = len;
  2060. sw_desc->async_tx.flags = flags;
  2061. }
  2062. spin_unlock_bh(&ppc440spe_chan->lock);
  2063. return sw_desc ? &sw_desc->async_tx : NULL;
  2064. }
  2065. /**
  2066. * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
  2067. */
  2068. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
  2069. struct dma_chan *chan, dma_addr_t dma_dest, int value,
  2070. size_t len, unsigned long flags)
  2071. {
  2072. struct ppc440spe_adma_chan *ppc440spe_chan;
  2073. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2074. int slot_cnt, slots_per_op;
  2075. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2076. if (unlikely(!len))
  2077. return NULL;
  2078. BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
  2079. spin_lock_bh(&ppc440spe_chan->lock);
  2080. dev_dbg(ppc440spe_chan->device->common.dev,
  2081. "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
  2082. ppc440spe_chan->device->id, __func__, value, len,
  2083. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2084. slot_cnt = slots_per_op = 1;
  2085. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2086. slots_per_op);
  2087. if (sw_desc) {
  2088. group_start = sw_desc->group_head;
  2089. ppc440spe_desc_init_memset(group_start, value, flags);
  2090. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2091. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2092. sw_desc->unmap_len = len;
  2093. sw_desc->async_tx.flags = flags;
  2094. }
  2095. spin_unlock_bh(&ppc440spe_chan->lock);
  2096. return sw_desc ? &sw_desc->async_tx : NULL;
  2097. }
  2098. /**
  2099. * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
  2100. */
  2101. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
  2102. struct dma_chan *chan, dma_addr_t dma_dest,
  2103. dma_addr_t *dma_src, u32 src_cnt, size_t len,
  2104. unsigned long flags)
  2105. {
  2106. struct ppc440spe_adma_chan *ppc440spe_chan;
  2107. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2108. int slot_cnt, slots_per_op;
  2109. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2110. ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
  2111. dma_dest, dma_src, src_cnt));
  2112. if (unlikely(!len))
  2113. return NULL;
  2114. BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
  2115. dev_dbg(ppc440spe_chan->device->common.dev,
  2116. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2117. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2118. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2119. spin_lock_bh(&ppc440spe_chan->lock);
  2120. slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  2121. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2122. slots_per_op);
  2123. if (sw_desc) {
  2124. group_start = sw_desc->group_head;
  2125. ppc440spe_desc_init_xor(group_start, src_cnt, flags);
  2126. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2127. while (src_cnt--)
  2128. ppc440spe_adma_memcpy_xor_set_src(group_start,
  2129. dma_src[src_cnt], src_cnt);
  2130. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2131. sw_desc->unmap_len = len;
  2132. sw_desc->async_tx.flags = flags;
  2133. }
  2134. spin_unlock_bh(&ppc440spe_chan->lock);
  2135. return sw_desc ? &sw_desc->async_tx : NULL;
  2136. }
  2137. static inline void
  2138. ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
  2139. int src_cnt);
  2140. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
  2141. /**
  2142. * ppc440spe_adma_init_dma2rxor_slot -
  2143. */
  2144. static void ppc440spe_adma_init_dma2rxor_slot(
  2145. struct ppc440spe_adma_desc_slot *desc,
  2146. dma_addr_t *src, int src_cnt)
  2147. {
  2148. int i;
  2149. /* initialize CDB */
  2150. for (i = 0; i < src_cnt; i++) {
  2151. ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
  2152. desc->src_cnt, (u32)src[i]);
  2153. }
  2154. }
  2155. /**
  2156. * ppc440spe_dma01_prep_mult -
  2157. * for Q operation where destination is also the source
  2158. */
  2159. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
  2160. struct ppc440spe_adma_chan *ppc440spe_chan,
  2161. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2162. const unsigned char *scf, size_t len, unsigned long flags)
  2163. {
  2164. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2165. unsigned long op = 0;
  2166. int slot_cnt;
  2167. set_bit(PPC440SPE_DESC_WXOR, &op);
  2168. slot_cnt = 2;
  2169. spin_lock_bh(&ppc440spe_chan->lock);
  2170. /* use WXOR, each descriptor occupies one slot */
  2171. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2172. if (sw_desc) {
  2173. struct ppc440spe_adma_chan *chan;
  2174. struct ppc440spe_adma_desc_slot *iter;
  2175. struct dma_cdb *hw_desc;
  2176. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2177. set_bits(op, &sw_desc->flags);
  2178. sw_desc->src_cnt = src_cnt;
  2179. sw_desc->dst_cnt = dst_cnt;
  2180. /* First descriptor, zero data in the destination and copy it
  2181. * to q page using MULTICAST transfer.
  2182. */
  2183. iter = list_first_entry(&sw_desc->group_list,
  2184. struct ppc440spe_adma_desc_slot,
  2185. chain_node);
  2186. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2187. /* set 'next' pointer */
  2188. iter->hw_next = list_entry(iter->chain_node.next,
  2189. struct ppc440spe_adma_desc_slot,
  2190. chain_node);
  2191. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2192. hw_desc = iter->hw_desc;
  2193. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  2194. ppc440spe_desc_set_dest_addr(iter, chan,
  2195. DMA_CUED_XOR_BASE, dst[0], 0);
  2196. ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
  2197. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2198. src[0]);
  2199. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2200. iter->unmap_len = len;
  2201. /*
  2202. * Second descriptor, multiply data from the q page
  2203. * and store the result in real destination.
  2204. */
  2205. iter = list_first_entry(&iter->chain_node,
  2206. struct ppc440spe_adma_desc_slot,
  2207. chain_node);
  2208. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2209. iter->hw_next = NULL;
  2210. if (flags & DMA_PREP_INTERRUPT)
  2211. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2212. else
  2213. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2214. hw_desc = iter->hw_desc;
  2215. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2216. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2217. DMA_CUED_XOR_HB, dst[1]);
  2218. ppc440spe_desc_set_dest_addr(iter, chan,
  2219. DMA_CUED_XOR_BASE, dst[0], 0);
  2220. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2221. DMA_CDB_SG_DST1, scf[0]);
  2222. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2223. iter->unmap_len = len;
  2224. sw_desc->async_tx.flags = flags;
  2225. }
  2226. spin_unlock_bh(&ppc440spe_chan->lock);
  2227. return sw_desc;
  2228. }
  2229. /**
  2230. * ppc440spe_dma01_prep_sum_product -
  2231. * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
  2232. * the source.
  2233. */
  2234. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
  2235. struct ppc440spe_adma_chan *ppc440spe_chan,
  2236. dma_addr_t *dst, dma_addr_t *src, int src_cnt,
  2237. const unsigned char *scf, size_t len, unsigned long flags)
  2238. {
  2239. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2240. unsigned long op = 0;
  2241. int slot_cnt;
  2242. set_bit(PPC440SPE_DESC_WXOR, &op);
  2243. slot_cnt = 3;
  2244. spin_lock_bh(&ppc440spe_chan->lock);
  2245. /* WXOR, each descriptor occupies one slot */
  2246. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2247. if (sw_desc) {
  2248. struct ppc440spe_adma_chan *chan;
  2249. struct ppc440spe_adma_desc_slot *iter;
  2250. struct dma_cdb *hw_desc;
  2251. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2252. set_bits(op, &sw_desc->flags);
  2253. sw_desc->src_cnt = src_cnt;
  2254. sw_desc->dst_cnt = 1;
  2255. /* 1st descriptor, src[1] data to q page and zero destination */
  2256. iter = list_first_entry(&sw_desc->group_list,
  2257. struct ppc440spe_adma_desc_slot,
  2258. chain_node);
  2259. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2260. iter->hw_next = list_entry(iter->chain_node.next,
  2261. struct ppc440spe_adma_desc_slot,
  2262. chain_node);
  2263. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2264. hw_desc = iter->hw_desc;
  2265. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  2266. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2267. *dst, 0);
  2268. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2269. ppc440spe_chan->qdest, 1);
  2270. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2271. src[1]);
  2272. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2273. iter->unmap_len = len;
  2274. /* 2nd descriptor, multiply src[1] data and store the
  2275. * result in destination */
  2276. iter = list_first_entry(&iter->chain_node,
  2277. struct ppc440spe_adma_desc_slot,
  2278. chain_node);
  2279. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2280. /* set 'next' pointer */
  2281. iter->hw_next = list_entry(iter->chain_node.next,
  2282. struct ppc440spe_adma_desc_slot,
  2283. chain_node);
  2284. if (flags & DMA_PREP_INTERRUPT)
  2285. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2286. else
  2287. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2288. hw_desc = iter->hw_desc;
  2289. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2290. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2291. ppc440spe_chan->qdest);
  2292. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2293. *dst, 0);
  2294. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2295. DMA_CDB_SG_DST1, scf[1]);
  2296. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2297. iter->unmap_len = len;
  2298. /*
  2299. * 3rd descriptor, multiply src[0] data and xor it
  2300. * with destination
  2301. */
  2302. iter = list_first_entry(&iter->chain_node,
  2303. struct ppc440spe_adma_desc_slot,
  2304. chain_node);
  2305. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2306. iter->hw_next = NULL;
  2307. if (flags & DMA_PREP_INTERRUPT)
  2308. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2309. else
  2310. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2311. hw_desc = iter->hw_desc;
  2312. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2313. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2314. src[0]);
  2315. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2316. *dst, 0);
  2317. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2318. DMA_CDB_SG_DST1, scf[0]);
  2319. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2320. iter->unmap_len = len;
  2321. sw_desc->async_tx.flags = flags;
  2322. }
  2323. spin_unlock_bh(&ppc440spe_chan->lock);
  2324. return sw_desc;
  2325. }
  2326. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
  2327. struct ppc440spe_adma_chan *ppc440spe_chan,
  2328. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2329. const unsigned char *scf, size_t len, unsigned long flags)
  2330. {
  2331. int slot_cnt;
  2332. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2333. unsigned long op = 0;
  2334. unsigned char mult = 1;
  2335. pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2336. __func__, dst_cnt, src_cnt, len);
  2337. /* select operations WXOR/RXOR depending on the
  2338. * source addresses of operators and the number
  2339. * of destinations (RXOR support only Q-parity calculations)
  2340. */
  2341. set_bit(PPC440SPE_DESC_WXOR, &op);
  2342. if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
  2343. /* no active RXOR;
  2344. * do RXOR if:
  2345. * - there are more than 1 source,
  2346. * - len is aligned on 512-byte boundary,
  2347. * - source addresses fit to one of 4 possible regions.
  2348. */
  2349. if (src_cnt > 1 &&
  2350. !(len & MQ0_CF2H_RXOR_BS_MASK) &&
  2351. (src[0] + len) == src[1]) {
  2352. /* may do RXOR R1 R2 */
  2353. set_bit(PPC440SPE_DESC_RXOR, &op);
  2354. if (src_cnt != 2) {
  2355. /* may try to enhance region of RXOR */
  2356. if ((src[1] + len) == src[2]) {
  2357. /* do RXOR R1 R2 R3 */
  2358. set_bit(PPC440SPE_DESC_RXOR123,
  2359. &op);
  2360. } else if ((src[1] + len * 2) == src[2]) {
  2361. /* do RXOR R1 R2 R4 */
  2362. set_bit(PPC440SPE_DESC_RXOR124, &op);
  2363. } else if ((src[1] + len * 3) == src[2]) {
  2364. /* do RXOR R1 R2 R5 */
  2365. set_bit(PPC440SPE_DESC_RXOR125,
  2366. &op);
  2367. } else {
  2368. /* do RXOR R1 R2 */
  2369. set_bit(PPC440SPE_DESC_RXOR12,
  2370. &op);
  2371. }
  2372. } else {
  2373. /* do RXOR R1 R2 */
  2374. set_bit(PPC440SPE_DESC_RXOR12, &op);
  2375. }
  2376. }
  2377. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2378. /* can not do this operation with RXOR */
  2379. clear_bit(PPC440SPE_RXOR_RUN,
  2380. &ppc440spe_rxor_state);
  2381. } else {
  2382. /* can do; set block size right now */
  2383. ppc440spe_desc_set_rxor_block_size(len);
  2384. }
  2385. }
  2386. /* Number of necessary slots depends on operation type selected */
  2387. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2388. /* This is a WXOR only chain. Need descriptors for each
  2389. * source to GF-XOR them with WXOR, and need descriptors
  2390. * for each destination to zero them with WXOR
  2391. */
  2392. slot_cnt = src_cnt;
  2393. if (flags & DMA_PREP_ZERO_P) {
  2394. slot_cnt++;
  2395. set_bit(PPC440SPE_ZERO_P, &op);
  2396. }
  2397. if (flags & DMA_PREP_ZERO_Q) {
  2398. slot_cnt++;
  2399. set_bit(PPC440SPE_ZERO_Q, &op);
  2400. }
  2401. } else {
  2402. /* Need 1/2 descriptor for RXOR operation, and
  2403. * need (src_cnt - (2 or 3)) for WXOR of sources
  2404. * remained (if any)
  2405. */
  2406. slot_cnt = dst_cnt;
  2407. if (flags & DMA_PREP_ZERO_P)
  2408. set_bit(PPC440SPE_ZERO_P, &op);
  2409. if (flags & DMA_PREP_ZERO_Q)
  2410. set_bit(PPC440SPE_ZERO_Q, &op);
  2411. if (test_bit(PPC440SPE_DESC_RXOR12, &op))
  2412. slot_cnt += src_cnt - 2;
  2413. else
  2414. slot_cnt += src_cnt - 3;
  2415. /* Thus we have either RXOR only chain or
  2416. * mixed RXOR/WXOR
  2417. */
  2418. if (slot_cnt == dst_cnt)
  2419. /* RXOR only chain */
  2420. clear_bit(PPC440SPE_DESC_WXOR, &op);
  2421. }
  2422. spin_lock_bh(&ppc440spe_chan->lock);
  2423. /* for both RXOR/WXOR each descriptor occupies one slot */
  2424. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2425. if (sw_desc) {
  2426. ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
  2427. flags, op);
  2428. /* setup dst/src/mult */
  2429. pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
  2430. __func__, dst[0], dst[1]);
  2431. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2432. while (src_cnt--) {
  2433. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2434. src_cnt);
  2435. /* NOTE: "Multi = 0 is equivalent to = 1" as it
  2436. * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
  2437. * doesn't work for RXOR with DMA0/1! Instead, multi=0
  2438. * leads to zeroing source data after RXOR.
  2439. * So, for P case set-up mult=1 explicitly.
  2440. */
  2441. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2442. mult = scf[src_cnt];
  2443. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2444. mult, src_cnt, dst_cnt - 1);
  2445. }
  2446. /* Setup byte count foreach slot just allocated */
  2447. sw_desc->async_tx.flags = flags;
  2448. list_for_each_entry(iter, &sw_desc->group_list,
  2449. chain_node) {
  2450. ppc440spe_desc_set_byte_count(iter,
  2451. ppc440spe_chan, len);
  2452. iter->unmap_len = len;
  2453. }
  2454. }
  2455. spin_unlock_bh(&ppc440spe_chan->lock);
  2456. return sw_desc;
  2457. }
  2458. static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
  2459. struct ppc440spe_adma_chan *ppc440spe_chan,
  2460. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2461. const unsigned char *scf, size_t len, unsigned long flags)
  2462. {
  2463. int slot_cnt, descs_per_op;
  2464. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2465. unsigned long op = 0;
  2466. unsigned char mult = 1;
  2467. BUG_ON(!dst_cnt);
  2468. /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2469. __func__, dst_cnt, src_cnt, len);*/
  2470. spin_lock_bh(&ppc440spe_chan->lock);
  2471. descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
  2472. if (descs_per_op < 0) {
  2473. spin_unlock_bh(&ppc440spe_chan->lock);
  2474. return NULL;
  2475. }
  2476. /* depending on number of sources we have 1 or 2 RXOR chains */
  2477. slot_cnt = descs_per_op * dst_cnt;
  2478. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2479. if (sw_desc) {
  2480. op = slot_cnt;
  2481. sw_desc->async_tx.flags = flags;
  2482. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2483. ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
  2484. --op ? 0 : flags);
  2485. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2486. len);
  2487. iter->unmap_len = len;
  2488. ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
  2489. iter->rxor_cursor.len = len;
  2490. iter->descs_per_op = descs_per_op;
  2491. }
  2492. op = 0;
  2493. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2494. op++;
  2495. if (op % descs_per_op == 0)
  2496. ppc440spe_adma_init_dma2rxor_slot(iter, src,
  2497. src_cnt);
  2498. if (likely(!list_is_last(&iter->chain_node,
  2499. &sw_desc->group_list))) {
  2500. /* set 'next' pointer */
  2501. iter->hw_next =
  2502. list_entry(iter->chain_node.next,
  2503. struct ppc440spe_adma_desc_slot,
  2504. chain_node);
  2505. ppc440spe_xor_set_link(iter, iter->hw_next);
  2506. } else {
  2507. /* this is the last descriptor. */
  2508. iter->hw_next = NULL;
  2509. }
  2510. }
  2511. /* fixup head descriptor */
  2512. sw_desc->dst_cnt = dst_cnt;
  2513. if (flags & DMA_PREP_ZERO_P)
  2514. set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
  2515. if (flags & DMA_PREP_ZERO_Q)
  2516. set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
  2517. /* setup dst/src/mult */
  2518. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2519. while (src_cnt--) {
  2520. /* handle descriptors (if dst_cnt == 2) inside
  2521. * the ppc440spe_adma_pq_set_srcxxx() functions
  2522. */
  2523. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2524. src_cnt);
  2525. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2526. mult = scf[src_cnt];
  2527. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2528. mult, src_cnt, dst_cnt - 1);
  2529. }
  2530. }
  2531. spin_unlock_bh(&ppc440spe_chan->lock);
  2532. ppc440spe_desc_set_rxor_block_size(len);
  2533. return sw_desc;
  2534. }
  2535. /**
  2536. * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
  2537. */
  2538. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
  2539. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  2540. unsigned int src_cnt, const unsigned char *scf,
  2541. size_t len, unsigned long flags)
  2542. {
  2543. struct ppc440spe_adma_chan *ppc440spe_chan;
  2544. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2545. int dst_cnt = 0;
  2546. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2547. ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
  2548. dst, src, src_cnt));
  2549. BUG_ON(!len);
  2550. BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
  2551. BUG_ON(!src_cnt);
  2552. if (src_cnt == 1 && dst[1] == src[0]) {
  2553. dma_addr_t dest[2];
  2554. /* dst[1] is real destination (Q) */
  2555. dest[0] = dst[1];
  2556. /* this is the page to multicast source data to */
  2557. dest[1] = ppc440spe_chan->qdest;
  2558. sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
  2559. dest, 2, src, src_cnt, scf, len, flags);
  2560. return sw_desc ? &sw_desc->async_tx : NULL;
  2561. }
  2562. if (src_cnt == 2 && dst[1] == src[1]) {
  2563. sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
  2564. &dst[1], src, 2, scf, len, flags);
  2565. return sw_desc ? &sw_desc->async_tx : NULL;
  2566. }
  2567. if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
  2568. BUG_ON(!dst[0]);
  2569. dst_cnt++;
  2570. flags |= DMA_PREP_ZERO_P;
  2571. }
  2572. if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
  2573. BUG_ON(!dst[1]);
  2574. dst_cnt++;
  2575. flags |= DMA_PREP_ZERO_Q;
  2576. }
  2577. BUG_ON(!dst_cnt);
  2578. dev_dbg(ppc440spe_chan->device->common.dev,
  2579. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2580. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2581. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2582. switch (ppc440spe_chan->device->id) {
  2583. case PPC440SPE_DMA0_ID:
  2584. case PPC440SPE_DMA1_ID:
  2585. sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
  2586. dst, dst_cnt, src, src_cnt, scf,
  2587. len, flags);
  2588. break;
  2589. case PPC440SPE_XOR_ID:
  2590. sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
  2591. dst, dst_cnt, src, src_cnt, scf,
  2592. len, flags);
  2593. break;
  2594. }
  2595. return sw_desc ? &sw_desc->async_tx : NULL;
  2596. }
  2597. /**
  2598. * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
  2599. * a PQ_ZERO_SUM operation
  2600. */
  2601. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
  2602. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  2603. unsigned int src_cnt, const unsigned char *scf, size_t len,
  2604. enum sum_check_flags *pqres, unsigned long flags)
  2605. {
  2606. struct ppc440spe_adma_chan *ppc440spe_chan;
  2607. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  2608. dma_addr_t pdest, qdest;
  2609. int slot_cnt, slots_per_op, idst, dst_cnt;
  2610. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2611. if (flags & DMA_PREP_PQ_DISABLE_P)
  2612. pdest = 0;
  2613. else
  2614. pdest = pq[0];
  2615. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2616. qdest = 0;
  2617. else
  2618. qdest = pq[1];
  2619. ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
  2620. src, src_cnt, scf));
  2621. /* Always use WXOR for P/Q calculations (two destinations).
  2622. * Need 1 or 2 extra slots to verify results are zero.
  2623. */
  2624. idst = dst_cnt = (pdest && qdest) ? 2 : 1;
  2625. /* One additional slot per destination to clone P/Q
  2626. * before calculation (we have to preserve destinations).
  2627. */
  2628. slot_cnt = src_cnt + dst_cnt * 2;
  2629. slots_per_op = 1;
  2630. spin_lock_bh(&ppc440spe_chan->lock);
  2631. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2632. slots_per_op);
  2633. if (sw_desc) {
  2634. ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
  2635. /* Setup byte count for each slot just allocated */
  2636. sw_desc->async_tx.flags = flags;
  2637. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2638. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2639. len);
  2640. iter->unmap_len = len;
  2641. }
  2642. if (pdest) {
  2643. struct dma_cdb *hw_desc;
  2644. struct ppc440spe_adma_chan *chan;
  2645. iter = sw_desc->group_head;
  2646. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2647. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2648. iter->hw_next = list_entry(iter->chain_node.next,
  2649. struct ppc440spe_adma_desc_slot,
  2650. chain_node);
  2651. hw_desc = iter->hw_desc;
  2652. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2653. iter->src_cnt = 0;
  2654. iter->dst_cnt = 0;
  2655. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2656. ppc440spe_chan->pdest, 0);
  2657. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
  2658. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2659. len);
  2660. iter->unmap_len = 0;
  2661. /* override pdest to preserve original P */
  2662. pdest = ppc440spe_chan->pdest;
  2663. }
  2664. if (qdest) {
  2665. struct dma_cdb *hw_desc;
  2666. struct ppc440spe_adma_chan *chan;
  2667. iter = list_first_entry(&sw_desc->group_list,
  2668. struct ppc440spe_adma_desc_slot,
  2669. chain_node);
  2670. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2671. if (pdest) {
  2672. iter = list_entry(iter->chain_node.next,
  2673. struct ppc440spe_adma_desc_slot,
  2674. chain_node);
  2675. }
  2676. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2677. iter->hw_next = list_entry(iter->chain_node.next,
  2678. struct ppc440spe_adma_desc_slot,
  2679. chain_node);
  2680. hw_desc = iter->hw_desc;
  2681. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2682. iter->src_cnt = 0;
  2683. iter->dst_cnt = 0;
  2684. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2685. ppc440spe_chan->qdest, 0);
  2686. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
  2687. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2688. len);
  2689. iter->unmap_len = 0;
  2690. /* override qdest to preserve original Q */
  2691. qdest = ppc440spe_chan->qdest;
  2692. }
  2693. /* Setup destinations for P/Q ops */
  2694. ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
  2695. /* Setup zero QWORDs into DCHECK CDBs */
  2696. idst = dst_cnt;
  2697. list_for_each_entry_reverse(iter, &sw_desc->group_list,
  2698. chain_node) {
  2699. /*
  2700. * The last CDB corresponds to Q-parity check,
  2701. * the one before last CDB corresponds
  2702. * P-parity check
  2703. */
  2704. if (idst == DMA_DEST_MAX_NUM) {
  2705. if (idst == dst_cnt) {
  2706. set_bit(PPC440SPE_DESC_QCHECK,
  2707. &iter->flags);
  2708. } else {
  2709. set_bit(PPC440SPE_DESC_PCHECK,
  2710. &iter->flags);
  2711. }
  2712. } else {
  2713. if (qdest) {
  2714. set_bit(PPC440SPE_DESC_QCHECK,
  2715. &iter->flags);
  2716. } else {
  2717. set_bit(PPC440SPE_DESC_PCHECK,
  2718. &iter->flags);
  2719. }
  2720. }
  2721. iter->xor_check_result = pqres;
  2722. /*
  2723. * set it to zero, if check fail then result will
  2724. * be updated
  2725. */
  2726. *iter->xor_check_result = 0;
  2727. ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
  2728. ppc440spe_qword);
  2729. if (!(--dst_cnt))
  2730. break;
  2731. }
  2732. /* Setup sources and mults for P/Q ops */
  2733. list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
  2734. chain_node) {
  2735. struct ppc440spe_adma_chan *chan;
  2736. u32 mult_dst;
  2737. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2738. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2739. DMA_CUED_XOR_HB,
  2740. src[src_cnt - 1]);
  2741. if (qdest) {
  2742. mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
  2743. DMA_CDB_SG_DST1;
  2744. ppc440spe_desc_set_src_mult(iter, chan,
  2745. DMA_CUED_MULT1_OFF,
  2746. mult_dst,
  2747. scf[src_cnt - 1]);
  2748. }
  2749. if (!(--src_cnt))
  2750. break;
  2751. }
  2752. }
  2753. spin_unlock_bh(&ppc440spe_chan->lock);
  2754. return sw_desc ? &sw_desc->async_tx : NULL;
  2755. }
  2756. /**
  2757. * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
  2758. * XOR ZERO_SUM operation
  2759. */
  2760. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
  2761. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  2762. size_t len, enum sum_check_flags *result, unsigned long flags)
  2763. {
  2764. struct dma_async_tx_descriptor *tx;
  2765. dma_addr_t pq[2];
  2766. /* validate P, disable Q */
  2767. pq[0] = src[0];
  2768. pq[1] = 0;
  2769. flags |= DMA_PREP_PQ_DISABLE_Q;
  2770. tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
  2771. src_cnt - 1, 0, len,
  2772. result, flags);
  2773. return tx;
  2774. }
  2775. /**
  2776. * ppc440spe_adma_set_dest - set destination address into descriptor
  2777. */
  2778. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2779. dma_addr_t addr, int index)
  2780. {
  2781. struct ppc440spe_adma_chan *chan;
  2782. BUG_ON(index >= sw_desc->dst_cnt);
  2783. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2784. switch (chan->device->id) {
  2785. case PPC440SPE_DMA0_ID:
  2786. case PPC440SPE_DMA1_ID:
  2787. /* to do: support transfers lengths >
  2788. * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
  2789. */
  2790. ppc440spe_desc_set_dest_addr(sw_desc->group_head,
  2791. chan, 0, addr, index);
  2792. break;
  2793. case PPC440SPE_XOR_ID:
  2794. sw_desc = ppc440spe_get_group_entry(sw_desc, index);
  2795. ppc440spe_desc_set_dest_addr(sw_desc,
  2796. chan, 0, addr, index);
  2797. break;
  2798. }
  2799. }
  2800. static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
  2801. struct ppc440spe_adma_chan *chan, dma_addr_t addr)
  2802. {
  2803. /* To clear destinations update the descriptor
  2804. * (P or Q depending on index) as follows:
  2805. * addr is destination (0 corresponds to SG2):
  2806. */
  2807. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
  2808. /* ... and the addr is source: */
  2809. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
  2810. /* addr is always SG2 then the mult is always DST1 */
  2811. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2812. DMA_CDB_SG_DST1, 1);
  2813. }
  2814. /**
  2815. * ppc440spe_adma_pq_set_dest - set destination address into descriptor
  2816. * for the PQXOR operation
  2817. */
  2818. static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2819. dma_addr_t *addrs, unsigned long flags)
  2820. {
  2821. struct ppc440spe_adma_desc_slot *iter;
  2822. struct ppc440spe_adma_chan *chan;
  2823. dma_addr_t paddr, qaddr;
  2824. dma_addr_t addr = 0, ppath, qpath;
  2825. int index = 0, i;
  2826. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2827. if (flags & DMA_PREP_PQ_DISABLE_P)
  2828. paddr = 0;
  2829. else
  2830. paddr = addrs[0];
  2831. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2832. qaddr = 0;
  2833. else
  2834. qaddr = addrs[1];
  2835. if (!paddr || !qaddr)
  2836. addr = paddr ? paddr : qaddr;
  2837. switch (chan->device->id) {
  2838. case PPC440SPE_DMA0_ID:
  2839. case PPC440SPE_DMA1_ID:
  2840. /* walk through the WXOR source list and set P/Q-destinations
  2841. * for each slot:
  2842. */
  2843. if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2844. /* This is WXOR-only chain; may have 1/2 zero descs */
  2845. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2846. index++;
  2847. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2848. index++;
  2849. iter = ppc440spe_get_group_entry(sw_desc, index);
  2850. if (addr) {
  2851. /* one destination */
  2852. list_for_each_entry_from(iter,
  2853. &sw_desc->group_list, chain_node)
  2854. ppc440spe_desc_set_dest_addr(iter, chan,
  2855. DMA_CUED_XOR_BASE, addr, 0);
  2856. } else {
  2857. /* two destinations */
  2858. list_for_each_entry_from(iter,
  2859. &sw_desc->group_list, chain_node) {
  2860. ppc440spe_desc_set_dest_addr(iter, chan,
  2861. DMA_CUED_XOR_BASE, paddr, 0);
  2862. ppc440spe_desc_set_dest_addr(iter, chan,
  2863. DMA_CUED_XOR_BASE, qaddr, 1);
  2864. }
  2865. }
  2866. if (index) {
  2867. /* To clear destinations update the descriptor
  2868. * (1st,2nd, or both depending on flags)
  2869. */
  2870. index = 0;
  2871. if (test_bit(PPC440SPE_ZERO_P,
  2872. &sw_desc->flags)) {
  2873. iter = ppc440spe_get_group_entry(
  2874. sw_desc, index++);
  2875. ppc440spe_adma_pq_zero_op(iter, chan,
  2876. paddr);
  2877. }
  2878. if (test_bit(PPC440SPE_ZERO_Q,
  2879. &sw_desc->flags)) {
  2880. iter = ppc440spe_get_group_entry(
  2881. sw_desc, index++);
  2882. ppc440spe_adma_pq_zero_op(iter, chan,
  2883. qaddr);
  2884. }
  2885. return;
  2886. }
  2887. } else {
  2888. /* This is RXOR-only or RXOR/WXOR mixed chain */
  2889. /* If we want to include destination into calculations,
  2890. * then make dest addresses cued with mult=1 (XOR).
  2891. */
  2892. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2893. DMA_CUED_XOR_HB :
  2894. DMA_CUED_XOR_BASE |
  2895. (1 << DMA_CUED_MULT1_OFF);
  2896. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2897. DMA_CUED_XOR_HB :
  2898. DMA_CUED_XOR_BASE |
  2899. (1 << DMA_CUED_MULT1_OFF);
  2900. /* Setup destination(s) in RXOR slot(s) */
  2901. iter = ppc440spe_get_group_entry(sw_desc, index++);
  2902. ppc440spe_desc_set_dest_addr(iter, chan,
  2903. paddr ? ppath : qpath,
  2904. paddr ? paddr : qaddr, 0);
  2905. if (!addr) {
  2906. /* two destinations */
  2907. iter = ppc440spe_get_group_entry(sw_desc,
  2908. index++);
  2909. ppc440spe_desc_set_dest_addr(iter, chan,
  2910. qpath, qaddr, 0);
  2911. }
  2912. if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
  2913. /* Setup destination(s) in remaining WXOR
  2914. * slots
  2915. */
  2916. iter = ppc440spe_get_group_entry(sw_desc,
  2917. index);
  2918. if (addr) {
  2919. /* one destination */
  2920. list_for_each_entry_from(iter,
  2921. &sw_desc->group_list,
  2922. chain_node)
  2923. ppc440spe_desc_set_dest_addr(
  2924. iter, chan,
  2925. DMA_CUED_XOR_BASE,
  2926. addr, 0);
  2927. } else {
  2928. /* two destinations */
  2929. list_for_each_entry_from(iter,
  2930. &sw_desc->group_list,
  2931. chain_node) {
  2932. ppc440spe_desc_set_dest_addr(
  2933. iter, chan,
  2934. DMA_CUED_XOR_BASE,
  2935. paddr, 0);
  2936. ppc440spe_desc_set_dest_addr(
  2937. iter, chan,
  2938. DMA_CUED_XOR_BASE,
  2939. qaddr, 1);
  2940. }
  2941. }
  2942. }
  2943. }
  2944. break;
  2945. case PPC440SPE_XOR_ID:
  2946. /* DMA2 descriptors have only 1 destination, so there are
  2947. * two chains - one for each dest.
  2948. * If we want to include destination into calculations,
  2949. * then make dest addresses cued with mult=1 (XOR).
  2950. */
  2951. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2952. DMA_CUED_XOR_HB :
  2953. DMA_CUED_XOR_BASE |
  2954. (1 << DMA_CUED_MULT1_OFF);
  2955. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2956. DMA_CUED_XOR_HB :
  2957. DMA_CUED_XOR_BASE |
  2958. (1 << DMA_CUED_MULT1_OFF);
  2959. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2960. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2961. ppc440spe_desc_set_dest_addr(iter, chan,
  2962. paddr ? ppath : qpath,
  2963. paddr ? paddr : qaddr, 0);
  2964. iter = list_entry(iter->chain_node.next,
  2965. struct ppc440spe_adma_desc_slot,
  2966. chain_node);
  2967. }
  2968. if (!addr) {
  2969. /* Two destinations; setup Q here */
  2970. iter = ppc440spe_get_group_entry(sw_desc,
  2971. sw_desc->descs_per_op);
  2972. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2973. ppc440spe_desc_set_dest_addr(iter,
  2974. chan, qpath, qaddr, 0);
  2975. iter = list_entry(iter->chain_node.next,
  2976. struct ppc440spe_adma_desc_slot,
  2977. chain_node);
  2978. }
  2979. }
  2980. break;
  2981. }
  2982. }
  2983. /**
  2984. * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
  2985. * for the PQ_ZERO_SUM operation
  2986. */
  2987. static void ppc440spe_adma_pqzero_sum_set_dest(
  2988. struct ppc440spe_adma_desc_slot *sw_desc,
  2989. dma_addr_t paddr, dma_addr_t qaddr)
  2990. {
  2991. struct ppc440spe_adma_desc_slot *iter, *end;
  2992. struct ppc440spe_adma_chan *chan;
  2993. dma_addr_t addr = 0;
  2994. int idx;
  2995. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2996. /* walk through the WXOR source list and set P/Q-destinations
  2997. * for each slot
  2998. */
  2999. idx = (paddr && qaddr) ? 2 : 1;
  3000. /* set end */
  3001. list_for_each_entry_reverse(end, &sw_desc->group_list,
  3002. chain_node) {
  3003. if (!(--idx))
  3004. break;
  3005. }
  3006. /* set start */
  3007. idx = (paddr && qaddr) ? 2 : 1;
  3008. iter = ppc440spe_get_group_entry(sw_desc, idx);
  3009. if (paddr && qaddr) {
  3010. /* two destinations */
  3011. list_for_each_entry_from(iter, &sw_desc->group_list,
  3012. chain_node) {
  3013. if (unlikely(iter == end))
  3014. break;
  3015. ppc440spe_desc_set_dest_addr(iter, chan,
  3016. DMA_CUED_XOR_BASE, paddr, 0);
  3017. ppc440spe_desc_set_dest_addr(iter, chan,
  3018. DMA_CUED_XOR_BASE, qaddr, 1);
  3019. }
  3020. } else {
  3021. /* one destination */
  3022. addr = paddr ? paddr : qaddr;
  3023. list_for_each_entry_from(iter, &sw_desc->group_list,
  3024. chain_node) {
  3025. if (unlikely(iter == end))
  3026. break;
  3027. ppc440spe_desc_set_dest_addr(iter, chan,
  3028. DMA_CUED_XOR_BASE, addr, 0);
  3029. }
  3030. }
  3031. /* The remaining descriptors are DATACHECK. These have no need in
  3032. * destination. Actually, these destinations are used there
  3033. * as sources for check operation. So, set addr as source.
  3034. */
  3035. ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
  3036. if (!addr) {
  3037. end = list_entry(end->chain_node.next,
  3038. struct ppc440spe_adma_desc_slot, chain_node);
  3039. ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
  3040. }
  3041. }
  3042. /**
  3043. * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
  3044. */
  3045. static inline void ppc440spe_desc_set_xor_src_cnt(
  3046. struct ppc440spe_adma_desc_slot *desc,
  3047. int src_cnt)
  3048. {
  3049. struct xor_cb *hw_desc = desc->hw_desc;
  3050. hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
  3051. hw_desc->cbc |= src_cnt;
  3052. }
  3053. /**
  3054. * ppc440spe_adma_pq_set_src - set source address into descriptor
  3055. */
  3056. static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
  3057. dma_addr_t addr, int index)
  3058. {
  3059. struct ppc440spe_adma_chan *chan;
  3060. dma_addr_t haddr = 0;
  3061. struct ppc440spe_adma_desc_slot *iter = NULL;
  3062. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3063. switch (chan->device->id) {
  3064. case PPC440SPE_DMA0_ID:
  3065. case PPC440SPE_DMA1_ID:
  3066. /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
  3067. */
  3068. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3069. /* RXOR-only or RXOR/WXOR operation */
  3070. int iskip = test_bit(PPC440SPE_DESC_RXOR12,
  3071. &sw_desc->flags) ? 2 : 3;
  3072. if (index == 0) {
  3073. /* 1st slot (RXOR) */
  3074. /* setup sources region (R1-2-3, R1-2-4,
  3075. * or R1-2-5)
  3076. */
  3077. if (test_bit(PPC440SPE_DESC_RXOR12,
  3078. &sw_desc->flags))
  3079. haddr = DMA_RXOR12 <<
  3080. DMA_CUED_REGION_OFF;
  3081. else if (test_bit(PPC440SPE_DESC_RXOR123,
  3082. &sw_desc->flags))
  3083. haddr = DMA_RXOR123 <<
  3084. DMA_CUED_REGION_OFF;
  3085. else if (test_bit(PPC440SPE_DESC_RXOR124,
  3086. &sw_desc->flags))
  3087. haddr = DMA_RXOR124 <<
  3088. DMA_CUED_REGION_OFF;
  3089. else if (test_bit(PPC440SPE_DESC_RXOR125,
  3090. &sw_desc->flags))
  3091. haddr = DMA_RXOR125 <<
  3092. DMA_CUED_REGION_OFF;
  3093. else
  3094. BUG();
  3095. haddr |= DMA_CUED_XOR_BASE;
  3096. iter = ppc440spe_get_group_entry(sw_desc, 0);
  3097. } else if (index < iskip) {
  3098. /* 1st slot (RXOR)
  3099. * shall actually set source address only once
  3100. * instead of first <iskip>
  3101. */
  3102. iter = NULL;
  3103. } else {
  3104. /* 2nd/3d and next slots (WXOR);
  3105. * skip first slot with RXOR
  3106. */
  3107. haddr = DMA_CUED_XOR_HB;
  3108. iter = ppc440spe_get_group_entry(sw_desc,
  3109. index - iskip + sw_desc->dst_cnt);
  3110. }
  3111. } else {
  3112. int znum = 0;
  3113. /* WXOR-only operation; skip first slots with
  3114. * zeroing destinations
  3115. */
  3116. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3117. znum++;
  3118. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3119. znum++;
  3120. haddr = DMA_CUED_XOR_HB;
  3121. iter = ppc440spe_get_group_entry(sw_desc,
  3122. index + znum);
  3123. }
  3124. if (likely(iter)) {
  3125. ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
  3126. if (!index &&
  3127. test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
  3128. sw_desc->dst_cnt == 2) {
  3129. /* if we have two destinations for RXOR, then
  3130. * setup source in the second descr too
  3131. */
  3132. iter = ppc440spe_get_group_entry(sw_desc, 1);
  3133. ppc440spe_desc_set_src_addr(iter, chan, 0,
  3134. haddr, addr);
  3135. }
  3136. }
  3137. break;
  3138. case PPC440SPE_XOR_ID:
  3139. /* DMA2 may do Biskup */
  3140. iter = sw_desc->group_head;
  3141. if (iter->dst_cnt == 2) {
  3142. /* both P & Q calculations required; set P src here */
  3143. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  3144. /* this is for Q */
  3145. iter = ppc440spe_get_group_entry(sw_desc,
  3146. sw_desc->descs_per_op);
  3147. }
  3148. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  3149. break;
  3150. }
  3151. }
  3152. /**
  3153. * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
  3154. */
  3155. static void ppc440spe_adma_memcpy_xor_set_src(
  3156. struct ppc440spe_adma_desc_slot *sw_desc,
  3157. dma_addr_t addr, int index)
  3158. {
  3159. struct ppc440spe_adma_chan *chan;
  3160. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3161. sw_desc = sw_desc->group_head;
  3162. if (likely(sw_desc))
  3163. ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
  3164. }
  3165. /**
  3166. * ppc440spe_adma_dma2rxor_inc_addr -
  3167. */
  3168. static void ppc440spe_adma_dma2rxor_inc_addr(
  3169. struct ppc440spe_adma_desc_slot *desc,
  3170. struct ppc440spe_rxor *cursor, int index, int src_cnt)
  3171. {
  3172. cursor->addr_count++;
  3173. if (index == src_cnt - 1) {
  3174. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  3175. } else if (cursor->addr_count == XOR_MAX_OPS) {
  3176. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  3177. cursor->addr_count = 0;
  3178. cursor->desc_count++;
  3179. }
  3180. }
  3181. /**
  3182. * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
  3183. */
  3184. static int ppc440spe_adma_dma2rxor_prep_src(
  3185. struct ppc440spe_adma_desc_slot *hdesc,
  3186. struct ppc440spe_rxor *cursor, int index,
  3187. int src_cnt, u32 addr)
  3188. {
  3189. int rval = 0;
  3190. u32 sign;
  3191. struct ppc440spe_adma_desc_slot *desc = hdesc;
  3192. int i;
  3193. for (i = 0; i < cursor->desc_count; i++) {
  3194. desc = list_entry(hdesc->chain_node.next,
  3195. struct ppc440spe_adma_desc_slot,
  3196. chain_node);
  3197. }
  3198. switch (cursor->state) {
  3199. case 0:
  3200. if (addr == cursor->addrl + cursor->len) {
  3201. /* direct RXOR */
  3202. cursor->state = 1;
  3203. cursor->xor_count++;
  3204. if (index == src_cnt-1) {
  3205. ppc440spe_rxor_set_region(desc,
  3206. cursor->addr_count,
  3207. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3208. ppc440spe_adma_dma2rxor_inc_addr(
  3209. desc, cursor, index, src_cnt);
  3210. }
  3211. } else if (cursor->addrl == addr + cursor->len) {
  3212. /* reverse RXOR */
  3213. cursor->state = 1;
  3214. cursor->xor_count++;
  3215. set_bit(cursor->addr_count, &desc->reverse_flags[0]);
  3216. if (index == src_cnt-1) {
  3217. ppc440spe_rxor_set_region(desc,
  3218. cursor->addr_count,
  3219. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3220. ppc440spe_adma_dma2rxor_inc_addr(
  3221. desc, cursor, index, src_cnt);
  3222. }
  3223. } else {
  3224. printk(KERN_ERR "Cannot build "
  3225. "DMA2 RXOR command block.\n");
  3226. BUG();
  3227. }
  3228. break;
  3229. case 1:
  3230. sign = test_bit(cursor->addr_count,
  3231. desc->reverse_flags)
  3232. ? -1 : 1;
  3233. if (index == src_cnt-2 || (sign == -1
  3234. && addr != cursor->addrl - 2*cursor->len)) {
  3235. cursor->state = 0;
  3236. cursor->xor_count = 1;
  3237. cursor->addrl = addr;
  3238. ppc440spe_rxor_set_region(desc,
  3239. cursor->addr_count,
  3240. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3241. ppc440spe_adma_dma2rxor_inc_addr(
  3242. desc, cursor, index, src_cnt);
  3243. } else if (addr == cursor->addrl + 2*sign*cursor->len) {
  3244. cursor->state = 2;
  3245. cursor->xor_count = 0;
  3246. ppc440spe_rxor_set_region(desc,
  3247. cursor->addr_count,
  3248. DMA_RXOR123 << DMA_CUED_REGION_OFF);
  3249. if (index == src_cnt-1) {
  3250. ppc440spe_adma_dma2rxor_inc_addr(
  3251. desc, cursor, index, src_cnt);
  3252. }
  3253. } else if (addr == cursor->addrl + 3*cursor->len) {
  3254. cursor->state = 2;
  3255. cursor->xor_count = 0;
  3256. ppc440spe_rxor_set_region(desc,
  3257. cursor->addr_count,
  3258. DMA_RXOR124 << DMA_CUED_REGION_OFF);
  3259. if (index == src_cnt-1) {
  3260. ppc440spe_adma_dma2rxor_inc_addr(
  3261. desc, cursor, index, src_cnt);
  3262. }
  3263. } else if (addr == cursor->addrl + 4*cursor->len) {
  3264. cursor->state = 2;
  3265. cursor->xor_count = 0;
  3266. ppc440spe_rxor_set_region(desc,
  3267. cursor->addr_count,
  3268. DMA_RXOR125 << DMA_CUED_REGION_OFF);
  3269. if (index == src_cnt-1) {
  3270. ppc440spe_adma_dma2rxor_inc_addr(
  3271. desc, cursor, index, src_cnt);
  3272. }
  3273. } else {
  3274. cursor->state = 0;
  3275. cursor->xor_count = 1;
  3276. cursor->addrl = addr;
  3277. ppc440spe_rxor_set_region(desc,
  3278. cursor->addr_count,
  3279. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3280. ppc440spe_adma_dma2rxor_inc_addr(
  3281. desc, cursor, index, src_cnt);
  3282. }
  3283. break;
  3284. case 2:
  3285. cursor->state = 0;
  3286. cursor->addrl = addr;
  3287. cursor->xor_count++;
  3288. if (index) {
  3289. ppc440spe_adma_dma2rxor_inc_addr(
  3290. desc, cursor, index, src_cnt);
  3291. }
  3292. break;
  3293. }
  3294. return rval;
  3295. }
  3296. /**
  3297. * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
  3298. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3299. */
  3300. static void ppc440spe_adma_dma2rxor_set_src(
  3301. struct ppc440spe_adma_desc_slot *desc,
  3302. int index, dma_addr_t addr)
  3303. {
  3304. struct xor_cb *xcb = desc->hw_desc;
  3305. int k = 0, op = 0, lop = 0;
  3306. /* get the RXOR operand which corresponds to index addr */
  3307. while (op <= index) {
  3308. lop = op;
  3309. if (k == XOR_MAX_OPS) {
  3310. k = 0;
  3311. desc = list_entry(desc->chain_node.next,
  3312. struct ppc440spe_adma_desc_slot, chain_node);
  3313. xcb = desc->hw_desc;
  3314. }
  3315. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3316. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3317. op += 2;
  3318. else
  3319. op += 3;
  3320. }
  3321. BUG_ON(k < 1);
  3322. if (test_bit(k-1, desc->reverse_flags)) {
  3323. /* reverse operand order; put last op in RXOR group */
  3324. if (index == op - 1)
  3325. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3326. } else {
  3327. /* direct operand order; put first op in RXOR group */
  3328. if (index == lop)
  3329. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3330. }
  3331. }
  3332. /**
  3333. * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
  3334. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3335. */
  3336. static void ppc440spe_adma_dma2rxor_set_mult(
  3337. struct ppc440spe_adma_desc_slot *desc,
  3338. int index, u8 mult)
  3339. {
  3340. struct xor_cb *xcb = desc->hw_desc;
  3341. int k = 0, op = 0, lop = 0;
  3342. /* get the RXOR operand which corresponds to index mult */
  3343. while (op <= index) {
  3344. lop = op;
  3345. if (k == XOR_MAX_OPS) {
  3346. k = 0;
  3347. desc = list_entry(desc->chain_node.next,
  3348. struct ppc440spe_adma_desc_slot,
  3349. chain_node);
  3350. xcb = desc->hw_desc;
  3351. }
  3352. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3353. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3354. op += 2;
  3355. else
  3356. op += 3;
  3357. }
  3358. BUG_ON(k < 1);
  3359. if (test_bit(k-1, desc->reverse_flags)) {
  3360. /* reverse order */
  3361. ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
  3362. } else {
  3363. /* direct order */
  3364. ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
  3365. }
  3366. }
  3367. /**
  3368. * ppc440spe_init_rxor_cursor -
  3369. */
  3370. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
  3371. {
  3372. memset(cursor, 0, sizeof(struct ppc440spe_rxor));
  3373. cursor->state = 2;
  3374. }
  3375. /**
  3376. * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
  3377. * descriptor for the PQXOR operation
  3378. */
  3379. static void ppc440spe_adma_pq_set_src_mult(
  3380. struct ppc440spe_adma_desc_slot *sw_desc,
  3381. unsigned char mult, int index, int dst_pos)
  3382. {
  3383. struct ppc440spe_adma_chan *chan;
  3384. u32 mult_idx, mult_dst;
  3385. struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
  3386. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3387. switch (chan->device->id) {
  3388. case PPC440SPE_DMA0_ID:
  3389. case PPC440SPE_DMA1_ID:
  3390. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3391. int region = test_bit(PPC440SPE_DESC_RXOR12,
  3392. &sw_desc->flags) ? 2 : 3;
  3393. if (index < region) {
  3394. /* RXOR multipliers */
  3395. iter = ppc440spe_get_group_entry(sw_desc,
  3396. sw_desc->dst_cnt - 1);
  3397. if (sw_desc->dst_cnt == 2)
  3398. iter1 = ppc440spe_get_group_entry(
  3399. sw_desc, 0);
  3400. mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
  3401. mult_dst = DMA_CDB_SG_SRC;
  3402. } else {
  3403. /* WXOR multiplier */
  3404. iter = ppc440spe_get_group_entry(sw_desc,
  3405. index - region +
  3406. sw_desc->dst_cnt);
  3407. mult_idx = DMA_CUED_MULT1_OFF;
  3408. mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
  3409. DMA_CDB_SG_DST1;
  3410. }
  3411. } else {
  3412. int znum = 0;
  3413. /* WXOR-only;
  3414. * skip first slots with destinations (if ZERO_DST has
  3415. * place)
  3416. */
  3417. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3418. znum++;
  3419. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3420. znum++;
  3421. iter = ppc440spe_get_group_entry(sw_desc, index + znum);
  3422. mult_idx = DMA_CUED_MULT1_OFF;
  3423. mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
  3424. }
  3425. if (likely(iter)) {
  3426. ppc440spe_desc_set_src_mult(iter, chan,
  3427. mult_idx, mult_dst, mult);
  3428. if (unlikely(iter1)) {
  3429. /* if we have two destinations for RXOR, then
  3430. * we've just set Q mult. Set-up P now.
  3431. */
  3432. ppc440spe_desc_set_src_mult(iter1, chan,
  3433. mult_idx, mult_dst, 1);
  3434. }
  3435. }
  3436. break;
  3437. case PPC440SPE_XOR_ID:
  3438. iter = sw_desc->group_head;
  3439. if (sw_desc->dst_cnt == 2) {
  3440. /* both P & Q calculations required; set P mult here */
  3441. ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
  3442. /* and then set Q mult */
  3443. iter = ppc440spe_get_group_entry(sw_desc,
  3444. sw_desc->descs_per_op);
  3445. }
  3446. ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
  3447. break;
  3448. }
  3449. }
  3450. /**
  3451. * ppc440spe_adma_free_chan_resources - free the resources allocated
  3452. */
  3453. static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
  3454. {
  3455. struct ppc440spe_adma_chan *ppc440spe_chan;
  3456. struct ppc440spe_adma_desc_slot *iter, *_iter;
  3457. int in_use_descs = 0;
  3458. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3459. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3460. spin_lock_bh(&ppc440spe_chan->lock);
  3461. list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
  3462. chain_node) {
  3463. in_use_descs++;
  3464. list_del(&iter->chain_node);
  3465. }
  3466. list_for_each_entry_safe_reverse(iter, _iter,
  3467. &ppc440spe_chan->all_slots, slot_node) {
  3468. list_del(&iter->slot_node);
  3469. kfree(iter);
  3470. ppc440spe_chan->slots_allocated--;
  3471. }
  3472. ppc440spe_chan->last_used = NULL;
  3473. dev_dbg(ppc440spe_chan->device->common.dev,
  3474. "ppc440spe adma%d %s slots_allocated %d\n",
  3475. ppc440spe_chan->device->id,
  3476. __func__, ppc440spe_chan->slots_allocated);
  3477. spin_unlock_bh(&ppc440spe_chan->lock);
  3478. /* one is ok since we left it on there on purpose */
  3479. if (in_use_descs > 1)
  3480. printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
  3481. in_use_descs - 1);
  3482. }
  3483. /**
  3484. * ppc440spe_adma_is_complete - poll the status of an ADMA transaction
  3485. * @chan: ADMA channel handle
  3486. * @cookie: ADMA transaction identifier
  3487. */
  3488. static enum dma_status ppc440spe_adma_is_complete(struct dma_chan *chan,
  3489. dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used)
  3490. {
  3491. struct ppc440spe_adma_chan *ppc440spe_chan;
  3492. dma_cookie_t last_used;
  3493. dma_cookie_t last_complete;
  3494. enum dma_status ret;
  3495. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3496. last_used = chan->cookie;
  3497. last_complete = ppc440spe_chan->completed_cookie;
  3498. if (done)
  3499. *done = last_complete;
  3500. if (used)
  3501. *used = last_used;
  3502. ret = dma_async_is_complete(cookie, last_complete, last_used);
  3503. if (ret == DMA_SUCCESS)
  3504. return ret;
  3505. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3506. last_used = chan->cookie;
  3507. last_complete = ppc440spe_chan->completed_cookie;
  3508. if (done)
  3509. *done = last_complete;
  3510. if (used)
  3511. *used = last_used;
  3512. return dma_async_is_complete(cookie, last_complete, last_used);
  3513. }
  3514. /**
  3515. * ppc440spe_adma_eot_handler - end of transfer interrupt handler
  3516. */
  3517. static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
  3518. {
  3519. struct ppc440spe_adma_chan *chan = data;
  3520. dev_dbg(chan->device->common.dev,
  3521. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3522. tasklet_schedule(&chan->irq_tasklet);
  3523. ppc440spe_adma_device_clear_eot_status(chan);
  3524. return IRQ_HANDLED;
  3525. }
  3526. /**
  3527. * ppc440spe_adma_err_handler - DMA error interrupt handler;
  3528. * do the same things as a eot handler
  3529. */
  3530. static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
  3531. {
  3532. struct ppc440spe_adma_chan *chan = data;
  3533. dev_dbg(chan->device->common.dev,
  3534. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3535. tasklet_schedule(&chan->irq_tasklet);
  3536. ppc440spe_adma_device_clear_eot_status(chan);
  3537. return IRQ_HANDLED;
  3538. }
  3539. /**
  3540. * ppc440spe_test_callback - called when test operation has been done
  3541. */
  3542. static void ppc440spe_test_callback(void *unused)
  3543. {
  3544. complete(&ppc440spe_r6_test_comp);
  3545. }
  3546. /**
  3547. * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
  3548. */
  3549. static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
  3550. {
  3551. struct ppc440spe_adma_chan *ppc440spe_chan;
  3552. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3553. dev_dbg(ppc440spe_chan->device->common.dev,
  3554. "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
  3555. __func__, ppc440spe_chan->pending);
  3556. if (ppc440spe_chan->pending) {
  3557. ppc440spe_chan->pending = 0;
  3558. ppc440spe_chan_append(ppc440spe_chan);
  3559. }
  3560. }
  3561. /**
  3562. * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
  3563. * use FIFOs (as opposite to chains used in XOR) so this is a XOR
  3564. * specific operation)
  3565. */
  3566. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
  3567. {
  3568. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  3569. dma_cookie_t cookie;
  3570. int slot_cnt, slots_per_op;
  3571. dev_dbg(chan->device->common.dev,
  3572. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3573. spin_lock_bh(&chan->lock);
  3574. slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
  3575. sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
  3576. if (sw_desc) {
  3577. group_start = sw_desc->group_head;
  3578. list_splice_init(&sw_desc->group_list, &chan->chain);
  3579. async_tx_ack(&sw_desc->async_tx);
  3580. ppc440spe_desc_init_null_xor(group_start);
  3581. cookie = chan->common.cookie;
  3582. cookie++;
  3583. if (cookie <= 1)
  3584. cookie = 2;
  3585. /* initialize the completed cookie to be less than
  3586. * the most recently used cookie
  3587. */
  3588. chan->completed_cookie = cookie - 1;
  3589. chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  3590. /* channel should not be busy */
  3591. BUG_ON(ppc440spe_chan_is_busy(chan));
  3592. /* set the descriptor address */
  3593. ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
  3594. /* run the descriptor */
  3595. ppc440spe_chan_run(chan);
  3596. } else
  3597. printk(KERN_ERR "ppc440spe adma%d"
  3598. " failed to allocate null descriptor\n",
  3599. chan->device->id);
  3600. spin_unlock_bh(&chan->lock);
  3601. }
  3602. /**
  3603. * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
  3604. * For this we just perform one WXOR operation with the same source
  3605. * and destination addresses, the GF-multiplier is 1; so if RAID-6
  3606. * capabilities are enabled then we'll get src/dst filled with zero.
  3607. */
  3608. static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
  3609. {
  3610. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  3611. struct page *pg;
  3612. char *a;
  3613. dma_addr_t dma_addr, addrs[2];
  3614. unsigned long op = 0;
  3615. int rval = 0;
  3616. set_bit(PPC440SPE_DESC_WXOR, &op);
  3617. pg = alloc_page(GFP_KERNEL);
  3618. if (!pg)
  3619. return -ENOMEM;
  3620. spin_lock_bh(&chan->lock);
  3621. sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
  3622. if (sw_desc) {
  3623. /* 1 src, 1 dsr, int_ena, WXOR */
  3624. ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
  3625. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  3626. ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
  3627. iter->unmap_len = PAGE_SIZE;
  3628. }
  3629. } else {
  3630. rval = -EFAULT;
  3631. spin_unlock_bh(&chan->lock);
  3632. goto exit;
  3633. }
  3634. spin_unlock_bh(&chan->lock);
  3635. /* Fill the test page with ones */
  3636. memset(page_address(pg), 0xFF, PAGE_SIZE);
  3637. dma_addr = dma_map_page(chan->device->dev, pg, 0,
  3638. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3639. /* Setup addresses */
  3640. ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
  3641. ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
  3642. addrs[0] = dma_addr;
  3643. addrs[1] = 0;
  3644. ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
  3645. async_tx_ack(&sw_desc->async_tx);
  3646. sw_desc->async_tx.callback = ppc440spe_test_callback;
  3647. sw_desc->async_tx.callback_param = NULL;
  3648. init_completion(&ppc440spe_r6_test_comp);
  3649. ppc440spe_adma_tx_submit(&sw_desc->async_tx);
  3650. ppc440spe_adma_issue_pending(&chan->common);
  3651. wait_for_completion(&ppc440spe_r6_test_comp);
  3652. /* Now check if the test page is zeroed */
  3653. a = page_address(pg);
  3654. if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
  3655. /* page is zero - RAID-6 enabled */
  3656. rval = 0;
  3657. } else {
  3658. /* RAID-6 was not enabled */
  3659. rval = -EINVAL;
  3660. }
  3661. exit:
  3662. __free_page(pg);
  3663. return rval;
  3664. }
  3665. static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
  3666. {
  3667. switch (adev->id) {
  3668. case PPC440SPE_DMA0_ID:
  3669. case PPC440SPE_DMA1_ID:
  3670. dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
  3671. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3672. dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
  3673. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3674. dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
  3675. dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
  3676. break;
  3677. case PPC440SPE_XOR_ID:
  3678. dma_cap_set(DMA_XOR, adev->common.cap_mask);
  3679. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3680. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3681. adev->common.cap_mask = adev->common.cap_mask;
  3682. break;
  3683. }
  3684. /* Set base routines */
  3685. adev->common.device_alloc_chan_resources =
  3686. ppc440spe_adma_alloc_chan_resources;
  3687. adev->common.device_free_chan_resources =
  3688. ppc440spe_adma_free_chan_resources;
  3689. adev->common.device_is_tx_complete = ppc440spe_adma_is_complete;
  3690. adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
  3691. /* Set prep routines based on capability */
  3692. if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
  3693. adev->common.device_prep_dma_memcpy =
  3694. ppc440spe_adma_prep_dma_memcpy;
  3695. }
  3696. if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
  3697. adev->common.device_prep_dma_memset =
  3698. ppc440spe_adma_prep_dma_memset;
  3699. }
  3700. if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
  3701. adev->common.max_xor = XOR_MAX_OPS;
  3702. adev->common.device_prep_dma_xor =
  3703. ppc440spe_adma_prep_dma_xor;
  3704. }
  3705. if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
  3706. switch (adev->id) {
  3707. case PPC440SPE_DMA0_ID:
  3708. dma_set_maxpq(&adev->common,
  3709. DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3710. break;
  3711. case PPC440SPE_DMA1_ID:
  3712. dma_set_maxpq(&adev->common,
  3713. DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3714. break;
  3715. case PPC440SPE_XOR_ID:
  3716. adev->common.max_pq = XOR_MAX_OPS * 3;
  3717. break;
  3718. }
  3719. adev->common.device_prep_dma_pq =
  3720. ppc440spe_adma_prep_dma_pq;
  3721. }
  3722. if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
  3723. switch (adev->id) {
  3724. case PPC440SPE_DMA0_ID:
  3725. adev->common.max_pq = DMA0_FIFO_SIZE /
  3726. sizeof(struct dma_cdb);
  3727. break;
  3728. case PPC440SPE_DMA1_ID:
  3729. adev->common.max_pq = DMA1_FIFO_SIZE /
  3730. sizeof(struct dma_cdb);
  3731. break;
  3732. }
  3733. adev->common.device_prep_dma_pq_val =
  3734. ppc440spe_adma_prep_dma_pqzero_sum;
  3735. }
  3736. if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
  3737. switch (adev->id) {
  3738. case PPC440SPE_DMA0_ID:
  3739. adev->common.max_xor = DMA0_FIFO_SIZE /
  3740. sizeof(struct dma_cdb);
  3741. break;
  3742. case PPC440SPE_DMA1_ID:
  3743. adev->common.max_xor = DMA1_FIFO_SIZE /
  3744. sizeof(struct dma_cdb);
  3745. break;
  3746. }
  3747. adev->common.device_prep_dma_xor_val =
  3748. ppc440spe_adma_prep_dma_xor_zero_sum;
  3749. }
  3750. if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
  3751. adev->common.device_prep_dma_interrupt =
  3752. ppc440spe_adma_prep_dma_interrupt;
  3753. }
  3754. pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
  3755. "( %s%s%s%s%s%s%s)\n",
  3756. dev_name(adev->dev),
  3757. dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
  3758. dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
  3759. dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
  3760. dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
  3761. dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
  3762. dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "",
  3763. dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
  3764. }
  3765. static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
  3766. struct ppc440spe_adma_chan *chan,
  3767. int *initcode)
  3768. {
  3769. struct device_node *np;
  3770. int ret;
  3771. np = container_of(adev->dev, struct of_device, dev)->node;
  3772. if (adev->id != PPC440SPE_XOR_ID) {
  3773. adev->err_irq = irq_of_parse_and_map(np, 1);
  3774. if (adev->err_irq == NO_IRQ) {
  3775. dev_warn(adev->dev, "no err irq resource?\n");
  3776. *initcode = PPC_ADMA_INIT_IRQ2;
  3777. adev->err_irq = -ENXIO;
  3778. } else
  3779. atomic_inc(&ppc440spe_adma_err_irq_ref);
  3780. } else {
  3781. adev->err_irq = -ENXIO;
  3782. }
  3783. adev->irq = irq_of_parse_and_map(np, 0);
  3784. if (adev->irq == NO_IRQ) {
  3785. dev_err(adev->dev, "no irq resource\n");
  3786. *initcode = PPC_ADMA_INIT_IRQ1;
  3787. ret = -ENXIO;
  3788. goto err_irq_map;
  3789. }
  3790. dev_dbg(adev->dev, "irq %d, err irq %d\n",
  3791. adev->irq, adev->err_irq);
  3792. ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
  3793. 0, dev_driver_string(adev->dev), chan);
  3794. if (ret) {
  3795. dev_err(adev->dev, "can't request irq %d\n",
  3796. adev->irq);
  3797. *initcode = PPC_ADMA_INIT_IRQ1;
  3798. ret = -EIO;
  3799. goto err_req1;
  3800. }
  3801. /* only DMA engines have a separate error IRQ
  3802. * so it's Ok if err_irq < 0 in XOR engine case.
  3803. */
  3804. if (adev->err_irq > 0) {
  3805. /* both DMA engines share common error IRQ */
  3806. ret = request_irq(adev->err_irq,
  3807. ppc440spe_adma_err_handler,
  3808. IRQF_SHARED,
  3809. dev_driver_string(adev->dev),
  3810. chan);
  3811. if (ret) {
  3812. dev_err(adev->dev, "can't request irq %d\n",
  3813. adev->err_irq);
  3814. *initcode = PPC_ADMA_INIT_IRQ2;
  3815. ret = -EIO;
  3816. goto err_req2;
  3817. }
  3818. }
  3819. if (adev->id == PPC440SPE_XOR_ID) {
  3820. /* enable XOR engine interrupts */
  3821. iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3822. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
  3823. &adev->xor_reg->ier);
  3824. } else {
  3825. u32 mask, enable;
  3826. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3827. if (!np) {
  3828. pr_err("%s: can't find I2O device tree node\n",
  3829. __func__);
  3830. ret = -ENODEV;
  3831. goto err_req2;
  3832. }
  3833. adev->i2o_reg = of_iomap(np, 0);
  3834. if (!adev->i2o_reg) {
  3835. pr_err("%s: failed to map I2O registers\n", __func__);
  3836. of_node_put(np);
  3837. ret = -EINVAL;
  3838. goto err_req2;
  3839. }
  3840. of_node_put(np);
  3841. /* Unmask 'CS FIFO Attention' interrupts and
  3842. * enable generating interrupts on errors
  3843. */
  3844. enable = (adev->id == PPC440SPE_DMA0_ID) ?
  3845. ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3846. ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3847. mask = ioread32(&adev->i2o_reg->iopim) & enable;
  3848. iowrite32(mask, &adev->i2o_reg->iopim);
  3849. }
  3850. return 0;
  3851. err_req2:
  3852. free_irq(adev->irq, chan);
  3853. err_req1:
  3854. irq_dispose_mapping(adev->irq);
  3855. err_irq_map:
  3856. if (adev->err_irq > 0) {
  3857. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
  3858. irq_dispose_mapping(adev->err_irq);
  3859. }
  3860. return ret;
  3861. }
  3862. static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
  3863. struct ppc440spe_adma_chan *chan)
  3864. {
  3865. u32 mask, disable;
  3866. if (adev->id == PPC440SPE_XOR_ID) {
  3867. /* disable XOR engine interrupts */
  3868. mask = ioread32be(&adev->xor_reg->ier);
  3869. mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3870. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
  3871. iowrite32be(mask, &adev->xor_reg->ier);
  3872. } else {
  3873. /* disable DMAx engine interrupts */
  3874. disable = (adev->id == PPC440SPE_DMA0_ID) ?
  3875. (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3876. (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3877. mask = ioread32(&adev->i2o_reg->iopim) | disable;
  3878. iowrite32(mask, &adev->i2o_reg->iopim);
  3879. }
  3880. free_irq(adev->irq, chan);
  3881. irq_dispose_mapping(adev->irq);
  3882. if (adev->err_irq > 0) {
  3883. free_irq(adev->err_irq, chan);
  3884. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
  3885. irq_dispose_mapping(adev->err_irq);
  3886. iounmap(adev->i2o_reg);
  3887. }
  3888. }
  3889. }
  3890. /**
  3891. * ppc440spe_adma_probe - probe the asynch device
  3892. */
  3893. static int __devinit ppc440spe_adma_probe(struct of_device *ofdev,
  3894. const struct of_device_id *match)
  3895. {
  3896. struct device_node *np = ofdev->node;
  3897. struct resource res;
  3898. struct ppc440spe_adma_device *adev;
  3899. struct ppc440spe_adma_chan *chan;
  3900. struct ppc_dma_chan_ref *ref, *_ref;
  3901. int ret = 0, initcode = PPC_ADMA_INIT_OK;
  3902. const u32 *idx;
  3903. int len;
  3904. void *regs;
  3905. u32 id, pool_size;
  3906. if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
  3907. id = PPC440SPE_XOR_ID;
  3908. /* As far as the XOR engine is concerned, it does not
  3909. * use FIFOs but uses linked list. So there is no dependency
  3910. * between pool size to allocate and the engine configuration.
  3911. */
  3912. pool_size = PAGE_SIZE << 1;
  3913. } else {
  3914. /* it is DMA0 or DMA1 */
  3915. idx = of_get_property(np, "cell-index", &len);
  3916. if (!idx || (len != sizeof(u32))) {
  3917. dev_err(&ofdev->dev, "Device node %s has missing "
  3918. "or invalid cell-index property\n",
  3919. np->full_name);
  3920. return -EINVAL;
  3921. }
  3922. id = *idx;
  3923. /* DMA0,1 engines use FIFO to maintain CDBs, so we
  3924. * should allocate the pool accordingly to size of this
  3925. * FIFO. Thus, the pool size depends on the FIFO depth:
  3926. * how much CDBs pointers the FIFO may contain then so
  3927. * much CDBs we should provide in the pool.
  3928. * That is
  3929. * CDB size = 32B;
  3930. * CDBs number = (DMA0_FIFO_SIZE >> 3);
  3931. * Pool size = CDBs number * CDB size =
  3932. * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
  3933. */
  3934. pool_size = (id == PPC440SPE_DMA0_ID) ?
  3935. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3936. pool_size <<= 2;
  3937. }
  3938. if (of_address_to_resource(np, 0, &res)) {
  3939. dev_err(&ofdev->dev, "failed to get memory resource\n");
  3940. initcode = PPC_ADMA_INIT_MEMRES;
  3941. ret = -ENODEV;
  3942. goto out;
  3943. }
  3944. if (!request_mem_region(res.start, resource_size(&res),
  3945. dev_driver_string(&ofdev->dev))) {
  3946. dev_err(&ofdev->dev, "failed to request memory region "
  3947. "(0x%016llx-0x%016llx)\n",
  3948. (u64)res.start, (u64)res.end);
  3949. initcode = PPC_ADMA_INIT_MEMREG;
  3950. ret = -EBUSY;
  3951. goto out;
  3952. }
  3953. /* create a device */
  3954. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  3955. if (!adev) {
  3956. dev_err(&ofdev->dev, "failed to allocate device\n");
  3957. initcode = PPC_ADMA_INIT_ALLOC;
  3958. ret = -ENOMEM;
  3959. goto err_adev_alloc;
  3960. }
  3961. adev->id = id;
  3962. adev->pool_size = pool_size;
  3963. /* allocate coherent memory for hardware descriptors */
  3964. adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
  3965. adev->pool_size, &adev->dma_desc_pool,
  3966. GFP_KERNEL);
  3967. if (adev->dma_desc_pool_virt == NULL) {
  3968. dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
  3969. "memory for hardware descriptors\n",
  3970. adev->pool_size);
  3971. initcode = PPC_ADMA_INIT_COHERENT;
  3972. ret = -ENOMEM;
  3973. goto err_dma_alloc;
  3974. }
  3975. dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
  3976. adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
  3977. regs = ioremap(res.start, resource_size(&res));
  3978. if (!regs) {
  3979. dev_err(&ofdev->dev, "failed to ioremap regs!\n");
  3980. goto err_regs_alloc;
  3981. }
  3982. if (adev->id == PPC440SPE_XOR_ID) {
  3983. adev->xor_reg = regs;
  3984. /* Reset XOR */
  3985. iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
  3986. iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
  3987. } else {
  3988. size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
  3989. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3990. adev->dma_reg = regs;
  3991. /* DMAx_FIFO_SIZE is defined in bytes,
  3992. * <fsiz> - is defined in number of CDB pointers (8byte).
  3993. * DMA FIFO Length = CSlength + CPlength, where
  3994. * CSlength = CPlength = (fsiz + 1) * 8.
  3995. */
  3996. iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
  3997. &adev->dma_reg->fsiz);
  3998. /* Configure DMA engine */
  3999. iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
  4000. &adev->dma_reg->cfg);
  4001. /* Clear Status */
  4002. iowrite32(~0, &adev->dma_reg->dsts);
  4003. }
  4004. adev->dev = &ofdev->dev;
  4005. adev->common.dev = &ofdev->dev;
  4006. INIT_LIST_HEAD(&adev->common.channels);
  4007. dev_set_drvdata(&ofdev->dev, adev);
  4008. /* create a channel */
  4009. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  4010. if (!chan) {
  4011. dev_err(&ofdev->dev, "can't allocate channel structure\n");
  4012. initcode = PPC_ADMA_INIT_CHANNEL;
  4013. ret = -ENOMEM;
  4014. goto err_chan_alloc;
  4015. }
  4016. spin_lock_init(&chan->lock);
  4017. INIT_LIST_HEAD(&chan->chain);
  4018. INIT_LIST_HEAD(&chan->all_slots);
  4019. chan->device = adev;
  4020. chan->common.device = &adev->common;
  4021. list_add_tail(&chan->common.device_node, &adev->common.channels);
  4022. tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
  4023. (unsigned long)chan);
  4024. /* allocate and map helper pages for async validation or
  4025. * async_mult/async_sum_product operations on DMA0/1.
  4026. */
  4027. if (adev->id != PPC440SPE_XOR_ID) {
  4028. chan->pdest_page = alloc_page(GFP_KERNEL);
  4029. chan->qdest_page = alloc_page(GFP_KERNEL);
  4030. if (!chan->pdest_page ||
  4031. !chan->qdest_page) {
  4032. if (chan->pdest_page)
  4033. __free_page(chan->pdest_page);
  4034. if (chan->qdest_page)
  4035. __free_page(chan->qdest_page);
  4036. ret = -ENOMEM;
  4037. goto err_page_alloc;
  4038. }
  4039. chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
  4040. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4041. chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
  4042. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4043. }
  4044. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  4045. if (ref) {
  4046. ref->chan = &chan->common;
  4047. INIT_LIST_HEAD(&ref->node);
  4048. list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
  4049. } else {
  4050. dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
  4051. ret = -ENOMEM;
  4052. goto err_ref_alloc;
  4053. }
  4054. ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
  4055. if (ret)
  4056. goto err_irq;
  4057. ppc440spe_adma_init_capabilities(adev);
  4058. ret = dma_async_device_register(&adev->common);
  4059. if (ret) {
  4060. initcode = PPC_ADMA_INIT_REGISTER;
  4061. dev_err(&ofdev->dev, "failed to register dma device\n");
  4062. goto err_dev_reg;
  4063. }
  4064. goto out;
  4065. err_dev_reg:
  4066. ppc440spe_adma_release_irqs(adev, chan);
  4067. err_irq:
  4068. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
  4069. if (chan == to_ppc440spe_adma_chan(ref->chan)) {
  4070. list_del(&ref->node);
  4071. kfree(ref);
  4072. }
  4073. }
  4074. err_ref_alloc:
  4075. if (adev->id != PPC440SPE_XOR_ID) {
  4076. dma_unmap_page(&ofdev->dev, chan->pdest,
  4077. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4078. dma_unmap_page(&ofdev->dev, chan->qdest,
  4079. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4080. __free_page(chan->pdest_page);
  4081. __free_page(chan->qdest_page);
  4082. }
  4083. err_page_alloc:
  4084. kfree(chan);
  4085. err_chan_alloc:
  4086. if (adev->id == PPC440SPE_XOR_ID)
  4087. iounmap(adev->xor_reg);
  4088. else
  4089. iounmap(adev->dma_reg);
  4090. err_regs_alloc:
  4091. dma_free_coherent(adev->dev, adev->pool_size,
  4092. adev->dma_desc_pool_virt,
  4093. adev->dma_desc_pool);
  4094. err_dma_alloc:
  4095. kfree(adev);
  4096. err_adev_alloc:
  4097. release_mem_region(res.start, resource_size(&res));
  4098. out:
  4099. if (id < PPC440SPE_ADMA_ENGINES_NUM)
  4100. ppc440spe_adma_devices[id] = initcode;
  4101. return ret;
  4102. }
  4103. /**
  4104. * ppc440spe_adma_remove - remove the asynch device
  4105. */
  4106. static int __devexit ppc440spe_adma_remove(struct of_device *ofdev)
  4107. {
  4108. struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
  4109. struct device_node *np = ofdev->node;
  4110. struct resource res;
  4111. struct dma_chan *chan, *_chan;
  4112. struct ppc_dma_chan_ref *ref, *_ref;
  4113. struct ppc440spe_adma_chan *ppc440spe_chan;
  4114. dev_set_drvdata(&ofdev->dev, NULL);
  4115. if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
  4116. ppc440spe_adma_devices[adev->id] = -1;
  4117. dma_async_device_unregister(&adev->common);
  4118. list_for_each_entry_safe(chan, _chan, &adev->common.channels,
  4119. device_node) {
  4120. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  4121. ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
  4122. tasklet_kill(&ppc440spe_chan->irq_tasklet);
  4123. if (adev->id != PPC440SPE_XOR_ID) {
  4124. dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
  4125. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4126. dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
  4127. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4128. __free_page(ppc440spe_chan->pdest_page);
  4129. __free_page(ppc440spe_chan->qdest_page);
  4130. }
  4131. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
  4132. node) {
  4133. if (ppc440spe_chan ==
  4134. to_ppc440spe_adma_chan(ref->chan)) {
  4135. list_del(&ref->node);
  4136. kfree(ref);
  4137. }
  4138. }
  4139. list_del(&chan->device_node);
  4140. kfree(ppc440spe_chan);
  4141. }
  4142. dma_free_coherent(adev->dev, adev->pool_size,
  4143. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  4144. if (adev->id == PPC440SPE_XOR_ID)
  4145. iounmap(adev->xor_reg);
  4146. else
  4147. iounmap(adev->dma_reg);
  4148. of_address_to_resource(np, 0, &res);
  4149. release_mem_region(res.start, resource_size(&res));
  4150. kfree(adev);
  4151. return 0;
  4152. }
  4153. /*
  4154. * /sys driver interface to enable h/w RAID-6 capabilities
  4155. * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
  4156. * directory are "devices", "enable" and "poly".
  4157. * "devices" shows available engines.
  4158. * "enable" is used to enable RAID-6 capabilities or to check
  4159. * whether these has been activated.
  4160. * "poly" allows setting/checking used polynomial (for PPC440SPe only).
  4161. */
  4162. static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
  4163. {
  4164. ssize_t size = 0;
  4165. int i;
  4166. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
  4167. if (ppc440spe_adma_devices[i] == -1)
  4168. continue;
  4169. size += snprintf(buf + size, PAGE_SIZE - size,
  4170. "PPC440SP(E)-ADMA.%d: %s\n", i,
  4171. ppc_adma_errors[ppc440spe_adma_devices[i]]);
  4172. }
  4173. return size;
  4174. }
  4175. static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
  4176. {
  4177. return snprintf(buf, PAGE_SIZE,
  4178. "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
  4179. ppc440spe_r6_enabled ? "EN" : "DIS");
  4180. }
  4181. static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
  4182. const char *buf, size_t count)
  4183. {
  4184. unsigned long val;
  4185. if (!count || count > 11)
  4186. return -EINVAL;
  4187. if (!ppc440spe_r6_tchan)
  4188. return -EFAULT;
  4189. /* Write a key */
  4190. sscanf(buf, "%lx", &val);
  4191. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
  4192. isync();
  4193. /* Verify whether it really works now */
  4194. if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
  4195. pr_info("PPC440SP(e) RAID-6 has been activated "
  4196. "successfully\n");
  4197. ppc440spe_r6_enabled = 1;
  4198. } else {
  4199. pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
  4200. " Error key ?\n");
  4201. ppc440spe_r6_enabled = 0;
  4202. }
  4203. return count;
  4204. }
  4205. static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
  4206. {
  4207. ssize_t size = 0;
  4208. u32 reg;
  4209. #ifdef CONFIG_440SP
  4210. /* 440SP has fixed polynomial */
  4211. reg = 0x4d;
  4212. #else
  4213. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  4214. reg >>= MQ0_CFBHL_POLY;
  4215. reg &= 0xFF;
  4216. #endif
  4217. size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
  4218. "uses 0x1%02x polynomial.\n", reg);
  4219. return size;
  4220. }
  4221. static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
  4222. const char *buf, size_t count)
  4223. {
  4224. unsigned long reg, val;
  4225. #ifdef CONFIG_440SP
  4226. /* 440SP uses default 0x14D polynomial only */
  4227. return -EINVAL;
  4228. #endif
  4229. if (!count || count > 6)
  4230. return -EINVAL;
  4231. /* e.g., 0x14D or 0x11D */
  4232. sscanf(buf, "%lx", &val);
  4233. if (val & ~0x1FF)
  4234. return -EINVAL;
  4235. val &= 0xFF;
  4236. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  4237. reg &= ~(0xFF << MQ0_CFBHL_POLY);
  4238. reg |= val << MQ0_CFBHL_POLY;
  4239. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
  4240. return count;
  4241. }
  4242. static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
  4243. static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
  4244. store_ppc440spe_r6enable);
  4245. static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
  4246. store_ppc440spe_r6poly);
  4247. /*
  4248. * Common initialisation for RAID engines; allocate memory for
  4249. * DMAx FIFOs, perform configuration common for all DMA engines.
  4250. * Further DMA engine specific configuration is done at probe time.
  4251. */
  4252. static int ppc440spe_configure_raid_devices(void)
  4253. {
  4254. struct device_node *np;
  4255. struct resource i2o_res;
  4256. struct i2o_regs __iomem *i2o_reg;
  4257. dcr_host_t i2o_dcr_host;
  4258. unsigned int dcr_base, dcr_len;
  4259. int i, ret;
  4260. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  4261. if (!np) {
  4262. pr_err("%s: can't find I2O device tree node\n",
  4263. __func__);
  4264. return -ENODEV;
  4265. }
  4266. if (of_address_to_resource(np, 0, &i2o_res)) {
  4267. of_node_put(np);
  4268. return -EINVAL;
  4269. }
  4270. i2o_reg = of_iomap(np, 0);
  4271. if (!i2o_reg) {
  4272. pr_err("%s: failed to map I2O registers\n", __func__);
  4273. of_node_put(np);
  4274. return -EINVAL;
  4275. }
  4276. /* Get I2O DCRs base */
  4277. dcr_base = dcr_resource_start(np, 0);
  4278. dcr_len = dcr_resource_len(np, 0);
  4279. if (!dcr_base && !dcr_len) {
  4280. pr_err("%s: can't get DCR registers base/len!\n",
  4281. np->full_name);
  4282. of_node_put(np);
  4283. iounmap(i2o_reg);
  4284. return -ENODEV;
  4285. }
  4286. i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4287. if (!DCR_MAP_OK(i2o_dcr_host)) {
  4288. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4289. of_node_put(np);
  4290. iounmap(i2o_reg);
  4291. return -ENODEV;
  4292. }
  4293. of_node_put(np);
  4294. /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
  4295. * the base address of FIFO memory space.
  4296. * Actually we need twice more physical memory than programmed in the
  4297. * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
  4298. */
  4299. ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
  4300. GFP_KERNEL);
  4301. if (!ppc440spe_dma_fifo_buf) {
  4302. pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
  4303. iounmap(i2o_reg);
  4304. dcr_unmap(i2o_dcr_host, dcr_len);
  4305. return -ENOMEM;
  4306. }
  4307. /*
  4308. * Configure h/w
  4309. */
  4310. /* Reset I2O/DMA */
  4311. mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
  4312. mtdcri(SDR0, DCRN_SDR0_SRST, 0);
  4313. /* Setup the base address of mmaped registers */
  4314. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
  4315. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
  4316. I2O_REG_ENABLE);
  4317. dcr_unmap(i2o_dcr_host, dcr_len);
  4318. /* Setup FIFO memory space base address */
  4319. iowrite32(0, &i2o_reg->ifbah);
  4320. iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
  4321. /* set zero FIFO size for I2O, so the whole
  4322. * ppc440spe_dma_fifo_buf is used by DMAs.
  4323. * DMAx_FIFOs will be configured while probe.
  4324. */
  4325. iowrite32(0, &i2o_reg->ifsiz);
  4326. iounmap(i2o_reg);
  4327. /* To prepare WXOR/RXOR functionality we need access to
  4328. * Memory Queue Module DCRs (finally it will be enabled
  4329. * via /sys interface of the ppc440spe ADMA driver).
  4330. */
  4331. np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
  4332. if (!np) {
  4333. pr_err("%s: can't find MQ device tree node\n",
  4334. __func__);
  4335. ret = -ENODEV;
  4336. goto out_free;
  4337. }
  4338. /* Get MQ DCRs base */
  4339. dcr_base = dcr_resource_start(np, 0);
  4340. dcr_len = dcr_resource_len(np, 0);
  4341. if (!dcr_base && !dcr_len) {
  4342. pr_err("%s: can't get DCR registers base/len!\n",
  4343. np->full_name);
  4344. ret = -ENODEV;
  4345. goto out_mq;
  4346. }
  4347. ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4348. if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
  4349. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4350. ret = -ENODEV;
  4351. goto out_mq;
  4352. }
  4353. of_node_put(np);
  4354. ppc440spe_mq_dcr_len = dcr_len;
  4355. /* Set HB alias */
  4356. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
  4357. /* Set:
  4358. * - LL transaction passing limit to 1;
  4359. * - Memory controller cycle limit to 1;
  4360. * - Galois Polynomial to 0x14d (default)
  4361. */
  4362. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
  4363. (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
  4364. (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
  4365. atomic_set(&ppc440spe_adma_err_irq_ref, 0);
  4366. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
  4367. ppc440spe_adma_devices[i] = -1;
  4368. return 0;
  4369. out_mq:
  4370. of_node_put(np);
  4371. out_free:
  4372. kfree(ppc440spe_dma_fifo_buf);
  4373. return ret;
  4374. }
  4375. static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = {
  4376. { .compatible = "ibm,dma-440spe", },
  4377. { .compatible = "amcc,xor-accelerator", },
  4378. {},
  4379. };
  4380. MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
  4381. static struct of_platform_driver ppc440spe_adma_driver = {
  4382. .match_table = ppc440spe_adma_of_match,
  4383. .probe = ppc440spe_adma_probe,
  4384. .remove = __devexit_p(ppc440spe_adma_remove),
  4385. .driver = {
  4386. .name = "PPC440SP(E)-ADMA",
  4387. .owner = THIS_MODULE,
  4388. },
  4389. };
  4390. static __init int ppc440spe_adma_init(void)
  4391. {
  4392. int ret;
  4393. ret = ppc440spe_configure_raid_devices();
  4394. if (ret)
  4395. return ret;
  4396. ret = of_register_platform_driver(&ppc440spe_adma_driver);
  4397. if (ret) {
  4398. pr_err("%s: failed to register platform driver\n",
  4399. __func__);
  4400. goto out_reg;
  4401. }
  4402. /* Initialization status */
  4403. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4404. &driver_attr_devices);
  4405. if (ret)
  4406. goto out_dev;
  4407. /* RAID-6 h/w enable entry */
  4408. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4409. &driver_attr_enable);
  4410. if (ret)
  4411. goto out_en;
  4412. /* GF polynomial to use */
  4413. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4414. &driver_attr_poly);
  4415. if (!ret)
  4416. return ret;
  4417. driver_remove_file(&ppc440spe_adma_driver.driver,
  4418. &driver_attr_enable);
  4419. out_en:
  4420. driver_remove_file(&ppc440spe_adma_driver.driver,
  4421. &driver_attr_devices);
  4422. out_dev:
  4423. /* User will not be able to enable h/w RAID-6 */
  4424. pr_err("%s: failed to create RAID-6 driver interface\n",
  4425. __func__);
  4426. of_unregister_platform_driver(&ppc440spe_adma_driver);
  4427. out_reg:
  4428. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4429. kfree(ppc440spe_dma_fifo_buf);
  4430. return ret;
  4431. }
  4432. static void __exit ppc440spe_adma_exit(void)
  4433. {
  4434. driver_remove_file(&ppc440spe_adma_driver.driver,
  4435. &driver_attr_poly);
  4436. driver_remove_file(&ppc440spe_adma_driver.driver,
  4437. &driver_attr_enable);
  4438. driver_remove_file(&ppc440spe_adma_driver.driver,
  4439. &driver_attr_devices);
  4440. of_unregister_platform_driver(&ppc440spe_adma_driver);
  4441. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4442. kfree(ppc440spe_dma_fifo_buf);
  4443. }
  4444. arch_initcall(ppc440spe_adma_init);
  4445. module_exit(ppc440spe_adma_exit);
  4446. MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
  4447. MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
  4448. MODULE_LICENSE("GPL");