kvm_main.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <linux/magic.h>
  22. #include <asm/processor.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <asm/msr.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/reboot.h>
  31. #include <asm/io.h>
  32. #include <linux/debugfs.h>
  33. #include <linux/highmem.h>
  34. #include <linux/file.h>
  35. #include <asm/desc.h>
  36. #include <linux/sysdev.h>
  37. #include <linux/cpu.h>
  38. #include <linux/file.h>
  39. #include <linux/fs.h>
  40. #include <linux/mount.h>
  41. #include <linux/sched.h>
  42. #include <linux/cpumask.h>
  43. #include <linux/smp.h>
  44. #include <linux/anon_inodes.h>
  45. #include "x86_emulate.h"
  46. #include "segment_descriptor.h"
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static DEFINE_SPINLOCK(kvm_lock);
  50. static LIST_HEAD(vm_list);
  51. struct kvm_arch_ops *kvm_arch_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  77. #define LMSW_GUEST_MASK 0x0eULL
  78. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  79. #define CR8_RESEVED_BITS (~0x0fULL)
  80. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  81. #ifdef CONFIG_X86_64
  82. // LDT or TSS descriptor in the GDT. 16 bytes.
  83. struct segment_descriptor_64 {
  84. struct segment_descriptor s;
  85. u32 base_higher;
  86. u32 pad_zero;
  87. };
  88. #endif
  89. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  90. unsigned long arg);
  91. unsigned long segment_base(u16 selector)
  92. {
  93. struct descriptor_table gdt;
  94. struct segment_descriptor *d;
  95. unsigned long table_base;
  96. typedef unsigned long ul;
  97. unsigned long v;
  98. if (selector == 0)
  99. return 0;
  100. asm ("sgdt %0" : "=m"(gdt));
  101. table_base = gdt.base;
  102. if (selector & 4) { /* from ldt */
  103. u16 ldt_selector;
  104. asm ("sldt %0" : "=g"(ldt_selector));
  105. table_base = segment_base(ldt_selector);
  106. }
  107. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  108. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  109. #ifdef CONFIG_X86_64
  110. if (d->system == 0
  111. && (d->type == 2 || d->type == 9 || d->type == 11))
  112. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  113. #endif
  114. return v;
  115. }
  116. EXPORT_SYMBOL_GPL(segment_base);
  117. static inline int valid_vcpu(int n)
  118. {
  119. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  120. }
  121. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  122. void *dest)
  123. {
  124. unsigned char *host_buf = dest;
  125. unsigned long req_size = size;
  126. while (size) {
  127. hpa_t paddr;
  128. unsigned now;
  129. unsigned offset;
  130. hva_t guest_buf;
  131. paddr = gva_to_hpa(vcpu, addr);
  132. if (is_error_hpa(paddr))
  133. break;
  134. guest_buf = (hva_t)kmap_atomic(
  135. pfn_to_page(paddr >> PAGE_SHIFT),
  136. KM_USER0);
  137. offset = addr & ~PAGE_MASK;
  138. guest_buf |= offset;
  139. now = min(size, PAGE_SIZE - offset);
  140. memcpy(host_buf, (void*)guest_buf, now);
  141. host_buf += now;
  142. addr += now;
  143. size -= now;
  144. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  145. }
  146. return req_size - size;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_read_guest);
  149. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  150. void *data)
  151. {
  152. unsigned char *host_buf = data;
  153. unsigned long req_size = size;
  154. while (size) {
  155. hpa_t paddr;
  156. unsigned now;
  157. unsigned offset;
  158. hva_t guest_buf;
  159. gfn_t gfn;
  160. paddr = gva_to_hpa(vcpu, addr);
  161. if (is_error_hpa(paddr))
  162. break;
  163. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  164. mark_page_dirty(vcpu->kvm, gfn);
  165. guest_buf = (hva_t)kmap_atomic(
  166. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  167. offset = addr & ~PAGE_MASK;
  168. guest_buf |= offset;
  169. now = min(size, PAGE_SIZE - offset);
  170. memcpy((void*)guest_buf, host_buf, now);
  171. host_buf += now;
  172. addr += now;
  173. size -= now;
  174. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  175. }
  176. return req_size - size;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_write_guest);
  179. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  180. {
  181. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  182. return;
  183. vcpu->guest_fpu_loaded = 1;
  184. fx_save(vcpu->host_fx_image);
  185. fx_restore(vcpu->guest_fx_image);
  186. }
  187. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  188. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  189. {
  190. if (!vcpu->guest_fpu_loaded)
  191. return;
  192. vcpu->guest_fpu_loaded = 0;
  193. fx_save(vcpu->guest_fx_image);
  194. fx_restore(vcpu->host_fx_image);
  195. }
  196. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  197. /*
  198. * Switches to specified vcpu, until a matching vcpu_put()
  199. */
  200. static void vcpu_load(struct kvm_vcpu *vcpu)
  201. {
  202. mutex_lock(&vcpu->mutex);
  203. kvm_arch_ops->vcpu_load(vcpu);
  204. }
  205. /*
  206. * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
  207. * if the slot is not populated.
  208. */
  209. static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
  210. {
  211. struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
  212. mutex_lock(&vcpu->mutex);
  213. if (!vcpu->vmcs) {
  214. mutex_unlock(&vcpu->mutex);
  215. return NULL;
  216. }
  217. kvm_arch_ops->vcpu_load(vcpu);
  218. return vcpu;
  219. }
  220. static void vcpu_put(struct kvm_vcpu *vcpu)
  221. {
  222. kvm_arch_ops->vcpu_put(vcpu);
  223. mutex_unlock(&vcpu->mutex);
  224. }
  225. static void ack_flush(void *_completed)
  226. {
  227. atomic_t *completed = _completed;
  228. atomic_inc(completed);
  229. }
  230. void kvm_flush_remote_tlbs(struct kvm *kvm)
  231. {
  232. int i, cpu, needed;
  233. cpumask_t cpus;
  234. struct kvm_vcpu *vcpu;
  235. atomic_t completed;
  236. atomic_set(&completed, 0);
  237. cpus_clear(cpus);
  238. needed = 0;
  239. for (i = 0; i < kvm->nvcpus; ++i) {
  240. vcpu = &kvm->vcpus[i];
  241. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  242. continue;
  243. cpu = vcpu->cpu;
  244. if (cpu != -1 && cpu != raw_smp_processor_id())
  245. if (!cpu_isset(cpu, cpus)) {
  246. cpu_set(cpu, cpus);
  247. ++needed;
  248. }
  249. }
  250. /*
  251. * We really want smp_call_function_mask() here. But that's not
  252. * available, so ipi all cpus in parallel and wait for them
  253. * to complete.
  254. */
  255. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  256. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  257. while (atomic_read(&completed) != needed) {
  258. cpu_relax();
  259. barrier();
  260. }
  261. }
  262. static struct kvm *kvm_create_vm(void)
  263. {
  264. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  265. int i;
  266. if (!kvm)
  267. return ERR_PTR(-ENOMEM);
  268. kvm_io_bus_init(&kvm->pio_bus);
  269. spin_lock_init(&kvm->lock);
  270. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  271. spin_lock(&kvm_lock);
  272. list_add(&kvm->vm_list, &vm_list);
  273. spin_unlock(&kvm_lock);
  274. kvm_io_bus_init(&kvm->mmio_bus);
  275. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  276. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  277. mutex_init(&vcpu->mutex);
  278. vcpu->cpu = -1;
  279. vcpu->kvm = kvm;
  280. vcpu->mmu.root_hpa = INVALID_PAGE;
  281. }
  282. return kvm;
  283. }
  284. static int kvm_dev_open(struct inode *inode, struct file *filp)
  285. {
  286. return 0;
  287. }
  288. /*
  289. * Free any memory in @free but not in @dont.
  290. */
  291. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  292. struct kvm_memory_slot *dont)
  293. {
  294. int i;
  295. if (!dont || free->phys_mem != dont->phys_mem)
  296. if (free->phys_mem) {
  297. for (i = 0; i < free->npages; ++i)
  298. if (free->phys_mem[i])
  299. __free_page(free->phys_mem[i]);
  300. vfree(free->phys_mem);
  301. }
  302. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  303. vfree(free->dirty_bitmap);
  304. free->phys_mem = NULL;
  305. free->npages = 0;
  306. free->dirty_bitmap = NULL;
  307. }
  308. static void kvm_free_physmem(struct kvm *kvm)
  309. {
  310. int i;
  311. for (i = 0; i < kvm->nmemslots; ++i)
  312. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  313. }
  314. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  315. {
  316. int i;
  317. for (i = 0; i < 2; ++i)
  318. if (vcpu->pio.guest_pages[i]) {
  319. __free_page(vcpu->pio.guest_pages[i]);
  320. vcpu->pio.guest_pages[i] = NULL;
  321. }
  322. }
  323. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  324. {
  325. if (!vcpu->vmcs)
  326. return;
  327. vcpu_load(vcpu);
  328. kvm_mmu_unload(vcpu);
  329. vcpu_put(vcpu);
  330. }
  331. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  332. {
  333. if (!vcpu->vmcs)
  334. return;
  335. vcpu_load(vcpu);
  336. kvm_mmu_destroy(vcpu);
  337. vcpu_put(vcpu);
  338. kvm_arch_ops->vcpu_free(vcpu);
  339. free_page((unsigned long)vcpu->run);
  340. vcpu->run = NULL;
  341. free_page((unsigned long)vcpu->pio_data);
  342. vcpu->pio_data = NULL;
  343. free_pio_guest_pages(vcpu);
  344. }
  345. static void kvm_free_vcpus(struct kvm *kvm)
  346. {
  347. unsigned int i;
  348. /*
  349. * Unpin any mmu pages first.
  350. */
  351. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  352. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  353. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  354. kvm_free_vcpu(&kvm->vcpus[i]);
  355. }
  356. static int kvm_dev_release(struct inode *inode, struct file *filp)
  357. {
  358. return 0;
  359. }
  360. static void kvm_destroy_vm(struct kvm *kvm)
  361. {
  362. spin_lock(&kvm_lock);
  363. list_del(&kvm->vm_list);
  364. spin_unlock(&kvm_lock);
  365. kvm_io_bus_destroy(&kvm->pio_bus);
  366. kvm_io_bus_destroy(&kvm->mmio_bus);
  367. kvm_free_vcpus(kvm);
  368. kvm_free_physmem(kvm);
  369. kfree(kvm);
  370. }
  371. static int kvm_vm_release(struct inode *inode, struct file *filp)
  372. {
  373. struct kvm *kvm = filp->private_data;
  374. kvm_destroy_vm(kvm);
  375. return 0;
  376. }
  377. static void inject_gp(struct kvm_vcpu *vcpu)
  378. {
  379. kvm_arch_ops->inject_gp(vcpu, 0);
  380. }
  381. /*
  382. * Load the pae pdptrs. Return true is they are all valid.
  383. */
  384. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  385. {
  386. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  387. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  388. int i;
  389. u64 pdpte;
  390. u64 *pdpt;
  391. int ret;
  392. struct page *page;
  393. spin_lock(&vcpu->kvm->lock);
  394. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  395. /* FIXME: !page - emulate? 0xff? */
  396. pdpt = kmap_atomic(page, KM_USER0);
  397. ret = 1;
  398. for (i = 0; i < 4; ++i) {
  399. pdpte = pdpt[offset + i];
  400. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  401. ret = 0;
  402. goto out;
  403. }
  404. }
  405. for (i = 0; i < 4; ++i)
  406. vcpu->pdptrs[i] = pdpt[offset + i];
  407. out:
  408. kunmap_atomic(pdpt, KM_USER0);
  409. spin_unlock(&vcpu->kvm->lock);
  410. return ret;
  411. }
  412. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  413. {
  414. if (cr0 & CR0_RESEVED_BITS) {
  415. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  416. cr0, vcpu->cr0);
  417. inject_gp(vcpu);
  418. return;
  419. }
  420. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  421. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  422. inject_gp(vcpu);
  423. return;
  424. }
  425. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  426. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  427. "and a clear PE flag\n");
  428. inject_gp(vcpu);
  429. return;
  430. }
  431. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  432. #ifdef CONFIG_X86_64
  433. if ((vcpu->shadow_efer & EFER_LME)) {
  434. int cs_db, cs_l;
  435. if (!is_pae(vcpu)) {
  436. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  437. "in long mode while PAE is disabled\n");
  438. inject_gp(vcpu);
  439. return;
  440. }
  441. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  442. if (cs_l) {
  443. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  444. "in long mode while CS.L == 1\n");
  445. inject_gp(vcpu);
  446. return;
  447. }
  448. } else
  449. #endif
  450. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  451. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  452. "reserved bits\n");
  453. inject_gp(vcpu);
  454. return;
  455. }
  456. }
  457. kvm_arch_ops->set_cr0(vcpu, cr0);
  458. vcpu->cr0 = cr0;
  459. spin_lock(&vcpu->kvm->lock);
  460. kvm_mmu_reset_context(vcpu);
  461. spin_unlock(&vcpu->kvm->lock);
  462. return;
  463. }
  464. EXPORT_SYMBOL_GPL(set_cr0);
  465. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  466. {
  467. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  468. }
  469. EXPORT_SYMBOL_GPL(lmsw);
  470. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  471. {
  472. if (cr4 & CR4_RESEVED_BITS) {
  473. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  474. inject_gp(vcpu);
  475. return;
  476. }
  477. if (is_long_mode(vcpu)) {
  478. if (!(cr4 & CR4_PAE_MASK)) {
  479. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  480. "in long mode\n");
  481. inject_gp(vcpu);
  482. return;
  483. }
  484. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  485. && !load_pdptrs(vcpu, vcpu->cr3)) {
  486. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  487. inject_gp(vcpu);
  488. }
  489. if (cr4 & CR4_VMXE_MASK) {
  490. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  491. inject_gp(vcpu);
  492. return;
  493. }
  494. kvm_arch_ops->set_cr4(vcpu, cr4);
  495. spin_lock(&vcpu->kvm->lock);
  496. kvm_mmu_reset_context(vcpu);
  497. spin_unlock(&vcpu->kvm->lock);
  498. }
  499. EXPORT_SYMBOL_GPL(set_cr4);
  500. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  501. {
  502. if (is_long_mode(vcpu)) {
  503. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  504. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  505. inject_gp(vcpu);
  506. return;
  507. }
  508. } else {
  509. if (cr3 & CR3_RESEVED_BITS) {
  510. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  511. inject_gp(vcpu);
  512. return;
  513. }
  514. if (is_paging(vcpu) && is_pae(vcpu) &&
  515. !load_pdptrs(vcpu, cr3)) {
  516. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  517. "reserved bits\n");
  518. inject_gp(vcpu);
  519. return;
  520. }
  521. }
  522. vcpu->cr3 = cr3;
  523. spin_lock(&vcpu->kvm->lock);
  524. /*
  525. * Does the new cr3 value map to physical memory? (Note, we
  526. * catch an invalid cr3 even in real-mode, because it would
  527. * cause trouble later on when we turn on paging anyway.)
  528. *
  529. * A real CPU would silently accept an invalid cr3 and would
  530. * attempt to use it - with largely undefined (and often hard
  531. * to debug) behavior on the guest side.
  532. */
  533. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  534. inject_gp(vcpu);
  535. else
  536. vcpu->mmu.new_cr3(vcpu);
  537. spin_unlock(&vcpu->kvm->lock);
  538. }
  539. EXPORT_SYMBOL_GPL(set_cr3);
  540. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  541. {
  542. if ( cr8 & CR8_RESEVED_BITS) {
  543. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  544. inject_gp(vcpu);
  545. return;
  546. }
  547. vcpu->cr8 = cr8;
  548. }
  549. EXPORT_SYMBOL_GPL(set_cr8);
  550. void fx_init(struct kvm_vcpu *vcpu)
  551. {
  552. struct __attribute__ ((__packed__)) fx_image_s {
  553. u16 control; //fcw
  554. u16 status; //fsw
  555. u16 tag; // ftw
  556. u16 opcode; //fop
  557. u64 ip; // fpu ip
  558. u64 operand;// fpu dp
  559. u32 mxcsr;
  560. u32 mxcsr_mask;
  561. } *fx_image;
  562. fx_save(vcpu->host_fx_image);
  563. fpu_init();
  564. fx_save(vcpu->guest_fx_image);
  565. fx_restore(vcpu->host_fx_image);
  566. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  567. fx_image->mxcsr = 0x1f80;
  568. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  569. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  570. }
  571. EXPORT_SYMBOL_GPL(fx_init);
  572. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  573. {
  574. spin_lock(&vcpu->kvm->lock);
  575. kvm_mmu_slot_remove_write_access(vcpu, slot);
  576. spin_unlock(&vcpu->kvm->lock);
  577. }
  578. /*
  579. * Allocate some memory and give it an address in the guest physical address
  580. * space.
  581. *
  582. * Discontiguous memory is allowed, mostly for framebuffers.
  583. */
  584. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  585. struct kvm_memory_region *mem)
  586. {
  587. int r;
  588. gfn_t base_gfn;
  589. unsigned long npages;
  590. unsigned long i;
  591. struct kvm_memory_slot *memslot;
  592. struct kvm_memory_slot old, new;
  593. int memory_config_version;
  594. r = -EINVAL;
  595. /* General sanity checks */
  596. if (mem->memory_size & (PAGE_SIZE - 1))
  597. goto out;
  598. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  599. goto out;
  600. if (mem->slot >= KVM_MEMORY_SLOTS)
  601. goto out;
  602. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  603. goto out;
  604. memslot = &kvm->memslots[mem->slot];
  605. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  606. npages = mem->memory_size >> PAGE_SHIFT;
  607. if (!npages)
  608. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  609. raced:
  610. spin_lock(&kvm->lock);
  611. memory_config_version = kvm->memory_config_version;
  612. new = old = *memslot;
  613. new.base_gfn = base_gfn;
  614. new.npages = npages;
  615. new.flags = mem->flags;
  616. /* Disallow changing a memory slot's size. */
  617. r = -EINVAL;
  618. if (npages && old.npages && npages != old.npages)
  619. goto out_unlock;
  620. /* Check for overlaps */
  621. r = -EEXIST;
  622. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  623. struct kvm_memory_slot *s = &kvm->memslots[i];
  624. if (s == memslot)
  625. continue;
  626. if (!((base_gfn + npages <= s->base_gfn) ||
  627. (base_gfn >= s->base_gfn + s->npages)))
  628. goto out_unlock;
  629. }
  630. /*
  631. * Do memory allocations outside lock. memory_config_version will
  632. * detect any races.
  633. */
  634. spin_unlock(&kvm->lock);
  635. /* Deallocate if slot is being removed */
  636. if (!npages)
  637. new.phys_mem = NULL;
  638. /* Free page dirty bitmap if unneeded */
  639. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  640. new.dirty_bitmap = NULL;
  641. r = -ENOMEM;
  642. /* Allocate if a slot is being created */
  643. if (npages && !new.phys_mem) {
  644. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  645. if (!new.phys_mem)
  646. goto out_free;
  647. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  648. for (i = 0; i < npages; ++i) {
  649. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  650. | __GFP_ZERO);
  651. if (!new.phys_mem[i])
  652. goto out_free;
  653. set_page_private(new.phys_mem[i],0);
  654. }
  655. }
  656. /* Allocate page dirty bitmap if needed */
  657. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  658. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  659. new.dirty_bitmap = vmalloc(dirty_bytes);
  660. if (!new.dirty_bitmap)
  661. goto out_free;
  662. memset(new.dirty_bitmap, 0, dirty_bytes);
  663. }
  664. spin_lock(&kvm->lock);
  665. if (memory_config_version != kvm->memory_config_version) {
  666. spin_unlock(&kvm->lock);
  667. kvm_free_physmem_slot(&new, &old);
  668. goto raced;
  669. }
  670. r = -EAGAIN;
  671. if (kvm->busy)
  672. goto out_unlock;
  673. if (mem->slot >= kvm->nmemslots)
  674. kvm->nmemslots = mem->slot + 1;
  675. *memslot = new;
  676. ++kvm->memory_config_version;
  677. spin_unlock(&kvm->lock);
  678. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  679. struct kvm_vcpu *vcpu;
  680. vcpu = vcpu_load_slot(kvm, i);
  681. if (!vcpu)
  682. continue;
  683. if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
  684. do_remove_write_access(vcpu, mem->slot);
  685. kvm_mmu_reset_context(vcpu);
  686. vcpu_put(vcpu);
  687. }
  688. kvm_free_physmem_slot(&old, &new);
  689. return 0;
  690. out_unlock:
  691. spin_unlock(&kvm->lock);
  692. out_free:
  693. kvm_free_physmem_slot(&new, &old);
  694. out:
  695. return r;
  696. }
  697. /*
  698. * Get (and clear) the dirty memory log for a memory slot.
  699. */
  700. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  701. struct kvm_dirty_log *log)
  702. {
  703. struct kvm_memory_slot *memslot;
  704. int r, i;
  705. int n;
  706. int cleared;
  707. unsigned long any = 0;
  708. spin_lock(&kvm->lock);
  709. /*
  710. * Prevent changes to guest memory configuration even while the lock
  711. * is not taken.
  712. */
  713. ++kvm->busy;
  714. spin_unlock(&kvm->lock);
  715. r = -EINVAL;
  716. if (log->slot >= KVM_MEMORY_SLOTS)
  717. goto out;
  718. memslot = &kvm->memslots[log->slot];
  719. r = -ENOENT;
  720. if (!memslot->dirty_bitmap)
  721. goto out;
  722. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  723. for (i = 0; !any && i < n/sizeof(long); ++i)
  724. any = memslot->dirty_bitmap[i];
  725. r = -EFAULT;
  726. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  727. goto out;
  728. if (any) {
  729. cleared = 0;
  730. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  731. struct kvm_vcpu *vcpu;
  732. vcpu = vcpu_load_slot(kvm, i);
  733. if (!vcpu)
  734. continue;
  735. if (!cleared) {
  736. do_remove_write_access(vcpu, log->slot);
  737. memset(memslot->dirty_bitmap, 0, n);
  738. cleared = 1;
  739. }
  740. kvm_arch_ops->tlb_flush(vcpu);
  741. vcpu_put(vcpu);
  742. }
  743. }
  744. r = 0;
  745. out:
  746. spin_lock(&kvm->lock);
  747. --kvm->busy;
  748. spin_unlock(&kvm->lock);
  749. return r;
  750. }
  751. /*
  752. * Set a new alias region. Aliases map a portion of physical memory into
  753. * another portion. This is useful for memory windows, for example the PC
  754. * VGA region.
  755. */
  756. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  757. struct kvm_memory_alias *alias)
  758. {
  759. int r, n;
  760. struct kvm_mem_alias *p;
  761. r = -EINVAL;
  762. /* General sanity checks */
  763. if (alias->memory_size & (PAGE_SIZE - 1))
  764. goto out;
  765. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  766. goto out;
  767. if (alias->slot >= KVM_ALIAS_SLOTS)
  768. goto out;
  769. if (alias->guest_phys_addr + alias->memory_size
  770. < alias->guest_phys_addr)
  771. goto out;
  772. if (alias->target_phys_addr + alias->memory_size
  773. < alias->target_phys_addr)
  774. goto out;
  775. spin_lock(&kvm->lock);
  776. p = &kvm->aliases[alias->slot];
  777. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  778. p->npages = alias->memory_size >> PAGE_SHIFT;
  779. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  780. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  781. if (kvm->aliases[n - 1].npages)
  782. break;
  783. kvm->naliases = n;
  784. spin_unlock(&kvm->lock);
  785. vcpu_load(&kvm->vcpus[0]);
  786. spin_lock(&kvm->lock);
  787. kvm_mmu_zap_all(&kvm->vcpus[0]);
  788. spin_unlock(&kvm->lock);
  789. vcpu_put(&kvm->vcpus[0]);
  790. return 0;
  791. out:
  792. return r;
  793. }
  794. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  795. {
  796. int i;
  797. struct kvm_mem_alias *alias;
  798. for (i = 0; i < kvm->naliases; ++i) {
  799. alias = &kvm->aliases[i];
  800. if (gfn >= alias->base_gfn
  801. && gfn < alias->base_gfn + alias->npages)
  802. return alias->target_gfn + gfn - alias->base_gfn;
  803. }
  804. return gfn;
  805. }
  806. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  807. {
  808. int i;
  809. for (i = 0; i < kvm->nmemslots; ++i) {
  810. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  811. if (gfn >= memslot->base_gfn
  812. && gfn < memslot->base_gfn + memslot->npages)
  813. return memslot;
  814. }
  815. return NULL;
  816. }
  817. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  818. {
  819. gfn = unalias_gfn(kvm, gfn);
  820. return __gfn_to_memslot(kvm, gfn);
  821. }
  822. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  823. {
  824. struct kvm_memory_slot *slot;
  825. gfn = unalias_gfn(kvm, gfn);
  826. slot = __gfn_to_memslot(kvm, gfn);
  827. if (!slot)
  828. return NULL;
  829. return slot->phys_mem[gfn - slot->base_gfn];
  830. }
  831. EXPORT_SYMBOL_GPL(gfn_to_page);
  832. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  833. {
  834. int i;
  835. struct kvm_memory_slot *memslot;
  836. unsigned long rel_gfn;
  837. for (i = 0; i < kvm->nmemslots; ++i) {
  838. memslot = &kvm->memslots[i];
  839. if (gfn >= memslot->base_gfn
  840. && gfn < memslot->base_gfn + memslot->npages) {
  841. if (!memslot->dirty_bitmap)
  842. return;
  843. rel_gfn = gfn - memslot->base_gfn;
  844. /* avoid RMW */
  845. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  846. set_bit(rel_gfn, memslot->dirty_bitmap);
  847. return;
  848. }
  849. }
  850. }
  851. static int emulator_read_std(unsigned long addr,
  852. void *val,
  853. unsigned int bytes,
  854. struct x86_emulate_ctxt *ctxt)
  855. {
  856. struct kvm_vcpu *vcpu = ctxt->vcpu;
  857. void *data = val;
  858. while (bytes) {
  859. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  860. unsigned offset = addr & (PAGE_SIZE-1);
  861. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  862. unsigned long pfn;
  863. struct page *page;
  864. void *page_virt;
  865. if (gpa == UNMAPPED_GVA)
  866. return X86EMUL_PROPAGATE_FAULT;
  867. pfn = gpa >> PAGE_SHIFT;
  868. page = gfn_to_page(vcpu->kvm, pfn);
  869. if (!page)
  870. return X86EMUL_UNHANDLEABLE;
  871. page_virt = kmap_atomic(page, KM_USER0);
  872. memcpy(data, page_virt + offset, tocopy);
  873. kunmap_atomic(page_virt, KM_USER0);
  874. bytes -= tocopy;
  875. data += tocopy;
  876. addr += tocopy;
  877. }
  878. return X86EMUL_CONTINUE;
  879. }
  880. static int emulator_write_std(unsigned long addr,
  881. const void *val,
  882. unsigned int bytes,
  883. struct x86_emulate_ctxt *ctxt)
  884. {
  885. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  886. addr, bytes);
  887. return X86EMUL_UNHANDLEABLE;
  888. }
  889. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  890. gpa_t addr)
  891. {
  892. /*
  893. * Note that its important to have this wrapper function because
  894. * in the very near future we will be checking for MMIOs against
  895. * the LAPIC as well as the general MMIO bus
  896. */
  897. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  898. }
  899. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  900. gpa_t addr)
  901. {
  902. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  903. }
  904. static int emulator_read_emulated(unsigned long addr,
  905. void *val,
  906. unsigned int bytes,
  907. struct x86_emulate_ctxt *ctxt)
  908. {
  909. struct kvm_vcpu *vcpu = ctxt->vcpu;
  910. struct kvm_io_device *mmio_dev;
  911. gpa_t gpa;
  912. if (vcpu->mmio_read_completed) {
  913. memcpy(val, vcpu->mmio_data, bytes);
  914. vcpu->mmio_read_completed = 0;
  915. return X86EMUL_CONTINUE;
  916. } else if (emulator_read_std(addr, val, bytes, ctxt)
  917. == X86EMUL_CONTINUE)
  918. return X86EMUL_CONTINUE;
  919. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  920. if (gpa == UNMAPPED_GVA)
  921. return X86EMUL_PROPAGATE_FAULT;
  922. /*
  923. * Is this MMIO handled locally?
  924. */
  925. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  926. if (mmio_dev) {
  927. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  928. return X86EMUL_CONTINUE;
  929. }
  930. vcpu->mmio_needed = 1;
  931. vcpu->mmio_phys_addr = gpa;
  932. vcpu->mmio_size = bytes;
  933. vcpu->mmio_is_write = 0;
  934. return X86EMUL_UNHANDLEABLE;
  935. }
  936. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  937. const void *val, int bytes)
  938. {
  939. struct page *page;
  940. void *virt;
  941. unsigned offset = offset_in_page(gpa);
  942. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  943. return 0;
  944. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  945. if (!page)
  946. return 0;
  947. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  948. virt = kmap_atomic(page, KM_USER0);
  949. if (memcmp(virt + offset_in_page(gpa), val, bytes)) {
  950. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  951. memcpy(virt + offset_in_page(gpa), val, bytes);
  952. }
  953. kunmap_atomic(virt, KM_USER0);
  954. return 1;
  955. }
  956. static int emulator_write_emulated(unsigned long addr,
  957. const void *val,
  958. unsigned int bytes,
  959. struct x86_emulate_ctxt *ctxt)
  960. {
  961. struct kvm_vcpu *vcpu = ctxt->vcpu;
  962. struct kvm_io_device *mmio_dev;
  963. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  964. if (gpa == UNMAPPED_GVA) {
  965. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  966. return X86EMUL_PROPAGATE_FAULT;
  967. }
  968. if (emulator_write_phys(vcpu, gpa, val, bytes))
  969. return X86EMUL_CONTINUE;
  970. /*
  971. * Is this MMIO handled locally?
  972. */
  973. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  974. if (mmio_dev) {
  975. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  976. return X86EMUL_CONTINUE;
  977. }
  978. vcpu->mmio_needed = 1;
  979. vcpu->mmio_phys_addr = gpa;
  980. vcpu->mmio_size = bytes;
  981. vcpu->mmio_is_write = 1;
  982. memcpy(vcpu->mmio_data, val, bytes);
  983. return X86EMUL_CONTINUE;
  984. }
  985. static int emulator_cmpxchg_emulated(unsigned long addr,
  986. const void *old,
  987. const void *new,
  988. unsigned int bytes,
  989. struct x86_emulate_ctxt *ctxt)
  990. {
  991. static int reported;
  992. if (!reported) {
  993. reported = 1;
  994. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  995. }
  996. return emulator_write_emulated(addr, new, bytes, ctxt);
  997. }
  998. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  999. {
  1000. return kvm_arch_ops->get_segment_base(vcpu, seg);
  1001. }
  1002. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1003. {
  1004. return X86EMUL_CONTINUE;
  1005. }
  1006. int emulate_clts(struct kvm_vcpu *vcpu)
  1007. {
  1008. unsigned long cr0;
  1009. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  1010. kvm_arch_ops->set_cr0(vcpu, cr0);
  1011. return X86EMUL_CONTINUE;
  1012. }
  1013. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1014. {
  1015. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1016. switch (dr) {
  1017. case 0 ... 3:
  1018. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1019. return X86EMUL_CONTINUE;
  1020. default:
  1021. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  1022. __FUNCTION__, dr);
  1023. return X86EMUL_UNHANDLEABLE;
  1024. }
  1025. }
  1026. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1027. {
  1028. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1029. int exception;
  1030. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1031. if (exception) {
  1032. /* FIXME: better handling */
  1033. return X86EMUL_UNHANDLEABLE;
  1034. }
  1035. return X86EMUL_CONTINUE;
  1036. }
  1037. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1038. {
  1039. static int reported;
  1040. u8 opcodes[4];
  1041. unsigned long rip = ctxt->vcpu->rip;
  1042. unsigned long rip_linear;
  1043. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1044. if (reported)
  1045. return;
  1046. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1047. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1048. " rip %lx %02x %02x %02x %02x\n",
  1049. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1050. reported = 1;
  1051. }
  1052. struct x86_emulate_ops emulate_ops = {
  1053. .read_std = emulator_read_std,
  1054. .write_std = emulator_write_std,
  1055. .read_emulated = emulator_read_emulated,
  1056. .write_emulated = emulator_write_emulated,
  1057. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1058. };
  1059. int emulate_instruction(struct kvm_vcpu *vcpu,
  1060. struct kvm_run *run,
  1061. unsigned long cr2,
  1062. u16 error_code)
  1063. {
  1064. struct x86_emulate_ctxt emulate_ctxt;
  1065. int r;
  1066. int cs_db, cs_l;
  1067. vcpu->mmio_fault_cr2 = cr2;
  1068. kvm_arch_ops->cache_regs(vcpu);
  1069. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1070. emulate_ctxt.vcpu = vcpu;
  1071. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1072. emulate_ctxt.cr2 = cr2;
  1073. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1074. ? X86EMUL_MODE_REAL : cs_l
  1075. ? X86EMUL_MODE_PROT64 : cs_db
  1076. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1077. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1078. emulate_ctxt.cs_base = 0;
  1079. emulate_ctxt.ds_base = 0;
  1080. emulate_ctxt.es_base = 0;
  1081. emulate_ctxt.ss_base = 0;
  1082. } else {
  1083. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1084. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1085. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1086. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1087. }
  1088. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1089. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1090. vcpu->mmio_is_write = 0;
  1091. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1092. if ((r || vcpu->mmio_is_write) && run) {
  1093. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1094. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1095. run->mmio.len = vcpu->mmio_size;
  1096. run->mmio.is_write = vcpu->mmio_is_write;
  1097. }
  1098. if (r) {
  1099. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1100. return EMULATE_DONE;
  1101. if (!vcpu->mmio_needed) {
  1102. report_emulation_failure(&emulate_ctxt);
  1103. return EMULATE_FAIL;
  1104. }
  1105. return EMULATE_DO_MMIO;
  1106. }
  1107. kvm_arch_ops->decache_regs(vcpu);
  1108. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1109. if (vcpu->mmio_is_write) {
  1110. vcpu->mmio_needed = 0;
  1111. return EMULATE_DO_MMIO;
  1112. }
  1113. return EMULATE_DONE;
  1114. }
  1115. EXPORT_SYMBOL_GPL(emulate_instruction);
  1116. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1117. {
  1118. if (vcpu->irq_summary)
  1119. return 1;
  1120. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1121. ++vcpu->stat.halt_exits;
  1122. return 0;
  1123. }
  1124. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1125. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1126. {
  1127. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1128. kvm_arch_ops->cache_regs(vcpu);
  1129. ret = -KVM_EINVAL;
  1130. #ifdef CONFIG_X86_64
  1131. if (is_long_mode(vcpu)) {
  1132. nr = vcpu->regs[VCPU_REGS_RAX];
  1133. a0 = vcpu->regs[VCPU_REGS_RDI];
  1134. a1 = vcpu->regs[VCPU_REGS_RSI];
  1135. a2 = vcpu->regs[VCPU_REGS_RDX];
  1136. a3 = vcpu->regs[VCPU_REGS_RCX];
  1137. a4 = vcpu->regs[VCPU_REGS_R8];
  1138. a5 = vcpu->regs[VCPU_REGS_R9];
  1139. } else
  1140. #endif
  1141. {
  1142. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1143. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1144. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1145. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1146. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1147. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1148. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1149. }
  1150. switch (nr) {
  1151. default:
  1152. run->hypercall.args[0] = a0;
  1153. run->hypercall.args[1] = a1;
  1154. run->hypercall.args[2] = a2;
  1155. run->hypercall.args[3] = a3;
  1156. run->hypercall.args[4] = a4;
  1157. run->hypercall.args[5] = a5;
  1158. run->hypercall.ret = ret;
  1159. run->hypercall.longmode = is_long_mode(vcpu);
  1160. kvm_arch_ops->decache_regs(vcpu);
  1161. return 0;
  1162. }
  1163. vcpu->regs[VCPU_REGS_RAX] = ret;
  1164. kvm_arch_ops->decache_regs(vcpu);
  1165. return 1;
  1166. }
  1167. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1168. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1169. {
  1170. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1171. }
  1172. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1173. {
  1174. struct descriptor_table dt = { limit, base };
  1175. kvm_arch_ops->set_gdt(vcpu, &dt);
  1176. }
  1177. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1178. {
  1179. struct descriptor_table dt = { limit, base };
  1180. kvm_arch_ops->set_idt(vcpu, &dt);
  1181. }
  1182. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1183. unsigned long *rflags)
  1184. {
  1185. lmsw(vcpu, msw);
  1186. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1187. }
  1188. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1189. {
  1190. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1191. switch (cr) {
  1192. case 0:
  1193. return vcpu->cr0;
  1194. case 2:
  1195. return vcpu->cr2;
  1196. case 3:
  1197. return vcpu->cr3;
  1198. case 4:
  1199. return vcpu->cr4;
  1200. default:
  1201. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1202. return 0;
  1203. }
  1204. }
  1205. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1206. unsigned long *rflags)
  1207. {
  1208. switch (cr) {
  1209. case 0:
  1210. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1211. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1212. break;
  1213. case 2:
  1214. vcpu->cr2 = val;
  1215. break;
  1216. case 3:
  1217. set_cr3(vcpu, val);
  1218. break;
  1219. case 4:
  1220. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1221. break;
  1222. default:
  1223. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1224. }
  1225. }
  1226. /*
  1227. * Register the para guest with the host:
  1228. */
  1229. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1230. {
  1231. struct kvm_vcpu_para_state *para_state;
  1232. hpa_t para_state_hpa, hypercall_hpa;
  1233. struct page *para_state_page;
  1234. unsigned char *hypercall;
  1235. gpa_t hypercall_gpa;
  1236. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1237. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1238. /*
  1239. * Needs to be page aligned:
  1240. */
  1241. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1242. goto err_gp;
  1243. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1244. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1245. if (is_error_hpa(para_state_hpa))
  1246. goto err_gp;
  1247. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1248. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1249. para_state = kmap_atomic(para_state_page, KM_USER0);
  1250. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1251. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1252. para_state->host_version = KVM_PARA_API_VERSION;
  1253. /*
  1254. * We cannot support guests that try to register themselves
  1255. * with a newer API version than the host supports:
  1256. */
  1257. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1258. para_state->ret = -KVM_EINVAL;
  1259. goto err_kunmap_skip;
  1260. }
  1261. hypercall_gpa = para_state->hypercall_gpa;
  1262. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1263. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1264. if (is_error_hpa(hypercall_hpa)) {
  1265. para_state->ret = -KVM_EINVAL;
  1266. goto err_kunmap_skip;
  1267. }
  1268. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1269. vcpu->para_state_page = para_state_page;
  1270. vcpu->para_state_gpa = para_state_gpa;
  1271. vcpu->hypercall_gpa = hypercall_gpa;
  1272. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1273. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1274. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1275. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1276. kunmap_atomic(hypercall, KM_USER1);
  1277. para_state->ret = 0;
  1278. err_kunmap_skip:
  1279. kunmap_atomic(para_state, KM_USER0);
  1280. return 0;
  1281. err_gp:
  1282. return 1;
  1283. }
  1284. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1285. {
  1286. u64 data;
  1287. switch (msr) {
  1288. case 0xc0010010: /* SYSCFG */
  1289. case 0xc0010015: /* HWCR */
  1290. case MSR_IA32_PLATFORM_ID:
  1291. case MSR_IA32_P5_MC_ADDR:
  1292. case MSR_IA32_P5_MC_TYPE:
  1293. case MSR_IA32_MC0_CTL:
  1294. case MSR_IA32_MCG_STATUS:
  1295. case MSR_IA32_MCG_CAP:
  1296. case MSR_IA32_MC0_MISC:
  1297. case MSR_IA32_MC0_MISC+4:
  1298. case MSR_IA32_MC0_MISC+8:
  1299. case MSR_IA32_MC0_MISC+12:
  1300. case MSR_IA32_MC0_MISC+16:
  1301. case MSR_IA32_UCODE_REV:
  1302. case MSR_IA32_PERF_STATUS:
  1303. case MSR_IA32_EBL_CR_POWERON:
  1304. /* MTRR registers */
  1305. case 0xfe:
  1306. case 0x200 ... 0x2ff:
  1307. data = 0;
  1308. break;
  1309. case 0xcd: /* fsb frequency */
  1310. data = 3;
  1311. break;
  1312. case MSR_IA32_APICBASE:
  1313. data = vcpu->apic_base;
  1314. break;
  1315. case MSR_IA32_MISC_ENABLE:
  1316. data = vcpu->ia32_misc_enable_msr;
  1317. break;
  1318. #ifdef CONFIG_X86_64
  1319. case MSR_EFER:
  1320. data = vcpu->shadow_efer;
  1321. break;
  1322. #endif
  1323. default:
  1324. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1325. return 1;
  1326. }
  1327. *pdata = data;
  1328. return 0;
  1329. }
  1330. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1331. /*
  1332. * Reads an msr value (of 'msr_index') into 'pdata'.
  1333. * Returns 0 on success, non-0 otherwise.
  1334. * Assumes vcpu_load() was already called.
  1335. */
  1336. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1337. {
  1338. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1339. }
  1340. #ifdef CONFIG_X86_64
  1341. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1342. {
  1343. if (efer & EFER_RESERVED_BITS) {
  1344. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1345. efer);
  1346. inject_gp(vcpu);
  1347. return;
  1348. }
  1349. if (is_paging(vcpu)
  1350. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1351. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1352. inject_gp(vcpu);
  1353. return;
  1354. }
  1355. kvm_arch_ops->set_efer(vcpu, efer);
  1356. efer &= ~EFER_LMA;
  1357. efer |= vcpu->shadow_efer & EFER_LMA;
  1358. vcpu->shadow_efer = efer;
  1359. }
  1360. #endif
  1361. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1362. {
  1363. switch (msr) {
  1364. #ifdef CONFIG_X86_64
  1365. case MSR_EFER:
  1366. set_efer(vcpu, data);
  1367. break;
  1368. #endif
  1369. case MSR_IA32_MC0_STATUS:
  1370. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1371. __FUNCTION__, data);
  1372. break;
  1373. case MSR_IA32_MCG_STATUS:
  1374. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1375. __FUNCTION__, data);
  1376. break;
  1377. case MSR_IA32_UCODE_REV:
  1378. case MSR_IA32_UCODE_WRITE:
  1379. case 0x200 ... 0x2ff: /* MTRRs */
  1380. break;
  1381. case MSR_IA32_APICBASE:
  1382. vcpu->apic_base = data;
  1383. break;
  1384. case MSR_IA32_MISC_ENABLE:
  1385. vcpu->ia32_misc_enable_msr = data;
  1386. break;
  1387. /*
  1388. * This is the 'probe whether the host is KVM' logic:
  1389. */
  1390. case MSR_KVM_API_MAGIC:
  1391. return vcpu_register_para(vcpu, data);
  1392. default:
  1393. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1394. return 1;
  1395. }
  1396. return 0;
  1397. }
  1398. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1399. /*
  1400. * Writes msr value into into the appropriate "register".
  1401. * Returns 0 on success, non-0 otherwise.
  1402. * Assumes vcpu_load() was already called.
  1403. */
  1404. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1405. {
  1406. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1407. }
  1408. void kvm_resched(struct kvm_vcpu *vcpu)
  1409. {
  1410. if (!need_resched())
  1411. return;
  1412. vcpu_put(vcpu);
  1413. cond_resched();
  1414. vcpu_load(vcpu);
  1415. }
  1416. EXPORT_SYMBOL_GPL(kvm_resched);
  1417. void load_msrs(struct vmx_msr_entry *e, int n)
  1418. {
  1419. int i;
  1420. for (i = 0; i < n; ++i)
  1421. wrmsrl(e[i].index, e[i].data);
  1422. }
  1423. EXPORT_SYMBOL_GPL(load_msrs);
  1424. void save_msrs(struct vmx_msr_entry *e, int n)
  1425. {
  1426. int i;
  1427. for (i = 0; i < n; ++i)
  1428. rdmsrl(e[i].index, e[i].data);
  1429. }
  1430. EXPORT_SYMBOL_GPL(save_msrs);
  1431. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1432. {
  1433. int i;
  1434. u32 function;
  1435. struct kvm_cpuid_entry *e, *best;
  1436. kvm_arch_ops->cache_regs(vcpu);
  1437. function = vcpu->regs[VCPU_REGS_RAX];
  1438. vcpu->regs[VCPU_REGS_RAX] = 0;
  1439. vcpu->regs[VCPU_REGS_RBX] = 0;
  1440. vcpu->regs[VCPU_REGS_RCX] = 0;
  1441. vcpu->regs[VCPU_REGS_RDX] = 0;
  1442. best = NULL;
  1443. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1444. e = &vcpu->cpuid_entries[i];
  1445. if (e->function == function) {
  1446. best = e;
  1447. break;
  1448. }
  1449. /*
  1450. * Both basic or both extended?
  1451. */
  1452. if (((e->function ^ function) & 0x80000000) == 0)
  1453. if (!best || e->function > best->function)
  1454. best = e;
  1455. }
  1456. if (best) {
  1457. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1458. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1459. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1460. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1461. }
  1462. kvm_arch_ops->decache_regs(vcpu);
  1463. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1464. }
  1465. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1466. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1467. {
  1468. void *p = vcpu->pio_data;
  1469. void *q;
  1470. unsigned bytes;
  1471. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1472. kvm_arch_ops->vcpu_put(vcpu);
  1473. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1474. PAGE_KERNEL);
  1475. if (!q) {
  1476. kvm_arch_ops->vcpu_load(vcpu);
  1477. free_pio_guest_pages(vcpu);
  1478. return -ENOMEM;
  1479. }
  1480. q += vcpu->pio.guest_page_offset;
  1481. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1482. if (vcpu->pio.in)
  1483. memcpy(q, p, bytes);
  1484. else
  1485. memcpy(p, q, bytes);
  1486. q -= vcpu->pio.guest_page_offset;
  1487. vunmap(q);
  1488. kvm_arch_ops->vcpu_load(vcpu);
  1489. free_pio_guest_pages(vcpu);
  1490. return 0;
  1491. }
  1492. static int complete_pio(struct kvm_vcpu *vcpu)
  1493. {
  1494. struct kvm_pio_request *io = &vcpu->pio;
  1495. long delta;
  1496. int r;
  1497. kvm_arch_ops->cache_regs(vcpu);
  1498. if (!io->string) {
  1499. if (io->in)
  1500. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1501. io->size);
  1502. } else {
  1503. if (io->in) {
  1504. r = pio_copy_data(vcpu);
  1505. if (r) {
  1506. kvm_arch_ops->cache_regs(vcpu);
  1507. return r;
  1508. }
  1509. }
  1510. delta = 1;
  1511. if (io->rep) {
  1512. delta *= io->cur_count;
  1513. /*
  1514. * The size of the register should really depend on
  1515. * current address size.
  1516. */
  1517. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1518. }
  1519. if (io->down)
  1520. delta = -delta;
  1521. delta *= io->size;
  1522. if (io->in)
  1523. vcpu->regs[VCPU_REGS_RDI] += delta;
  1524. else
  1525. vcpu->regs[VCPU_REGS_RSI] += delta;
  1526. }
  1527. kvm_arch_ops->decache_regs(vcpu);
  1528. io->count -= io->cur_count;
  1529. io->cur_count = 0;
  1530. if (!io->count)
  1531. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1532. return 0;
  1533. }
  1534. void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
  1535. {
  1536. /* TODO: String I/O for in kernel device */
  1537. if (vcpu->pio.in)
  1538. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1539. vcpu->pio.size,
  1540. vcpu->pio_data);
  1541. else
  1542. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1543. vcpu->pio.size,
  1544. vcpu->pio_data);
  1545. }
  1546. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1547. int size, unsigned long count, int string, int down,
  1548. gva_t address, int rep, unsigned port)
  1549. {
  1550. unsigned now, in_page;
  1551. int i;
  1552. int nr_pages = 1;
  1553. struct page *page;
  1554. struct kvm_io_device *pio_dev;
  1555. vcpu->run->exit_reason = KVM_EXIT_IO;
  1556. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1557. vcpu->run->io.size = size;
  1558. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1559. vcpu->run->io.count = count;
  1560. vcpu->run->io.port = port;
  1561. vcpu->pio.count = count;
  1562. vcpu->pio.cur_count = count;
  1563. vcpu->pio.size = size;
  1564. vcpu->pio.in = in;
  1565. vcpu->pio.port = port;
  1566. vcpu->pio.string = string;
  1567. vcpu->pio.down = down;
  1568. vcpu->pio.guest_page_offset = offset_in_page(address);
  1569. vcpu->pio.rep = rep;
  1570. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1571. if (!string) {
  1572. kvm_arch_ops->cache_regs(vcpu);
  1573. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1574. kvm_arch_ops->decache_regs(vcpu);
  1575. if (pio_dev) {
  1576. kernel_pio(pio_dev, vcpu);
  1577. complete_pio(vcpu);
  1578. return 1;
  1579. }
  1580. return 0;
  1581. }
  1582. /* TODO: String I/O for in kernel device */
  1583. if (pio_dev)
  1584. printk(KERN_ERR "kvm_setup_pio: no string io support\n");
  1585. if (!count) {
  1586. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1587. return 1;
  1588. }
  1589. now = min(count, PAGE_SIZE / size);
  1590. if (!down)
  1591. in_page = PAGE_SIZE - offset_in_page(address);
  1592. else
  1593. in_page = offset_in_page(address) + size;
  1594. now = min(count, (unsigned long)in_page / size);
  1595. if (!now) {
  1596. /*
  1597. * String I/O straddles page boundary. Pin two guest pages
  1598. * so that we satisfy atomicity constraints. Do just one
  1599. * transaction to avoid complexity.
  1600. */
  1601. nr_pages = 2;
  1602. now = 1;
  1603. }
  1604. if (down) {
  1605. /*
  1606. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1607. */
  1608. printk(KERN_ERR "kvm: guest string pio down\n");
  1609. inject_gp(vcpu);
  1610. return 1;
  1611. }
  1612. vcpu->run->io.count = now;
  1613. vcpu->pio.cur_count = now;
  1614. for (i = 0; i < nr_pages; ++i) {
  1615. spin_lock(&vcpu->kvm->lock);
  1616. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1617. if (page)
  1618. get_page(page);
  1619. vcpu->pio.guest_pages[i] = page;
  1620. spin_unlock(&vcpu->kvm->lock);
  1621. if (!page) {
  1622. inject_gp(vcpu);
  1623. free_pio_guest_pages(vcpu);
  1624. return 1;
  1625. }
  1626. }
  1627. if (!vcpu->pio.in)
  1628. return pio_copy_data(vcpu);
  1629. return 0;
  1630. }
  1631. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1632. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1633. {
  1634. int r;
  1635. sigset_t sigsaved;
  1636. vcpu_load(vcpu);
  1637. if (vcpu->sigset_active)
  1638. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1639. /* re-sync apic's tpr */
  1640. vcpu->cr8 = kvm_run->cr8;
  1641. if (vcpu->pio.cur_count) {
  1642. r = complete_pio(vcpu);
  1643. if (r)
  1644. goto out;
  1645. }
  1646. if (vcpu->mmio_needed) {
  1647. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1648. vcpu->mmio_read_completed = 1;
  1649. vcpu->mmio_needed = 0;
  1650. r = emulate_instruction(vcpu, kvm_run,
  1651. vcpu->mmio_fault_cr2, 0);
  1652. if (r == EMULATE_DO_MMIO) {
  1653. /*
  1654. * Read-modify-write. Back to userspace.
  1655. */
  1656. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1657. r = 0;
  1658. goto out;
  1659. }
  1660. }
  1661. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1662. kvm_arch_ops->cache_regs(vcpu);
  1663. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1664. kvm_arch_ops->decache_regs(vcpu);
  1665. }
  1666. r = kvm_arch_ops->run(vcpu, kvm_run);
  1667. out:
  1668. if (vcpu->sigset_active)
  1669. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1670. vcpu_put(vcpu);
  1671. return r;
  1672. }
  1673. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1674. struct kvm_regs *regs)
  1675. {
  1676. vcpu_load(vcpu);
  1677. kvm_arch_ops->cache_regs(vcpu);
  1678. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1679. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1680. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1681. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1682. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1683. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1684. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1685. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1686. #ifdef CONFIG_X86_64
  1687. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1688. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1689. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1690. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1691. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1692. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1693. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1694. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1695. #endif
  1696. regs->rip = vcpu->rip;
  1697. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1698. /*
  1699. * Don't leak debug flags in case they were set for guest debugging
  1700. */
  1701. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1702. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1703. vcpu_put(vcpu);
  1704. return 0;
  1705. }
  1706. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1707. struct kvm_regs *regs)
  1708. {
  1709. vcpu_load(vcpu);
  1710. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1711. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1712. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1713. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1714. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1715. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1716. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1717. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1718. #ifdef CONFIG_X86_64
  1719. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1720. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1721. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1722. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1723. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1724. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1725. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1726. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1727. #endif
  1728. vcpu->rip = regs->rip;
  1729. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1730. kvm_arch_ops->decache_regs(vcpu);
  1731. vcpu_put(vcpu);
  1732. return 0;
  1733. }
  1734. static void get_segment(struct kvm_vcpu *vcpu,
  1735. struct kvm_segment *var, int seg)
  1736. {
  1737. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1738. }
  1739. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1740. struct kvm_sregs *sregs)
  1741. {
  1742. struct descriptor_table dt;
  1743. vcpu_load(vcpu);
  1744. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1745. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1746. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1747. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1748. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1749. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1750. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1751. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1752. kvm_arch_ops->get_idt(vcpu, &dt);
  1753. sregs->idt.limit = dt.limit;
  1754. sregs->idt.base = dt.base;
  1755. kvm_arch_ops->get_gdt(vcpu, &dt);
  1756. sregs->gdt.limit = dt.limit;
  1757. sregs->gdt.base = dt.base;
  1758. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1759. sregs->cr0 = vcpu->cr0;
  1760. sregs->cr2 = vcpu->cr2;
  1761. sregs->cr3 = vcpu->cr3;
  1762. sregs->cr4 = vcpu->cr4;
  1763. sregs->cr8 = vcpu->cr8;
  1764. sregs->efer = vcpu->shadow_efer;
  1765. sregs->apic_base = vcpu->apic_base;
  1766. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1767. sizeof sregs->interrupt_bitmap);
  1768. vcpu_put(vcpu);
  1769. return 0;
  1770. }
  1771. static void set_segment(struct kvm_vcpu *vcpu,
  1772. struct kvm_segment *var, int seg)
  1773. {
  1774. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1775. }
  1776. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1777. struct kvm_sregs *sregs)
  1778. {
  1779. int mmu_reset_needed = 0;
  1780. int i;
  1781. struct descriptor_table dt;
  1782. vcpu_load(vcpu);
  1783. dt.limit = sregs->idt.limit;
  1784. dt.base = sregs->idt.base;
  1785. kvm_arch_ops->set_idt(vcpu, &dt);
  1786. dt.limit = sregs->gdt.limit;
  1787. dt.base = sregs->gdt.base;
  1788. kvm_arch_ops->set_gdt(vcpu, &dt);
  1789. vcpu->cr2 = sregs->cr2;
  1790. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1791. vcpu->cr3 = sregs->cr3;
  1792. vcpu->cr8 = sregs->cr8;
  1793. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1794. #ifdef CONFIG_X86_64
  1795. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1796. #endif
  1797. vcpu->apic_base = sregs->apic_base;
  1798. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1799. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1800. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1801. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1802. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1803. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1804. load_pdptrs(vcpu, vcpu->cr3);
  1805. if (mmu_reset_needed)
  1806. kvm_mmu_reset_context(vcpu);
  1807. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1808. sizeof vcpu->irq_pending);
  1809. vcpu->irq_summary = 0;
  1810. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1811. if (vcpu->irq_pending[i])
  1812. __set_bit(i, &vcpu->irq_summary);
  1813. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1814. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1815. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1816. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1817. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1818. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1819. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1820. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1821. vcpu_put(vcpu);
  1822. return 0;
  1823. }
  1824. /*
  1825. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1826. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1827. *
  1828. * This list is modified at module load time to reflect the
  1829. * capabilities of the host cpu.
  1830. */
  1831. static u32 msrs_to_save[] = {
  1832. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1833. MSR_K6_STAR,
  1834. #ifdef CONFIG_X86_64
  1835. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1836. #endif
  1837. MSR_IA32_TIME_STAMP_COUNTER,
  1838. };
  1839. static unsigned num_msrs_to_save;
  1840. static u32 emulated_msrs[] = {
  1841. MSR_IA32_MISC_ENABLE,
  1842. };
  1843. static __init void kvm_init_msr_list(void)
  1844. {
  1845. u32 dummy[2];
  1846. unsigned i, j;
  1847. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1848. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1849. continue;
  1850. if (j < i)
  1851. msrs_to_save[j] = msrs_to_save[i];
  1852. j++;
  1853. }
  1854. num_msrs_to_save = j;
  1855. }
  1856. /*
  1857. * Adapt set_msr() to msr_io()'s calling convention
  1858. */
  1859. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1860. {
  1861. return set_msr(vcpu, index, *data);
  1862. }
  1863. /*
  1864. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1865. *
  1866. * @return number of msrs set successfully.
  1867. */
  1868. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1869. struct kvm_msr_entry *entries,
  1870. int (*do_msr)(struct kvm_vcpu *vcpu,
  1871. unsigned index, u64 *data))
  1872. {
  1873. int i;
  1874. vcpu_load(vcpu);
  1875. for (i = 0; i < msrs->nmsrs; ++i)
  1876. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1877. break;
  1878. vcpu_put(vcpu);
  1879. return i;
  1880. }
  1881. /*
  1882. * Read or write a bunch of msrs. Parameters are user addresses.
  1883. *
  1884. * @return number of msrs set successfully.
  1885. */
  1886. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1887. int (*do_msr)(struct kvm_vcpu *vcpu,
  1888. unsigned index, u64 *data),
  1889. int writeback)
  1890. {
  1891. struct kvm_msrs msrs;
  1892. struct kvm_msr_entry *entries;
  1893. int r, n;
  1894. unsigned size;
  1895. r = -EFAULT;
  1896. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1897. goto out;
  1898. r = -E2BIG;
  1899. if (msrs.nmsrs >= MAX_IO_MSRS)
  1900. goto out;
  1901. r = -ENOMEM;
  1902. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1903. entries = vmalloc(size);
  1904. if (!entries)
  1905. goto out;
  1906. r = -EFAULT;
  1907. if (copy_from_user(entries, user_msrs->entries, size))
  1908. goto out_free;
  1909. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1910. if (r < 0)
  1911. goto out_free;
  1912. r = -EFAULT;
  1913. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1914. goto out_free;
  1915. r = n;
  1916. out_free:
  1917. vfree(entries);
  1918. out:
  1919. return r;
  1920. }
  1921. /*
  1922. * Translate a guest virtual address to a guest physical address.
  1923. */
  1924. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1925. struct kvm_translation *tr)
  1926. {
  1927. unsigned long vaddr = tr->linear_address;
  1928. gpa_t gpa;
  1929. vcpu_load(vcpu);
  1930. spin_lock(&vcpu->kvm->lock);
  1931. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1932. tr->physical_address = gpa;
  1933. tr->valid = gpa != UNMAPPED_GVA;
  1934. tr->writeable = 1;
  1935. tr->usermode = 0;
  1936. spin_unlock(&vcpu->kvm->lock);
  1937. vcpu_put(vcpu);
  1938. return 0;
  1939. }
  1940. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1941. struct kvm_interrupt *irq)
  1942. {
  1943. if (irq->irq < 0 || irq->irq >= 256)
  1944. return -EINVAL;
  1945. vcpu_load(vcpu);
  1946. set_bit(irq->irq, vcpu->irq_pending);
  1947. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1948. vcpu_put(vcpu);
  1949. return 0;
  1950. }
  1951. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1952. struct kvm_debug_guest *dbg)
  1953. {
  1954. int r;
  1955. vcpu_load(vcpu);
  1956. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1957. vcpu_put(vcpu);
  1958. return r;
  1959. }
  1960. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1961. unsigned long address,
  1962. int *type)
  1963. {
  1964. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1965. unsigned long pgoff;
  1966. struct page *page;
  1967. *type = VM_FAULT_MINOR;
  1968. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1969. if (pgoff == 0)
  1970. page = virt_to_page(vcpu->run);
  1971. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1972. page = virt_to_page(vcpu->pio_data);
  1973. else
  1974. return NOPAGE_SIGBUS;
  1975. get_page(page);
  1976. return page;
  1977. }
  1978. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1979. .nopage = kvm_vcpu_nopage,
  1980. };
  1981. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1982. {
  1983. vma->vm_ops = &kvm_vcpu_vm_ops;
  1984. return 0;
  1985. }
  1986. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1987. {
  1988. struct kvm_vcpu *vcpu = filp->private_data;
  1989. fput(vcpu->kvm->filp);
  1990. return 0;
  1991. }
  1992. static struct file_operations kvm_vcpu_fops = {
  1993. .release = kvm_vcpu_release,
  1994. .unlocked_ioctl = kvm_vcpu_ioctl,
  1995. .compat_ioctl = kvm_vcpu_ioctl,
  1996. .mmap = kvm_vcpu_mmap,
  1997. };
  1998. /*
  1999. * Allocates an inode for the vcpu.
  2000. */
  2001. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2002. {
  2003. int fd, r;
  2004. struct inode *inode;
  2005. struct file *file;
  2006. r = anon_inode_getfd(&fd, &inode, &file,
  2007. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2008. if (r)
  2009. return r;
  2010. atomic_inc(&vcpu->kvm->filp->f_count);
  2011. return fd;
  2012. }
  2013. /*
  2014. * Creates some virtual cpus. Good luck creating more than one.
  2015. */
  2016. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2017. {
  2018. int r;
  2019. struct kvm_vcpu *vcpu;
  2020. struct page *page;
  2021. r = -EINVAL;
  2022. if (!valid_vcpu(n))
  2023. goto out;
  2024. vcpu = &kvm->vcpus[n];
  2025. mutex_lock(&vcpu->mutex);
  2026. if (vcpu->vmcs) {
  2027. mutex_unlock(&vcpu->mutex);
  2028. return -EEXIST;
  2029. }
  2030. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2031. r = -ENOMEM;
  2032. if (!page)
  2033. goto out_unlock;
  2034. vcpu->run = page_address(page);
  2035. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2036. r = -ENOMEM;
  2037. if (!page)
  2038. goto out_free_run;
  2039. vcpu->pio_data = page_address(page);
  2040. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2041. FX_IMAGE_ALIGN);
  2042. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2043. vcpu->cr0 = 0x10;
  2044. r = kvm_arch_ops->vcpu_create(vcpu);
  2045. if (r < 0)
  2046. goto out_free_vcpus;
  2047. r = kvm_mmu_create(vcpu);
  2048. if (r < 0)
  2049. goto out_free_vcpus;
  2050. kvm_arch_ops->vcpu_load(vcpu);
  2051. r = kvm_mmu_setup(vcpu);
  2052. if (r >= 0)
  2053. r = kvm_arch_ops->vcpu_setup(vcpu);
  2054. vcpu_put(vcpu);
  2055. if (r < 0)
  2056. goto out_free_vcpus;
  2057. r = create_vcpu_fd(vcpu);
  2058. if (r < 0)
  2059. goto out_free_vcpus;
  2060. spin_lock(&kvm_lock);
  2061. if (n >= kvm->nvcpus)
  2062. kvm->nvcpus = n + 1;
  2063. spin_unlock(&kvm_lock);
  2064. return r;
  2065. out_free_vcpus:
  2066. kvm_free_vcpu(vcpu);
  2067. out_free_run:
  2068. free_page((unsigned long)vcpu->run);
  2069. vcpu->run = NULL;
  2070. out_unlock:
  2071. mutex_unlock(&vcpu->mutex);
  2072. out:
  2073. return r;
  2074. }
  2075. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2076. {
  2077. u64 efer;
  2078. int i;
  2079. struct kvm_cpuid_entry *e, *entry;
  2080. rdmsrl(MSR_EFER, efer);
  2081. entry = NULL;
  2082. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2083. e = &vcpu->cpuid_entries[i];
  2084. if (e->function == 0x80000001) {
  2085. entry = e;
  2086. break;
  2087. }
  2088. }
  2089. if (entry && (entry->edx & EFER_NX) && !(efer & EFER_NX)) {
  2090. entry->edx &= ~(1 << 20);
  2091. printk(KERN_INFO ": guest NX capability removed\n");
  2092. }
  2093. }
  2094. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2095. struct kvm_cpuid *cpuid,
  2096. struct kvm_cpuid_entry __user *entries)
  2097. {
  2098. int r;
  2099. r = -E2BIG;
  2100. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2101. goto out;
  2102. r = -EFAULT;
  2103. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2104. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2105. goto out;
  2106. vcpu->cpuid_nent = cpuid->nent;
  2107. cpuid_fix_nx_cap(vcpu);
  2108. return 0;
  2109. out:
  2110. return r;
  2111. }
  2112. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2113. {
  2114. if (sigset) {
  2115. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2116. vcpu->sigset_active = 1;
  2117. vcpu->sigset = *sigset;
  2118. } else
  2119. vcpu->sigset_active = 0;
  2120. return 0;
  2121. }
  2122. /*
  2123. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2124. * we have asm/x86/processor.h
  2125. */
  2126. struct fxsave {
  2127. u16 cwd;
  2128. u16 swd;
  2129. u16 twd;
  2130. u16 fop;
  2131. u64 rip;
  2132. u64 rdp;
  2133. u32 mxcsr;
  2134. u32 mxcsr_mask;
  2135. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2136. #ifdef CONFIG_X86_64
  2137. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2138. #else
  2139. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2140. #endif
  2141. };
  2142. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2143. {
  2144. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2145. vcpu_load(vcpu);
  2146. memcpy(fpu->fpr, fxsave->st_space, 128);
  2147. fpu->fcw = fxsave->cwd;
  2148. fpu->fsw = fxsave->swd;
  2149. fpu->ftwx = fxsave->twd;
  2150. fpu->last_opcode = fxsave->fop;
  2151. fpu->last_ip = fxsave->rip;
  2152. fpu->last_dp = fxsave->rdp;
  2153. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2154. vcpu_put(vcpu);
  2155. return 0;
  2156. }
  2157. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2158. {
  2159. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2160. vcpu_load(vcpu);
  2161. memcpy(fxsave->st_space, fpu->fpr, 128);
  2162. fxsave->cwd = fpu->fcw;
  2163. fxsave->swd = fpu->fsw;
  2164. fxsave->twd = fpu->ftwx;
  2165. fxsave->fop = fpu->last_opcode;
  2166. fxsave->rip = fpu->last_ip;
  2167. fxsave->rdp = fpu->last_dp;
  2168. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2169. vcpu_put(vcpu);
  2170. return 0;
  2171. }
  2172. static long kvm_vcpu_ioctl(struct file *filp,
  2173. unsigned int ioctl, unsigned long arg)
  2174. {
  2175. struct kvm_vcpu *vcpu = filp->private_data;
  2176. void __user *argp = (void __user *)arg;
  2177. int r = -EINVAL;
  2178. switch (ioctl) {
  2179. case KVM_RUN:
  2180. r = -EINVAL;
  2181. if (arg)
  2182. goto out;
  2183. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2184. break;
  2185. case KVM_GET_REGS: {
  2186. struct kvm_regs kvm_regs;
  2187. memset(&kvm_regs, 0, sizeof kvm_regs);
  2188. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2189. if (r)
  2190. goto out;
  2191. r = -EFAULT;
  2192. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2193. goto out;
  2194. r = 0;
  2195. break;
  2196. }
  2197. case KVM_SET_REGS: {
  2198. struct kvm_regs kvm_regs;
  2199. r = -EFAULT;
  2200. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2201. goto out;
  2202. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2203. if (r)
  2204. goto out;
  2205. r = 0;
  2206. break;
  2207. }
  2208. case KVM_GET_SREGS: {
  2209. struct kvm_sregs kvm_sregs;
  2210. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2211. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2212. if (r)
  2213. goto out;
  2214. r = -EFAULT;
  2215. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2216. goto out;
  2217. r = 0;
  2218. break;
  2219. }
  2220. case KVM_SET_SREGS: {
  2221. struct kvm_sregs kvm_sregs;
  2222. r = -EFAULT;
  2223. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2224. goto out;
  2225. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2226. if (r)
  2227. goto out;
  2228. r = 0;
  2229. break;
  2230. }
  2231. case KVM_TRANSLATE: {
  2232. struct kvm_translation tr;
  2233. r = -EFAULT;
  2234. if (copy_from_user(&tr, argp, sizeof tr))
  2235. goto out;
  2236. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2237. if (r)
  2238. goto out;
  2239. r = -EFAULT;
  2240. if (copy_to_user(argp, &tr, sizeof tr))
  2241. goto out;
  2242. r = 0;
  2243. break;
  2244. }
  2245. case KVM_INTERRUPT: {
  2246. struct kvm_interrupt irq;
  2247. r = -EFAULT;
  2248. if (copy_from_user(&irq, argp, sizeof irq))
  2249. goto out;
  2250. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2251. if (r)
  2252. goto out;
  2253. r = 0;
  2254. break;
  2255. }
  2256. case KVM_DEBUG_GUEST: {
  2257. struct kvm_debug_guest dbg;
  2258. r = -EFAULT;
  2259. if (copy_from_user(&dbg, argp, sizeof dbg))
  2260. goto out;
  2261. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2262. if (r)
  2263. goto out;
  2264. r = 0;
  2265. break;
  2266. }
  2267. case KVM_GET_MSRS:
  2268. r = msr_io(vcpu, argp, get_msr, 1);
  2269. break;
  2270. case KVM_SET_MSRS:
  2271. r = msr_io(vcpu, argp, do_set_msr, 0);
  2272. break;
  2273. case KVM_SET_CPUID: {
  2274. struct kvm_cpuid __user *cpuid_arg = argp;
  2275. struct kvm_cpuid cpuid;
  2276. r = -EFAULT;
  2277. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2278. goto out;
  2279. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2280. if (r)
  2281. goto out;
  2282. break;
  2283. }
  2284. case KVM_SET_SIGNAL_MASK: {
  2285. struct kvm_signal_mask __user *sigmask_arg = argp;
  2286. struct kvm_signal_mask kvm_sigmask;
  2287. sigset_t sigset, *p;
  2288. p = NULL;
  2289. if (argp) {
  2290. r = -EFAULT;
  2291. if (copy_from_user(&kvm_sigmask, argp,
  2292. sizeof kvm_sigmask))
  2293. goto out;
  2294. r = -EINVAL;
  2295. if (kvm_sigmask.len != sizeof sigset)
  2296. goto out;
  2297. r = -EFAULT;
  2298. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2299. sizeof sigset))
  2300. goto out;
  2301. p = &sigset;
  2302. }
  2303. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2304. break;
  2305. }
  2306. case KVM_GET_FPU: {
  2307. struct kvm_fpu fpu;
  2308. memset(&fpu, 0, sizeof fpu);
  2309. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2310. if (r)
  2311. goto out;
  2312. r = -EFAULT;
  2313. if (copy_to_user(argp, &fpu, sizeof fpu))
  2314. goto out;
  2315. r = 0;
  2316. break;
  2317. }
  2318. case KVM_SET_FPU: {
  2319. struct kvm_fpu fpu;
  2320. r = -EFAULT;
  2321. if (copy_from_user(&fpu, argp, sizeof fpu))
  2322. goto out;
  2323. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2324. if (r)
  2325. goto out;
  2326. r = 0;
  2327. break;
  2328. }
  2329. default:
  2330. ;
  2331. }
  2332. out:
  2333. return r;
  2334. }
  2335. static long kvm_vm_ioctl(struct file *filp,
  2336. unsigned int ioctl, unsigned long arg)
  2337. {
  2338. struct kvm *kvm = filp->private_data;
  2339. void __user *argp = (void __user *)arg;
  2340. int r = -EINVAL;
  2341. switch (ioctl) {
  2342. case KVM_CREATE_VCPU:
  2343. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2344. if (r < 0)
  2345. goto out;
  2346. break;
  2347. case KVM_SET_MEMORY_REGION: {
  2348. struct kvm_memory_region kvm_mem;
  2349. r = -EFAULT;
  2350. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2351. goto out;
  2352. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2353. if (r)
  2354. goto out;
  2355. break;
  2356. }
  2357. case KVM_GET_DIRTY_LOG: {
  2358. struct kvm_dirty_log log;
  2359. r = -EFAULT;
  2360. if (copy_from_user(&log, argp, sizeof log))
  2361. goto out;
  2362. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2363. if (r)
  2364. goto out;
  2365. break;
  2366. }
  2367. case KVM_SET_MEMORY_ALIAS: {
  2368. struct kvm_memory_alias alias;
  2369. r = -EFAULT;
  2370. if (copy_from_user(&alias, argp, sizeof alias))
  2371. goto out;
  2372. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2373. if (r)
  2374. goto out;
  2375. break;
  2376. }
  2377. default:
  2378. ;
  2379. }
  2380. out:
  2381. return r;
  2382. }
  2383. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2384. unsigned long address,
  2385. int *type)
  2386. {
  2387. struct kvm *kvm = vma->vm_file->private_data;
  2388. unsigned long pgoff;
  2389. struct page *page;
  2390. *type = VM_FAULT_MINOR;
  2391. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2392. page = gfn_to_page(kvm, pgoff);
  2393. if (!page)
  2394. return NOPAGE_SIGBUS;
  2395. get_page(page);
  2396. return page;
  2397. }
  2398. static struct vm_operations_struct kvm_vm_vm_ops = {
  2399. .nopage = kvm_vm_nopage,
  2400. };
  2401. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2402. {
  2403. vma->vm_ops = &kvm_vm_vm_ops;
  2404. return 0;
  2405. }
  2406. static struct file_operations kvm_vm_fops = {
  2407. .release = kvm_vm_release,
  2408. .unlocked_ioctl = kvm_vm_ioctl,
  2409. .compat_ioctl = kvm_vm_ioctl,
  2410. .mmap = kvm_vm_mmap,
  2411. };
  2412. static int kvm_dev_ioctl_create_vm(void)
  2413. {
  2414. int fd, r;
  2415. struct inode *inode;
  2416. struct file *file;
  2417. struct kvm *kvm;
  2418. kvm = kvm_create_vm();
  2419. if (IS_ERR(kvm))
  2420. return PTR_ERR(kvm);
  2421. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2422. if (r) {
  2423. kvm_destroy_vm(kvm);
  2424. return r;
  2425. }
  2426. kvm->filp = file;
  2427. return fd;
  2428. }
  2429. static long kvm_dev_ioctl(struct file *filp,
  2430. unsigned int ioctl, unsigned long arg)
  2431. {
  2432. void __user *argp = (void __user *)arg;
  2433. long r = -EINVAL;
  2434. switch (ioctl) {
  2435. case KVM_GET_API_VERSION:
  2436. r = -EINVAL;
  2437. if (arg)
  2438. goto out;
  2439. r = KVM_API_VERSION;
  2440. break;
  2441. case KVM_CREATE_VM:
  2442. r = -EINVAL;
  2443. if (arg)
  2444. goto out;
  2445. r = kvm_dev_ioctl_create_vm();
  2446. break;
  2447. case KVM_GET_MSR_INDEX_LIST: {
  2448. struct kvm_msr_list __user *user_msr_list = argp;
  2449. struct kvm_msr_list msr_list;
  2450. unsigned n;
  2451. r = -EFAULT;
  2452. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2453. goto out;
  2454. n = msr_list.nmsrs;
  2455. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2456. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2457. goto out;
  2458. r = -E2BIG;
  2459. if (n < num_msrs_to_save)
  2460. goto out;
  2461. r = -EFAULT;
  2462. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2463. num_msrs_to_save * sizeof(u32)))
  2464. goto out;
  2465. if (copy_to_user(user_msr_list->indices
  2466. + num_msrs_to_save * sizeof(u32),
  2467. &emulated_msrs,
  2468. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2469. goto out;
  2470. r = 0;
  2471. break;
  2472. }
  2473. case KVM_CHECK_EXTENSION:
  2474. /*
  2475. * No extensions defined at present.
  2476. */
  2477. r = 0;
  2478. break;
  2479. case KVM_GET_VCPU_MMAP_SIZE:
  2480. r = -EINVAL;
  2481. if (arg)
  2482. goto out;
  2483. r = 2 * PAGE_SIZE;
  2484. break;
  2485. default:
  2486. ;
  2487. }
  2488. out:
  2489. return r;
  2490. }
  2491. static struct file_operations kvm_chardev_ops = {
  2492. .open = kvm_dev_open,
  2493. .release = kvm_dev_release,
  2494. .unlocked_ioctl = kvm_dev_ioctl,
  2495. .compat_ioctl = kvm_dev_ioctl,
  2496. };
  2497. static struct miscdevice kvm_dev = {
  2498. KVM_MINOR,
  2499. "kvm",
  2500. &kvm_chardev_ops,
  2501. };
  2502. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2503. void *v)
  2504. {
  2505. if (val == SYS_RESTART) {
  2506. /*
  2507. * Some (well, at least mine) BIOSes hang on reboot if
  2508. * in vmx root mode.
  2509. */
  2510. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2511. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2512. }
  2513. return NOTIFY_OK;
  2514. }
  2515. static struct notifier_block kvm_reboot_notifier = {
  2516. .notifier_call = kvm_reboot,
  2517. .priority = 0,
  2518. };
  2519. /*
  2520. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2521. * cached on it.
  2522. */
  2523. static void decache_vcpus_on_cpu(int cpu)
  2524. {
  2525. struct kvm *vm;
  2526. struct kvm_vcpu *vcpu;
  2527. int i;
  2528. spin_lock(&kvm_lock);
  2529. list_for_each_entry(vm, &vm_list, vm_list)
  2530. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2531. vcpu = &vm->vcpus[i];
  2532. /*
  2533. * If the vcpu is locked, then it is running on some
  2534. * other cpu and therefore it is not cached on the
  2535. * cpu in question.
  2536. *
  2537. * If it's not locked, check the last cpu it executed
  2538. * on.
  2539. */
  2540. if (mutex_trylock(&vcpu->mutex)) {
  2541. if (vcpu->cpu == cpu) {
  2542. kvm_arch_ops->vcpu_decache(vcpu);
  2543. vcpu->cpu = -1;
  2544. }
  2545. mutex_unlock(&vcpu->mutex);
  2546. }
  2547. }
  2548. spin_unlock(&kvm_lock);
  2549. }
  2550. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2551. void *v)
  2552. {
  2553. int cpu = (long)v;
  2554. switch (val) {
  2555. case CPU_DOWN_PREPARE:
  2556. case CPU_DOWN_PREPARE_FROZEN:
  2557. case CPU_UP_CANCELED:
  2558. case CPU_UP_CANCELED_FROZEN:
  2559. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2560. cpu);
  2561. decache_vcpus_on_cpu(cpu);
  2562. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  2563. NULL, 0, 1);
  2564. break;
  2565. case CPU_ONLINE:
  2566. case CPU_ONLINE_FROZEN:
  2567. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2568. cpu);
  2569. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  2570. NULL, 0, 1);
  2571. break;
  2572. }
  2573. return NOTIFY_OK;
  2574. }
  2575. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2576. {
  2577. memset(bus, 0, sizeof(*bus));
  2578. }
  2579. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2580. {
  2581. int i;
  2582. for (i = 0; i < bus->dev_count; i++) {
  2583. struct kvm_io_device *pos = bus->devs[i];
  2584. kvm_iodevice_destructor(pos);
  2585. }
  2586. }
  2587. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2588. {
  2589. int i;
  2590. for (i = 0; i < bus->dev_count; i++) {
  2591. struct kvm_io_device *pos = bus->devs[i];
  2592. if (pos->in_range(pos, addr))
  2593. return pos;
  2594. }
  2595. return NULL;
  2596. }
  2597. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2598. {
  2599. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2600. bus->devs[bus->dev_count++] = dev;
  2601. }
  2602. static struct notifier_block kvm_cpu_notifier = {
  2603. .notifier_call = kvm_cpu_hotplug,
  2604. .priority = 20, /* must be > scheduler priority */
  2605. };
  2606. static u64 stat_get(void *_offset)
  2607. {
  2608. unsigned offset = (long)_offset;
  2609. u64 total = 0;
  2610. struct kvm *kvm;
  2611. struct kvm_vcpu *vcpu;
  2612. int i;
  2613. spin_lock(&kvm_lock);
  2614. list_for_each_entry(kvm, &vm_list, vm_list)
  2615. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2616. vcpu = &kvm->vcpus[i];
  2617. total += *(u32 *)((void *)vcpu + offset);
  2618. }
  2619. spin_unlock(&kvm_lock);
  2620. return total;
  2621. }
  2622. static void stat_set(void *offset, u64 val)
  2623. {
  2624. }
  2625. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2626. static __init void kvm_init_debug(void)
  2627. {
  2628. struct kvm_stats_debugfs_item *p;
  2629. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2630. for (p = debugfs_entries; p->name; ++p)
  2631. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2632. (void *)(long)p->offset,
  2633. &stat_fops);
  2634. }
  2635. static void kvm_exit_debug(void)
  2636. {
  2637. struct kvm_stats_debugfs_item *p;
  2638. for (p = debugfs_entries; p->name; ++p)
  2639. debugfs_remove(p->dentry);
  2640. debugfs_remove(debugfs_dir);
  2641. }
  2642. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2643. {
  2644. decache_vcpus_on_cpu(raw_smp_processor_id());
  2645. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2646. return 0;
  2647. }
  2648. static int kvm_resume(struct sys_device *dev)
  2649. {
  2650. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2651. return 0;
  2652. }
  2653. static struct sysdev_class kvm_sysdev_class = {
  2654. set_kset_name("kvm"),
  2655. .suspend = kvm_suspend,
  2656. .resume = kvm_resume,
  2657. };
  2658. static struct sys_device kvm_sysdev = {
  2659. .id = 0,
  2660. .cls = &kvm_sysdev_class,
  2661. };
  2662. hpa_t bad_page_address;
  2663. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2664. {
  2665. int r;
  2666. if (kvm_arch_ops) {
  2667. printk(KERN_ERR "kvm: already loaded the other module\n");
  2668. return -EEXIST;
  2669. }
  2670. if (!ops->cpu_has_kvm_support()) {
  2671. printk(KERN_ERR "kvm: no hardware support\n");
  2672. return -EOPNOTSUPP;
  2673. }
  2674. if (ops->disabled_by_bios()) {
  2675. printk(KERN_ERR "kvm: disabled by bios\n");
  2676. return -EOPNOTSUPP;
  2677. }
  2678. kvm_arch_ops = ops;
  2679. r = kvm_arch_ops->hardware_setup();
  2680. if (r < 0)
  2681. goto out;
  2682. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2683. r = register_cpu_notifier(&kvm_cpu_notifier);
  2684. if (r)
  2685. goto out_free_1;
  2686. register_reboot_notifier(&kvm_reboot_notifier);
  2687. r = sysdev_class_register(&kvm_sysdev_class);
  2688. if (r)
  2689. goto out_free_2;
  2690. r = sysdev_register(&kvm_sysdev);
  2691. if (r)
  2692. goto out_free_3;
  2693. kvm_chardev_ops.owner = module;
  2694. r = misc_register(&kvm_dev);
  2695. if (r) {
  2696. printk (KERN_ERR "kvm: misc device register failed\n");
  2697. goto out_free;
  2698. }
  2699. return r;
  2700. out_free:
  2701. sysdev_unregister(&kvm_sysdev);
  2702. out_free_3:
  2703. sysdev_class_unregister(&kvm_sysdev_class);
  2704. out_free_2:
  2705. unregister_reboot_notifier(&kvm_reboot_notifier);
  2706. unregister_cpu_notifier(&kvm_cpu_notifier);
  2707. out_free_1:
  2708. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2709. kvm_arch_ops->hardware_unsetup();
  2710. out:
  2711. kvm_arch_ops = NULL;
  2712. return r;
  2713. }
  2714. void kvm_exit_arch(void)
  2715. {
  2716. misc_deregister(&kvm_dev);
  2717. sysdev_unregister(&kvm_sysdev);
  2718. sysdev_class_unregister(&kvm_sysdev_class);
  2719. unregister_reboot_notifier(&kvm_reboot_notifier);
  2720. unregister_cpu_notifier(&kvm_cpu_notifier);
  2721. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2722. kvm_arch_ops->hardware_unsetup();
  2723. kvm_arch_ops = NULL;
  2724. }
  2725. static __init int kvm_init(void)
  2726. {
  2727. static struct page *bad_page;
  2728. int r;
  2729. r = kvm_mmu_module_init();
  2730. if (r)
  2731. goto out4;
  2732. kvm_init_debug();
  2733. kvm_init_msr_list();
  2734. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2735. r = -ENOMEM;
  2736. goto out;
  2737. }
  2738. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2739. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2740. return 0;
  2741. out:
  2742. kvm_exit_debug();
  2743. kvm_mmu_module_exit();
  2744. out4:
  2745. return r;
  2746. }
  2747. static __exit void kvm_exit(void)
  2748. {
  2749. kvm_exit_debug();
  2750. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2751. kvm_mmu_module_exit();
  2752. }
  2753. module_init(kvm_init)
  2754. module_exit(kvm_exit)
  2755. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2756. EXPORT_SYMBOL_GPL(kvm_exit_arch);