intel_display.c 241 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_update_watermarks(struct drm_device *dev);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *best_clock);
  77. static bool
  78. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  79. int target, int refclk, intel_clock_t *best_clock);
  80. static bool
  81. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *best_clock);
  86. static inline u32 /* units of 100MHz */
  87. intel_fdi_link_freq(struct drm_device *dev)
  88. {
  89. if (IS_GEN5(dev)) {
  90. struct drm_i915_private *dev_priv = dev->dev_private;
  91. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  92. } else
  93. return 27;
  94. }
  95. static const intel_limit_t intel_limits_i8xx_dvo = {
  96. .dot = { .min = 25000, .max = 350000 },
  97. .vco = { .min = 930000, .max = 1400000 },
  98. .n = { .min = 3, .max = 16 },
  99. .m = { .min = 96, .max = 140 },
  100. .m1 = { .min = 18, .max = 26 },
  101. .m2 = { .min = 6, .max = 16 },
  102. .p = { .min = 4, .max = 128 },
  103. .p1 = { .min = 2, .max = 33 },
  104. .p2 = { .dot_limit = 165000,
  105. .p2_slow = 4, .p2_fast = 2 },
  106. .find_pll = intel_find_best_PLL,
  107. };
  108. static const intel_limit_t intel_limits_i8xx_lvds = {
  109. .dot = { .min = 25000, .max = 350000 },
  110. .vco = { .min = 930000, .max = 1400000 },
  111. .n = { .min = 3, .max = 16 },
  112. .m = { .min = 96, .max = 140 },
  113. .m1 = { .min = 18, .max = 26 },
  114. .m2 = { .min = 6, .max = 16 },
  115. .p = { .min = 4, .max = 128 },
  116. .p1 = { .min = 1, .max = 6 },
  117. .p2 = { .dot_limit = 165000,
  118. .p2_slow = 14, .p2_fast = 7 },
  119. .find_pll = intel_find_best_PLL,
  120. };
  121. static const intel_limit_t intel_limits_i9xx_sdvo = {
  122. .dot = { .min = 20000, .max = 400000 },
  123. .vco = { .min = 1400000, .max = 2800000 },
  124. .n = { .min = 1, .max = 6 },
  125. .m = { .min = 70, .max = 120 },
  126. .m1 = { .min = 10, .max = 22 },
  127. .m2 = { .min = 5, .max = 9 },
  128. .p = { .min = 5, .max = 80 },
  129. .p1 = { .min = 1, .max = 8 },
  130. .p2 = { .dot_limit = 200000,
  131. .p2_slow = 10, .p2_fast = 5 },
  132. .find_pll = intel_find_best_PLL,
  133. };
  134. static const intel_limit_t intel_limits_i9xx_lvds = {
  135. .dot = { .min = 20000, .max = 400000 },
  136. .vco = { .min = 1400000, .max = 2800000 },
  137. .n = { .min = 1, .max = 6 },
  138. .m = { .min = 70, .max = 120 },
  139. .m1 = { .min = 10, .max = 22 },
  140. .m2 = { .min = 5, .max = 9 },
  141. .p = { .min = 7, .max = 98 },
  142. .p1 = { .min = 1, .max = 8 },
  143. .p2 = { .dot_limit = 112000,
  144. .p2_slow = 14, .p2_fast = 7 },
  145. .find_pll = intel_find_best_PLL,
  146. };
  147. static const intel_limit_t intel_limits_g4x_sdvo = {
  148. .dot = { .min = 25000, .max = 270000 },
  149. .vco = { .min = 1750000, .max = 3500000},
  150. .n = { .min = 1, .max = 4 },
  151. .m = { .min = 104, .max = 138 },
  152. .m1 = { .min = 17, .max = 23 },
  153. .m2 = { .min = 5, .max = 11 },
  154. .p = { .min = 10, .max = 30 },
  155. .p1 = { .min = 1, .max = 3},
  156. .p2 = { .dot_limit = 270000,
  157. .p2_slow = 10,
  158. .p2_fast = 10
  159. },
  160. .find_pll = intel_g4x_find_best_PLL,
  161. };
  162. static const intel_limit_t intel_limits_g4x_hdmi = {
  163. .dot = { .min = 22000, .max = 400000 },
  164. .vco = { .min = 1750000, .max = 3500000},
  165. .n = { .min = 1, .max = 4 },
  166. .m = { .min = 104, .max = 138 },
  167. .m1 = { .min = 16, .max = 23 },
  168. .m2 = { .min = 5, .max = 11 },
  169. .p = { .min = 5, .max = 80 },
  170. .p1 = { .min = 1, .max = 8},
  171. .p2 = { .dot_limit = 165000,
  172. .p2_slow = 10, .p2_fast = 5 },
  173. .find_pll = intel_g4x_find_best_PLL,
  174. };
  175. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  176. .dot = { .min = 20000, .max = 115000 },
  177. .vco = { .min = 1750000, .max = 3500000 },
  178. .n = { .min = 1, .max = 3 },
  179. .m = { .min = 104, .max = 138 },
  180. .m1 = { .min = 17, .max = 23 },
  181. .m2 = { .min = 5, .max = 11 },
  182. .p = { .min = 28, .max = 112 },
  183. .p1 = { .min = 2, .max = 8 },
  184. .p2 = { .dot_limit = 0,
  185. .p2_slow = 14, .p2_fast = 14
  186. },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  190. .dot = { .min = 80000, .max = 224000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 14, .max = 42 },
  197. .p1 = { .min = 2, .max = 6 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 7, .p2_fast = 7
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_display_port = {
  204. .dot = { .min = 161670, .max = 227000 },
  205. .vco = { .min = 1750000, .max = 3500000},
  206. .n = { .min = 1, .max = 2 },
  207. .m = { .min = 97, .max = 108 },
  208. .m1 = { .min = 0x10, .max = 0x12 },
  209. .m2 = { .min = 0x05, .max = 0x06 },
  210. .p = { .min = 10, .max = 20 },
  211. .p1 = { .min = 1, .max = 2},
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 10, .p2_fast = 10 },
  214. .find_pll = intel_find_pll_g4x_dp,
  215. };
  216. static const intel_limit_t intel_limits_pineview_sdvo = {
  217. .dot = { .min = 20000, .max = 400000},
  218. .vco = { .min = 1700000, .max = 3500000 },
  219. /* Pineview's Ncounter is a ring counter */
  220. .n = { .min = 3, .max = 6 },
  221. .m = { .min = 2, .max = 256 },
  222. /* Pineview only has one combined m divider, which we treat as m2. */
  223. .m1 = { .min = 0, .max = 0 },
  224. .m2 = { .min = 0, .max = 254 },
  225. .p = { .min = 5, .max = 80 },
  226. .p1 = { .min = 1, .max = 8 },
  227. .p2 = { .dot_limit = 200000,
  228. .p2_slow = 10, .p2_fast = 5 },
  229. .find_pll = intel_find_best_PLL,
  230. };
  231. static const intel_limit_t intel_limits_pineview_lvds = {
  232. .dot = { .min = 20000, .max = 400000 },
  233. .vco = { .min = 1700000, .max = 3500000 },
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. .m1 = { .min = 0, .max = 0 },
  237. .m2 = { .min = 0, .max = 254 },
  238. .p = { .min = 7, .max = 112 },
  239. .p1 = { .min = 1, .max = 8 },
  240. .p2 = { .dot_limit = 112000,
  241. .p2_slow = 14, .p2_fast = 14 },
  242. .find_pll = intel_find_best_PLL,
  243. };
  244. /* Ironlake / Sandybridge
  245. *
  246. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  247. * the range value for them is (actual_value - 2).
  248. */
  249. static const intel_limit_t intel_limits_ironlake_dac = {
  250. .dot = { .min = 25000, .max = 350000 },
  251. .vco = { .min = 1760000, .max = 3510000 },
  252. .n = { .min = 1, .max = 5 },
  253. .m = { .min = 79, .max = 127 },
  254. .m1 = { .min = 12, .max = 22 },
  255. .m2 = { .min = 5, .max = 9 },
  256. .p = { .min = 5, .max = 80 },
  257. .p1 = { .min = 1, .max = 8 },
  258. .p2 = { .dot_limit = 225000,
  259. .p2_slow = 10, .p2_fast = 5 },
  260. .find_pll = intel_g4x_find_best_PLL,
  261. };
  262. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  263. .dot = { .min = 25000, .max = 350000 },
  264. .vco = { .min = 1760000, .max = 3510000 },
  265. .n = { .min = 1, .max = 3 },
  266. .m = { .min = 79, .max = 118 },
  267. .m1 = { .min = 12, .max = 22 },
  268. .m2 = { .min = 5, .max = 9 },
  269. .p = { .min = 28, .max = 112 },
  270. .p1 = { .min = 2, .max = 8 },
  271. .p2 = { .dot_limit = 225000,
  272. .p2_slow = 14, .p2_fast = 14 },
  273. .find_pll = intel_g4x_find_best_PLL,
  274. };
  275. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  276. .dot = { .min = 25000, .max = 350000 },
  277. .vco = { .min = 1760000, .max = 3510000 },
  278. .n = { .min = 1, .max = 3 },
  279. .m = { .min = 79, .max = 127 },
  280. .m1 = { .min = 12, .max = 22 },
  281. .m2 = { .min = 5, .max = 9 },
  282. .p = { .min = 14, .max = 56 },
  283. .p1 = { .min = 2, .max = 8 },
  284. .p2 = { .dot_limit = 225000,
  285. .p2_slow = 7, .p2_fast = 7 },
  286. .find_pll = intel_g4x_find_best_PLL,
  287. };
  288. /* LVDS 100mhz refclk limits. */
  289. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 2 },
  293. .m = { .min = 79, .max = 126 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 28, .max = 112 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 14, .p2_fast = 14 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  303. .dot = { .min = 25000, .max = 350000 },
  304. .vco = { .min = 1760000, .max = 3510000 },
  305. .n = { .min = 1, .max = 3 },
  306. .m = { .min = 79, .max = 126 },
  307. .m1 = { .min = 12, .max = 22 },
  308. .m2 = { .min = 5, .max = 9 },
  309. .p = { .min = 14, .max = 42 },
  310. .p1 = { .min = 2, .max = 6 },
  311. .p2 = { .dot_limit = 225000,
  312. .p2_slow = 7, .p2_fast = 7 },
  313. .find_pll = intel_g4x_find_best_PLL,
  314. };
  315. static const intel_limit_t intel_limits_ironlake_display_port = {
  316. .dot = { .min = 25000, .max = 350000 },
  317. .vco = { .min = 1760000, .max = 3510000},
  318. .n = { .min = 1, .max = 2 },
  319. .m = { .min = 81, .max = 90 },
  320. .m1 = { .min = 12, .max = 22 },
  321. .m2 = { .min = 5, .max = 9 },
  322. .p = { .min = 10, .max = 20 },
  323. .p1 = { .min = 1, .max = 2},
  324. .p2 = { .dot_limit = 0,
  325. .p2_slow = 10, .p2_fast = 10 },
  326. .find_pll = intel_find_pll_ironlake_dp,
  327. };
  328. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  329. int refclk)
  330. {
  331. struct drm_device *dev = crtc->dev;
  332. struct drm_i915_private *dev_priv = dev->dev_private;
  333. const intel_limit_t *limit;
  334. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  335. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  336. LVDS_CLKB_POWER_UP) {
  337. /* LVDS dual channel */
  338. if (refclk == 100000)
  339. limit = &intel_limits_ironlake_dual_lvds_100m;
  340. else
  341. limit = &intel_limits_ironlake_dual_lvds;
  342. } else {
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_single_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_single_lvds;
  347. }
  348. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  349. HAS_eDP)
  350. limit = &intel_limits_ironlake_display_port;
  351. else
  352. limit = &intel_limits_ironlake_dac;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. struct drm_i915_private *dev_priv = dev->dev_private;
  359. const intel_limit_t *limit;
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  361. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  362. LVDS_CLKB_POWER_UP)
  363. /* LVDS with dual channel */
  364. limit = &intel_limits_g4x_dual_channel_lvds;
  365. else
  366. /* LVDS with dual channel */
  367. limit = &intel_limits_g4x_single_channel_lvds;
  368. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  369. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  370. limit = &intel_limits_g4x_hdmi;
  371. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  372. limit = &intel_limits_g4x_sdvo;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  374. limit = &intel_limits_g4x_display_port;
  375. } else /* The option is for other outputs */
  376. limit = &intel_limits_i9xx_sdvo;
  377. return limit;
  378. }
  379. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  380. {
  381. struct drm_device *dev = crtc->dev;
  382. const intel_limit_t *limit;
  383. if (HAS_PCH_SPLIT(dev))
  384. limit = intel_ironlake_limit(crtc, refclk);
  385. else if (IS_G4X(dev)) {
  386. limit = intel_g4x_limit(crtc);
  387. } else if (IS_PINEVIEW(dev)) {
  388. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  389. limit = &intel_limits_pineview_lvds;
  390. else
  391. limit = &intel_limits_pineview_sdvo;
  392. } else if (!IS_GEN2(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_i9xx_lvds;
  395. else
  396. limit = &intel_limits_i9xx_sdvo;
  397. } else {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i8xx_lvds;
  400. else
  401. limit = &intel_limits_i8xx_dvo;
  402. }
  403. return limit;
  404. }
  405. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  406. static void pineview_clock(int refclk, intel_clock_t *clock)
  407. {
  408. clock->m = clock->m2 + 2;
  409. clock->p = clock->p1 * clock->p2;
  410. clock->vco = refclk * clock->m / clock->n;
  411. clock->dot = clock->vco / clock->p;
  412. }
  413. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  414. {
  415. if (IS_PINEVIEW(dev)) {
  416. pineview_clock(refclk, clock);
  417. return;
  418. }
  419. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  420. clock->p = clock->p1 * clock->p2;
  421. clock->vco = refclk * clock->m / (clock->n + 2);
  422. clock->dot = clock->vco / clock->p;
  423. }
  424. /**
  425. * Returns whether any output on the specified pipe is of the specified type
  426. */
  427. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  428. {
  429. struct drm_device *dev = crtc->dev;
  430. struct drm_mode_config *mode_config = &dev->mode_config;
  431. struct intel_encoder *encoder;
  432. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  433. if (encoder->base.crtc == crtc && encoder->type == type)
  434. return true;
  435. return false;
  436. }
  437. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  438. /**
  439. * Returns whether the given set of divisors are valid for a given refclk with
  440. * the given connectors.
  441. */
  442. static bool intel_PLL_is_valid(struct drm_device *dev,
  443. const intel_limit_t *limit,
  444. const intel_clock_t *clock)
  445. {
  446. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  447. INTELPllInvalid("p1 out of range\n");
  448. if (clock->p < limit->p.min || limit->p.max < clock->p)
  449. INTELPllInvalid("p out of range\n");
  450. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  451. INTELPllInvalid("m2 out of range\n");
  452. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  453. INTELPllInvalid("m1 out of range\n");
  454. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  455. INTELPllInvalid("m1 <= m2\n");
  456. if (clock->m < limit->m.min || limit->m.max < clock->m)
  457. INTELPllInvalid("m out of range\n");
  458. if (clock->n < limit->n.min || limit->n.max < clock->n)
  459. INTELPllInvalid("n out of range\n");
  460. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  461. INTELPllInvalid("vco out of range\n");
  462. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  463. * connector, etc., rather than just a single range.
  464. */
  465. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  466. INTELPllInvalid("dot out of range\n");
  467. return true;
  468. }
  469. static bool
  470. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  471. int target, int refclk, intel_clock_t *best_clock)
  472. {
  473. struct drm_device *dev = crtc->dev;
  474. struct drm_i915_private *dev_priv = dev->dev_private;
  475. intel_clock_t clock;
  476. int err = target;
  477. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  478. (I915_READ(LVDS)) != 0) {
  479. /*
  480. * For LVDS, if the panel is on, just rely on its current
  481. * settings for dual-channel. We haven't figured out how to
  482. * reliably set up different single/dual channel state, if we
  483. * even can.
  484. */
  485. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  486. LVDS_CLKB_POWER_UP)
  487. clock.p2 = limit->p2.p2_fast;
  488. else
  489. clock.p2 = limit->p2.p2_slow;
  490. } else {
  491. if (target < limit->p2.dot_limit)
  492. clock.p2 = limit->p2.p2_slow;
  493. else
  494. clock.p2 = limit->p2.p2_fast;
  495. }
  496. memset(best_clock, 0, sizeof(*best_clock));
  497. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  498. clock.m1++) {
  499. for (clock.m2 = limit->m2.min;
  500. clock.m2 <= limit->m2.max; clock.m2++) {
  501. /* m1 is always 0 in Pineview */
  502. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  503. break;
  504. for (clock.n = limit->n.min;
  505. clock.n <= limit->n.max; clock.n++) {
  506. for (clock.p1 = limit->p1.min;
  507. clock.p1 <= limit->p1.max; clock.p1++) {
  508. int this_err;
  509. intel_clock(dev, refclk, &clock);
  510. if (!intel_PLL_is_valid(dev, limit,
  511. &clock))
  512. continue;
  513. this_err = abs(clock.dot - target);
  514. if (this_err < err) {
  515. *best_clock = clock;
  516. err = this_err;
  517. }
  518. }
  519. }
  520. }
  521. }
  522. return (err != target);
  523. }
  524. static bool
  525. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  526. int target, int refclk, intel_clock_t *best_clock)
  527. {
  528. struct drm_device *dev = crtc->dev;
  529. struct drm_i915_private *dev_priv = dev->dev_private;
  530. intel_clock_t clock;
  531. int max_n;
  532. bool found;
  533. /* approximately equals target * 0.00585 */
  534. int err_most = (target >> 8) + (target >> 9);
  535. found = false;
  536. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  537. int lvds_reg;
  538. if (HAS_PCH_SPLIT(dev))
  539. lvds_reg = PCH_LVDS;
  540. else
  541. lvds_reg = LVDS;
  542. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  543. LVDS_CLKB_POWER_UP)
  544. clock.p2 = limit->p2.p2_fast;
  545. else
  546. clock.p2 = limit->p2.p2_slow;
  547. } else {
  548. if (target < limit->p2.dot_limit)
  549. clock.p2 = limit->p2.p2_slow;
  550. else
  551. clock.p2 = limit->p2.p2_fast;
  552. }
  553. memset(best_clock, 0, sizeof(*best_clock));
  554. max_n = limit->n.max;
  555. /* based on hardware requirement, prefer smaller n to precision */
  556. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  557. /* based on hardware requirement, prefere larger m1,m2 */
  558. for (clock.m1 = limit->m1.max;
  559. clock.m1 >= limit->m1.min; clock.m1--) {
  560. for (clock.m2 = limit->m2.max;
  561. clock.m2 >= limit->m2.min; clock.m2--) {
  562. for (clock.p1 = limit->p1.max;
  563. clock.p1 >= limit->p1.min; clock.p1--) {
  564. int this_err;
  565. intel_clock(dev, refclk, &clock);
  566. if (!intel_PLL_is_valid(dev, limit,
  567. &clock))
  568. continue;
  569. this_err = abs(clock.dot - target);
  570. if (this_err < err_most) {
  571. *best_clock = clock;
  572. err_most = this_err;
  573. max_n = clock.n;
  574. found = true;
  575. }
  576. }
  577. }
  578. }
  579. }
  580. return found;
  581. }
  582. static bool
  583. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  584. int target, int refclk, intel_clock_t *best_clock)
  585. {
  586. struct drm_device *dev = crtc->dev;
  587. intel_clock_t clock;
  588. if (target < 200000) {
  589. clock.n = 1;
  590. clock.p1 = 2;
  591. clock.p2 = 10;
  592. clock.m1 = 12;
  593. clock.m2 = 9;
  594. } else {
  595. clock.n = 2;
  596. clock.p1 = 1;
  597. clock.p2 = 10;
  598. clock.m1 = 14;
  599. clock.m2 = 8;
  600. }
  601. intel_clock(dev, refclk, &clock);
  602. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  603. return true;
  604. }
  605. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  606. static bool
  607. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  608. int target, int refclk, intel_clock_t *best_clock)
  609. {
  610. intel_clock_t clock;
  611. if (target < 200000) {
  612. clock.p1 = 2;
  613. clock.p2 = 10;
  614. clock.n = 2;
  615. clock.m1 = 23;
  616. clock.m2 = 8;
  617. } else {
  618. clock.p1 = 1;
  619. clock.p2 = 10;
  620. clock.n = 1;
  621. clock.m1 = 14;
  622. clock.m2 = 2;
  623. }
  624. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  625. clock.p = (clock.p1 * clock.p2);
  626. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  627. clock.vco = 0;
  628. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  629. return true;
  630. }
  631. /**
  632. * intel_wait_for_vblank - wait for vblank on a given pipe
  633. * @dev: drm device
  634. * @pipe: pipe to wait for
  635. *
  636. * Wait for vblank to occur on a given pipe. Needed for various bits of
  637. * mode setting code.
  638. */
  639. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  640. {
  641. struct drm_i915_private *dev_priv = dev->dev_private;
  642. int pipestat_reg = PIPESTAT(pipe);
  643. /* Clear existing vblank status. Note this will clear any other
  644. * sticky status fields as well.
  645. *
  646. * This races with i915_driver_irq_handler() with the result
  647. * that either function could miss a vblank event. Here it is not
  648. * fatal, as we will either wait upon the next vblank interrupt or
  649. * timeout. Generally speaking intel_wait_for_vblank() is only
  650. * called during modeset at which time the GPU should be idle and
  651. * should *not* be performing page flips and thus not waiting on
  652. * vblanks...
  653. * Currently, the result of us stealing a vblank from the irq
  654. * handler is that a single frame will be skipped during swapbuffers.
  655. */
  656. I915_WRITE(pipestat_reg,
  657. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  658. /* Wait for vblank interrupt bit to set */
  659. if (wait_for(I915_READ(pipestat_reg) &
  660. PIPE_VBLANK_INTERRUPT_STATUS,
  661. 50))
  662. DRM_DEBUG_KMS("vblank wait timed out\n");
  663. }
  664. /*
  665. * intel_wait_for_pipe_off - wait for pipe to turn off
  666. * @dev: drm device
  667. * @pipe: pipe to wait for
  668. *
  669. * After disabling a pipe, we can't wait for vblank in the usual way,
  670. * spinning on the vblank interrupt status bit, since we won't actually
  671. * see an interrupt when the pipe is disabled.
  672. *
  673. * On Gen4 and above:
  674. * wait for the pipe register state bit to turn off
  675. *
  676. * Otherwise:
  677. * wait for the display line value to settle (it usually
  678. * ends up stopping at the start of the next frame).
  679. *
  680. */
  681. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. if (INTEL_INFO(dev)->gen >= 4) {
  685. int reg = PIPECONF(pipe);
  686. /* Wait for the Pipe State to go off */
  687. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  688. 100))
  689. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  690. } else {
  691. u32 last_line;
  692. int reg = PIPEDSL(pipe);
  693. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  694. /* Wait for the display line to settle */
  695. do {
  696. last_line = I915_READ(reg) & DSL_LINEMASK;
  697. mdelay(5);
  698. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  699. time_after(timeout, jiffies));
  700. if (time_after(jiffies, timeout))
  701. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  702. }
  703. }
  704. static const char *state_string(bool enabled)
  705. {
  706. return enabled ? "on" : "off";
  707. }
  708. /* Only for pre-ILK configs */
  709. static void assert_pll(struct drm_i915_private *dev_priv,
  710. enum pipe pipe, bool state)
  711. {
  712. int reg;
  713. u32 val;
  714. bool cur_state;
  715. reg = DPLL(pipe);
  716. val = I915_READ(reg);
  717. cur_state = !!(val & DPLL_VCO_ENABLE);
  718. WARN(cur_state != state,
  719. "PLL state assertion failure (expected %s, current %s)\n",
  720. state_string(state), state_string(cur_state));
  721. }
  722. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  723. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  724. /* For ILK+ */
  725. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  726. enum pipe pipe, bool state)
  727. {
  728. int reg;
  729. u32 val;
  730. bool cur_state;
  731. if (HAS_PCH_CPT(dev_priv->dev)) {
  732. u32 pch_dpll;
  733. pch_dpll = I915_READ(PCH_DPLL_SEL);
  734. /* Make sure the selected PLL is enabled to the transcoder */
  735. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  736. "transcoder %d PLL not enabled\n", pipe);
  737. /* Convert the transcoder pipe number to a pll pipe number */
  738. pipe = (pch_dpll >> (4 * pipe)) & 1;
  739. }
  740. reg = PCH_DPLL(pipe);
  741. val = I915_READ(reg);
  742. cur_state = !!(val & DPLL_VCO_ENABLE);
  743. WARN(cur_state != state,
  744. "PCH PLL state assertion failure (expected %s, current %s)\n",
  745. state_string(state), state_string(cur_state));
  746. }
  747. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  748. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  749. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  750. enum pipe pipe, bool state)
  751. {
  752. int reg;
  753. u32 val;
  754. bool cur_state;
  755. reg = FDI_TX_CTL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & FDI_TX_ENABLE);
  758. WARN(cur_state != state,
  759. "FDI TX state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  763. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  764. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_RX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_RX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI RX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  778. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  779. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  780. enum pipe pipe)
  781. {
  782. int reg;
  783. u32 val;
  784. /* ILK FDI PLL is always enabled */
  785. if (dev_priv->info->gen == 5)
  786. return;
  787. reg = FDI_TX_CTL(pipe);
  788. val = I915_READ(reg);
  789. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  790. }
  791. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  792. enum pipe pipe)
  793. {
  794. int reg;
  795. u32 val;
  796. reg = FDI_RX_CTL(pipe);
  797. val = I915_READ(reg);
  798. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  799. }
  800. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  801. enum pipe pipe)
  802. {
  803. int pp_reg, lvds_reg;
  804. u32 val;
  805. enum pipe panel_pipe = PIPE_A;
  806. bool locked = true;
  807. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  808. pp_reg = PCH_PP_CONTROL;
  809. lvds_reg = PCH_LVDS;
  810. } else {
  811. pp_reg = PP_CONTROL;
  812. lvds_reg = LVDS;
  813. }
  814. val = I915_READ(pp_reg);
  815. if (!(val & PANEL_POWER_ON) ||
  816. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  817. locked = false;
  818. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  819. panel_pipe = PIPE_B;
  820. WARN(panel_pipe == pipe && locked,
  821. "panel assertion failure, pipe %c regs locked\n",
  822. pipe_name(pipe));
  823. }
  824. static void assert_pipe(struct drm_i915_private *dev_priv,
  825. enum pipe pipe, bool state)
  826. {
  827. int reg;
  828. u32 val;
  829. bool cur_state;
  830. reg = PIPECONF(pipe);
  831. val = I915_READ(reg);
  832. cur_state = !!(val & PIPECONF_ENABLE);
  833. WARN(cur_state != state,
  834. "pipe %c assertion failure (expected %s, current %s)\n",
  835. pipe_name(pipe), state_string(state), state_string(cur_state));
  836. }
  837. #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
  838. #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
  839. static void assert_plane_enabled(struct drm_i915_private *dev_priv,
  840. enum plane plane)
  841. {
  842. int reg;
  843. u32 val;
  844. reg = DSPCNTR(plane);
  845. val = I915_READ(reg);
  846. WARN(!(val & DISPLAY_PLANE_ENABLE),
  847. "plane %c assertion failure, should be active but is disabled\n",
  848. plane_name(plane));
  849. }
  850. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  851. enum pipe pipe)
  852. {
  853. int reg, i;
  854. u32 val;
  855. int cur_pipe;
  856. /* Planes are fixed to pipes on ILK+ */
  857. if (HAS_PCH_SPLIT(dev_priv->dev))
  858. return;
  859. /* Need to check both planes against the pipe */
  860. for (i = 0; i < 2; i++) {
  861. reg = DSPCNTR(i);
  862. val = I915_READ(reg);
  863. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  864. DISPPLANE_SEL_PIPE_SHIFT;
  865. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  866. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  867. plane_name(i), pipe_name(pipe));
  868. }
  869. }
  870. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  871. {
  872. u32 val;
  873. bool enabled;
  874. val = I915_READ(PCH_DREF_CONTROL);
  875. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  876. DREF_SUPERSPREAD_SOURCE_MASK));
  877. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  878. }
  879. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  880. enum pipe pipe)
  881. {
  882. int reg;
  883. u32 val;
  884. bool enabled;
  885. reg = TRANSCONF(pipe);
  886. val = I915_READ(reg);
  887. enabled = !!(val & TRANS_ENABLE);
  888. WARN(enabled,
  889. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  890. pipe_name(pipe));
  891. }
  892. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  893. enum pipe pipe, u32 port_sel, u32 val)
  894. {
  895. if ((val & DP_PORT_EN) == 0)
  896. return false;
  897. if (HAS_PCH_CPT(dev_priv->dev)) {
  898. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  899. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  900. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  901. return false;
  902. } else {
  903. if ((val & DP_PIPE_MASK) != (pipe << 30))
  904. return false;
  905. }
  906. return true;
  907. }
  908. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  909. enum pipe pipe, u32 val)
  910. {
  911. if ((val & PORT_ENABLE) == 0)
  912. return false;
  913. if (HAS_PCH_CPT(dev_priv->dev)) {
  914. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  915. return false;
  916. } else {
  917. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  918. return false;
  919. }
  920. return true;
  921. }
  922. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  923. enum pipe pipe, u32 val)
  924. {
  925. if ((val & LVDS_PORT_EN) == 0)
  926. return false;
  927. if (HAS_PCH_CPT(dev_priv->dev)) {
  928. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  929. return false;
  930. } else {
  931. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  932. return false;
  933. }
  934. return true;
  935. }
  936. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  937. enum pipe pipe, u32 val)
  938. {
  939. if ((val & ADPA_DAC_ENABLE) == 0)
  940. return false;
  941. if (HAS_PCH_CPT(dev_priv->dev)) {
  942. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  943. return false;
  944. } else {
  945. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  946. return false;
  947. }
  948. return true;
  949. }
  950. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  951. enum pipe pipe, int reg, u32 port_sel)
  952. {
  953. u32 val = I915_READ(reg);
  954. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  955. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  956. reg, pipe_name(pipe));
  957. }
  958. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  959. enum pipe pipe, int reg)
  960. {
  961. u32 val = I915_READ(reg);
  962. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  963. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  964. reg, pipe_name(pipe));
  965. }
  966. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  967. enum pipe pipe)
  968. {
  969. int reg;
  970. u32 val;
  971. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  972. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  973. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  974. reg = PCH_ADPA;
  975. val = I915_READ(reg);
  976. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  977. "PCH VGA enabled on transcoder %c, should be disabled\n",
  978. pipe_name(pipe));
  979. reg = PCH_LVDS;
  980. val = I915_READ(reg);
  981. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  982. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  983. pipe_name(pipe));
  984. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  985. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  986. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  987. }
  988. /**
  989. * intel_enable_pll - enable a PLL
  990. * @dev_priv: i915 private structure
  991. * @pipe: pipe PLL to enable
  992. *
  993. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  994. * make sure the PLL reg is writable first though, since the panel write
  995. * protect mechanism may be enabled.
  996. *
  997. * Note! This is for pre-ILK only.
  998. */
  999. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1000. {
  1001. int reg;
  1002. u32 val;
  1003. /* No really, not for ILK+ */
  1004. BUG_ON(dev_priv->info->gen >= 5);
  1005. /* PLL is protected by panel, make sure we can write it */
  1006. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1007. assert_panel_unlocked(dev_priv, pipe);
  1008. reg = DPLL(pipe);
  1009. val = I915_READ(reg);
  1010. val |= DPLL_VCO_ENABLE;
  1011. /* We do this three times for luck */
  1012. I915_WRITE(reg, val);
  1013. POSTING_READ(reg);
  1014. udelay(150); /* wait for warmup */
  1015. I915_WRITE(reg, val);
  1016. POSTING_READ(reg);
  1017. udelay(150); /* wait for warmup */
  1018. I915_WRITE(reg, val);
  1019. POSTING_READ(reg);
  1020. udelay(150); /* wait for warmup */
  1021. }
  1022. /**
  1023. * intel_disable_pll - disable a PLL
  1024. * @dev_priv: i915 private structure
  1025. * @pipe: pipe PLL to disable
  1026. *
  1027. * Disable the PLL for @pipe, making sure the pipe is off first.
  1028. *
  1029. * Note! This is for pre-ILK only.
  1030. */
  1031. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1032. {
  1033. int reg;
  1034. u32 val;
  1035. /* Don't disable pipe A or pipe A PLLs if needed */
  1036. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1037. return;
  1038. /* Make sure the pipe isn't still relying on us */
  1039. assert_pipe_disabled(dev_priv, pipe);
  1040. reg = DPLL(pipe);
  1041. val = I915_READ(reg);
  1042. val &= ~DPLL_VCO_ENABLE;
  1043. I915_WRITE(reg, val);
  1044. POSTING_READ(reg);
  1045. }
  1046. /**
  1047. * intel_enable_pch_pll - enable PCH PLL
  1048. * @dev_priv: i915 private structure
  1049. * @pipe: pipe PLL to enable
  1050. *
  1051. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1052. * drives the transcoder clock.
  1053. */
  1054. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1055. enum pipe pipe)
  1056. {
  1057. int reg;
  1058. u32 val;
  1059. if (pipe > 1)
  1060. return;
  1061. /* PCH only available on ILK+ */
  1062. BUG_ON(dev_priv->info->gen < 5);
  1063. /* PCH refclock must be enabled first */
  1064. assert_pch_refclk_enabled(dev_priv);
  1065. reg = PCH_DPLL(pipe);
  1066. val = I915_READ(reg);
  1067. val |= DPLL_VCO_ENABLE;
  1068. I915_WRITE(reg, val);
  1069. POSTING_READ(reg);
  1070. udelay(200);
  1071. }
  1072. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1073. enum pipe pipe)
  1074. {
  1075. int reg;
  1076. u32 val;
  1077. if (pipe > 1)
  1078. return;
  1079. /* PCH only available on ILK+ */
  1080. BUG_ON(dev_priv->info->gen < 5);
  1081. /* Make sure transcoder isn't still depending on us */
  1082. assert_transcoder_disabled(dev_priv, pipe);
  1083. reg = PCH_DPLL(pipe);
  1084. val = I915_READ(reg);
  1085. val &= ~DPLL_VCO_ENABLE;
  1086. I915_WRITE(reg, val);
  1087. POSTING_READ(reg);
  1088. udelay(200);
  1089. }
  1090. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1091. enum pipe pipe)
  1092. {
  1093. int reg;
  1094. u32 val;
  1095. /* PCH only available on ILK+ */
  1096. BUG_ON(dev_priv->info->gen < 5);
  1097. /* Make sure PCH DPLL is enabled */
  1098. assert_pch_pll_enabled(dev_priv, pipe);
  1099. /* FDI must be feeding us bits for PCH ports */
  1100. assert_fdi_tx_enabled(dev_priv, pipe);
  1101. assert_fdi_rx_enabled(dev_priv, pipe);
  1102. reg = TRANSCONF(pipe);
  1103. val = I915_READ(reg);
  1104. if (HAS_PCH_IBX(dev_priv->dev)) {
  1105. /*
  1106. * make the BPC in transcoder be consistent with
  1107. * that in pipeconf reg.
  1108. */
  1109. val &= ~PIPE_BPC_MASK;
  1110. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1111. }
  1112. I915_WRITE(reg, val | TRANS_ENABLE);
  1113. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1114. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1115. }
  1116. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1117. enum pipe pipe)
  1118. {
  1119. int reg;
  1120. u32 val;
  1121. /* FDI relies on the transcoder */
  1122. assert_fdi_tx_disabled(dev_priv, pipe);
  1123. assert_fdi_rx_disabled(dev_priv, pipe);
  1124. /* Ports must be off as well */
  1125. assert_pch_ports_disabled(dev_priv, pipe);
  1126. reg = TRANSCONF(pipe);
  1127. val = I915_READ(reg);
  1128. val &= ~TRANS_ENABLE;
  1129. I915_WRITE(reg, val);
  1130. /* wait for PCH transcoder off, transcoder state */
  1131. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1132. DRM_ERROR("failed to disable transcoder\n");
  1133. }
  1134. /**
  1135. * intel_enable_pipe - enable a pipe, asserting requirements
  1136. * @dev_priv: i915 private structure
  1137. * @pipe: pipe to enable
  1138. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1139. *
  1140. * Enable @pipe, making sure that various hardware specific requirements
  1141. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1142. *
  1143. * @pipe should be %PIPE_A or %PIPE_B.
  1144. *
  1145. * Will wait until the pipe is actually running (i.e. first vblank) before
  1146. * returning.
  1147. */
  1148. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1149. bool pch_port)
  1150. {
  1151. int reg;
  1152. u32 val;
  1153. /*
  1154. * A pipe without a PLL won't actually be able to drive bits from
  1155. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1156. * need the check.
  1157. */
  1158. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1159. assert_pll_enabled(dev_priv, pipe);
  1160. else {
  1161. if (pch_port) {
  1162. /* if driving the PCH, we need FDI enabled */
  1163. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1164. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1165. }
  1166. /* FIXME: assert CPU port conditions for SNB+ */
  1167. }
  1168. reg = PIPECONF(pipe);
  1169. val = I915_READ(reg);
  1170. if (val & PIPECONF_ENABLE)
  1171. return;
  1172. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1173. intel_wait_for_vblank(dev_priv->dev, pipe);
  1174. }
  1175. /**
  1176. * intel_disable_pipe - disable a pipe, asserting requirements
  1177. * @dev_priv: i915 private structure
  1178. * @pipe: pipe to disable
  1179. *
  1180. * Disable @pipe, making sure that various hardware specific requirements
  1181. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1182. *
  1183. * @pipe should be %PIPE_A or %PIPE_B.
  1184. *
  1185. * Will wait until the pipe has shut down before returning.
  1186. */
  1187. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1188. enum pipe pipe)
  1189. {
  1190. int reg;
  1191. u32 val;
  1192. /*
  1193. * Make sure planes won't keep trying to pump pixels to us,
  1194. * or we might hang the display.
  1195. */
  1196. assert_planes_disabled(dev_priv, pipe);
  1197. /* Don't disable pipe A or pipe A PLLs if needed */
  1198. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1199. return;
  1200. reg = PIPECONF(pipe);
  1201. val = I915_READ(reg);
  1202. if ((val & PIPECONF_ENABLE) == 0)
  1203. return;
  1204. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1205. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1206. }
  1207. /*
  1208. * Plane regs are double buffered, going from enabled->disabled needs a
  1209. * trigger in order to latch. The display address reg provides this.
  1210. */
  1211. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1212. enum plane plane)
  1213. {
  1214. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1215. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1216. }
  1217. /**
  1218. * intel_enable_plane - enable a display plane on a given pipe
  1219. * @dev_priv: i915 private structure
  1220. * @plane: plane to enable
  1221. * @pipe: pipe being fed
  1222. *
  1223. * Enable @plane on @pipe, making sure that @pipe is running first.
  1224. */
  1225. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1226. enum plane plane, enum pipe pipe)
  1227. {
  1228. int reg;
  1229. u32 val;
  1230. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1231. assert_pipe_enabled(dev_priv, pipe);
  1232. reg = DSPCNTR(plane);
  1233. val = I915_READ(reg);
  1234. if (val & DISPLAY_PLANE_ENABLE)
  1235. return;
  1236. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1237. intel_flush_display_plane(dev_priv, plane);
  1238. intel_wait_for_vblank(dev_priv->dev, pipe);
  1239. }
  1240. /**
  1241. * intel_disable_plane - disable a display plane
  1242. * @dev_priv: i915 private structure
  1243. * @plane: plane to disable
  1244. * @pipe: pipe consuming the data
  1245. *
  1246. * Disable @plane; should be an independent operation.
  1247. */
  1248. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1249. enum plane plane, enum pipe pipe)
  1250. {
  1251. int reg;
  1252. u32 val;
  1253. reg = DSPCNTR(plane);
  1254. val = I915_READ(reg);
  1255. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1256. return;
  1257. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1258. intel_flush_display_plane(dev_priv, plane);
  1259. intel_wait_for_vblank(dev_priv->dev, pipe);
  1260. }
  1261. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1262. enum pipe pipe, int reg, u32 port_sel)
  1263. {
  1264. u32 val = I915_READ(reg);
  1265. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1266. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1267. I915_WRITE(reg, val & ~DP_PORT_EN);
  1268. }
  1269. }
  1270. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1271. enum pipe pipe, int reg)
  1272. {
  1273. u32 val = I915_READ(reg);
  1274. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1275. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1276. reg, pipe);
  1277. I915_WRITE(reg, val & ~PORT_ENABLE);
  1278. }
  1279. }
  1280. /* Disable any ports connected to this transcoder */
  1281. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1282. enum pipe pipe)
  1283. {
  1284. u32 reg, val;
  1285. val = I915_READ(PCH_PP_CONTROL);
  1286. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1287. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1288. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1289. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1290. reg = PCH_ADPA;
  1291. val = I915_READ(reg);
  1292. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1293. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1294. reg = PCH_LVDS;
  1295. val = I915_READ(reg);
  1296. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1297. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1298. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1299. POSTING_READ(reg);
  1300. udelay(100);
  1301. }
  1302. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1303. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1304. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1305. }
  1306. static void i8xx_disable_fbc(struct drm_device *dev)
  1307. {
  1308. struct drm_i915_private *dev_priv = dev->dev_private;
  1309. u32 fbc_ctl;
  1310. /* Disable compression */
  1311. fbc_ctl = I915_READ(FBC_CONTROL);
  1312. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1313. return;
  1314. fbc_ctl &= ~FBC_CTL_EN;
  1315. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1316. /* Wait for compressing bit to clear */
  1317. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1318. DRM_DEBUG_KMS("FBC idle timed out\n");
  1319. return;
  1320. }
  1321. DRM_DEBUG_KMS("disabled FBC\n");
  1322. }
  1323. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1324. {
  1325. struct drm_device *dev = crtc->dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. struct drm_framebuffer *fb = crtc->fb;
  1328. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1329. struct drm_i915_gem_object *obj = intel_fb->obj;
  1330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1331. int cfb_pitch;
  1332. int plane, i;
  1333. u32 fbc_ctl, fbc_ctl2;
  1334. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1335. if (fb->pitch < cfb_pitch)
  1336. cfb_pitch = fb->pitch;
  1337. /* FBC_CTL wants 64B units */
  1338. cfb_pitch = (cfb_pitch / 64) - 1;
  1339. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1340. /* Clear old tags */
  1341. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1342. I915_WRITE(FBC_TAG + (i * 4), 0);
  1343. /* Set it up... */
  1344. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1345. fbc_ctl2 |= plane;
  1346. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1347. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1348. /* enable it... */
  1349. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1350. if (IS_I945GM(dev))
  1351. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1352. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1353. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1354. fbc_ctl |= obj->fence_reg;
  1355. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1356. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1357. cfb_pitch, crtc->y, intel_crtc->plane);
  1358. }
  1359. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1360. {
  1361. struct drm_i915_private *dev_priv = dev->dev_private;
  1362. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1363. }
  1364. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1365. {
  1366. struct drm_device *dev = crtc->dev;
  1367. struct drm_i915_private *dev_priv = dev->dev_private;
  1368. struct drm_framebuffer *fb = crtc->fb;
  1369. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1370. struct drm_i915_gem_object *obj = intel_fb->obj;
  1371. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1372. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1373. unsigned long stall_watermark = 200;
  1374. u32 dpfc_ctl;
  1375. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1376. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1377. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1378. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1379. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1380. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1381. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1382. /* enable it... */
  1383. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1384. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1385. }
  1386. static void g4x_disable_fbc(struct drm_device *dev)
  1387. {
  1388. struct drm_i915_private *dev_priv = dev->dev_private;
  1389. u32 dpfc_ctl;
  1390. /* Disable compression */
  1391. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1392. if (dpfc_ctl & DPFC_CTL_EN) {
  1393. dpfc_ctl &= ~DPFC_CTL_EN;
  1394. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1395. DRM_DEBUG_KMS("disabled FBC\n");
  1396. }
  1397. }
  1398. static bool g4x_fbc_enabled(struct drm_device *dev)
  1399. {
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1402. }
  1403. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1404. {
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. u32 blt_ecoskpd;
  1407. /* Make sure blitter notifies FBC of writes */
  1408. gen6_gt_force_wake_get(dev_priv);
  1409. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1410. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1411. GEN6_BLITTER_LOCK_SHIFT;
  1412. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1413. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1414. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1415. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1416. GEN6_BLITTER_LOCK_SHIFT);
  1417. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1418. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1419. gen6_gt_force_wake_put(dev_priv);
  1420. }
  1421. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1422. {
  1423. struct drm_device *dev = crtc->dev;
  1424. struct drm_i915_private *dev_priv = dev->dev_private;
  1425. struct drm_framebuffer *fb = crtc->fb;
  1426. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1427. struct drm_i915_gem_object *obj = intel_fb->obj;
  1428. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1429. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1430. unsigned long stall_watermark = 200;
  1431. u32 dpfc_ctl;
  1432. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1433. dpfc_ctl &= DPFC_RESERVED;
  1434. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1435. /* Set persistent mode for front-buffer rendering, ala X. */
  1436. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1437. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1438. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1439. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1440. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1441. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1442. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1443. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1444. /* enable it... */
  1445. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1446. if (IS_GEN6(dev)) {
  1447. I915_WRITE(SNB_DPFC_CTL_SA,
  1448. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1449. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1450. sandybridge_blit_fbc_update(dev);
  1451. }
  1452. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1453. }
  1454. static void ironlake_disable_fbc(struct drm_device *dev)
  1455. {
  1456. struct drm_i915_private *dev_priv = dev->dev_private;
  1457. u32 dpfc_ctl;
  1458. /* Disable compression */
  1459. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1460. if (dpfc_ctl & DPFC_CTL_EN) {
  1461. dpfc_ctl &= ~DPFC_CTL_EN;
  1462. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1463. DRM_DEBUG_KMS("disabled FBC\n");
  1464. }
  1465. }
  1466. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1467. {
  1468. struct drm_i915_private *dev_priv = dev->dev_private;
  1469. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1470. }
  1471. bool intel_fbc_enabled(struct drm_device *dev)
  1472. {
  1473. struct drm_i915_private *dev_priv = dev->dev_private;
  1474. if (!dev_priv->display.fbc_enabled)
  1475. return false;
  1476. return dev_priv->display.fbc_enabled(dev);
  1477. }
  1478. static void intel_fbc_work_fn(struct work_struct *__work)
  1479. {
  1480. struct intel_fbc_work *work =
  1481. container_of(to_delayed_work(__work),
  1482. struct intel_fbc_work, work);
  1483. struct drm_device *dev = work->crtc->dev;
  1484. struct drm_i915_private *dev_priv = dev->dev_private;
  1485. mutex_lock(&dev->struct_mutex);
  1486. if (work == dev_priv->fbc_work) {
  1487. /* Double check that we haven't switched fb without cancelling
  1488. * the prior work.
  1489. */
  1490. if (work->crtc->fb == work->fb) {
  1491. dev_priv->display.enable_fbc(work->crtc,
  1492. work->interval);
  1493. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1494. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1495. dev_priv->cfb_y = work->crtc->y;
  1496. }
  1497. dev_priv->fbc_work = NULL;
  1498. }
  1499. mutex_unlock(&dev->struct_mutex);
  1500. kfree(work);
  1501. }
  1502. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1503. {
  1504. if (dev_priv->fbc_work == NULL)
  1505. return;
  1506. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1507. /* Synchronisation is provided by struct_mutex and checking of
  1508. * dev_priv->fbc_work, so we can perform the cancellation
  1509. * entirely asynchronously.
  1510. */
  1511. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1512. /* tasklet was killed before being run, clean up */
  1513. kfree(dev_priv->fbc_work);
  1514. /* Mark the work as no longer wanted so that if it does
  1515. * wake-up (because the work was already running and waiting
  1516. * for our mutex), it will discover that is no longer
  1517. * necessary to run.
  1518. */
  1519. dev_priv->fbc_work = NULL;
  1520. }
  1521. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1522. {
  1523. struct intel_fbc_work *work;
  1524. struct drm_device *dev = crtc->dev;
  1525. struct drm_i915_private *dev_priv = dev->dev_private;
  1526. if (!dev_priv->display.enable_fbc)
  1527. return;
  1528. intel_cancel_fbc_work(dev_priv);
  1529. work = kzalloc(sizeof *work, GFP_KERNEL);
  1530. if (work == NULL) {
  1531. dev_priv->display.enable_fbc(crtc, interval);
  1532. return;
  1533. }
  1534. work->crtc = crtc;
  1535. work->fb = crtc->fb;
  1536. work->interval = interval;
  1537. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1538. dev_priv->fbc_work = work;
  1539. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1540. /* Delay the actual enabling to let pageflipping cease and the
  1541. * display to settle before starting the compression. Note that
  1542. * this delay also serves a second purpose: it allows for a
  1543. * vblank to pass after disabling the FBC before we attempt
  1544. * to modify the control registers.
  1545. *
  1546. * A more complicated solution would involve tracking vblanks
  1547. * following the termination of the page-flipping sequence
  1548. * and indeed performing the enable as a co-routine and not
  1549. * waiting synchronously upon the vblank.
  1550. */
  1551. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1552. }
  1553. void intel_disable_fbc(struct drm_device *dev)
  1554. {
  1555. struct drm_i915_private *dev_priv = dev->dev_private;
  1556. intel_cancel_fbc_work(dev_priv);
  1557. if (!dev_priv->display.disable_fbc)
  1558. return;
  1559. dev_priv->display.disable_fbc(dev);
  1560. dev_priv->cfb_plane = -1;
  1561. }
  1562. /**
  1563. * intel_update_fbc - enable/disable FBC as needed
  1564. * @dev: the drm_device
  1565. *
  1566. * Set up the framebuffer compression hardware at mode set time. We
  1567. * enable it if possible:
  1568. * - plane A only (on pre-965)
  1569. * - no pixel mulitply/line duplication
  1570. * - no alpha buffer discard
  1571. * - no dual wide
  1572. * - framebuffer <= 2048 in width, 1536 in height
  1573. *
  1574. * We can't assume that any compression will take place (worst case),
  1575. * so the compressed buffer has to be the same size as the uncompressed
  1576. * one. It also must reside (along with the line length buffer) in
  1577. * stolen memory.
  1578. *
  1579. * We need to enable/disable FBC on a global basis.
  1580. */
  1581. static void intel_update_fbc(struct drm_device *dev)
  1582. {
  1583. struct drm_i915_private *dev_priv = dev->dev_private;
  1584. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1585. struct intel_crtc *intel_crtc;
  1586. struct drm_framebuffer *fb;
  1587. struct intel_framebuffer *intel_fb;
  1588. struct drm_i915_gem_object *obj;
  1589. int enable_fbc;
  1590. DRM_DEBUG_KMS("\n");
  1591. if (!i915_powersave)
  1592. return;
  1593. if (!I915_HAS_FBC(dev))
  1594. return;
  1595. /*
  1596. * If FBC is already on, we just have to verify that we can
  1597. * keep it that way...
  1598. * Need to disable if:
  1599. * - more than one pipe is active
  1600. * - changing FBC params (stride, fence, mode)
  1601. * - new fb is too large to fit in compressed buffer
  1602. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1603. */
  1604. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1605. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1606. if (crtc) {
  1607. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1608. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1609. goto out_disable;
  1610. }
  1611. crtc = tmp_crtc;
  1612. }
  1613. }
  1614. if (!crtc || crtc->fb == NULL) {
  1615. DRM_DEBUG_KMS("no output, disabling\n");
  1616. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1617. goto out_disable;
  1618. }
  1619. intel_crtc = to_intel_crtc(crtc);
  1620. fb = crtc->fb;
  1621. intel_fb = to_intel_framebuffer(fb);
  1622. obj = intel_fb->obj;
  1623. enable_fbc = i915_enable_fbc;
  1624. if (enable_fbc < 0) {
  1625. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1626. enable_fbc = 1;
  1627. if (INTEL_INFO(dev)->gen <= 5)
  1628. enable_fbc = 0;
  1629. }
  1630. if (!enable_fbc) {
  1631. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1632. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1633. goto out_disable;
  1634. }
  1635. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1636. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1637. "compression\n");
  1638. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1639. goto out_disable;
  1640. }
  1641. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1642. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1643. DRM_DEBUG_KMS("mode incompatible with compression, "
  1644. "disabling\n");
  1645. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1646. goto out_disable;
  1647. }
  1648. if ((crtc->mode.hdisplay > 2048) ||
  1649. (crtc->mode.vdisplay > 1536)) {
  1650. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1651. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1652. goto out_disable;
  1653. }
  1654. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1655. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1656. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1657. goto out_disable;
  1658. }
  1659. /* The use of a CPU fence is mandatory in order to detect writes
  1660. * by the CPU to the scanout and trigger updates to the FBC.
  1661. */
  1662. if (obj->tiling_mode != I915_TILING_X ||
  1663. obj->fence_reg == I915_FENCE_REG_NONE) {
  1664. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1665. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1666. goto out_disable;
  1667. }
  1668. /* If the kernel debugger is active, always disable compression */
  1669. if (in_dbg_master())
  1670. goto out_disable;
  1671. /* If the scanout has not changed, don't modify the FBC settings.
  1672. * Note that we make the fundamental assumption that the fb->obj
  1673. * cannot be unpinned (and have its GTT offset and fence revoked)
  1674. * without first being decoupled from the scanout and FBC disabled.
  1675. */
  1676. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1677. dev_priv->cfb_fb == fb->base.id &&
  1678. dev_priv->cfb_y == crtc->y)
  1679. return;
  1680. if (intel_fbc_enabled(dev)) {
  1681. /* We update FBC along two paths, after changing fb/crtc
  1682. * configuration (modeswitching) and after page-flipping
  1683. * finishes. For the latter, we know that not only did
  1684. * we disable the FBC at the start of the page-flip
  1685. * sequence, but also more than one vblank has passed.
  1686. *
  1687. * For the former case of modeswitching, it is possible
  1688. * to switch between two FBC valid configurations
  1689. * instantaneously so we do need to disable the FBC
  1690. * before we can modify its control registers. We also
  1691. * have to wait for the next vblank for that to take
  1692. * effect. However, since we delay enabling FBC we can
  1693. * assume that a vblank has passed since disabling and
  1694. * that we can safely alter the registers in the deferred
  1695. * callback.
  1696. *
  1697. * In the scenario that we go from a valid to invalid
  1698. * and then back to valid FBC configuration we have
  1699. * no strict enforcement that a vblank occurred since
  1700. * disabling the FBC. However, along all current pipe
  1701. * disabling paths we do need to wait for a vblank at
  1702. * some point. And we wait before enabling FBC anyway.
  1703. */
  1704. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1705. intel_disable_fbc(dev);
  1706. }
  1707. intel_enable_fbc(crtc, 500);
  1708. return;
  1709. out_disable:
  1710. /* Multiple disables should be harmless */
  1711. if (intel_fbc_enabled(dev)) {
  1712. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1713. intel_disable_fbc(dev);
  1714. }
  1715. }
  1716. int
  1717. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1718. struct drm_i915_gem_object *obj,
  1719. struct intel_ring_buffer *pipelined)
  1720. {
  1721. struct drm_i915_private *dev_priv = dev->dev_private;
  1722. u32 alignment;
  1723. int ret;
  1724. switch (obj->tiling_mode) {
  1725. case I915_TILING_NONE:
  1726. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1727. alignment = 128 * 1024;
  1728. else if (INTEL_INFO(dev)->gen >= 4)
  1729. alignment = 4 * 1024;
  1730. else
  1731. alignment = 64 * 1024;
  1732. break;
  1733. case I915_TILING_X:
  1734. /* pin() will align the object as required by fence */
  1735. alignment = 0;
  1736. break;
  1737. case I915_TILING_Y:
  1738. /* FIXME: Is this true? */
  1739. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1740. return -EINVAL;
  1741. default:
  1742. BUG();
  1743. }
  1744. dev_priv->mm.interruptible = false;
  1745. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1746. if (ret)
  1747. goto err_interruptible;
  1748. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1749. * fence, whereas 965+ only requires a fence if using
  1750. * framebuffer compression. For simplicity, we always install
  1751. * a fence as the cost is not that onerous.
  1752. */
  1753. if (obj->tiling_mode != I915_TILING_NONE) {
  1754. ret = i915_gem_object_get_fence(obj, pipelined);
  1755. if (ret)
  1756. goto err_unpin;
  1757. }
  1758. dev_priv->mm.interruptible = true;
  1759. return 0;
  1760. err_unpin:
  1761. i915_gem_object_unpin(obj);
  1762. err_interruptible:
  1763. dev_priv->mm.interruptible = true;
  1764. return ret;
  1765. }
  1766. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1767. int x, int y)
  1768. {
  1769. struct drm_device *dev = crtc->dev;
  1770. struct drm_i915_private *dev_priv = dev->dev_private;
  1771. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1772. struct intel_framebuffer *intel_fb;
  1773. struct drm_i915_gem_object *obj;
  1774. int plane = intel_crtc->plane;
  1775. unsigned long Start, Offset;
  1776. u32 dspcntr;
  1777. u32 reg;
  1778. switch (plane) {
  1779. case 0:
  1780. case 1:
  1781. break;
  1782. default:
  1783. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1784. return -EINVAL;
  1785. }
  1786. intel_fb = to_intel_framebuffer(fb);
  1787. obj = intel_fb->obj;
  1788. reg = DSPCNTR(plane);
  1789. dspcntr = I915_READ(reg);
  1790. /* Mask out pixel format bits in case we change it */
  1791. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1792. switch (fb->bits_per_pixel) {
  1793. case 8:
  1794. dspcntr |= DISPPLANE_8BPP;
  1795. break;
  1796. case 16:
  1797. if (fb->depth == 15)
  1798. dspcntr |= DISPPLANE_15_16BPP;
  1799. else
  1800. dspcntr |= DISPPLANE_16BPP;
  1801. break;
  1802. case 24:
  1803. case 32:
  1804. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1805. break;
  1806. default:
  1807. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1808. return -EINVAL;
  1809. }
  1810. if (INTEL_INFO(dev)->gen >= 4) {
  1811. if (obj->tiling_mode != I915_TILING_NONE)
  1812. dspcntr |= DISPPLANE_TILED;
  1813. else
  1814. dspcntr &= ~DISPPLANE_TILED;
  1815. }
  1816. I915_WRITE(reg, dspcntr);
  1817. Start = obj->gtt_offset;
  1818. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1819. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1820. Start, Offset, x, y, fb->pitch);
  1821. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1822. if (INTEL_INFO(dev)->gen >= 4) {
  1823. I915_WRITE(DSPSURF(plane), Start);
  1824. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1825. I915_WRITE(DSPADDR(plane), Offset);
  1826. } else
  1827. I915_WRITE(DSPADDR(plane), Start + Offset);
  1828. POSTING_READ(reg);
  1829. return 0;
  1830. }
  1831. static int ironlake_update_plane(struct drm_crtc *crtc,
  1832. struct drm_framebuffer *fb, int x, int y)
  1833. {
  1834. struct drm_device *dev = crtc->dev;
  1835. struct drm_i915_private *dev_priv = dev->dev_private;
  1836. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1837. struct intel_framebuffer *intel_fb;
  1838. struct drm_i915_gem_object *obj;
  1839. int plane = intel_crtc->plane;
  1840. unsigned long Start, Offset;
  1841. u32 dspcntr;
  1842. u32 reg;
  1843. switch (plane) {
  1844. case 0:
  1845. case 1:
  1846. case 2:
  1847. break;
  1848. default:
  1849. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1850. return -EINVAL;
  1851. }
  1852. intel_fb = to_intel_framebuffer(fb);
  1853. obj = intel_fb->obj;
  1854. reg = DSPCNTR(plane);
  1855. dspcntr = I915_READ(reg);
  1856. /* Mask out pixel format bits in case we change it */
  1857. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1858. switch (fb->bits_per_pixel) {
  1859. case 8:
  1860. dspcntr |= DISPPLANE_8BPP;
  1861. break;
  1862. case 16:
  1863. if (fb->depth != 16)
  1864. return -EINVAL;
  1865. dspcntr |= DISPPLANE_16BPP;
  1866. break;
  1867. case 24:
  1868. case 32:
  1869. if (fb->depth == 24)
  1870. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1871. else if (fb->depth == 30)
  1872. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1873. else
  1874. return -EINVAL;
  1875. break;
  1876. default:
  1877. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1878. return -EINVAL;
  1879. }
  1880. if (obj->tiling_mode != I915_TILING_NONE)
  1881. dspcntr |= DISPPLANE_TILED;
  1882. else
  1883. dspcntr &= ~DISPPLANE_TILED;
  1884. /* must disable */
  1885. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1886. I915_WRITE(reg, dspcntr);
  1887. Start = obj->gtt_offset;
  1888. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1889. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1890. Start, Offset, x, y, fb->pitch);
  1891. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1892. I915_WRITE(DSPSURF(plane), Start);
  1893. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1894. I915_WRITE(DSPADDR(plane), Offset);
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. int ret;
  1906. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1907. if (ret)
  1908. return ret;
  1909. intel_update_fbc(dev);
  1910. intel_increase_pllclock(crtc);
  1911. return 0;
  1912. }
  1913. static int
  1914. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1915. struct drm_framebuffer *old_fb)
  1916. {
  1917. struct drm_device *dev = crtc->dev;
  1918. struct drm_i915_master_private *master_priv;
  1919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1920. int ret;
  1921. /* no fb bound */
  1922. if (!crtc->fb) {
  1923. DRM_ERROR("No FB bound\n");
  1924. return 0;
  1925. }
  1926. switch (intel_crtc->plane) {
  1927. case 0:
  1928. case 1:
  1929. break;
  1930. case 2:
  1931. if (IS_IVYBRIDGE(dev))
  1932. break;
  1933. /* fall through otherwise */
  1934. default:
  1935. DRM_ERROR("no plane for crtc\n");
  1936. return -EINVAL;
  1937. }
  1938. mutex_lock(&dev->struct_mutex);
  1939. ret = intel_pin_and_fence_fb_obj(dev,
  1940. to_intel_framebuffer(crtc->fb)->obj,
  1941. NULL);
  1942. if (ret != 0) {
  1943. mutex_unlock(&dev->struct_mutex);
  1944. DRM_ERROR("pin & fence failed\n");
  1945. return ret;
  1946. }
  1947. if (old_fb) {
  1948. struct drm_i915_private *dev_priv = dev->dev_private;
  1949. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1950. wait_event(dev_priv->pending_flip_queue,
  1951. atomic_read(&dev_priv->mm.wedged) ||
  1952. atomic_read(&obj->pending_flip) == 0);
  1953. /* Big Hammer, we also need to ensure that any pending
  1954. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1955. * current scanout is retired before unpinning the old
  1956. * framebuffer.
  1957. *
  1958. * This should only fail upon a hung GPU, in which case we
  1959. * can safely continue.
  1960. */
  1961. ret = i915_gem_object_finish_gpu(obj);
  1962. (void) ret;
  1963. }
  1964. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  1965. LEAVE_ATOMIC_MODE_SET);
  1966. if (ret) {
  1967. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  1968. mutex_unlock(&dev->struct_mutex);
  1969. DRM_ERROR("failed to update base address\n");
  1970. return ret;
  1971. }
  1972. if (old_fb) {
  1973. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1974. i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
  1975. }
  1976. mutex_unlock(&dev->struct_mutex);
  1977. if (!dev->primary->master)
  1978. return 0;
  1979. master_priv = dev->primary->master->driver_priv;
  1980. if (!master_priv->sarea_priv)
  1981. return 0;
  1982. if (intel_crtc->pipe) {
  1983. master_priv->sarea_priv->pipeB_x = x;
  1984. master_priv->sarea_priv->pipeB_y = y;
  1985. } else {
  1986. master_priv->sarea_priv->pipeA_x = x;
  1987. master_priv->sarea_priv->pipeA_y = y;
  1988. }
  1989. return 0;
  1990. }
  1991. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1992. {
  1993. struct drm_device *dev = crtc->dev;
  1994. struct drm_i915_private *dev_priv = dev->dev_private;
  1995. u32 dpa_ctl;
  1996. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1997. dpa_ctl = I915_READ(DP_A);
  1998. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1999. if (clock < 200000) {
  2000. u32 temp;
  2001. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2002. /* workaround for 160Mhz:
  2003. 1) program 0x4600c bits 15:0 = 0x8124
  2004. 2) program 0x46010 bit 0 = 1
  2005. 3) program 0x46034 bit 24 = 1
  2006. 4) program 0x64000 bit 14 = 1
  2007. */
  2008. temp = I915_READ(0x4600c);
  2009. temp &= 0xffff0000;
  2010. I915_WRITE(0x4600c, temp | 0x8124);
  2011. temp = I915_READ(0x46010);
  2012. I915_WRITE(0x46010, temp | 1);
  2013. temp = I915_READ(0x46034);
  2014. I915_WRITE(0x46034, temp | (1 << 24));
  2015. } else {
  2016. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2017. }
  2018. I915_WRITE(DP_A, dpa_ctl);
  2019. POSTING_READ(DP_A);
  2020. udelay(500);
  2021. }
  2022. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2023. {
  2024. struct drm_device *dev = crtc->dev;
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2027. int pipe = intel_crtc->pipe;
  2028. u32 reg, temp;
  2029. /* enable normal train */
  2030. reg = FDI_TX_CTL(pipe);
  2031. temp = I915_READ(reg);
  2032. if (IS_IVYBRIDGE(dev)) {
  2033. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2034. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2035. } else {
  2036. temp &= ~FDI_LINK_TRAIN_NONE;
  2037. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2038. }
  2039. I915_WRITE(reg, temp);
  2040. reg = FDI_RX_CTL(pipe);
  2041. temp = I915_READ(reg);
  2042. if (HAS_PCH_CPT(dev)) {
  2043. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2044. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2045. } else {
  2046. temp &= ~FDI_LINK_TRAIN_NONE;
  2047. temp |= FDI_LINK_TRAIN_NONE;
  2048. }
  2049. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2050. /* wait one idle pattern time */
  2051. POSTING_READ(reg);
  2052. udelay(1000);
  2053. /* IVB wants error correction enabled */
  2054. if (IS_IVYBRIDGE(dev))
  2055. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2056. FDI_FE_ERRC_ENABLE);
  2057. }
  2058. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2059. {
  2060. struct drm_i915_private *dev_priv = dev->dev_private;
  2061. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2062. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2063. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2064. flags |= FDI_PHASE_SYNC_EN(pipe);
  2065. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2066. POSTING_READ(SOUTH_CHICKEN1);
  2067. }
  2068. /* The FDI link training functions for ILK/Ibexpeak. */
  2069. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2070. {
  2071. struct drm_device *dev = crtc->dev;
  2072. struct drm_i915_private *dev_priv = dev->dev_private;
  2073. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2074. int pipe = intel_crtc->pipe;
  2075. int plane = intel_crtc->plane;
  2076. u32 reg, temp, tries;
  2077. /* FDI needs bits from pipe & plane first */
  2078. assert_pipe_enabled(dev_priv, pipe);
  2079. assert_plane_enabled(dev_priv, plane);
  2080. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2081. for train result */
  2082. reg = FDI_RX_IMR(pipe);
  2083. temp = I915_READ(reg);
  2084. temp &= ~FDI_RX_SYMBOL_LOCK;
  2085. temp &= ~FDI_RX_BIT_LOCK;
  2086. I915_WRITE(reg, temp);
  2087. I915_READ(reg);
  2088. udelay(150);
  2089. /* enable CPU FDI TX and PCH FDI RX */
  2090. reg = FDI_TX_CTL(pipe);
  2091. temp = I915_READ(reg);
  2092. temp &= ~(7 << 19);
  2093. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2094. temp &= ~FDI_LINK_TRAIN_NONE;
  2095. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2096. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2097. reg = FDI_RX_CTL(pipe);
  2098. temp = I915_READ(reg);
  2099. temp &= ~FDI_LINK_TRAIN_NONE;
  2100. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2101. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2102. POSTING_READ(reg);
  2103. udelay(150);
  2104. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2105. if (HAS_PCH_IBX(dev)) {
  2106. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2107. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2108. FDI_RX_PHASE_SYNC_POINTER_EN);
  2109. }
  2110. reg = FDI_RX_IIR(pipe);
  2111. for (tries = 0; tries < 5; tries++) {
  2112. temp = I915_READ(reg);
  2113. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2114. if ((temp & FDI_RX_BIT_LOCK)) {
  2115. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2116. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2117. break;
  2118. }
  2119. }
  2120. if (tries == 5)
  2121. DRM_ERROR("FDI train 1 fail!\n");
  2122. /* Train 2 */
  2123. reg = FDI_TX_CTL(pipe);
  2124. temp = I915_READ(reg);
  2125. temp &= ~FDI_LINK_TRAIN_NONE;
  2126. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2127. I915_WRITE(reg, temp);
  2128. reg = FDI_RX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. temp &= ~FDI_LINK_TRAIN_NONE;
  2131. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2132. I915_WRITE(reg, temp);
  2133. POSTING_READ(reg);
  2134. udelay(150);
  2135. reg = FDI_RX_IIR(pipe);
  2136. for (tries = 0; tries < 5; tries++) {
  2137. temp = I915_READ(reg);
  2138. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2139. if (temp & FDI_RX_SYMBOL_LOCK) {
  2140. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2141. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2142. break;
  2143. }
  2144. }
  2145. if (tries == 5)
  2146. DRM_ERROR("FDI train 2 fail!\n");
  2147. DRM_DEBUG_KMS("FDI train done\n");
  2148. }
  2149. static const int snb_b_fdi_train_param[] = {
  2150. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2151. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2152. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2153. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2154. };
  2155. /* The FDI link training functions for SNB/Cougarpoint. */
  2156. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2157. {
  2158. struct drm_device *dev = crtc->dev;
  2159. struct drm_i915_private *dev_priv = dev->dev_private;
  2160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2161. int pipe = intel_crtc->pipe;
  2162. u32 reg, temp, i;
  2163. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2164. for train result */
  2165. reg = FDI_RX_IMR(pipe);
  2166. temp = I915_READ(reg);
  2167. temp &= ~FDI_RX_SYMBOL_LOCK;
  2168. temp &= ~FDI_RX_BIT_LOCK;
  2169. I915_WRITE(reg, temp);
  2170. POSTING_READ(reg);
  2171. udelay(150);
  2172. /* enable CPU FDI TX and PCH FDI RX */
  2173. reg = FDI_TX_CTL(pipe);
  2174. temp = I915_READ(reg);
  2175. temp &= ~(7 << 19);
  2176. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2177. temp &= ~FDI_LINK_TRAIN_NONE;
  2178. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2179. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2180. /* SNB-B */
  2181. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2182. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2183. reg = FDI_RX_CTL(pipe);
  2184. temp = I915_READ(reg);
  2185. if (HAS_PCH_CPT(dev)) {
  2186. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2187. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2188. } else {
  2189. temp &= ~FDI_LINK_TRAIN_NONE;
  2190. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2191. }
  2192. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2193. POSTING_READ(reg);
  2194. udelay(150);
  2195. if (HAS_PCH_CPT(dev))
  2196. cpt_phase_pointer_enable(dev, pipe);
  2197. for (i = 0; i < 4; i++) {
  2198. reg = FDI_TX_CTL(pipe);
  2199. temp = I915_READ(reg);
  2200. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2201. temp |= snb_b_fdi_train_param[i];
  2202. I915_WRITE(reg, temp);
  2203. POSTING_READ(reg);
  2204. udelay(500);
  2205. reg = FDI_RX_IIR(pipe);
  2206. temp = I915_READ(reg);
  2207. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2208. if (temp & FDI_RX_BIT_LOCK) {
  2209. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2210. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2211. break;
  2212. }
  2213. }
  2214. if (i == 4)
  2215. DRM_ERROR("FDI train 1 fail!\n");
  2216. /* Train 2 */
  2217. reg = FDI_TX_CTL(pipe);
  2218. temp = I915_READ(reg);
  2219. temp &= ~FDI_LINK_TRAIN_NONE;
  2220. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2221. if (IS_GEN6(dev)) {
  2222. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2223. /* SNB-B */
  2224. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2225. }
  2226. I915_WRITE(reg, temp);
  2227. reg = FDI_RX_CTL(pipe);
  2228. temp = I915_READ(reg);
  2229. if (HAS_PCH_CPT(dev)) {
  2230. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2232. } else {
  2233. temp &= ~FDI_LINK_TRAIN_NONE;
  2234. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2235. }
  2236. I915_WRITE(reg, temp);
  2237. POSTING_READ(reg);
  2238. udelay(150);
  2239. for (i = 0; i < 4; i++) {
  2240. reg = FDI_TX_CTL(pipe);
  2241. temp = I915_READ(reg);
  2242. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2243. temp |= snb_b_fdi_train_param[i];
  2244. I915_WRITE(reg, temp);
  2245. POSTING_READ(reg);
  2246. udelay(500);
  2247. reg = FDI_RX_IIR(pipe);
  2248. temp = I915_READ(reg);
  2249. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2250. if (temp & FDI_RX_SYMBOL_LOCK) {
  2251. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2252. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2253. break;
  2254. }
  2255. }
  2256. if (i == 4)
  2257. DRM_ERROR("FDI train 2 fail!\n");
  2258. DRM_DEBUG_KMS("FDI train done.\n");
  2259. }
  2260. /* Manual link training for Ivy Bridge A0 parts */
  2261. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2262. {
  2263. struct drm_device *dev = crtc->dev;
  2264. struct drm_i915_private *dev_priv = dev->dev_private;
  2265. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2266. int pipe = intel_crtc->pipe;
  2267. u32 reg, temp, i;
  2268. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2269. for train result */
  2270. reg = FDI_RX_IMR(pipe);
  2271. temp = I915_READ(reg);
  2272. temp &= ~FDI_RX_SYMBOL_LOCK;
  2273. temp &= ~FDI_RX_BIT_LOCK;
  2274. I915_WRITE(reg, temp);
  2275. POSTING_READ(reg);
  2276. udelay(150);
  2277. /* enable CPU FDI TX and PCH FDI RX */
  2278. reg = FDI_TX_CTL(pipe);
  2279. temp = I915_READ(reg);
  2280. temp &= ~(7 << 19);
  2281. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2282. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2283. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2286. temp |= FDI_COMPOSITE_SYNC;
  2287. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2288. reg = FDI_RX_CTL(pipe);
  2289. temp = I915_READ(reg);
  2290. temp &= ~FDI_LINK_TRAIN_AUTO;
  2291. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2292. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2293. temp |= FDI_COMPOSITE_SYNC;
  2294. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. if (HAS_PCH_CPT(dev))
  2298. cpt_phase_pointer_enable(dev, pipe);
  2299. for (i = 0; i < 4; i++) {
  2300. reg = FDI_TX_CTL(pipe);
  2301. temp = I915_READ(reg);
  2302. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2303. temp |= snb_b_fdi_train_param[i];
  2304. I915_WRITE(reg, temp);
  2305. POSTING_READ(reg);
  2306. udelay(500);
  2307. reg = FDI_RX_IIR(pipe);
  2308. temp = I915_READ(reg);
  2309. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2310. if (temp & FDI_RX_BIT_LOCK ||
  2311. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2312. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2313. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2314. break;
  2315. }
  2316. }
  2317. if (i == 4)
  2318. DRM_ERROR("FDI train 1 fail!\n");
  2319. /* Train 2 */
  2320. reg = FDI_TX_CTL(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2323. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2324. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2325. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2326. I915_WRITE(reg, temp);
  2327. reg = FDI_RX_CTL(pipe);
  2328. temp = I915_READ(reg);
  2329. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2330. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2331. I915_WRITE(reg, temp);
  2332. POSTING_READ(reg);
  2333. udelay(150);
  2334. for (i = 0; i < 4; i++) {
  2335. reg = FDI_TX_CTL(pipe);
  2336. temp = I915_READ(reg);
  2337. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2338. temp |= snb_b_fdi_train_param[i];
  2339. I915_WRITE(reg, temp);
  2340. POSTING_READ(reg);
  2341. udelay(500);
  2342. reg = FDI_RX_IIR(pipe);
  2343. temp = I915_READ(reg);
  2344. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2345. if (temp & FDI_RX_SYMBOL_LOCK) {
  2346. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2347. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2348. break;
  2349. }
  2350. }
  2351. if (i == 4)
  2352. DRM_ERROR("FDI train 2 fail!\n");
  2353. DRM_DEBUG_KMS("FDI train done.\n");
  2354. }
  2355. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2356. {
  2357. struct drm_device *dev = crtc->dev;
  2358. struct drm_i915_private *dev_priv = dev->dev_private;
  2359. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2360. int pipe = intel_crtc->pipe;
  2361. u32 reg, temp;
  2362. /* Write the TU size bits so error detection works */
  2363. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2364. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2365. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. temp &= ~((0x7 << 19) | (0x7 << 16));
  2369. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2370. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2371. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2372. POSTING_READ(reg);
  2373. udelay(200);
  2374. /* Switch from Rawclk to PCDclk */
  2375. temp = I915_READ(reg);
  2376. I915_WRITE(reg, temp | FDI_PCDCLK);
  2377. POSTING_READ(reg);
  2378. udelay(200);
  2379. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2380. reg = FDI_TX_CTL(pipe);
  2381. temp = I915_READ(reg);
  2382. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2383. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2384. POSTING_READ(reg);
  2385. udelay(100);
  2386. }
  2387. }
  2388. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2389. {
  2390. struct drm_i915_private *dev_priv = dev->dev_private;
  2391. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2392. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2393. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2394. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2395. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2396. POSTING_READ(SOUTH_CHICKEN1);
  2397. }
  2398. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2399. {
  2400. struct drm_device *dev = crtc->dev;
  2401. struct drm_i915_private *dev_priv = dev->dev_private;
  2402. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2403. int pipe = intel_crtc->pipe;
  2404. u32 reg, temp;
  2405. /* disable CPU FDI tx and PCH FDI rx */
  2406. reg = FDI_TX_CTL(pipe);
  2407. temp = I915_READ(reg);
  2408. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2409. POSTING_READ(reg);
  2410. reg = FDI_RX_CTL(pipe);
  2411. temp = I915_READ(reg);
  2412. temp &= ~(0x7 << 16);
  2413. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2414. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2415. POSTING_READ(reg);
  2416. udelay(100);
  2417. /* Ironlake workaround, disable clock pointer after downing FDI */
  2418. if (HAS_PCH_IBX(dev)) {
  2419. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2420. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2421. I915_READ(FDI_RX_CHICKEN(pipe) &
  2422. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2423. } else if (HAS_PCH_CPT(dev)) {
  2424. cpt_phase_pointer_disable(dev, pipe);
  2425. }
  2426. /* still set train pattern 1 */
  2427. reg = FDI_TX_CTL(pipe);
  2428. temp = I915_READ(reg);
  2429. temp &= ~FDI_LINK_TRAIN_NONE;
  2430. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2431. I915_WRITE(reg, temp);
  2432. reg = FDI_RX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. if (HAS_PCH_CPT(dev)) {
  2435. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2436. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2437. } else {
  2438. temp &= ~FDI_LINK_TRAIN_NONE;
  2439. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2440. }
  2441. /* BPC in FDI rx is consistent with that in PIPECONF */
  2442. temp &= ~(0x07 << 16);
  2443. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2444. I915_WRITE(reg, temp);
  2445. POSTING_READ(reg);
  2446. udelay(100);
  2447. }
  2448. /*
  2449. * When we disable a pipe, we need to clear any pending scanline wait events
  2450. * to avoid hanging the ring, which we assume we are waiting on.
  2451. */
  2452. static void intel_clear_scanline_wait(struct drm_device *dev)
  2453. {
  2454. struct drm_i915_private *dev_priv = dev->dev_private;
  2455. struct intel_ring_buffer *ring;
  2456. u32 tmp;
  2457. if (IS_GEN2(dev))
  2458. /* Can't break the hang on i8xx */
  2459. return;
  2460. ring = LP_RING(dev_priv);
  2461. tmp = I915_READ_CTL(ring);
  2462. if (tmp & RING_WAIT)
  2463. I915_WRITE_CTL(ring, tmp);
  2464. }
  2465. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2466. {
  2467. struct drm_i915_gem_object *obj;
  2468. struct drm_i915_private *dev_priv;
  2469. if (crtc->fb == NULL)
  2470. return;
  2471. obj = to_intel_framebuffer(crtc->fb)->obj;
  2472. dev_priv = crtc->dev->dev_private;
  2473. wait_event(dev_priv->pending_flip_queue,
  2474. atomic_read(&obj->pending_flip) == 0);
  2475. }
  2476. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2477. {
  2478. struct drm_device *dev = crtc->dev;
  2479. struct drm_mode_config *mode_config = &dev->mode_config;
  2480. struct intel_encoder *encoder;
  2481. /*
  2482. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2483. * must be driven by its own crtc; no sharing is possible.
  2484. */
  2485. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2486. if (encoder->base.crtc != crtc)
  2487. continue;
  2488. switch (encoder->type) {
  2489. case INTEL_OUTPUT_EDP:
  2490. if (!intel_encoder_is_pch_edp(&encoder->base))
  2491. return false;
  2492. continue;
  2493. }
  2494. }
  2495. return true;
  2496. }
  2497. /*
  2498. * Enable PCH resources required for PCH ports:
  2499. * - PCH PLLs
  2500. * - FDI training & RX/TX
  2501. * - update transcoder timings
  2502. * - DP transcoding bits
  2503. * - transcoder
  2504. */
  2505. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2506. {
  2507. struct drm_device *dev = crtc->dev;
  2508. struct drm_i915_private *dev_priv = dev->dev_private;
  2509. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2510. int pipe = intel_crtc->pipe;
  2511. u32 reg, temp, transc_sel;
  2512. /* For PCH output, training FDI link */
  2513. dev_priv->display.fdi_link_train(crtc);
  2514. intel_enable_pch_pll(dev_priv, pipe);
  2515. if (HAS_PCH_CPT(dev)) {
  2516. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2517. TRANSC_DPLLB_SEL;
  2518. /* Be sure PCH DPLL SEL is set */
  2519. temp = I915_READ(PCH_DPLL_SEL);
  2520. if (pipe == 0) {
  2521. temp &= ~(TRANSA_DPLLB_SEL);
  2522. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2523. } else if (pipe == 1) {
  2524. temp &= ~(TRANSB_DPLLB_SEL);
  2525. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2526. } else if (pipe == 2) {
  2527. temp &= ~(TRANSC_DPLLB_SEL);
  2528. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2529. }
  2530. I915_WRITE(PCH_DPLL_SEL, temp);
  2531. }
  2532. /* set transcoder timing, panel must allow it */
  2533. assert_panel_unlocked(dev_priv, pipe);
  2534. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2535. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2536. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2537. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2538. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2539. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2540. intel_fdi_normal_train(crtc);
  2541. /* For PCH DP, enable TRANS_DP_CTL */
  2542. if (HAS_PCH_CPT(dev) &&
  2543. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  2544. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2545. reg = TRANS_DP_CTL(pipe);
  2546. temp = I915_READ(reg);
  2547. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2548. TRANS_DP_SYNC_MASK |
  2549. TRANS_DP_BPC_MASK);
  2550. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2551. TRANS_DP_ENH_FRAMING);
  2552. temp |= bpc << 9; /* same format but at 11:9 */
  2553. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2554. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2555. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2556. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2557. switch (intel_trans_dp_port_sel(crtc)) {
  2558. case PCH_DP_B:
  2559. temp |= TRANS_DP_PORT_SEL_B;
  2560. break;
  2561. case PCH_DP_C:
  2562. temp |= TRANS_DP_PORT_SEL_C;
  2563. break;
  2564. case PCH_DP_D:
  2565. temp |= TRANS_DP_PORT_SEL_D;
  2566. break;
  2567. default:
  2568. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2569. temp |= TRANS_DP_PORT_SEL_B;
  2570. break;
  2571. }
  2572. I915_WRITE(reg, temp);
  2573. }
  2574. intel_enable_transcoder(dev_priv, pipe);
  2575. }
  2576. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2577. {
  2578. struct drm_i915_private *dev_priv = dev->dev_private;
  2579. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2580. u32 temp;
  2581. temp = I915_READ(dslreg);
  2582. udelay(500);
  2583. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2584. /* Without this, mode sets may fail silently on FDI */
  2585. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2586. udelay(250);
  2587. I915_WRITE(tc2reg, 0);
  2588. if (wait_for(I915_READ(dslreg) != temp, 5))
  2589. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2590. }
  2591. }
  2592. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2593. {
  2594. struct drm_device *dev = crtc->dev;
  2595. struct drm_i915_private *dev_priv = dev->dev_private;
  2596. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2597. int pipe = intel_crtc->pipe;
  2598. int plane = intel_crtc->plane;
  2599. u32 temp;
  2600. bool is_pch_port;
  2601. if (intel_crtc->active)
  2602. return;
  2603. intel_crtc->active = true;
  2604. intel_update_watermarks(dev);
  2605. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2606. temp = I915_READ(PCH_LVDS);
  2607. if ((temp & LVDS_PORT_EN) == 0)
  2608. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2609. }
  2610. is_pch_port = intel_crtc_driving_pch(crtc);
  2611. if (is_pch_port)
  2612. ironlake_fdi_pll_enable(crtc);
  2613. else
  2614. ironlake_fdi_disable(crtc);
  2615. /* Enable panel fitting for LVDS */
  2616. if (dev_priv->pch_pf_size &&
  2617. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2618. /* Force use of hard-coded filter coefficients
  2619. * as some pre-programmed values are broken,
  2620. * e.g. x201.
  2621. */
  2622. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2623. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2624. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2625. }
  2626. /*
  2627. * On ILK+ LUT must be loaded before the pipe is running but with
  2628. * clocks enabled
  2629. */
  2630. intel_crtc_load_lut(crtc);
  2631. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2632. intel_enable_plane(dev_priv, plane, pipe);
  2633. if (is_pch_port)
  2634. ironlake_pch_enable(crtc);
  2635. mutex_lock(&dev->struct_mutex);
  2636. intel_update_fbc(dev);
  2637. mutex_unlock(&dev->struct_mutex);
  2638. intel_crtc_update_cursor(crtc, true);
  2639. }
  2640. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2641. {
  2642. struct drm_device *dev = crtc->dev;
  2643. struct drm_i915_private *dev_priv = dev->dev_private;
  2644. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2645. int pipe = intel_crtc->pipe;
  2646. int plane = intel_crtc->plane;
  2647. u32 reg, temp;
  2648. if (!intel_crtc->active)
  2649. return;
  2650. intel_crtc_wait_for_pending_flips(crtc);
  2651. drm_vblank_off(dev, pipe);
  2652. intel_crtc_update_cursor(crtc, false);
  2653. intel_disable_plane(dev_priv, plane, pipe);
  2654. if (dev_priv->cfb_plane == plane)
  2655. intel_disable_fbc(dev);
  2656. intel_disable_pipe(dev_priv, pipe);
  2657. /* Disable PF */
  2658. I915_WRITE(PF_CTL(pipe), 0);
  2659. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2660. ironlake_fdi_disable(crtc);
  2661. /* This is a horrible layering violation; we should be doing this in
  2662. * the connector/encoder ->prepare instead, but we don't always have
  2663. * enough information there about the config to know whether it will
  2664. * actually be necessary or just cause undesired flicker.
  2665. */
  2666. intel_disable_pch_ports(dev_priv, pipe);
  2667. intel_disable_transcoder(dev_priv, pipe);
  2668. if (HAS_PCH_CPT(dev)) {
  2669. /* disable TRANS_DP_CTL */
  2670. reg = TRANS_DP_CTL(pipe);
  2671. temp = I915_READ(reg);
  2672. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2673. temp |= TRANS_DP_PORT_SEL_NONE;
  2674. I915_WRITE(reg, temp);
  2675. /* disable DPLL_SEL */
  2676. temp = I915_READ(PCH_DPLL_SEL);
  2677. switch (pipe) {
  2678. case 0:
  2679. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2680. break;
  2681. case 1:
  2682. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2683. break;
  2684. case 2:
  2685. /* C shares PLL A or B */
  2686. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2687. break;
  2688. default:
  2689. BUG(); /* wtf */
  2690. }
  2691. I915_WRITE(PCH_DPLL_SEL, temp);
  2692. }
  2693. /* disable PCH DPLL */
  2694. if (!intel_crtc->no_pll)
  2695. intel_disable_pch_pll(dev_priv, pipe);
  2696. /* Switch from PCDclk to Rawclk */
  2697. reg = FDI_RX_CTL(pipe);
  2698. temp = I915_READ(reg);
  2699. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2700. /* Disable CPU FDI TX PLL */
  2701. reg = FDI_TX_CTL(pipe);
  2702. temp = I915_READ(reg);
  2703. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2704. POSTING_READ(reg);
  2705. udelay(100);
  2706. reg = FDI_RX_CTL(pipe);
  2707. temp = I915_READ(reg);
  2708. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2709. /* Wait for the clocks to turn off. */
  2710. POSTING_READ(reg);
  2711. udelay(100);
  2712. intel_crtc->active = false;
  2713. intel_update_watermarks(dev);
  2714. mutex_lock(&dev->struct_mutex);
  2715. intel_update_fbc(dev);
  2716. intel_clear_scanline_wait(dev);
  2717. mutex_unlock(&dev->struct_mutex);
  2718. }
  2719. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2720. {
  2721. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2722. int pipe = intel_crtc->pipe;
  2723. int plane = intel_crtc->plane;
  2724. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2725. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2726. */
  2727. switch (mode) {
  2728. case DRM_MODE_DPMS_ON:
  2729. case DRM_MODE_DPMS_STANDBY:
  2730. case DRM_MODE_DPMS_SUSPEND:
  2731. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2732. ironlake_crtc_enable(crtc);
  2733. break;
  2734. case DRM_MODE_DPMS_OFF:
  2735. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2736. ironlake_crtc_disable(crtc);
  2737. break;
  2738. }
  2739. }
  2740. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2741. {
  2742. if (!enable && intel_crtc->overlay) {
  2743. struct drm_device *dev = intel_crtc->base.dev;
  2744. struct drm_i915_private *dev_priv = dev->dev_private;
  2745. mutex_lock(&dev->struct_mutex);
  2746. dev_priv->mm.interruptible = false;
  2747. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2748. dev_priv->mm.interruptible = true;
  2749. mutex_unlock(&dev->struct_mutex);
  2750. }
  2751. /* Let userspace switch the overlay on again. In most cases userspace
  2752. * has to recompute where to put it anyway.
  2753. */
  2754. }
  2755. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2756. {
  2757. struct drm_device *dev = crtc->dev;
  2758. struct drm_i915_private *dev_priv = dev->dev_private;
  2759. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2760. int pipe = intel_crtc->pipe;
  2761. int plane = intel_crtc->plane;
  2762. if (intel_crtc->active)
  2763. return;
  2764. intel_crtc->active = true;
  2765. intel_update_watermarks(dev);
  2766. intel_enable_pll(dev_priv, pipe);
  2767. intel_enable_pipe(dev_priv, pipe, false);
  2768. intel_enable_plane(dev_priv, plane, pipe);
  2769. intel_crtc_load_lut(crtc);
  2770. intel_update_fbc(dev);
  2771. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2772. intel_crtc_dpms_overlay(intel_crtc, true);
  2773. intel_crtc_update_cursor(crtc, true);
  2774. }
  2775. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2776. {
  2777. struct drm_device *dev = crtc->dev;
  2778. struct drm_i915_private *dev_priv = dev->dev_private;
  2779. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2780. int pipe = intel_crtc->pipe;
  2781. int plane = intel_crtc->plane;
  2782. if (!intel_crtc->active)
  2783. return;
  2784. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2785. intel_crtc_wait_for_pending_flips(crtc);
  2786. drm_vblank_off(dev, pipe);
  2787. intel_crtc_dpms_overlay(intel_crtc, false);
  2788. intel_crtc_update_cursor(crtc, false);
  2789. if (dev_priv->cfb_plane == plane)
  2790. intel_disable_fbc(dev);
  2791. intel_disable_plane(dev_priv, plane, pipe);
  2792. intel_disable_pipe(dev_priv, pipe);
  2793. intel_disable_pll(dev_priv, pipe);
  2794. intel_crtc->active = false;
  2795. intel_update_fbc(dev);
  2796. intel_update_watermarks(dev);
  2797. intel_clear_scanline_wait(dev);
  2798. }
  2799. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2800. {
  2801. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2802. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2803. */
  2804. switch (mode) {
  2805. case DRM_MODE_DPMS_ON:
  2806. case DRM_MODE_DPMS_STANDBY:
  2807. case DRM_MODE_DPMS_SUSPEND:
  2808. i9xx_crtc_enable(crtc);
  2809. break;
  2810. case DRM_MODE_DPMS_OFF:
  2811. i9xx_crtc_disable(crtc);
  2812. break;
  2813. }
  2814. }
  2815. /**
  2816. * Sets the power management mode of the pipe and plane.
  2817. */
  2818. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2819. {
  2820. struct drm_device *dev = crtc->dev;
  2821. struct drm_i915_private *dev_priv = dev->dev_private;
  2822. struct drm_i915_master_private *master_priv;
  2823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2824. int pipe = intel_crtc->pipe;
  2825. bool enabled;
  2826. if (intel_crtc->dpms_mode == mode)
  2827. return;
  2828. intel_crtc->dpms_mode = mode;
  2829. dev_priv->display.dpms(crtc, mode);
  2830. if (!dev->primary->master)
  2831. return;
  2832. master_priv = dev->primary->master->driver_priv;
  2833. if (!master_priv->sarea_priv)
  2834. return;
  2835. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2836. switch (pipe) {
  2837. case 0:
  2838. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2839. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2840. break;
  2841. case 1:
  2842. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2843. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2844. break;
  2845. default:
  2846. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2847. break;
  2848. }
  2849. }
  2850. static void intel_crtc_disable(struct drm_crtc *crtc)
  2851. {
  2852. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2853. struct drm_device *dev = crtc->dev;
  2854. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2855. if (crtc->fb) {
  2856. mutex_lock(&dev->struct_mutex);
  2857. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  2858. mutex_unlock(&dev->struct_mutex);
  2859. }
  2860. }
  2861. /* Prepare for a mode set.
  2862. *
  2863. * Note we could be a lot smarter here. We need to figure out which outputs
  2864. * will be enabled, which disabled (in short, how the config will changes)
  2865. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2866. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2867. * panel fitting is in the proper state, etc.
  2868. */
  2869. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2870. {
  2871. i9xx_crtc_disable(crtc);
  2872. }
  2873. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2874. {
  2875. i9xx_crtc_enable(crtc);
  2876. }
  2877. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2878. {
  2879. ironlake_crtc_disable(crtc);
  2880. }
  2881. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2882. {
  2883. ironlake_crtc_enable(crtc);
  2884. }
  2885. void intel_encoder_prepare(struct drm_encoder *encoder)
  2886. {
  2887. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2888. /* lvds has its own version of prepare see intel_lvds_prepare */
  2889. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2890. }
  2891. void intel_encoder_commit(struct drm_encoder *encoder)
  2892. {
  2893. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2894. struct drm_device *dev = encoder->dev;
  2895. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2896. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2897. /* lvds has its own version of commit see intel_lvds_commit */
  2898. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2899. if (HAS_PCH_CPT(dev))
  2900. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2901. }
  2902. void intel_encoder_destroy(struct drm_encoder *encoder)
  2903. {
  2904. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2905. drm_encoder_cleanup(encoder);
  2906. kfree(intel_encoder);
  2907. }
  2908. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2909. struct drm_display_mode *mode,
  2910. struct drm_display_mode *adjusted_mode)
  2911. {
  2912. struct drm_device *dev = crtc->dev;
  2913. if (HAS_PCH_SPLIT(dev)) {
  2914. /* FDI link clock is fixed at 2.7G */
  2915. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2916. return false;
  2917. }
  2918. /* XXX some encoders set the crtcinfo, others don't.
  2919. * Obviously we need some form of conflict resolution here...
  2920. */
  2921. if (adjusted_mode->crtc_htotal == 0)
  2922. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2923. return true;
  2924. }
  2925. static int i945_get_display_clock_speed(struct drm_device *dev)
  2926. {
  2927. return 400000;
  2928. }
  2929. static int i915_get_display_clock_speed(struct drm_device *dev)
  2930. {
  2931. return 333000;
  2932. }
  2933. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2934. {
  2935. return 200000;
  2936. }
  2937. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2938. {
  2939. u16 gcfgc = 0;
  2940. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2941. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2942. return 133000;
  2943. else {
  2944. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2945. case GC_DISPLAY_CLOCK_333_MHZ:
  2946. return 333000;
  2947. default:
  2948. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2949. return 190000;
  2950. }
  2951. }
  2952. }
  2953. static int i865_get_display_clock_speed(struct drm_device *dev)
  2954. {
  2955. return 266000;
  2956. }
  2957. static int i855_get_display_clock_speed(struct drm_device *dev)
  2958. {
  2959. u16 hpllcc = 0;
  2960. /* Assume that the hardware is in the high speed state. This
  2961. * should be the default.
  2962. */
  2963. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2964. case GC_CLOCK_133_200:
  2965. case GC_CLOCK_100_200:
  2966. return 200000;
  2967. case GC_CLOCK_166_250:
  2968. return 250000;
  2969. case GC_CLOCK_100_133:
  2970. return 133000;
  2971. }
  2972. /* Shouldn't happen */
  2973. return 0;
  2974. }
  2975. static int i830_get_display_clock_speed(struct drm_device *dev)
  2976. {
  2977. return 133000;
  2978. }
  2979. struct fdi_m_n {
  2980. u32 tu;
  2981. u32 gmch_m;
  2982. u32 gmch_n;
  2983. u32 link_m;
  2984. u32 link_n;
  2985. };
  2986. static void
  2987. fdi_reduce_ratio(u32 *num, u32 *den)
  2988. {
  2989. while (*num > 0xffffff || *den > 0xffffff) {
  2990. *num >>= 1;
  2991. *den >>= 1;
  2992. }
  2993. }
  2994. static void
  2995. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2996. int link_clock, struct fdi_m_n *m_n)
  2997. {
  2998. m_n->tu = 64; /* default size */
  2999. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3000. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3001. m_n->gmch_n = link_clock * nlanes * 8;
  3002. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3003. m_n->link_m = pixel_clock;
  3004. m_n->link_n = link_clock;
  3005. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3006. }
  3007. struct intel_watermark_params {
  3008. unsigned long fifo_size;
  3009. unsigned long max_wm;
  3010. unsigned long default_wm;
  3011. unsigned long guard_size;
  3012. unsigned long cacheline_size;
  3013. };
  3014. /* Pineview has different values for various configs */
  3015. static const struct intel_watermark_params pineview_display_wm = {
  3016. PINEVIEW_DISPLAY_FIFO,
  3017. PINEVIEW_MAX_WM,
  3018. PINEVIEW_DFT_WM,
  3019. PINEVIEW_GUARD_WM,
  3020. PINEVIEW_FIFO_LINE_SIZE
  3021. };
  3022. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3023. PINEVIEW_DISPLAY_FIFO,
  3024. PINEVIEW_MAX_WM,
  3025. PINEVIEW_DFT_HPLLOFF_WM,
  3026. PINEVIEW_GUARD_WM,
  3027. PINEVIEW_FIFO_LINE_SIZE
  3028. };
  3029. static const struct intel_watermark_params pineview_cursor_wm = {
  3030. PINEVIEW_CURSOR_FIFO,
  3031. PINEVIEW_CURSOR_MAX_WM,
  3032. PINEVIEW_CURSOR_DFT_WM,
  3033. PINEVIEW_CURSOR_GUARD_WM,
  3034. PINEVIEW_FIFO_LINE_SIZE,
  3035. };
  3036. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3037. PINEVIEW_CURSOR_FIFO,
  3038. PINEVIEW_CURSOR_MAX_WM,
  3039. PINEVIEW_CURSOR_DFT_WM,
  3040. PINEVIEW_CURSOR_GUARD_WM,
  3041. PINEVIEW_FIFO_LINE_SIZE
  3042. };
  3043. static const struct intel_watermark_params g4x_wm_info = {
  3044. G4X_FIFO_SIZE,
  3045. G4X_MAX_WM,
  3046. G4X_MAX_WM,
  3047. 2,
  3048. G4X_FIFO_LINE_SIZE,
  3049. };
  3050. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3051. I965_CURSOR_FIFO,
  3052. I965_CURSOR_MAX_WM,
  3053. I965_CURSOR_DFT_WM,
  3054. 2,
  3055. G4X_FIFO_LINE_SIZE,
  3056. };
  3057. static const struct intel_watermark_params i965_cursor_wm_info = {
  3058. I965_CURSOR_FIFO,
  3059. I965_CURSOR_MAX_WM,
  3060. I965_CURSOR_DFT_WM,
  3061. 2,
  3062. I915_FIFO_LINE_SIZE,
  3063. };
  3064. static const struct intel_watermark_params i945_wm_info = {
  3065. I945_FIFO_SIZE,
  3066. I915_MAX_WM,
  3067. 1,
  3068. 2,
  3069. I915_FIFO_LINE_SIZE
  3070. };
  3071. static const struct intel_watermark_params i915_wm_info = {
  3072. I915_FIFO_SIZE,
  3073. I915_MAX_WM,
  3074. 1,
  3075. 2,
  3076. I915_FIFO_LINE_SIZE
  3077. };
  3078. static const struct intel_watermark_params i855_wm_info = {
  3079. I855GM_FIFO_SIZE,
  3080. I915_MAX_WM,
  3081. 1,
  3082. 2,
  3083. I830_FIFO_LINE_SIZE
  3084. };
  3085. static const struct intel_watermark_params i830_wm_info = {
  3086. I830_FIFO_SIZE,
  3087. I915_MAX_WM,
  3088. 1,
  3089. 2,
  3090. I830_FIFO_LINE_SIZE
  3091. };
  3092. static const struct intel_watermark_params ironlake_display_wm_info = {
  3093. ILK_DISPLAY_FIFO,
  3094. ILK_DISPLAY_MAXWM,
  3095. ILK_DISPLAY_DFTWM,
  3096. 2,
  3097. ILK_FIFO_LINE_SIZE
  3098. };
  3099. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3100. ILK_CURSOR_FIFO,
  3101. ILK_CURSOR_MAXWM,
  3102. ILK_CURSOR_DFTWM,
  3103. 2,
  3104. ILK_FIFO_LINE_SIZE
  3105. };
  3106. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3107. ILK_DISPLAY_SR_FIFO,
  3108. ILK_DISPLAY_MAX_SRWM,
  3109. ILK_DISPLAY_DFT_SRWM,
  3110. 2,
  3111. ILK_FIFO_LINE_SIZE
  3112. };
  3113. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3114. ILK_CURSOR_SR_FIFO,
  3115. ILK_CURSOR_MAX_SRWM,
  3116. ILK_CURSOR_DFT_SRWM,
  3117. 2,
  3118. ILK_FIFO_LINE_SIZE
  3119. };
  3120. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3121. SNB_DISPLAY_FIFO,
  3122. SNB_DISPLAY_MAXWM,
  3123. SNB_DISPLAY_DFTWM,
  3124. 2,
  3125. SNB_FIFO_LINE_SIZE
  3126. };
  3127. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3128. SNB_CURSOR_FIFO,
  3129. SNB_CURSOR_MAXWM,
  3130. SNB_CURSOR_DFTWM,
  3131. 2,
  3132. SNB_FIFO_LINE_SIZE
  3133. };
  3134. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3135. SNB_DISPLAY_SR_FIFO,
  3136. SNB_DISPLAY_MAX_SRWM,
  3137. SNB_DISPLAY_DFT_SRWM,
  3138. 2,
  3139. SNB_FIFO_LINE_SIZE
  3140. };
  3141. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3142. SNB_CURSOR_SR_FIFO,
  3143. SNB_CURSOR_MAX_SRWM,
  3144. SNB_CURSOR_DFT_SRWM,
  3145. 2,
  3146. SNB_FIFO_LINE_SIZE
  3147. };
  3148. /**
  3149. * intel_calculate_wm - calculate watermark level
  3150. * @clock_in_khz: pixel clock
  3151. * @wm: chip FIFO params
  3152. * @pixel_size: display pixel size
  3153. * @latency_ns: memory latency for the platform
  3154. *
  3155. * Calculate the watermark level (the level at which the display plane will
  3156. * start fetching from memory again). Each chip has a different display
  3157. * FIFO size and allocation, so the caller needs to figure that out and pass
  3158. * in the correct intel_watermark_params structure.
  3159. *
  3160. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3161. * on the pixel size. When it reaches the watermark level, it'll start
  3162. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3163. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3164. * will occur, and a display engine hang could result.
  3165. */
  3166. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3167. const struct intel_watermark_params *wm,
  3168. int fifo_size,
  3169. int pixel_size,
  3170. unsigned long latency_ns)
  3171. {
  3172. long entries_required, wm_size;
  3173. /*
  3174. * Note: we need to make sure we don't overflow for various clock &
  3175. * latency values.
  3176. * clocks go from a few thousand to several hundred thousand.
  3177. * latency is usually a few thousand
  3178. */
  3179. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3180. 1000;
  3181. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3182. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3183. wm_size = fifo_size - (entries_required + wm->guard_size);
  3184. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3185. /* Don't promote wm_size to unsigned... */
  3186. if (wm_size > (long)wm->max_wm)
  3187. wm_size = wm->max_wm;
  3188. if (wm_size <= 0)
  3189. wm_size = wm->default_wm;
  3190. return wm_size;
  3191. }
  3192. struct cxsr_latency {
  3193. int is_desktop;
  3194. int is_ddr3;
  3195. unsigned long fsb_freq;
  3196. unsigned long mem_freq;
  3197. unsigned long display_sr;
  3198. unsigned long display_hpll_disable;
  3199. unsigned long cursor_sr;
  3200. unsigned long cursor_hpll_disable;
  3201. };
  3202. static const struct cxsr_latency cxsr_latency_table[] = {
  3203. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3204. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3205. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3206. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3207. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3208. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3209. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3210. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3211. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3212. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3213. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3214. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3215. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3216. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3217. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3218. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3219. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3220. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3221. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3222. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3223. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3224. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3225. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3226. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3227. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3228. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3229. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3230. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3231. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3232. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3233. };
  3234. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3235. int is_ddr3,
  3236. int fsb,
  3237. int mem)
  3238. {
  3239. const struct cxsr_latency *latency;
  3240. int i;
  3241. if (fsb == 0 || mem == 0)
  3242. return NULL;
  3243. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3244. latency = &cxsr_latency_table[i];
  3245. if (is_desktop == latency->is_desktop &&
  3246. is_ddr3 == latency->is_ddr3 &&
  3247. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3248. return latency;
  3249. }
  3250. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3251. return NULL;
  3252. }
  3253. static void pineview_disable_cxsr(struct drm_device *dev)
  3254. {
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. /* deactivate cxsr */
  3257. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3258. }
  3259. /*
  3260. * Latency for FIFO fetches is dependent on several factors:
  3261. * - memory configuration (speed, channels)
  3262. * - chipset
  3263. * - current MCH state
  3264. * It can be fairly high in some situations, so here we assume a fairly
  3265. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3266. * set this value too high, the FIFO will fetch frequently to stay full)
  3267. * and power consumption (set it too low to save power and we might see
  3268. * FIFO underruns and display "flicker").
  3269. *
  3270. * A value of 5us seems to be a good balance; safe for very low end
  3271. * platforms but not overly aggressive on lower latency configs.
  3272. */
  3273. static const int latency_ns = 5000;
  3274. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3275. {
  3276. struct drm_i915_private *dev_priv = dev->dev_private;
  3277. uint32_t dsparb = I915_READ(DSPARB);
  3278. int size;
  3279. size = dsparb & 0x7f;
  3280. if (plane)
  3281. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3282. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3283. plane ? "B" : "A", size);
  3284. return size;
  3285. }
  3286. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3287. {
  3288. struct drm_i915_private *dev_priv = dev->dev_private;
  3289. uint32_t dsparb = I915_READ(DSPARB);
  3290. int size;
  3291. size = dsparb & 0x1ff;
  3292. if (plane)
  3293. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3294. size >>= 1; /* Convert to cachelines */
  3295. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3296. plane ? "B" : "A", size);
  3297. return size;
  3298. }
  3299. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3300. {
  3301. struct drm_i915_private *dev_priv = dev->dev_private;
  3302. uint32_t dsparb = I915_READ(DSPARB);
  3303. int size;
  3304. size = dsparb & 0x7f;
  3305. size >>= 2; /* Convert to cachelines */
  3306. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3307. plane ? "B" : "A",
  3308. size);
  3309. return size;
  3310. }
  3311. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3312. {
  3313. struct drm_i915_private *dev_priv = dev->dev_private;
  3314. uint32_t dsparb = I915_READ(DSPARB);
  3315. int size;
  3316. size = dsparb & 0x7f;
  3317. size >>= 1; /* Convert to cachelines */
  3318. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3319. plane ? "B" : "A", size);
  3320. return size;
  3321. }
  3322. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3323. {
  3324. struct drm_crtc *crtc, *enabled = NULL;
  3325. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3326. if (crtc->enabled && crtc->fb) {
  3327. if (enabled)
  3328. return NULL;
  3329. enabled = crtc;
  3330. }
  3331. }
  3332. return enabled;
  3333. }
  3334. static void pineview_update_wm(struct drm_device *dev)
  3335. {
  3336. struct drm_i915_private *dev_priv = dev->dev_private;
  3337. struct drm_crtc *crtc;
  3338. const struct cxsr_latency *latency;
  3339. u32 reg;
  3340. unsigned long wm;
  3341. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3342. dev_priv->fsb_freq, dev_priv->mem_freq);
  3343. if (!latency) {
  3344. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3345. pineview_disable_cxsr(dev);
  3346. return;
  3347. }
  3348. crtc = single_enabled_crtc(dev);
  3349. if (crtc) {
  3350. int clock = crtc->mode.clock;
  3351. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3352. /* Display SR */
  3353. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3354. pineview_display_wm.fifo_size,
  3355. pixel_size, latency->display_sr);
  3356. reg = I915_READ(DSPFW1);
  3357. reg &= ~DSPFW_SR_MASK;
  3358. reg |= wm << DSPFW_SR_SHIFT;
  3359. I915_WRITE(DSPFW1, reg);
  3360. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3361. /* cursor SR */
  3362. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3363. pineview_display_wm.fifo_size,
  3364. pixel_size, latency->cursor_sr);
  3365. reg = I915_READ(DSPFW3);
  3366. reg &= ~DSPFW_CURSOR_SR_MASK;
  3367. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3368. I915_WRITE(DSPFW3, reg);
  3369. /* Display HPLL off SR */
  3370. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3371. pineview_display_hplloff_wm.fifo_size,
  3372. pixel_size, latency->display_hpll_disable);
  3373. reg = I915_READ(DSPFW3);
  3374. reg &= ~DSPFW_HPLL_SR_MASK;
  3375. reg |= wm & DSPFW_HPLL_SR_MASK;
  3376. I915_WRITE(DSPFW3, reg);
  3377. /* cursor HPLL off SR */
  3378. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3379. pineview_display_hplloff_wm.fifo_size,
  3380. pixel_size, latency->cursor_hpll_disable);
  3381. reg = I915_READ(DSPFW3);
  3382. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3383. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3384. I915_WRITE(DSPFW3, reg);
  3385. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3386. /* activate cxsr */
  3387. I915_WRITE(DSPFW3,
  3388. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3389. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3390. } else {
  3391. pineview_disable_cxsr(dev);
  3392. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3393. }
  3394. }
  3395. static bool g4x_compute_wm0(struct drm_device *dev,
  3396. int plane,
  3397. const struct intel_watermark_params *display,
  3398. int display_latency_ns,
  3399. const struct intel_watermark_params *cursor,
  3400. int cursor_latency_ns,
  3401. int *plane_wm,
  3402. int *cursor_wm)
  3403. {
  3404. struct drm_crtc *crtc;
  3405. int htotal, hdisplay, clock, pixel_size;
  3406. int line_time_us, line_count;
  3407. int entries, tlb_miss;
  3408. crtc = intel_get_crtc_for_plane(dev, plane);
  3409. if (crtc->fb == NULL || !crtc->enabled) {
  3410. *cursor_wm = cursor->guard_size;
  3411. *plane_wm = display->guard_size;
  3412. return false;
  3413. }
  3414. htotal = crtc->mode.htotal;
  3415. hdisplay = crtc->mode.hdisplay;
  3416. clock = crtc->mode.clock;
  3417. pixel_size = crtc->fb->bits_per_pixel / 8;
  3418. /* Use the small buffer method to calculate plane watermark */
  3419. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3420. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3421. if (tlb_miss > 0)
  3422. entries += tlb_miss;
  3423. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3424. *plane_wm = entries + display->guard_size;
  3425. if (*plane_wm > (int)display->max_wm)
  3426. *plane_wm = display->max_wm;
  3427. /* Use the large buffer method to calculate cursor watermark */
  3428. line_time_us = ((htotal * 1000) / clock);
  3429. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3430. entries = line_count * 64 * pixel_size;
  3431. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3432. if (tlb_miss > 0)
  3433. entries += tlb_miss;
  3434. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3435. *cursor_wm = entries + cursor->guard_size;
  3436. if (*cursor_wm > (int)cursor->max_wm)
  3437. *cursor_wm = (int)cursor->max_wm;
  3438. return true;
  3439. }
  3440. /*
  3441. * Check the wm result.
  3442. *
  3443. * If any calculated watermark values is larger than the maximum value that
  3444. * can be programmed into the associated watermark register, that watermark
  3445. * must be disabled.
  3446. */
  3447. static bool g4x_check_srwm(struct drm_device *dev,
  3448. int display_wm, int cursor_wm,
  3449. const struct intel_watermark_params *display,
  3450. const struct intel_watermark_params *cursor)
  3451. {
  3452. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3453. display_wm, cursor_wm);
  3454. if (display_wm > display->max_wm) {
  3455. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3456. display_wm, display->max_wm);
  3457. return false;
  3458. }
  3459. if (cursor_wm > cursor->max_wm) {
  3460. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3461. cursor_wm, cursor->max_wm);
  3462. return false;
  3463. }
  3464. if (!(display_wm || cursor_wm)) {
  3465. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3466. return false;
  3467. }
  3468. return true;
  3469. }
  3470. static bool g4x_compute_srwm(struct drm_device *dev,
  3471. int plane,
  3472. int latency_ns,
  3473. const struct intel_watermark_params *display,
  3474. const struct intel_watermark_params *cursor,
  3475. int *display_wm, int *cursor_wm)
  3476. {
  3477. struct drm_crtc *crtc;
  3478. int hdisplay, htotal, pixel_size, clock;
  3479. unsigned long line_time_us;
  3480. int line_count, line_size;
  3481. int small, large;
  3482. int entries;
  3483. if (!latency_ns) {
  3484. *display_wm = *cursor_wm = 0;
  3485. return false;
  3486. }
  3487. crtc = intel_get_crtc_for_plane(dev, plane);
  3488. hdisplay = crtc->mode.hdisplay;
  3489. htotal = crtc->mode.htotal;
  3490. clock = crtc->mode.clock;
  3491. pixel_size = crtc->fb->bits_per_pixel / 8;
  3492. line_time_us = (htotal * 1000) / clock;
  3493. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3494. line_size = hdisplay * pixel_size;
  3495. /* Use the minimum of the small and large buffer method for primary */
  3496. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3497. large = line_count * line_size;
  3498. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3499. *display_wm = entries + display->guard_size;
  3500. /* calculate the self-refresh watermark for display cursor */
  3501. entries = line_count * pixel_size * 64;
  3502. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3503. *cursor_wm = entries + cursor->guard_size;
  3504. return g4x_check_srwm(dev,
  3505. *display_wm, *cursor_wm,
  3506. display, cursor);
  3507. }
  3508. #define single_plane_enabled(mask) is_power_of_2(mask)
  3509. static void g4x_update_wm(struct drm_device *dev)
  3510. {
  3511. static const int sr_latency_ns = 12000;
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3514. int plane_sr, cursor_sr;
  3515. unsigned int enabled = 0;
  3516. if (g4x_compute_wm0(dev, 0,
  3517. &g4x_wm_info, latency_ns,
  3518. &g4x_cursor_wm_info, latency_ns,
  3519. &planea_wm, &cursora_wm))
  3520. enabled |= 1;
  3521. if (g4x_compute_wm0(dev, 1,
  3522. &g4x_wm_info, latency_ns,
  3523. &g4x_cursor_wm_info, latency_ns,
  3524. &planeb_wm, &cursorb_wm))
  3525. enabled |= 2;
  3526. plane_sr = cursor_sr = 0;
  3527. if (single_plane_enabled(enabled) &&
  3528. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3529. sr_latency_ns,
  3530. &g4x_wm_info,
  3531. &g4x_cursor_wm_info,
  3532. &plane_sr, &cursor_sr))
  3533. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3534. else
  3535. I915_WRITE(FW_BLC_SELF,
  3536. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3537. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3538. planea_wm, cursora_wm,
  3539. planeb_wm, cursorb_wm,
  3540. plane_sr, cursor_sr);
  3541. I915_WRITE(DSPFW1,
  3542. (plane_sr << DSPFW_SR_SHIFT) |
  3543. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3544. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3545. planea_wm);
  3546. I915_WRITE(DSPFW2,
  3547. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3548. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3549. /* HPLL off in SR has some issues on G4x... disable it */
  3550. I915_WRITE(DSPFW3,
  3551. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3552. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3553. }
  3554. static void i965_update_wm(struct drm_device *dev)
  3555. {
  3556. struct drm_i915_private *dev_priv = dev->dev_private;
  3557. struct drm_crtc *crtc;
  3558. int srwm = 1;
  3559. int cursor_sr = 16;
  3560. /* Calc sr entries for one plane configs */
  3561. crtc = single_enabled_crtc(dev);
  3562. if (crtc) {
  3563. /* self-refresh has much higher latency */
  3564. static const int sr_latency_ns = 12000;
  3565. int clock = crtc->mode.clock;
  3566. int htotal = crtc->mode.htotal;
  3567. int hdisplay = crtc->mode.hdisplay;
  3568. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3569. unsigned long line_time_us;
  3570. int entries;
  3571. line_time_us = ((htotal * 1000) / clock);
  3572. /* Use ns/us then divide to preserve precision */
  3573. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3574. pixel_size * hdisplay;
  3575. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3576. srwm = I965_FIFO_SIZE - entries;
  3577. if (srwm < 0)
  3578. srwm = 1;
  3579. srwm &= 0x1ff;
  3580. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3581. entries, srwm);
  3582. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3583. pixel_size * 64;
  3584. entries = DIV_ROUND_UP(entries,
  3585. i965_cursor_wm_info.cacheline_size);
  3586. cursor_sr = i965_cursor_wm_info.fifo_size -
  3587. (entries + i965_cursor_wm_info.guard_size);
  3588. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3589. cursor_sr = i965_cursor_wm_info.max_wm;
  3590. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3591. "cursor %d\n", srwm, cursor_sr);
  3592. if (IS_CRESTLINE(dev))
  3593. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3594. } else {
  3595. /* Turn off self refresh if both pipes are enabled */
  3596. if (IS_CRESTLINE(dev))
  3597. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3598. & ~FW_BLC_SELF_EN);
  3599. }
  3600. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3601. srwm);
  3602. /* 965 has limitations... */
  3603. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3604. (8 << 16) | (8 << 8) | (8 << 0));
  3605. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3606. /* update cursor SR watermark */
  3607. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3608. }
  3609. static void i9xx_update_wm(struct drm_device *dev)
  3610. {
  3611. struct drm_i915_private *dev_priv = dev->dev_private;
  3612. const struct intel_watermark_params *wm_info;
  3613. uint32_t fwater_lo;
  3614. uint32_t fwater_hi;
  3615. int cwm, srwm = 1;
  3616. int fifo_size;
  3617. int planea_wm, planeb_wm;
  3618. struct drm_crtc *crtc, *enabled = NULL;
  3619. if (IS_I945GM(dev))
  3620. wm_info = &i945_wm_info;
  3621. else if (!IS_GEN2(dev))
  3622. wm_info = &i915_wm_info;
  3623. else
  3624. wm_info = &i855_wm_info;
  3625. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3626. crtc = intel_get_crtc_for_plane(dev, 0);
  3627. if (crtc->enabled && crtc->fb) {
  3628. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3629. wm_info, fifo_size,
  3630. crtc->fb->bits_per_pixel / 8,
  3631. latency_ns);
  3632. enabled = crtc;
  3633. } else
  3634. planea_wm = fifo_size - wm_info->guard_size;
  3635. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3636. crtc = intel_get_crtc_for_plane(dev, 1);
  3637. if (crtc->enabled && crtc->fb) {
  3638. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3639. wm_info, fifo_size,
  3640. crtc->fb->bits_per_pixel / 8,
  3641. latency_ns);
  3642. if (enabled == NULL)
  3643. enabled = crtc;
  3644. else
  3645. enabled = NULL;
  3646. } else
  3647. planeb_wm = fifo_size - wm_info->guard_size;
  3648. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3649. /*
  3650. * Overlay gets an aggressive default since video jitter is bad.
  3651. */
  3652. cwm = 2;
  3653. /* Play safe and disable self-refresh before adjusting watermarks. */
  3654. if (IS_I945G(dev) || IS_I945GM(dev))
  3655. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3656. else if (IS_I915GM(dev))
  3657. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3658. /* Calc sr entries for one plane configs */
  3659. if (HAS_FW_BLC(dev) && enabled) {
  3660. /* self-refresh has much higher latency */
  3661. static const int sr_latency_ns = 6000;
  3662. int clock = enabled->mode.clock;
  3663. int htotal = enabled->mode.htotal;
  3664. int hdisplay = enabled->mode.hdisplay;
  3665. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3666. unsigned long line_time_us;
  3667. int entries;
  3668. line_time_us = (htotal * 1000) / clock;
  3669. /* Use ns/us then divide to preserve precision */
  3670. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3671. pixel_size * hdisplay;
  3672. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3673. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3674. srwm = wm_info->fifo_size - entries;
  3675. if (srwm < 0)
  3676. srwm = 1;
  3677. if (IS_I945G(dev) || IS_I945GM(dev))
  3678. I915_WRITE(FW_BLC_SELF,
  3679. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3680. else if (IS_I915GM(dev))
  3681. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3682. }
  3683. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3684. planea_wm, planeb_wm, cwm, srwm);
  3685. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3686. fwater_hi = (cwm & 0x1f);
  3687. /* Set request length to 8 cachelines per fetch */
  3688. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3689. fwater_hi = fwater_hi | (1 << 8);
  3690. I915_WRITE(FW_BLC, fwater_lo);
  3691. I915_WRITE(FW_BLC2, fwater_hi);
  3692. if (HAS_FW_BLC(dev)) {
  3693. if (enabled) {
  3694. if (IS_I945G(dev) || IS_I945GM(dev))
  3695. I915_WRITE(FW_BLC_SELF,
  3696. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3697. else if (IS_I915GM(dev))
  3698. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3699. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3700. } else
  3701. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3702. }
  3703. }
  3704. static void i830_update_wm(struct drm_device *dev)
  3705. {
  3706. struct drm_i915_private *dev_priv = dev->dev_private;
  3707. struct drm_crtc *crtc;
  3708. uint32_t fwater_lo;
  3709. int planea_wm;
  3710. crtc = single_enabled_crtc(dev);
  3711. if (crtc == NULL)
  3712. return;
  3713. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3714. dev_priv->display.get_fifo_size(dev, 0),
  3715. crtc->fb->bits_per_pixel / 8,
  3716. latency_ns);
  3717. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3718. fwater_lo |= (3<<8) | planea_wm;
  3719. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3720. I915_WRITE(FW_BLC, fwater_lo);
  3721. }
  3722. #define ILK_LP0_PLANE_LATENCY 700
  3723. #define ILK_LP0_CURSOR_LATENCY 1300
  3724. /*
  3725. * Check the wm result.
  3726. *
  3727. * If any calculated watermark values is larger than the maximum value that
  3728. * can be programmed into the associated watermark register, that watermark
  3729. * must be disabled.
  3730. */
  3731. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3732. int fbc_wm, int display_wm, int cursor_wm,
  3733. const struct intel_watermark_params *display,
  3734. const struct intel_watermark_params *cursor)
  3735. {
  3736. struct drm_i915_private *dev_priv = dev->dev_private;
  3737. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3738. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3739. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3740. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3741. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3742. /* fbc has it's own way to disable FBC WM */
  3743. I915_WRITE(DISP_ARB_CTL,
  3744. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3745. return false;
  3746. }
  3747. if (display_wm > display->max_wm) {
  3748. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3749. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3750. return false;
  3751. }
  3752. if (cursor_wm > cursor->max_wm) {
  3753. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3754. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3755. return false;
  3756. }
  3757. if (!(fbc_wm || display_wm || cursor_wm)) {
  3758. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3759. return false;
  3760. }
  3761. return true;
  3762. }
  3763. /*
  3764. * Compute watermark values of WM[1-3],
  3765. */
  3766. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3767. int latency_ns,
  3768. const struct intel_watermark_params *display,
  3769. const struct intel_watermark_params *cursor,
  3770. int *fbc_wm, int *display_wm, int *cursor_wm)
  3771. {
  3772. struct drm_crtc *crtc;
  3773. unsigned long line_time_us;
  3774. int hdisplay, htotal, pixel_size, clock;
  3775. int line_count, line_size;
  3776. int small, large;
  3777. int entries;
  3778. if (!latency_ns) {
  3779. *fbc_wm = *display_wm = *cursor_wm = 0;
  3780. return false;
  3781. }
  3782. crtc = intel_get_crtc_for_plane(dev, plane);
  3783. hdisplay = crtc->mode.hdisplay;
  3784. htotal = crtc->mode.htotal;
  3785. clock = crtc->mode.clock;
  3786. pixel_size = crtc->fb->bits_per_pixel / 8;
  3787. line_time_us = (htotal * 1000) / clock;
  3788. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3789. line_size = hdisplay * pixel_size;
  3790. /* Use the minimum of the small and large buffer method for primary */
  3791. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3792. large = line_count * line_size;
  3793. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3794. *display_wm = entries + display->guard_size;
  3795. /*
  3796. * Spec says:
  3797. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3798. */
  3799. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3800. /* calculate the self-refresh watermark for display cursor */
  3801. entries = line_count * pixel_size * 64;
  3802. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3803. *cursor_wm = entries + cursor->guard_size;
  3804. return ironlake_check_srwm(dev, level,
  3805. *fbc_wm, *display_wm, *cursor_wm,
  3806. display, cursor);
  3807. }
  3808. static void ironlake_update_wm(struct drm_device *dev)
  3809. {
  3810. struct drm_i915_private *dev_priv = dev->dev_private;
  3811. int fbc_wm, plane_wm, cursor_wm;
  3812. unsigned int enabled;
  3813. enabled = 0;
  3814. if (g4x_compute_wm0(dev, 0,
  3815. &ironlake_display_wm_info,
  3816. ILK_LP0_PLANE_LATENCY,
  3817. &ironlake_cursor_wm_info,
  3818. ILK_LP0_CURSOR_LATENCY,
  3819. &plane_wm, &cursor_wm)) {
  3820. I915_WRITE(WM0_PIPEA_ILK,
  3821. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3822. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3823. " plane %d, " "cursor: %d\n",
  3824. plane_wm, cursor_wm);
  3825. enabled |= 1;
  3826. }
  3827. if (g4x_compute_wm0(dev, 1,
  3828. &ironlake_display_wm_info,
  3829. ILK_LP0_PLANE_LATENCY,
  3830. &ironlake_cursor_wm_info,
  3831. ILK_LP0_CURSOR_LATENCY,
  3832. &plane_wm, &cursor_wm)) {
  3833. I915_WRITE(WM0_PIPEB_ILK,
  3834. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3835. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3836. " plane %d, cursor: %d\n",
  3837. plane_wm, cursor_wm);
  3838. enabled |= 2;
  3839. }
  3840. /*
  3841. * Calculate and update the self-refresh watermark only when one
  3842. * display plane is used.
  3843. */
  3844. I915_WRITE(WM3_LP_ILK, 0);
  3845. I915_WRITE(WM2_LP_ILK, 0);
  3846. I915_WRITE(WM1_LP_ILK, 0);
  3847. if (!single_plane_enabled(enabled))
  3848. return;
  3849. enabled = ffs(enabled) - 1;
  3850. /* WM1 */
  3851. if (!ironlake_compute_srwm(dev, 1, enabled,
  3852. ILK_READ_WM1_LATENCY() * 500,
  3853. &ironlake_display_srwm_info,
  3854. &ironlake_cursor_srwm_info,
  3855. &fbc_wm, &plane_wm, &cursor_wm))
  3856. return;
  3857. I915_WRITE(WM1_LP_ILK,
  3858. WM1_LP_SR_EN |
  3859. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3860. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3861. (plane_wm << WM1_LP_SR_SHIFT) |
  3862. cursor_wm);
  3863. /* WM2 */
  3864. if (!ironlake_compute_srwm(dev, 2, enabled,
  3865. ILK_READ_WM2_LATENCY() * 500,
  3866. &ironlake_display_srwm_info,
  3867. &ironlake_cursor_srwm_info,
  3868. &fbc_wm, &plane_wm, &cursor_wm))
  3869. return;
  3870. I915_WRITE(WM2_LP_ILK,
  3871. WM2_LP_EN |
  3872. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3873. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3874. (plane_wm << WM1_LP_SR_SHIFT) |
  3875. cursor_wm);
  3876. /*
  3877. * WM3 is unsupported on ILK, probably because we don't have latency
  3878. * data for that power state
  3879. */
  3880. }
  3881. static void sandybridge_update_wm(struct drm_device *dev)
  3882. {
  3883. struct drm_i915_private *dev_priv = dev->dev_private;
  3884. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3885. int fbc_wm, plane_wm, cursor_wm;
  3886. unsigned int enabled;
  3887. enabled = 0;
  3888. if (g4x_compute_wm0(dev, 0,
  3889. &sandybridge_display_wm_info, latency,
  3890. &sandybridge_cursor_wm_info, latency,
  3891. &plane_wm, &cursor_wm)) {
  3892. I915_WRITE(WM0_PIPEA_ILK,
  3893. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3894. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3895. " plane %d, " "cursor: %d\n",
  3896. plane_wm, cursor_wm);
  3897. enabled |= 1;
  3898. }
  3899. if (g4x_compute_wm0(dev, 1,
  3900. &sandybridge_display_wm_info, latency,
  3901. &sandybridge_cursor_wm_info, latency,
  3902. &plane_wm, &cursor_wm)) {
  3903. I915_WRITE(WM0_PIPEB_ILK,
  3904. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3905. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3906. " plane %d, cursor: %d\n",
  3907. plane_wm, cursor_wm);
  3908. enabled |= 2;
  3909. }
  3910. /* IVB has 3 pipes */
  3911. if (IS_IVYBRIDGE(dev) &&
  3912. g4x_compute_wm0(dev, 2,
  3913. &sandybridge_display_wm_info, latency,
  3914. &sandybridge_cursor_wm_info, latency,
  3915. &plane_wm, &cursor_wm)) {
  3916. I915_WRITE(WM0_PIPEC_IVB,
  3917. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3918. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  3919. " plane %d, cursor: %d\n",
  3920. plane_wm, cursor_wm);
  3921. enabled |= 3;
  3922. }
  3923. /*
  3924. * Calculate and update the self-refresh watermark only when one
  3925. * display plane is used.
  3926. *
  3927. * SNB support 3 levels of watermark.
  3928. *
  3929. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3930. * and disabled in the descending order
  3931. *
  3932. */
  3933. I915_WRITE(WM3_LP_ILK, 0);
  3934. I915_WRITE(WM2_LP_ILK, 0);
  3935. I915_WRITE(WM1_LP_ILK, 0);
  3936. if (!single_plane_enabled(enabled))
  3937. return;
  3938. enabled = ffs(enabled) - 1;
  3939. /* WM1 */
  3940. if (!ironlake_compute_srwm(dev, 1, enabled,
  3941. SNB_READ_WM1_LATENCY() * 500,
  3942. &sandybridge_display_srwm_info,
  3943. &sandybridge_cursor_srwm_info,
  3944. &fbc_wm, &plane_wm, &cursor_wm))
  3945. return;
  3946. I915_WRITE(WM1_LP_ILK,
  3947. WM1_LP_SR_EN |
  3948. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3949. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3950. (plane_wm << WM1_LP_SR_SHIFT) |
  3951. cursor_wm);
  3952. /* WM2 */
  3953. if (!ironlake_compute_srwm(dev, 2, enabled,
  3954. SNB_READ_WM2_LATENCY() * 500,
  3955. &sandybridge_display_srwm_info,
  3956. &sandybridge_cursor_srwm_info,
  3957. &fbc_wm, &plane_wm, &cursor_wm))
  3958. return;
  3959. I915_WRITE(WM2_LP_ILK,
  3960. WM2_LP_EN |
  3961. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3962. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3963. (plane_wm << WM1_LP_SR_SHIFT) |
  3964. cursor_wm);
  3965. /* WM3 */
  3966. if (!ironlake_compute_srwm(dev, 3, enabled,
  3967. SNB_READ_WM3_LATENCY() * 500,
  3968. &sandybridge_display_srwm_info,
  3969. &sandybridge_cursor_srwm_info,
  3970. &fbc_wm, &plane_wm, &cursor_wm))
  3971. return;
  3972. I915_WRITE(WM3_LP_ILK,
  3973. WM3_LP_EN |
  3974. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3975. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3976. (plane_wm << WM1_LP_SR_SHIFT) |
  3977. cursor_wm);
  3978. }
  3979. /**
  3980. * intel_update_watermarks - update FIFO watermark values based on current modes
  3981. *
  3982. * Calculate watermark values for the various WM regs based on current mode
  3983. * and plane configuration.
  3984. *
  3985. * There are several cases to deal with here:
  3986. * - normal (i.e. non-self-refresh)
  3987. * - self-refresh (SR) mode
  3988. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3989. * - lines are small relative to FIFO size (buffer can hold more than 2
  3990. * lines), so need to account for TLB latency
  3991. *
  3992. * The normal calculation is:
  3993. * watermark = dotclock * bytes per pixel * latency
  3994. * where latency is platform & configuration dependent (we assume pessimal
  3995. * values here).
  3996. *
  3997. * The SR calculation is:
  3998. * watermark = (trunc(latency/line time)+1) * surface width *
  3999. * bytes per pixel
  4000. * where
  4001. * line time = htotal / dotclock
  4002. * surface width = hdisplay for normal plane and 64 for cursor
  4003. * and latency is assumed to be high, as above.
  4004. *
  4005. * The final value programmed to the register should always be rounded up,
  4006. * and include an extra 2 entries to account for clock crossings.
  4007. *
  4008. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4009. * to set the non-SR watermarks to 8.
  4010. */
  4011. static void intel_update_watermarks(struct drm_device *dev)
  4012. {
  4013. struct drm_i915_private *dev_priv = dev->dev_private;
  4014. if (dev_priv->display.update_wm)
  4015. dev_priv->display.update_wm(dev);
  4016. }
  4017. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4018. {
  4019. if (i915_panel_use_ssc >= 0)
  4020. return i915_panel_use_ssc != 0;
  4021. return dev_priv->lvds_use_ssc
  4022. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4023. }
  4024. /**
  4025. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4026. * @crtc: CRTC structure
  4027. *
  4028. * A pipe may be connected to one or more outputs. Based on the depth of the
  4029. * attached framebuffer, choose a good color depth to use on the pipe.
  4030. *
  4031. * If possible, match the pipe depth to the fb depth. In some cases, this
  4032. * isn't ideal, because the connected output supports a lesser or restricted
  4033. * set of depths. Resolve that here:
  4034. * LVDS typically supports only 6bpc, so clamp down in that case
  4035. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4036. * Displays may support a restricted set as well, check EDID and clamp as
  4037. * appropriate.
  4038. *
  4039. * RETURNS:
  4040. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4041. * true if they don't match).
  4042. */
  4043. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4044. unsigned int *pipe_bpp)
  4045. {
  4046. struct drm_device *dev = crtc->dev;
  4047. struct drm_i915_private *dev_priv = dev->dev_private;
  4048. struct drm_encoder *encoder;
  4049. struct drm_connector *connector;
  4050. unsigned int display_bpc = UINT_MAX, bpc;
  4051. /* Walk the encoders & connectors on this crtc, get min bpc */
  4052. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4053. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4054. if (encoder->crtc != crtc)
  4055. continue;
  4056. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4057. unsigned int lvds_bpc;
  4058. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4059. LVDS_A3_POWER_UP)
  4060. lvds_bpc = 8;
  4061. else
  4062. lvds_bpc = 6;
  4063. if (lvds_bpc < display_bpc) {
  4064. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4065. display_bpc = lvds_bpc;
  4066. }
  4067. continue;
  4068. }
  4069. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4070. /* Use VBT settings if we have an eDP panel */
  4071. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4072. if (edp_bpc < display_bpc) {
  4073. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4074. display_bpc = edp_bpc;
  4075. }
  4076. continue;
  4077. }
  4078. /* Not one of the known troublemakers, check the EDID */
  4079. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4080. head) {
  4081. if (connector->encoder != encoder)
  4082. continue;
  4083. /* Don't use an invalid EDID bpc value */
  4084. if (connector->display_info.bpc &&
  4085. connector->display_info.bpc < display_bpc) {
  4086. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4087. display_bpc = connector->display_info.bpc;
  4088. }
  4089. }
  4090. /*
  4091. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4092. * through, clamp it down. (Note: >12bpc will be caught below.)
  4093. */
  4094. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4095. if (display_bpc > 8 && display_bpc < 12) {
  4096. DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
  4097. display_bpc = 12;
  4098. } else {
  4099. DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
  4100. display_bpc = 8;
  4101. }
  4102. }
  4103. }
  4104. /*
  4105. * We could just drive the pipe at the highest bpc all the time and
  4106. * enable dithering as needed, but that costs bandwidth. So choose
  4107. * the minimum value that expresses the full color range of the fb but
  4108. * also stays within the max display bpc discovered above.
  4109. */
  4110. switch (crtc->fb->depth) {
  4111. case 8:
  4112. bpc = 8; /* since we go through a colormap */
  4113. break;
  4114. case 15:
  4115. case 16:
  4116. bpc = 6; /* min is 18bpp */
  4117. break;
  4118. case 24:
  4119. bpc = 8;
  4120. break;
  4121. case 30:
  4122. bpc = 10;
  4123. break;
  4124. case 48:
  4125. bpc = 12;
  4126. break;
  4127. default:
  4128. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4129. bpc = min((unsigned int)8, display_bpc);
  4130. break;
  4131. }
  4132. display_bpc = min(display_bpc, bpc);
  4133. DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
  4134. bpc, display_bpc);
  4135. *pipe_bpp = display_bpc * 3;
  4136. return display_bpc != bpc;
  4137. }
  4138. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4139. struct drm_display_mode *mode,
  4140. struct drm_display_mode *adjusted_mode,
  4141. int x, int y,
  4142. struct drm_framebuffer *old_fb)
  4143. {
  4144. struct drm_device *dev = crtc->dev;
  4145. struct drm_i915_private *dev_priv = dev->dev_private;
  4146. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4147. int pipe = intel_crtc->pipe;
  4148. int plane = intel_crtc->plane;
  4149. int refclk, num_connectors = 0;
  4150. intel_clock_t clock, reduced_clock;
  4151. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4152. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4153. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4154. struct drm_mode_config *mode_config = &dev->mode_config;
  4155. struct intel_encoder *encoder;
  4156. const intel_limit_t *limit;
  4157. int ret;
  4158. u32 temp;
  4159. u32 lvds_sync = 0;
  4160. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4161. if (encoder->base.crtc != crtc)
  4162. continue;
  4163. switch (encoder->type) {
  4164. case INTEL_OUTPUT_LVDS:
  4165. is_lvds = true;
  4166. break;
  4167. case INTEL_OUTPUT_SDVO:
  4168. case INTEL_OUTPUT_HDMI:
  4169. is_sdvo = true;
  4170. if (encoder->needs_tv_clock)
  4171. is_tv = true;
  4172. break;
  4173. case INTEL_OUTPUT_DVO:
  4174. is_dvo = true;
  4175. break;
  4176. case INTEL_OUTPUT_TVOUT:
  4177. is_tv = true;
  4178. break;
  4179. case INTEL_OUTPUT_ANALOG:
  4180. is_crt = true;
  4181. break;
  4182. case INTEL_OUTPUT_DISPLAYPORT:
  4183. is_dp = true;
  4184. break;
  4185. }
  4186. num_connectors++;
  4187. }
  4188. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4189. refclk = dev_priv->lvds_ssc_freq * 1000;
  4190. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4191. refclk / 1000);
  4192. } else if (!IS_GEN2(dev)) {
  4193. refclk = 96000;
  4194. } else {
  4195. refclk = 48000;
  4196. }
  4197. /*
  4198. * Returns a set of divisors for the desired target clock with the given
  4199. * refclk, or FALSE. The returned values represent the clock equation:
  4200. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4201. */
  4202. limit = intel_limit(crtc, refclk);
  4203. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4204. if (!ok) {
  4205. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4206. return -EINVAL;
  4207. }
  4208. /* Ensure that the cursor is valid for the new mode before changing... */
  4209. intel_crtc_update_cursor(crtc, true);
  4210. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4211. has_reduced_clock = limit->find_pll(limit, crtc,
  4212. dev_priv->lvds_downclock,
  4213. refclk,
  4214. &reduced_clock);
  4215. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4216. /*
  4217. * If the different P is found, it means that we can't
  4218. * switch the display clock by using the FP0/FP1.
  4219. * In such case we will disable the LVDS downclock
  4220. * feature.
  4221. */
  4222. DRM_DEBUG_KMS("Different P is found for "
  4223. "LVDS clock/downclock\n");
  4224. has_reduced_clock = 0;
  4225. }
  4226. }
  4227. /* SDVO TV has fixed PLL values depend on its clock range,
  4228. this mirrors vbios setting. */
  4229. if (is_sdvo && is_tv) {
  4230. if (adjusted_mode->clock >= 100000
  4231. && adjusted_mode->clock < 140500) {
  4232. clock.p1 = 2;
  4233. clock.p2 = 10;
  4234. clock.n = 3;
  4235. clock.m1 = 16;
  4236. clock.m2 = 8;
  4237. } else if (adjusted_mode->clock >= 140500
  4238. && adjusted_mode->clock <= 200000) {
  4239. clock.p1 = 1;
  4240. clock.p2 = 10;
  4241. clock.n = 6;
  4242. clock.m1 = 12;
  4243. clock.m2 = 8;
  4244. }
  4245. }
  4246. if (IS_PINEVIEW(dev)) {
  4247. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  4248. if (has_reduced_clock)
  4249. fp2 = (1 << reduced_clock.n) << 16 |
  4250. reduced_clock.m1 << 8 | reduced_clock.m2;
  4251. } else {
  4252. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4253. if (has_reduced_clock)
  4254. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4255. reduced_clock.m2;
  4256. }
  4257. dpll = DPLL_VGA_MODE_DIS;
  4258. if (!IS_GEN2(dev)) {
  4259. if (is_lvds)
  4260. dpll |= DPLLB_MODE_LVDS;
  4261. else
  4262. dpll |= DPLLB_MODE_DAC_SERIAL;
  4263. if (is_sdvo) {
  4264. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4265. if (pixel_multiplier > 1) {
  4266. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4267. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4268. }
  4269. dpll |= DPLL_DVO_HIGH_SPEED;
  4270. }
  4271. if (is_dp)
  4272. dpll |= DPLL_DVO_HIGH_SPEED;
  4273. /* compute bitmask from p1 value */
  4274. if (IS_PINEVIEW(dev))
  4275. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4276. else {
  4277. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4278. if (IS_G4X(dev) && has_reduced_clock)
  4279. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4280. }
  4281. switch (clock.p2) {
  4282. case 5:
  4283. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4284. break;
  4285. case 7:
  4286. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4287. break;
  4288. case 10:
  4289. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4290. break;
  4291. case 14:
  4292. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4293. break;
  4294. }
  4295. if (INTEL_INFO(dev)->gen >= 4)
  4296. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4297. } else {
  4298. if (is_lvds) {
  4299. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4300. } else {
  4301. if (clock.p1 == 2)
  4302. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4303. else
  4304. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4305. if (clock.p2 == 4)
  4306. dpll |= PLL_P2_DIVIDE_BY_4;
  4307. }
  4308. }
  4309. if (is_sdvo && is_tv)
  4310. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4311. else if (is_tv)
  4312. /* XXX: just matching BIOS for now */
  4313. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4314. dpll |= 3;
  4315. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4316. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4317. else
  4318. dpll |= PLL_REF_INPUT_DREFCLK;
  4319. /* setup pipeconf */
  4320. pipeconf = I915_READ(PIPECONF(pipe));
  4321. /* Set up the display plane register */
  4322. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4323. /* Ironlake's plane is forced to pipe, bit 24 is to
  4324. enable color space conversion */
  4325. if (pipe == 0)
  4326. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4327. else
  4328. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4329. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4330. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4331. * core speed.
  4332. *
  4333. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4334. * pipe == 0 check?
  4335. */
  4336. if (mode->clock >
  4337. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4338. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4339. else
  4340. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4341. }
  4342. dpll |= DPLL_VCO_ENABLE;
  4343. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4344. drm_mode_debug_printmodeline(mode);
  4345. I915_WRITE(FP0(pipe), fp);
  4346. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4347. POSTING_READ(DPLL(pipe));
  4348. udelay(150);
  4349. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4350. * This is an exception to the general rule that mode_set doesn't turn
  4351. * things on.
  4352. */
  4353. if (is_lvds) {
  4354. temp = I915_READ(LVDS);
  4355. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4356. if (pipe == 1) {
  4357. temp |= LVDS_PIPEB_SELECT;
  4358. } else {
  4359. temp &= ~LVDS_PIPEB_SELECT;
  4360. }
  4361. /* set the corresponsding LVDS_BORDER bit */
  4362. temp |= dev_priv->lvds_border_bits;
  4363. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4364. * set the DPLLs for dual-channel mode or not.
  4365. */
  4366. if (clock.p2 == 7)
  4367. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4368. else
  4369. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4370. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4371. * appropriately here, but we need to look more thoroughly into how
  4372. * panels behave in the two modes.
  4373. */
  4374. /* set the dithering flag on LVDS as needed */
  4375. if (INTEL_INFO(dev)->gen >= 4) {
  4376. if (dev_priv->lvds_dither)
  4377. temp |= LVDS_ENABLE_DITHER;
  4378. else
  4379. temp &= ~LVDS_ENABLE_DITHER;
  4380. }
  4381. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4382. lvds_sync |= LVDS_HSYNC_POLARITY;
  4383. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4384. lvds_sync |= LVDS_VSYNC_POLARITY;
  4385. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4386. != lvds_sync) {
  4387. char flags[2] = "-+";
  4388. DRM_INFO("Changing LVDS panel from "
  4389. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4390. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4391. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4392. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4393. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4394. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4395. temp |= lvds_sync;
  4396. }
  4397. I915_WRITE(LVDS, temp);
  4398. }
  4399. if (is_dp) {
  4400. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4401. }
  4402. I915_WRITE(DPLL(pipe), dpll);
  4403. /* Wait for the clocks to stabilize. */
  4404. POSTING_READ(DPLL(pipe));
  4405. udelay(150);
  4406. if (INTEL_INFO(dev)->gen >= 4) {
  4407. temp = 0;
  4408. if (is_sdvo) {
  4409. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4410. if (temp > 1)
  4411. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4412. else
  4413. temp = 0;
  4414. }
  4415. I915_WRITE(DPLL_MD(pipe), temp);
  4416. } else {
  4417. /* The pixel multiplier can only be updated once the
  4418. * DPLL is enabled and the clocks are stable.
  4419. *
  4420. * So write it again.
  4421. */
  4422. I915_WRITE(DPLL(pipe), dpll);
  4423. }
  4424. intel_crtc->lowfreq_avail = false;
  4425. if (is_lvds && has_reduced_clock && i915_powersave) {
  4426. I915_WRITE(FP1(pipe), fp2);
  4427. intel_crtc->lowfreq_avail = true;
  4428. if (HAS_PIPE_CXSR(dev)) {
  4429. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4430. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4431. }
  4432. } else {
  4433. I915_WRITE(FP1(pipe), fp);
  4434. if (HAS_PIPE_CXSR(dev)) {
  4435. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4436. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4437. }
  4438. }
  4439. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4440. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4441. /* the chip adds 2 halflines automatically */
  4442. adjusted_mode->crtc_vdisplay -= 1;
  4443. adjusted_mode->crtc_vtotal -= 1;
  4444. adjusted_mode->crtc_vblank_start -= 1;
  4445. adjusted_mode->crtc_vblank_end -= 1;
  4446. adjusted_mode->crtc_vsync_end -= 1;
  4447. adjusted_mode->crtc_vsync_start -= 1;
  4448. } else
  4449. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4450. I915_WRITE(HTOTAL(pipe),
  4451. (adjusted_mode->crtc_hdisplay - 1) |
  4452. ((adjusted_mode->crtc_htotal - 1) << 16));
  4453. I915_WRITE(HBLANK(pipe),
  4454. (adjusted_mode->crtc_hblank_start - 1) |
  4455. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4456. I915_WRITE(HSYNC(pipe),
  4457. (adjusted_mode->crtc_hsync_start - 1) |
  4458. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4459. I915_WRITE(VTOTAL(pipe),
  4460. (adjusted_mode->crtc_vdisplay - 1) |
  4461. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4462. I915_WRITE(VBLANK(pipe),
  4463. (adjusted_mode->crtc_vblank_start - 1) |
  4464. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4465. I915_WRITE(VSYNC(pipe),
  4466. (adjusted_mode->crtc_vsync_start - 1) |
  4467. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4468. /* pipesrc and dspsize control the size that is scaled from,
  4469. * which should always be the user's requested size.
  4470. */
  4471. I915_WRITE(DSPSIZE(plane),
  4472. ((mode->vdisplay - 1) << 16) |
  4473. (mode->hdisplay - 1));
  4474. I915_WRITE(DSPPOS(plane), 0);
  4475. I915_WRITE(PIPESRC(pipe),
  4476. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4477. I915_WRITE(PIPECONF(pipe), pipeconf);
  4478. POSTING_READ(PIPECONF(pipe));
  4479. intel_enable_pipe(dev_priv, pipe, false);
  4480. intel_wait_for_vblank(dev, pipe);
  4481. I915_WRITE(DSPCNTR(plane), dspcntr);
  4482. POSTING_READ(DSPCNTR(plane));
  4483. intel_enable_plane(dev_priv, plane, pipe);
  4484. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4485. intel_update_watermarks(dev);
  4486. return ret;
  4487. }
  4488. /*
  4489. * Initialize reference clocks when the driver loads
  4490. */
  4491. void ironlake_init_pch_refclk(struct drm_device *dev)
  4492. {
  4493. struct drm_i915_private *dev_priv = dev->dev_private;
  4494. struct drm_mode_config *mode_config = &dev->mode_config;
  4495. struct intel_encoder *encoder;
  4496. u32 temp;
  4497. bool has_lvds = false;
  4498. bool has_cpu_edp = false;
  4499. bool has_pch_edp = false;
  4500. bool has_panel = false;
  4501. bool has_ck505 = false;
  4502. bool can_ssc = false;
  4503. /* We need to take the global config into account */
  4504. list_for_each_entry(encoder, &mode_config->encoder_list,
  4505. base.head) {
  4506. switch (encoder->type) {
  4507. case INTEL_OUTPUT_LVDS:
  4508. has_panel = true;
  4509. has_lvds = true;
  4510. break;
  4511. case INTEL_OUTPUT_EDP:
  4512. has_panel = true;
  4513. if (intel_encoder_is_pch_edp(&encoder->base))
  4514. has_pch_edp = true;
  4515. else
  4516. has_cpu_edp = true;
  4517. break;
  4518. }
  4519. }
  4520. if (HAS_PCH_IBX(dev)) {
  4521. has_ck505 = dev_priv->display_clock_mode;
  4522. can_ssc = has_ck505;
  4523. } else {
  4524. has_ck505 = false;
  4525. can_ssc = true;
  4526. }
  4527. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4528. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4529. has_ck505);
  4530. /* Ironlake: try to setup display ref clock before DPLL
  4531. * enabling. This is only under driver's control after
  4532. * PCH B stepping, previous chipset stepping should be
  4533. * ignoring this setting.
  4534. */
  4535. temp = I915_READ(PCH_DREF_CONTROL);
  4536. /* Always enable nonspread source */
  4537. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4538. if (has_ck505)
  4539. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4540. else
  4541. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4542. if (has_panel) {
  4543. temp &= ~DREF_SSC_SOURCE_MASK;
  4544. temp |= DREF_SSC_SOURCE_ENABLE;
  4545. /* SSC must be turned on before enabling the CPU output */
  4546. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4547. DRM_DEBUG_KMS("Using SSC on panel\n");
  4548. temp |= DREF_SSC1_ENABLE;
  4549. }
  4550. /* Get SSC going before enabling the outputs */
  4551. I915_WRITE(PCH_DREF_CONTROL, temp);
  4552. POSTING_READ(PCH_DREF_CONTROL);
  4553. udelay(200);
  4554. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4555. /* Enable CPU source on CPU attached eDP */
  4556. if (has_cpu_edp) {
  4557. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4558. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4559. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4560. }
  4561. else
  4562. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4563. } else
  4564. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4565. I915_WRITE(PCH_DREF_CONTROL, temp);
  4566. POSTING_READ(PCH_DREF_CONTROL);
  4567. udelay(200);
  4568. } else {
  4569. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4570. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4571. /* Turn off CPU output */
  4572. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4573. I915_WRITE(PCH_DREF_CONTROL, temp);
  4574. POSTING_READ(PCH_DREF_CONTROL);
  4575. udelay(200);
  4576. /* Turn off the SSC source */
  4577. temp &= ~DREF_SSC_SOURCE_MASK;
  4578. temp |= DREF_SSC_SOURCE_DISABLE;
  4579. /* Turn off SSC1 */
  4580. temp &= ~ DREF_SSC1_ENABLE;
  4581. I915_WRITE(PCH_DREF_CONTROL, temp);
  4582. POSTING_READ(PCH_DREF_CONTROL);
  4583. udelay(200);
  4584. }
  4585. }
  4586. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4587. {
  4588. struct drm_device *dev = crtc->dev;
  4589. struct drm_i915_private *dev_priv = dev->dev_private;
  4590. struct intel_encoder *encoder;
  4591. struct drm_mode_config *mode_config = &dev->mode_config;
  4592. struct intel_encoder *edp_encoder = NULL;
  4593. int num_connectors = 0;
  4594. bool is_lvds = false;
  4595. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4596. if (encoder->base.crtc != crtc)
  4597. continue;
  4598. switch (encoder->type) {
  4599. case INTEL_OUTPUT_LVDS:
  4600. is_lvds = true;
  4601. break;
  4602. case INTEL_OUTPUT_EDP:
  4603. edp_encoder = encoder;
  4604. break;
  4605. }
  4606. num_connectors++;
  4607. }
  4608. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4609. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4610. dev_priv->lvds_ssc_freq);
  4611. return dev_priv->lvds_ssc_freq * 1000;
  4612. }
  4613. return 120000;
  4614. }
  4615. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4616. struct drm_display_mode *mode,
  4617. struct drm_display_mode *adjusted_mode,
  4618. int x, int y,
  4619. struct drm_framebuffer *old_fb)
  4620. {
  4621. struct drm_device *dev = crtc->dev;
  4622. struct drm_i915_private *dev_priv = dev->dev_private;
  4623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4624. int pipe = intel_crtc->pipe;
  4625. int plane = intel_crtc->plane;
  4626. int refclk, num_connectors = 0;
  4627. intel_clock_t clock, reduced_clock;
  4628. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4629. bool ok, has_reduced_clock = false, is_sdvo = false;
  4630. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4631. struct intel_encoder *has_edp_encoder = NULL;
  4632. struct drm_mode_config *mode_config = &dev->mode_config;
  4633. struct intel_encoder *encoder;
  4634. const intel_limit_t *limit;
  4635. int ret;
  4636. struct fdi_m_n m_n = {0};
  4637. u32 temp;
  4638. u32 lvds_sync = 0;
  4639. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4640. unsigned int pipe_bpp;
  4641. bool dither;
  4642. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4643. if (encoder->base.crtc != crtc)
  4644. continue;
  4645. switch (encoder->type) {
  4646. case INTEL_OUTPUT_LVDS:
  4647. is_lvds = true;
  4648. break;
  4649. case INTEL_OUTPUT_SDVO:
  4650. case INTEL_OUTPUT_HDMI:
  4651. is_sdvo = true;
  4652. if (encoder->needs_tv_clock)
  4653. is_tv = true;
  4654. break;
  4655. case INTEL_OUTPUT_TVOUT:
  4656. is_tv = true;
  4657. break;
  4658. case INTEL_OUTPUT_ANALOG:
  4659. is_crt = true;
  4660. break;
  4661. case INTEL_OUTPUT_DISPLAYPORT:
  4662. is_dp = true;
  4663. break;
  4664. case INTEL_OUTPUT_EDP:
  4665. has_edp_encoder = encoder;
  4666. break;
  4667. }
  4668. num_connectors++;
  4669. }
  4670. refclk = ironlake_get_refclk(crtc);
  4671. /*
  4672. * Returns a set of divisors for the desired target clock with the given
  4673. * refclk, or FALSE. The returned values represent the clock equation:
  4674. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4675. */
  4676. limit = intel_limit(crtc, refclk);
  4677. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4678. if (!ok) {
  4679. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4680. return -EINVAL;
  4681. }
  4682. /* Ensure that the cursor is valid for the new mode before changing... */
  4683. intel_crtc_update_cursor(crtc, true);
  4684. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4685. has_reduced_clock = limit->find_pll(limit, crtc,
  4686. dev_priv->lvds_downclock,
  4687. refclk,
  4688. &reduced_clock);
  4689. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4690. /*
  4691. * If the different P is found, it means that we can't
  4692. * switch the display clock by using the FP0/FP1.
  4693. * In such case we will disable the LVDS downclock
  4694. * feature.
  4695. */
  4696. DRM_DEBUG_KMS("Different P is found for "
  4697. "LVDS clock/downclock\n");
  4698. has_reduced_clock = 0;
  4699. }
  4700. }
  4701. /* SDVO TV has fixed PLL values depend on its clock range,
  4702. this mirrors vbios setting. */
  4703. if (is_sdvo && is_tv) {
  4704. if (adjusted_mode->clock >= 100000
  4705. && adjusted_mode->clock < 140500) {
  4706. clock.p1 = 2;
  4707. clock.p2 = 10;
  4708. clock.n = 3;
  4709. clock.m1 = 16;
  4710. clock.m2 = 8;
  4711. } else if (adjusted_mode->clock >= 140500
  4712. && adjusted_mode->clock <= 200000) {
  4713. clock.p1 = 1;
  4714. clock.p2 = 10;
  4715. clock.n = 6;
  4716. clock.m1 = 12;
  4717. clock.m2 = 8;
  4718. }
  4719. }
  4720. /* FDI link */
  4721. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4722. lane = 0;
  4723. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4724. according to current link config */
  4725. if (has_edp_encoder &&
  4726. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4727. target_clock = mode->clock;
  4728. intel_edp_link_config(has_edp_encoder,
  4729. &lane, &link_bw);
  4730. } else {
  4731. /* [e]DP over FDI requires target mode clock
  4732. instead of link clock */
  4733. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4734. target_clock = mode->clock;
  4735. else
  4736. target_clock = adjusted_mode->clock;
  4737. /* FDI is a binary signal running at ~2.7GHz, encoding
  4738. * each output octet as 10 bits. The actual frequency
  4739. * is stored as a divider into a 100MHz clock, and the
  4740. * mode pixel clock is stored in units of 1KHz.
  4741. * Hence the bw of each lane in terms of the mode signal
  4742. * is:
  4743. */
  4744. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4745. }
  4746. /* determine panel color depth */
  4747. temp = I915_READ(PIPECONF(pipe));
  4748. temp &= ~PIPE_BPC_MASK;
  4749. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
  4750. switch (pipe_bpp) {
  4751. case 18:
  4752. temp |= PIPE_6BPC;
  4753. break;
  4754. case 24:
  4755. temp |= PIPE_8BPC;
  4756. break;
  4757. case 30:
  4758. temp |= PIPE_10BPC;
  4759. break;
  4760. case 36:
  4761. temp |= PIPE_12BPC;
  4762. break;
  4763. default:
  4764. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4765. pipe_bpp);
  4766. temp |= PIPE_8BPC;
  4767. pipe_bpp = 24;
  4768. break;
  4769. }
  4770. intel_crtc->bpp = pipe_bpp;
  4771. I915_WRITE(PIPECONF(pipe), temp);
  4772. if (!lane) {
  4773. /*
  4774. * Account for spread spectrum to avoid
  4775. * oversubscribing the link. Max center spread
  4776. * is 2.5%; use 5% for safety's sake.
  4777. */
  4778. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4779. lane = bps / (link_bw * 8) + 1;
  4780. }
  4781. intel_crtc->fdi_lanes = lane;
  4782. if (pixel_multiplier > 1)
  4783. link_bw *= pixel_multiplier;
  4784. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4785. &m_n);
  4786. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4787. if (has_reduced_clock)
  4788. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4789. reduced_clock.m2;
  4790. /* Enable autotuning of the PLL clock (if permissible) */
  4791. factor = 21;
  4792. if (is_lvds) {
  4793. if ((intel_panel_use_ssc(dev_priv) &&
  4794. dev_priv->lvds_ssc_freq == 100) ||
  4795. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4796. factor = 25;
  4797. } else if (is_sdvo && is_tv)
  4798. factor = 20;
  4799. if (clock.m < factor * clock.n)
  4800. fp |= FP_CB_TUNE;
  4801. dpll = 0;
  4802. if (is_lvds)
  4803. dpll |= DPLLB_MODE_LVDS;
  4804. else
  4805. dpll |= DPLLB_MODE_DAC_SERIAL;
  4806. if (is_sdvo) {
  4807. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4808. if (pixel_multiplier > 1) {
  4809. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4810. }
  4811. dpll |= DPLL_DVO_HIGH_SPEED;
  4812. }
  4813. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4814. dpll |= DPLL_DVO_HIGH_SPEED;
  4815. /* compute bitmask from p1 value */
  4816. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4817. /* also FPA1 */
  4818. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4819. switch (clock.p2) {
  4820. case 5:
  4821. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4822. break;
  4823. case 7:
  4824. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4825. break;
  4826. case 10:
  4827. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4828. break;
  4829. case 14:
  4830. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4831. break;
  4832. }
  4833. if (is_sdvo && is_tv)
  4834. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4835. else if (is_tv)
  4836. /* XXX: just matching BIOS for now */
  4837. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4838. dpll |= 3;
  4839. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4840. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4841. else
  4842. dpll |= PLL_REF_INPUT_DREFCLK;
  4843. /* setup pipeconf */
  4844. pipeconf = I915_READ(PIPECONF(pipe));
  4845. /* Set up the display plane register */
  4846. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4847. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4848. drm_mode_debug_printmodeline(mode);
  4849. /* PCH eDP needs FDI, but CPU eDP does not */
  4850. if (!intel_crtc->no_pll) {
  4851. if (!has_edp_encoder ||
  4852. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4853. I915_WRITE(PCH_FP0(pipe), fp);
  4854. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4855. POSTING_READ(PCH_DPLL(pipe));
  4856. udelay(150);
  4857. }
  4858. } else {
  4859. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  4860. fp == I915_READ(PCH_FP0(0))) {
  4861. intel_crtc->use_pll_a = true;
  4862. DRM_DEBUG_KMS("using pipe a dpll\n");
  4863. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  4864. fp == I915_READ(PCH_FP0(1))) {
  4865. intel_crtc->use_pll_a = false;
  4866. DRM_DEBUG_KMS("using pipe b dpll\n");
  4867. } else {
  4868. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  4869. return -EINVAL;
  4870. }
  4871. }
  4872. /* enable transcoder DPLL */
  4873. if (HAS_PCH_CPT(dev)) {
  4874. u32 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  4875. TRANSC_DPLLB_SEL;
  4876. temp = I915_READ(PCH_DPLL_SEL);
  4877. switch (pipe) {
  4878. case 0:
  4879. temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
  4880. break;
  4881. case 1:
  4882. temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
  4883. break;
  4884. case 2:
  4885. temp &= ~(TRANSC_DPLLB_SEL);
  4886. temp |= TRANSC_DPLL_ENABLE | transc_sel;
  4887. break;
  4888. default:
  4889. BUG();
  4890. }
  4891. I915_WRITE(PCH_DPLL_SEL, temp);
  4892. POSTING_READ(PCH_DPLL_SEL);
  4893. udelay(150);
  4894. }
  4895. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4896. * This is an exception to the general rule that mode_set doesn't turn
  4897. * things on.
  4898. */
  4899. if (is_lvds) {
  4900. temp = I915_READ(PCH_LVDS);
  4901. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4902. if (HAS_PCH_CPT(dev))
  4903. temp |= PORT_TRANS_SEL_CPT(pipe);
  4904. else if (pipe == 1)
  4905. temp |= LVDS_PIPEB_SELECT;
  4906. else
  4907. temp &= ~LVDS_PIPEB_SELECT;
  4908. /* set the corresponsding LVDS_BORDER bit */
  4909. temp |= dev_priv->lvds_border_bits;
  4910. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4911. * set the DPLLs for dual-channel mode or not.
  4912. */
  4913. if (clock.p2 == 7)
  4914. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4915. else
  4916. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4917. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4918. * appropriately here, but we need to look more thoroughly into how
  4919. * panels behave in the two modes.
  4920. */
  4921. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4922. lvds_sync |= LVDS_HSYNC_POLARITY;
  4923. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4924. lvds_sync |= LVDS_VSYNC_POLARITY;
  4925. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4926. != lvds_sync) {
  4927. char flags[2] = "-+";
  4928. DRM_INFO("Changing LVDS panel from "
  4929. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4930. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4931. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4932. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4933. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4934. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4935. temp |= lvds_sync;
  4936. }
  4937. I915_WRITE(PCH_LVDS, temp);
  4938. }
  4939. pipeconf &= ~PIPECONF_DITHER_EN;
  4940. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  4941. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  4942. pipeconf |= PIPECONF_DITHER_EN;
  4943. pipeconf |= PIPECONF_DITHER_TYPE_ST1;
  4944. }
  4945. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4946. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4947. } else {
  4948. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4949. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4950. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4951. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4952. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4953. }
  4954. if (!intel_crtc->no_pll &&
  4955. (!has_edp_encoder ||
  4956. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  4957. I915_WRITE(PCH_DPLL(pipe), dpll);
  4958. /* Wait for the clocks to stabilize. */
  4959. POSTING_READ(PCH_DPLL(pipe));
  4960. udelay(150);
  4961. /* The pixel multiplier can only be updated once the
  4962. * DPLL is enabled and the clocks are stable.
  4963. *
  4964. * So write it again.
  4965. */
  4966. I915_WRITE(PCH_DPLL(pipe), dpll);
  4967. }
  4968. intel_crtc->lowfreq_avail = false;
  4969. if (!intel_crtc->no_pll) {
  4970. if (is_lvds && has_reduced_clock && i915_powersave) {
  4971. I915_WRITE(PCH_FP1(pipe), fp2);
  4972. intel_crtc->lowfreq_avail = true;
  4973. if (HAS_PIPE_CXSR(dev)) {
  4974. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4975. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4976. }
  4977. } else {
  4978. I915_WRITE(PCH_FP1(pipe), fp);
  4979. if (HAS_PIPE_CXSR(dev)) {
  4980. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4981. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4982. }
  4983. }
  4984. }
  4985. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4986. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4987. /* the chip adds 2 halflines automatically */
  4988. adjusted_mode->crtc_vdisplay -= 1;
  4989. adjusted_mode->crtc_vtotal -= 1;
  4990. adjusted_mode->crtc_vblank_start -= 1;
  4991. adjusted_mode->crtc_vblank_end -= 1;
  4992. adjusted_mode->crtc_vsync_end -= 1;
  4993. adjusted_mode->crtc_vsync_start -= 1;
  4994. } else
  4995. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4996. I915_WRITE(HTOTAL(pipe),
  4997. (adjusted_mode->crtc_hdisplay - 1) |
  4998. ((adjusted_mode->crtc_htotal - 1) << 16));
  4999. I915_WRITE(HBLANK(pipe),
  5000. (adjusted_mode->crtc_hblank_start - 1) |
  5001. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5002. I915_WRITE(HSYNC(pipe),
  5003. (adjusted_mode->crtc_hsync_start - 1) |
  5004. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5005. I915_WRITE(VTOTAL(pipe),
  5006. (adjusted_mode->crtc_vdisplay - 1) |
  5007. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5008. I915_WRITE(VBLANK(pipe),
  5009. (adjusted_mode->crtc_vblank_start - 1) |
  5010. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5011. I915_WRITE(VSYNC(pipe),
  5012. (adjusted_mode->crtc_vsync_start - 1) |
  5013. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5014. /* pipesrc controls the size that is scaled from, which should
  5015. * always be the user's requested size.
  5016. */
  5017. I915_WRITE(PIPESRC(pipe),
  5018. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5019. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5020. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5021. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5022. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5023. if (has_edp_encoder &&
  5024. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5025. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5026. }
  5027. I915_WRITE(PIPECONF(pipe), pipeconf);
  5028. POSTING_READ(PIPECONF(pipe));
  5029. intel_wait_for_vblank(dev, pipe);
  5030. if (IS_GEN5(dev)) {
  5031. /* enable address swizzle for tiling buffer */
  5032. temp = I915_READ(DISP_ARB_CTL);
  5033. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  5034. }
  5035. I915_WRITE(DSPCNTR(plane), dspcntr);
  5036. POSTING_READ(DSPCNTR(plane));
  5037. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5038. intel_update_watermarks(dev);
  5039. return ret;
  5040. }
  5041. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5042. struct drm_display_mode *mode,
  5043. struct drm_display_mode *adjusted_mode,
  5044. int x, int y,
  5045. struct drm_framebuffer *old_fb)
  5046. {
  5047. struct drm_device *dev = crtc->dev;
  5048. struct drm_i915_private *dev_priv = dev->dev_private;
  5049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5050. int pipe = intel_crtc->pipe;
  5051. int ret;
  5052. drm_vblank_pre_modeset(dev, pipe);
  5053. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5054. x, y, old_fb);
  5055. drm_vblank_post_modeset(dev, pipe);
  5056. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5057. return ret;
  5058. }
  5059. static void g4x_write_eld(struct drm_connector *connector,
  5060. struct drm_crtc *crtc)
  5061. {
  5062. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5063. uint8_t *eld = connector->eld;
  5064. uint32_t eldv;
  5065. uint32_t len;
  5066. uint32_t i;
  5067. i = I915_READ(G4X_AUD_VID_DID);
  5068. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5069. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5070. else
  5071. eldv = G4X_ELDV_DEVCTG;
  5072. i = I915_READ(G4X_AUD_CNTL_ST);
  5073. i &= ~(eldv | G4X_ELD_ADDR);
  5074. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5075. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5076. if (!eld[0])
  5077. return;
  5078. len = min_t(uint8_t, eld[2], len);
  5079. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5080. for (i = 0; i < len; i++)
  5081. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5082. i = I915_READ(G4X_AUD_CNTL_ST);
  5083. i |= eldv;
  5084. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5085. }
  5086. static void ironlake_write_eld(struct drm_connector *connector,
  5087. struct drm_crtc *crtc)
  5088. {
  5089. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5090. uint8_t *eld = connector->eld;
  5091. uint32_t eldv;
  5092. uint32_t i;
  5093. int len;
  5094. int hdmiw_hdmiedid;
  5095. int aud_cntl_st;
  5096. int aud_cntrl_st2;
  5097. if (IS_IVYBRIDGE(connector->dev)) {
  5098. hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
  5099. aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
  5100. aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
  5101. } else {
  5102. hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
  5103. aud_cntl_st = GEN5_AUD_CNTL_ST_A;
  5104. aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
  5105. }
  5106. i = to_intel_crtc(crtc)->pipe;
  5107. hdmiw_hdmiedid += i * 0x100;
  5108. aud_cntl_st += i * 0x100;
  5109. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5110. i = I915_READ(aud_cntl_st);
  5111. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5112. if (!i) {
  5113. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5114. /* operate blindly on all ports */
  5115. eldv = GEN5_ELD_VALIDB;
  5116. eldv |= GEN5_ELD_VALIDB << 4;
  5117. eldv |= GEN5_ELD_VALIDB << 8;
  5118. } else {
  5119. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5120. eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
  5121. }
  5122. i = I915_READ(aud_cntrl_st2);
  5123. i &= ~eldv;
  5124. I915_WRITE(aud_cntrl_st2, i);
  5125. if (!eld[0])
  5126. return;
  5127. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5128. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5129. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5130. }
  5131. i = I915_READ(aud_cntl_st);
  5132. i &= ~GEN5_ELD_ADDRESS;
  5133. I915_WRITE(aud_cntl_st, i);
  5134. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5135. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5136. for (i = 0; i < len; i++)
  5137. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5138. i = I915_READ(aud_cntrl_st2);
  5139. i |= eldv;
  5140. I915_WRITE(aud_cntrl_st2, i);
  5141. }
  5142. void intel_write_eld(struct drm_encoder *encoder,
  5143. struct drm_display_mode *mode)
  5144. {
  5145. struct drm_crtc *crtc = encoder->crtc;
  5146. struct drm_connector *connector;
  5147. struct drm_device *dev = encoder->dev;
  5148. struct drm_i915_private *dev_priv = dev->dev_private;
  5149. connector = drm_select_eld(encoder, mode);
  5150. if (!connector)
  5151. return;
  5152. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5153. connector->base.id,
  5154. drm_get_connector_name(connector),
  5155. connector->encoder->base.id,
  5156. drm_get_encoder_name(connector->encoder));
  5157. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5158. if (dev_priv->display.write_eld)
  5159. dev_priv->display.write_eld(connector, crtc);
  5160. }
  5161. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5162. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5163. {
  5164. struct drm_device *dev = crtc->dev;
  5165. struct drm_i915_private *dev_priv = dev->dev_private;
  5166. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5167. int palreg = PALETTE(intel_crtc->pipe);
  5168. int i;
  5169. /* The clocks have to be on to load the palette. */
  5170. if (!crtc->enabled)
  5171. return;
  5172. /* use legacy palette for Ironlake */
  5173. if (HAS_PCH_SPLIT(dev))
  5174. palreg = LGC_PALETTE(intel_crtc->pipe);
  5175. for (i = 0; i < 256; i++) {
  5176. I915_WRITE(palreg + 4 * i,
  5177. (intel_crtc->lut_r[i] << 16) |
  5178. (intel_crtc->lut_g[i] << 8) |
  5179. intel_crtc->lut_b[i]);
  5180. }
  5181. }
  5182. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5183. {
  5184. struct drm_device *dev = crtc->dev;
  5185. struct drm_i915_private *dev_priv = dev->dev_private;
  5186. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5187. bool visible = base != 0;
  5188. u32 cntl;
  5189. if (intel_crtc->cursor_visible == visible)
  5190. return;
  5191. cntl = I915_READ(_CURACNTR);
  5192. if (visible) {
  5193. /* On these chipsets we can only modify the base whilst
  5194. * the cursor is disabled.
  5195. */
  5196. I915_WRITE(_CURABASE, base);
  5197. cntl &= ~(CURSOR_FORMAT_MASK);
  5198. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5199. cntl |= CURSOR_ENABLE |
  5200. CURSOR_GAMMA_ENABLE |
  5201. CURSOR_FORMAT_ARGB;
  5202. } else
  5203. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5204. I915_WRITE(_CURACNTR, cntl);
  5205. intel_crtc->cursor_visible = visible;
  5206. }
  5207. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5208. {
  5209. struct drm_device *dev = crtc->dev;
  5210. struct drm_i915_private *dev_priv = dev->dev_private;
  5211. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5212. int pipe = intel_crtc->pipe;
  5213. bool visible = base != 0;
  5214. if (intel_crtc->cursor_visible != visible) {
  5215. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5216. if (base) {
  5217. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5218. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5219. cntl |= pipe << 28; /* Connect to correct pipe */
  5220. } else {
  5221. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5222. cntl |= CURSOR_MODE_DISABLE;
  5223. }
  5224. I915_WRITE(CURCNTR(pipe), cntl);
  5225. intel_crtc->cursor_visible = visible;
  5226. }
  5227. /* and commit changes on next vblank */
  5228. I915_WRITE(CURBASE(pipe), base);
  5229. }
  5230. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5231. {
  5232. struct drm_device *dev = crtc->dev;
  5233. struct drm_i915_private *dev_priv = dev->dev_private;
  5234. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5235. int pipe = intel_crtc->pipe;
  5236. bool visible = base != 0;
  5237. if (intel_crtc->cursor_visible != visible) {
  5238. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5239. if (base) {
  5240. cntl &= ~CURSOR_MODE;
  5241. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5242. } else {
  5243. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5244. cntl |= CURSOR_MODE_DISABLE;
  5245. }
  5246. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5247. intel_crtc->cursor_visible = visible;
  5248. }
  5249. /* and commit changes on next vblank */
  5250. I915_WRITE(CURBASE_IVB(pipe), base);
  5251. }
  5252. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5253. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5254. bool on)
  5255. {
  5256. struct drm_device *dev = crtc->dev;
  5257. struct drm_i915_private *dev_priv = dev->dev_private;
  5258. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5259. int pipe = intel_crtc->pipe;
  5260. int x = intel_crtc->cursor_x;
  5261. int y = intel_crtc->cursor_y;
  5262. u32 base, pos;
  5263. bool visible;
  5264. pos = 0;
  5265. if (on && crtc->enabled && crtc->fb) {
  5266. base = intel_crtc->cursor_addr;
  5267. if (x > (int) crtc->fb->width)
  5268. base = 0;
  5269. if (y > (int) crtc->fb->height)
  5270. base = 0;
  5271. } else
  5272. base = 0;
  5273. if (x < 0) {
  5274. if (x + intel_crtc->cursor_width < 0)
  5275. base = 0;
  5276. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5277. x = -x;
  5278. }
  5279. pos |= x << CURSOR_X_SHIFT;
  5280. if (y < 0) {
  5281. if (y + intel_crtc->cursor_height < 0)
  5282. base = 0;
  5283. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5284. y = -y;
  5285. }
  5286. pos |= y << CURSOR_Y_SHIFT;
  5287. visible = base != 0;
  5288. if (!visible && !intel_crtc->cursor_visible)
  5289. return;
  5290. if (IS_IVYBRIDGE(dev)) {
  5291. I915_WRITE(CURPOS_IVB(pipe), pos);
  5292. ivb_update_cursor(crtc, base);
  5293. } else {
  5294. I915_WRITE(CURPOS(pipe), pos);
  5295. if (IS_845G(dev) || IS_I865G(dev))
  5296. i845_update_cursor(crtc, base);
  5297. else
  5298. i9xx_update_cursor(crtc, base);
  5299. }
  5300. if (visible)
  5301. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5302. }
  5303. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5304. struct drm_file *file,
  5305. uint32_t handle,
  5306. uint32_t width, uint32_t height)
  5307. {
  5308. struct drm_device *dev = crtc->dev;
  5309. struct drm_i915_private *dev_priv = dev->dev_private;
  5310. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5311. struct drm_i915_gem_object *obj;
  5312. uint32_t addr;
  5313. int ret;
  5314. DRM_DEBUG_KMS("\n");
  5315. /* if we want to turn off the cursor ignore width and height */
  5316. if (!handle) {
  5317. DRM_DEBUG_KMS("cursor off\n");
  5318. addr = 0;
  5319. obj = NULL;
  5320. mutex_lock(&dev->struct_mutex);
  5321. goto finish;
  5322. }
  5323. /* Currently we only support 64x64 cursors */
  5324. if (width != 64 || height != 64) {
  5325. DRM_ERROR("we currently only support 64x64 cursors\n");
  5326. return -EINVAL;
  5327. }
  5328. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5329. if (&obj->base == NULL)
  5330. return -ENOENT;
  5331. if (obj->base.size < width * height * 4) {
  5332. DRM_ERROR("buffer is to small\n");
  5333. ret = -ENOMEM;
  5334. goto fail;
  5335. }
  5336. /* we only need to pin inside GTT if cursor is non-phy */
  5337. mutex_lock(&dev->struct_mutex);
  5338. if (!dev_priv->info->cursor_needs_physical) {
  5339. if (obj->tiling_mode) {
  5340. DRM_ERROR("cursor cannot be tiled\n");
  5341. ret = -EINVAL;
  5342. goto fail_locked;
  5343. }
  5344. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5345. if (ret) {
  5346. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5347. goto fail_locked;
  5348. }
  5349. ret = i915_gem_object_put_fence(obj);
  5350. if (ret) {
  5351. DRM_ERROR("failed to release fence for cursor");
  5352. goto fail_unpin;
  5353. }
  5354. addr = obj->gtt_offset;
  5355. } else {
  5356. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5357. ret = i915_gem_attach_phys_object(dev, obj,
  5358. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5359. align);
  5360. if (ret) {
  5361. DRM_ERROR("failed to attach phys object\n");
  5362. goto fail_locked;
  5363. }
  5364. addr = obj->phys_obj->handle->busaddr;
  5365. }
  5366. if (IS_GEN2(dev))
  5367. I915_WRITE(CURSIZE, (height << 12) | width);
  5368. finish:
  5369. if (intel_crtc->cursor_bo) {
  5370. if (dev_priv->info->cursor_needs_physical) {
  5371. if (intel_crtc->cursor_bo != obj)
  5372. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5373. } else
  5374. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5375. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5376. }
  5377. mutex_unlock(&dev->struct_mutex);
  5378. intel_crtc->cursor_addr = addr;
  5379. intel_crtc->cursor_bo = obj;
  5380. intel_crtc->cursor_width = width;
  5381. intel_crtc->cursor_height = height;
  5382. intel_crtc_update_cursor(crtc, true);
  5383. return 0;
  5384. fail_unpin:
  5385. i915_gem_object_unpin(obj);
  5386. fail_locked:
  5387. mutex_unlock(&dev->struct_mutex);
  5388. fail:
  5389. drm_gem_object_unreference_unlocked(&obj->base);
  5390. return ret;
  5391. }
  5392. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5393. {
  5394. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5395. intel_crtc->cursor_x = x;
  5396. intel_crtc->cursor_y = y;
  5397. intel_crtc_update_cursor(crtc, true);
  5398. return 0;
  5399. }
  5400. /** Sets the color ramps on behalf of RandR */
  5401. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5402. u16 blue, int regno)
  5403. {
  5404. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5405. intel_crtc->lut_r[regno] = red >> 8;
  5406. intel_crtc->lut_g[regno] = green >> 8;
  5407. intel_crtc->lut_b[regno] = blue >> 8;
  5408. }
  5409. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5410. u16 *blue, int regno)
  5411. {
  5412. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5413. *red = intel_crtc->lut_r[regno] << 8;
  5414. *green = intel_crtc->lut_g[regno] << 8;
  5415. *blue = intel_crtc->lut_b[regno] << 8;
  5416. }
  5417. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5418. u16 *blue, uint32_t start, uint32_t size)
  5419. {
  5420. int end = (start + size > 256) ? 256 : start + size, i;
  5421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5422. for (i = start; i < end; i++) {
  5423. intel_crtc->lut_r[i] = red[i] >> 8;
  5424. intel_crtc->lut_g[i] = green[i] >> 8;
  5425. intel_crtc->lut_b[i] = blue[i] >> 8;
  5426. }
  5427. intel_crtc_load_lut(crtc);
  5428. }
  5429. /**
  5430. * Get a pipe with a simple mode set on it for doing load-based monitor
  5431. * detection.
  5432. *
  5433. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5434. * its requirements. The pipe will be connected to no other encoders.
  5435. *
  5436. * Currently this code will only succeed if there is a pipe with no encoders
  5437. * configured for it. In the future, it could choose to temporarily disable
  5438. * some outputs to free up a pipe for its use.
  5439. *
  5440. * \return crtc, or NULL if no pipes are available.
  5441. */
  5442. /* VESA 640x480x72Hz mode to set on the pipe */
  5443. static struct drm_display_mode load_detect_mode = {
  5444. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5445. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5446. };
  5447. static struct drm_framebuffer *
  5448. intel_framebuffer_create(struct drm_device *dev,
  5449. struct drm_mode_fb_cmd *mode_cmd,
  5450. struct drm_i915_gem_object *obj)
  5451. {
  5452. struct intel_framebuffer *intel_fb;
  5453. int ret;
  5454. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5455. if (!intel_fb) {
  5456. drm_gem_object_unreference_unlocked(&obj->base);
  5457. return ERR_PTR(-ENOMEM);
  5458. }
  5459. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5460. if (ret) {
  5461. drm_gem_object_unreference_unlocked(&obj->base);
  5462. kfree(intel_fb);
  5463. return ERR_PTR(ret);
  5464. }
  5465. return &intel_fb->base;
  5466. }
  5467. static u32
  5468. intel_framebuffer_pitch_for_width(int width, int bpp)
  5469. {
  5470. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5471. return ALIGN(pitch, 64);
  5472. }
  5473. static u32
  5474. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5475. {
  5476. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5477. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5478. }
  5479. static struct drm_framebuffer *
  5480. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5481. struct drm_display_mode *mode,
  5482. int depth, int bpp)
  5483. {
  5484. struct drm_i915_gem_object *obj;
  5485. struct drm_mode_fb_cmd mode_cmd;
  5486. obj = i915_gem_alloc_object(dev,
  5487. intel_framebuffer_size_for_mode(mode, bpp));
  5488. if (obj == NULL)
  5489. return ERR_PTR(-ENOMEM);
  5490. mode_cmd.width = mode->hdisplay;
  5491. mode_cmd.height = mode->vdisplay;
  5492. mode_cmd.depth = depth;
  5493. mode_cmd.bpp = bpp;
  5494. mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
  5495. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5496. }
  5497. static struct drm_framebuffer *
  5498. mode_fits_in_fbdev(struct drm_device *dev,
  5499. struct drm_display_mode *mode)
  5500. {
  5501. struct drm_i915_private *dev_priv = dev->dev_private;
  5502. struct drm_i915_gem_object *obj;
  5503. struct drm_framebuffer *fb;
  5504. if (dev_priv->fbdev == NULL)
  5505. return NULL;
  5506. obj = dev_priv->fbdev->ifb.obj;
  5507. if (obj == NULL)
  5508. return NULL;
  5509. fb = &dev_priv->fbdev->ifb.base;
  5510. if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5511. fb->bits_per_pixel))
  5512. return NULL;
  5513. if (obj->base.size < mode->vdisplay * fb->pitch)
  5514. return NULL;
  5515. return fb;
  5516. }
  5517. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5518. struct drm_connector *connector,
  5519. struct drm_display_mode *mode,
  5520. struct intel_load_detect_pipe *old)
  5521. {
  5522. struct intel_crtc *intel_crtc;
  5523. struct drm_crtc *possible_crtc;
  5524. struct drm_encoder *encoder = &intel_encoder->base;
  5525. struct drm_crtc *crtc = NULL;
  5526. struct drm_device *dev = encoder->dev;
  5527. struct drm_framebuffer *old_fb;
  5528. int i = -1;
  5529. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5530. connector->base.id, drm_get_connector_name(connector),
  5531. encoder->base.id, drm_get_encoder_name(encoder));
  5532. /*
  5533. * Algorithm gets a little messy:
  5534. *
  5535. * - if the connector already has an assigned crtc, use it (but make
  5536. * sure it's on first)
  5537. *
  5538. * - try to find the first unused crtc that can drive this connector,
  5539. * and use that if we find one
  5540. */
  5541. /* See if we already have a CRTC for this connector */
  5542. if (encoder->crtc) {
  5543. crtc = encoder->crtc;
  5544. intel_crtc = to_intel_crtc(crtc);
  5545. old->dpms_mode = intel_crtc->dpms_mode;
  5546. old->load_detect_temp = false;
  5547. /* Make sure the crtc and connector are running */
  5548. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5549. struct drm_encoder_helper_funcs *encoder_funcs;
  5550. struct drm_crtc_helper_funcs *crtc_funcs;
  5551. crtc_funcs = crtc->helper_private;
  5552. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5553. encoder_funcs = encoder->helper_private;
  5554. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5555. }
  5556. return true;
  5557. }
  5558. /* Find an unused one (if possible) */
  5559. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5560. i++;
  5561. if (!(encoder->possible_crtcs & (1 << i)))
  5562. continue;
  5563. if (!possible_crtc->enabled) {
  5564. crtc = possible_crtc;
  5565. break;
  5566. }
  5567. }
  5568. /*
  5569. * If we didn't find an unused CRTC, don't use any.
  5570. */
  5571. if (!crtc) {
  5572. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5573. return false;
  5574. }
  5575. encoder->crtc = crtc;
  5576. connector->encoder = encoder;
  5577. intel_crtc = to_intel_crtc(crtc);
  5578. old->dpms_mode = intel_crtc->dpms_mode;
  5579. old->load_detect_temp = true;
  5580. old->release_fb = NULL;
  5581. if (!mode)
  5582. mode = &load_detect_mode;
  5583. old_fb = crtc->fb;
  5584. /* We need a framebuffer large enough to accommodate all accesses
  5585. * that the plane may generate whilst we perform load detection.
  5586. * We can not rely on the fbcon either being present (we get called
  5587. * during its initialisation to detect all boot displays, or it may
  5588. * not even exist) or that it is large enough to satisfy the
  5589. * requested mode.
  5590. */
  5591. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5592. if (crtc->fb == NULL) {
  5593. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5594. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5595. old->release_fb = crtc->fb;
  5596. } else
  5597. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5598. if (IS_ERR(crtc->fb)) {
  5599. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5600. crtc->fb = old_fb;
  5601. return false;
  5602. }
  5603. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5604. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5605. if (old->release_fb)
  5606. old->release_fb->funcs->destroy(old->release_fb);
  5607. crtc->fb = old_fb;
  5608. return false;
  5609. }
  5610. /* let the connector get through one full cycle before testing */
  5611. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5612. return true;
  5613. }
  5614. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5615. struct drm_connector *connector,
  5616. struct intel_load_detect_pipe *old)
  5617. {
  5618. struct drm_encoder *encoder = &intel_encoder->base;
  5619. struct drm_device *dev = encoder->dev;
  5620. struct drm_crtc *crtc = encoder->crtc;
  5621. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5622. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5623. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5624. connector->base.id, drm_get_connector_name(connector),
  5625. encoder->base.id, drm_get_encoder_name(encoder));
  5626. if (old->load_detect_temp) {
  5627. connector->encoder = NULL;
  5628. drm_helper_disable_unused_functions(dev);
  5629. if (old->release_fb)
  5630. old->release_fb->funcs->destroy(old->release_fb);
  5631. return;
  5632. }
  5633. /* Switch crtc and encoder back off if necessary */
  5634. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5635. encoder_funcs->dpms(encoder, old->dpms_mode);
  5636. crtc_funcs->dpms(crtc, old->dpms_mode);
  5637. }
  5638. }
  5639. /* Returns the clock of the currently programmed mode of the given pipe. */
  5640. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5641. {
  5642. struct drm_i915_private *dev_priv = dev->dev_private;
  5643. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5644. int pipe = intel_crtc->pipe;
  5645. u32 dpll = I915_READ(DPLL(pipe));
  5646. u32 fp;
  5647. intel_clock_t clock;
  5648. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5649. fp = I915_READ(FP0(pipe));
  5650. else
  5651. fp = I915_READ(FP1(pipe));
  5652. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5653. if (IS_PINEVIEW(dev)) {
  5654. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5655. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5656. } else {
  5657. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5658. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5659. }
  5660. if (!IS_GEN2(dev)) {
  5661. if (IS_PINEVIEW(dev))
  5662. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5663. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5664. else
  5665. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5666. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5667. switch (dpll & DPLL_MODE_MASK) {
  5668. case DPLLB_MODE_DAC_SERIAL:
  5669. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5670. 5 : 10;
  5671. break;
  5672. case DPLLB_MODE_LVDS:
  5673. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5674. 7 : 14;
  5675. break;
  5676. default:
  5677. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5678. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5679. return 0;
  5680. }
  5681. /* XXX: Handle the 100Mhz refclk */
  5682. intel_clock(dev, 96000, &clock);
  5683. } else {
  5684. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5685. if (is_lvds) {
  5686. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5687. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5688. clock.p2 = 14;
  5689. if ((dpll & PLL_REF_INPUT_MASK) ==
  5690. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5691. /* XXX: might not be 66MHz */
  5692. intel_clock(dev, 66000, &clock);
  5693. } else
  5694. intel_clock(dev, 48000, &clock);
  5695. } else {
  5696. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5697. clock.p1 = 2;
  5698. else {
  5699. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5700. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5701. }
  5702. if (dpll & PLL_P2_DIVIDE_BY_4)
  5703. clock.p2 = 4;
  5704. else
  5705. clock.p2 = 2;
  5706. intel_clock(dev, 48000, &clock);
  5707. }
  5708. }
  5709. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5710. * i830PllIsValid() because it relies on the xf86_config connector
  5711. * configuration being accurate, which it isn't necessarily.
  5712. */
  5713. return clock.dot;
  5714. }
  5715. /** Returns the currently programmed mode of the given pipe. */
  5716. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5717. struct drm_crtc *crtc)
  5718. {
  5719. struct drm_i915_private *dev_priv = dev->dev_private;
  5720. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5721. int pipe = intel_crtc->pipe;
  5722. struct drm_display_mode *mode;
  5723. int htot = I915_READ(HTOTAL(pipe));
  5724. int hsync = I915_READ(HSYNC(pipe));
  5725. int vtot = I915_READ(VTOTAL(pipe));
  5726. int vsync = I915_READ(VSYNC(pipe));
  5727. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5728. if (!mode)
  5729. return NULL;
  5730. mode->clock = intel_crtc_clock_get(dev, crtc);
  5731. mode->hdisplay = (htot & 0xffff) + 1;
  5732. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5733. mode->hsync_start = (hsync & 0xffff) + 1;
  5734. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5735. mode->vdisplay = (vtot & 0xffff) + 1;
  5736. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5737. mode->vsync_start = (vsync & 0xffff) + 1;
  5738. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5739. drm_mode_set_name(mode);
  5740. drm_mode_set_crtcinfo(mode, 0);
  5741. return mode;
  5742. }
  5743. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5744. /* When this timer fires, we've been idle for awhile */
  5745. static void intel_gpu_idle_timer(unsigned long arg)
  5746. {
  5747. struct drm_device *dev = (struct drm_device *)arg;
  5748. drm_i915_private_t *dev_priv = dev->dev_private;
  5749. if (!list_empty(&dev_priv->mm.active_list)) {
  5750. /* Still processing requests, so just re-arm the timer. */
  5751. mod_timer(&dev_priv->idle_timer, jiffies +
  5752. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5753. return;
  5754. }
  5755. dev_priv->busy = false;
  5756. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5757. }
  5758. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5759. static void intel_crtc_idle_timer(unsigned long arg)
  5760. {
  5761. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  5762. struct drm_crtc *crtc = &intel_crtc->base;
  5763. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  5764. struct intel_framebuffer *intel_fb;
  5765. intel_fb = to_intel_framebuffer(crtc->fb);
  5766. if (intel_fb && intel_fb->obj->active) {
  5767. /* The framebuffer is still being accessed by the GPU. */
  5768. mod_timer(&intel_crtc->idle_timer, jiffies +
  5769. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5770. return;
  5771. }
  5772. intel_crtc->busy = false;
  5773. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5774. }
  5775. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5776. {
  5777. struct drm_device *dev = crtc->dev;
  5778. drm_i915_private_t *dev_priv = dev->dev_private;
  5779. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5780. int pipe = intel_crtc->pipe;
  5781. int dpll_reg = DPLL(pipe);
  5782. int dpll;
  5783. if (HAS_PCH_SPLIT(dev))
  5784. return;
  5785. if (!dev_priv->lvds_downclock_avail)
  5786. return;
  5787. dpll = I915_READ(dpll_reg);
  5788. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5789. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5790. /* Unlock panel regs */
  5791. I915_WRITE(PP_CONTROL,
  5792. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  5793. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5794. I915_WRITE(dpll_reg, dpll);
  5795. intel_wait_for_vblank(dev, pipe);
  5796. dpll = I915_READ(dpll_reg);
  5797. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5798. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5799. /* ...and lock them again */
  5800. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5801. }
  5802. /* Schedule downclock */
  5803. mod_timer(&intel_crtc->idle_timer, jiffies +
  5804. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5805. }
  5806. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5807. {
  5808. struct drm_device *dev = crtc->dev;
  5809. drm_i915_private_t *dev_priv = dev->dev_private;
  5810. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5811. int pipe = intel_crtc->pipe;
  5812. int dpll_reg = DPLL(pipe);
  5813. int dpll = I915_READ(dpll_reg);
  5814. if (HAS_PCH_SPLIT(dev))
  5815. return;
  5816. if (!dev_priv->lvds_downclock_avail)
  5817. return;
  5818. /*
  5819. * Since this is called by a timer, we should never get here in
  5820. * the manual case.
  5821. */
  5822. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5823. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5824. /* Unlock panel regs */
  5825. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  5826. PANEL_UNLOCK_REGS);
  5827. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5828. I915_WRITE(dpll_reg, dpll);
  5829. intel_wait_for_vblank(dev, pipe);
  5830. dpll = I915_READ(dpll_reg);
  5831. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5832. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5833. /* ...and lock them again */
  5834. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5835. }
  5836. }
  5837. /**
  5838. * intel_idle_update - adjust clocks for idleness
  5839. * @work: work struct
  5840. *
  5841. * Either the GPU or display (or both) went idle. Check the busy status
  5842. * here and adjust the CRTC and GPU clocks as necessary.
  5843. */
  5844. static void intel_idle_update(struct work_struct *work)
  5845. {
  5846. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  5847. idle_work);
  5848. struct drm_device *dev = dev_priv->dev;
  5849. struct drm_crtc *crtc;
  5850. struct intel_crtc *intel_crtc;
  5851. if (!i915_powersave)
  5852. return;
  5853. mutex_lock(&dev->struct_mutex);
  5854. i915_update_gfx_val(dev_priv);
  5855. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5856. /* Skip inactive CRTCs */
  5857. if (!crtc->fb)
  5858. continue;
  5859. intel_crtc = to_intel_crtc(crtc);
  5860. if (!intel_crtc->busy)
  5861. intel_decrease_pllclock(crtc);
  5862. }
  5863. mutex_unlock(&dev->struct_mutex);
  5864. }
  5865. /**
  5866. * intel_mark_busy - mark the GPU and possibly the display busy
  5867. * @dev: drm device
  5868. * @obj: object we're operating on
  5869. *
  5870. * Callers can use this function to indicate that the GPU is busy processing
  5871. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  5872. * buffer), we'll also mark the display as busy, so we know to increase its
  5873. * clock frequency.
  5874. */
  5875. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  5876. {
  5877. drm_i915_private_t *dev_priv = dev->dev_private;
  5878. struct drm_crtc *crtc = NULL;
  5879. struct intel_framebuffer *intel_fb;
  5880. struct intel_crtc *intel_crtc;
  5881. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  5882. return;
  5883. if (!dev_priv->busy)
  5884. dev_priv->busy = true;
  5885. else
  5886. mod_timer(&dev_priv->idle_timer, jiffies +
  5887. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5888. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5889. if (!crtc->fb)
  5890. continue;
  5891. intel_crtc = to_intel_crtc(crtc);
  5892. intel_fb = to_intel_framebuffer(crtc->fb);
  5893. if (intel_fb->obj == obj) {
  5894. if (!intel_crtc->busy) {
  5895. /* Non-busy -> busy, upclock */
  5896. intel_increase_pllclock(crtc);
  5897. intel_crtc->busy = true;
  5898. } else {
  5899. /* Busy -> busy, put off timer */
  5900. mod_timer(&intel_crtc->idle_timer, jiffies +
  5901. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5902. }
  5903. }
  5904. }
  5905. }
  5906. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5907. {
  5908. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5909. struct drm_device *dev = crtc->dev;
  5910. struct intel_unpin_work *work;
  5911. unsigned long flags;
  5912. spin_lock_irqsave(&dev->event_lock, flags);
  5913. work = intel_crtc->unpin_work;
  5914. intel_crtc->unpin_work = NULL;
  5915. spin_unlock_irqrestore(&dev->event_lock, flags);
  5916. if (work) {
  5917. cancel_work_sync(&work->work);
  5918. kfree(work);
  5919. }
  5920. drm_crtc_cleanup(crtc);
  5921. kfree(intel_crtc);
  5922. }
  5923. static void intel_unpin_work_fn(struct work_struct *__work)
  5924. {
  5925. struct intel_unpin_work *work =
  5926. container_of(__work, struct intel_unpin_work, work);
  5927. mutex_lock(&work->dev->struct_mutex);
  5928. i915_gem_object_unpin(work->old_fb_obj);
  5929. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5930. drm_gem_object_unreference(&work->old_fb_obj->base);
  5931. intel_update_fbc(work->dev);
  5932. mutex_unlock(&work->dev->struct_mutex);
  5933. kfree(work);
  5934. }
  5935. static void do_intel_finish_page_flip(struct drm_device *dev,
  5936. struct drm_crtc *crtc)
  5937. {
  5938. drm_i915_private_t *dev_priv = dev->dev_private;
  5939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5940. struct intel_unpin_work *work;
  5941. struct drm_i915_gem_object *obj;
  5942. struct drm_pending_vblank_event *e;
  5943. struct timeval tnow, tvbl;
  5944. unsigned long flags;
  5945. /* Ignore early vblank irqs */
  5946. if (intel_crtc == NULL)
  5947. return;
  5948. do_gettimeofday(&tnow);
  5949. spin_lock_irqsave(&dev->event_lock, flags);
  5950. work = intel_crtc->unpin_work;
  5951. if (work == NULL || !work->pending) {
  5952. spin_unlock_irqrestore(&dev->event_lock, flags);
  5953. return;
  5954. }
  5955. intel_crtc->unpin_work = NULL;
  5956. if (work->event) {
  5957. e = work->event;
  5958. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5959. /* Called before vblank count and timestamps have
  5960. * been updated for the vblank interval of flip
  5961. * completion? Need to increment vblank count and
  5962. * add one videorefresh duration to returned timestamp
  5963. * to account for this. We assume this happened if we
  5964. * get called over 0.9 frame durations after the last
  5965. * timestamped vblank.
  5966. *
  5967. * This calculation can not be used with vrefresh rates
  5968. * below 5Hz (10Hz to be on the safe side) without
  5969. * promoting to 64 integers.
  5970. */
  5971. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5972. 9 * crtc->framedur_ns) {
  5973. e->event.sequence++;
  5974. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5975. crtc->framedur_ns);
  5976. }
  5977. e->event.tv_sec = tvbl.tv_sec;
  5978. e->event.tv_usec = tvbl.tv_usec;
  5979. list_add_tail(&e->base.link,
  5980. &e->base.file_priv->event_list);
  5981. wake_up_interruptible(&e->base.file_priv->event_wait);
  5982. }
  5983. drm_vblank_put(dev, intel_crtc->pipe);
  5984. spin_unlock_irqrestore(&dev->event_lock, flags);
  5985. obj = work->old_fb_obj;
  5986. atomic_clear_mask(1 << intel_crtc->plane,
  5987. &obj->pending_flip.counter);
  5988. if (atomic_read(&obj->pending_flip) == 0)
  5989. wake_up(&dev_priv->pending_flip_queue);
  5990. schedule_work(&work->work);
  5991. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5992. }
  5993. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5994. {
  5995. drm_i915_private_t *dev_priv = dev->dev_private;
  5996. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5997. do_intel_finish_page_flip(dev, crtc);
  5998. }
  5999. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6000. {
  6001. drm_i915_private_t *dev_priv = dev->dev_private;
  6002. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6003. do_intel_finish_page_flip(dev, crtc);
  6004. }
  6005. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6006. {
  6007. drm_i915_private_t *dev_priv = dev->dev_private;
  6008. struct intel_crtc *intel_crtc =
  6009. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6010. unsigned long flags;
  6011. spin_lock_irqsave(&dev->event_lock, flags);
  6012. if (intel_crtc->unpin_work) {
  6013. if ((++intel_crtc->unpin_work->pending) > 1)
  6014. DRM_ERROR("Prepared flip multiple times\n");
  6015. } else {
  6016. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6017. }
  6018. spin_unlock_irqrestore(&dev->event_lock, flags);
  6019. }
  6020. static int intel_gen2_queue_flip(struct drm_device *dev,
  6021. struct drm_crtc *crtc,
  6022. struct drm_framebuffer *fb,
  6023. struct drm_i915_gem_object *obj)
  6024. {
  6025. struct drm_i915_private *dev_priv = dev->dev_private;
  6026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6027. unsigned long offset;
  6028. u32 flip_mask;
  6029. int ret;
  6030. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6031. if (ret)
  6032. goto out;
  6033. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6034. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  6035. ret = BEGIN_LP_RING(6);
  6036. if (ret)
  6037. goto out;
  6038. /* Can't queue multiple flips, so wait for the previous
  6039. * one to finish before executing the next.
  6040. */
  6041. if (intel_crtc->plane)
  6042. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6043. else
  6044. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6045. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6046. OUT_RING(MI_NOOP);
  6047. OUT_RING(MI_DISPLAY_FLIP |
  6048. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6049. OUT_RING(fb->pitch);
  6050. OUT_RING(obj->gtt_offset + offset);
  6051. OUT_RING(MI_NOOP);
  6052. ADVANCE_LP_RING();
  6053. out:
  6054. return ret;
  6055. }
  6056. static int intel_gen3_queue_flip(struct drm_device *dev,
  6057. struct drm_crtc *crtc,
  6058. struct drm_framebuffer *fb,
  6059. struct drm_i915_gem_object *obj)
  6060. {
  6061. struct drm_i915_private *dev_priv = dev->dev_private;
  6062. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6063. unsigned long offset;
  6064. u32 flip_mask;
  6065. int ret;
  6066. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6067. if (ret)
  6068. goto out;
  6069. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6070. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  6071. ret = BEGIN_LP_RING(6);
  6072. if (ret)
  6073. goto out;
  6074. if (intel_crtc->plane)
  6075. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6076. else
  6077. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6078. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6079. OUT_RING(MI_NOOP);
  6080. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6081. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6082. OUT_RING(fb->pitch);
  6083. OUT_RING(obj->gtt_offset + offset);
  6084. OUT_RING(MI_NOOP);
  6085. ADVANCE_LP_RING();
  6086. out:
  6087. return ret;
  6088. }
  6089. static int intel_gen4_queue_flip(struct drm_device *dev,
  6090. struct drm_crtc *crtc,
  6091. struct drm_framebuffer *fb,
  6092. struct drm_i915_gem_object *obj)
  6093. {
  6094. struct drm_i915_private *dev_priv = dev->dev_private;
  6095. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6096. uint32_t pf, pipesrc;
  6097. int ret;
  6098. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6099. if (ret)
  6100. goto out;
  6101. ret = BEGIN_LP_RING(4);
  6102. if (ret)
  6103. goto out;
  6104. /* i965+ uses the linear or tiled offsets from the
  6105. * Display Registers (which do not change across a page-flip)
  6106. * so we need only reprogram the base address.
  6107. */
  6108. OUT_RING(MI_DISPLAY_FLIP |
  6109. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6110. OUT_RING(fb->pitch);
  6111. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6112. /* XXX Enabling the panel-fitter across page-flip is so far
  6113. * untested on non-native modes, so ignore it for now.
  6114. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6115. */
  6116. pf = 0;
  6117. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6118. OUT_RING(pf | pipesrc);
  6119. ADVANCE_LP_RING();
  6120. out:
  6121. return ret;
  6122. }
  6123. static int intel_gen6_queue_flip(struct drm_device *dev,
  6124. struct drm_crtc *crtc,
  6125. struct drm_framebuffer *fb,
  6126. struct drm_i915_gem_object *obj)
  6127. {
  6128. struct drm_i915_private *dev_priv = dev->dev_private;
  6129. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6130. uint32_t pf, pipesrc;
  6131. int ret;
  6132. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6133. if (ret)
  6134. goto out;
  6135. ret = BEGIN_LP_RING(4);
  6136. if (ret)
  6137. goto out;
  6138. OUT_RING(MI_DISPLAY_FLIP |
  6139. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6140. OUT_RING(fb->pitch | obj->tiling_mode);
  6141. OUT_RING(obj->gtt_offset);
  6142. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6143. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6144. OUT_RING(pf | pipesrc);
  6145. ADVANCE_LP_RING();
  6146. out:
  6147. return ret;
  6148. }
  6149. /*
  6150. * On gen7 we currently use the blit ring because (in early silicon at least)
  6151. * the render ring doesn't give us interrpts for page flip completion, which
  6152. * means clients will hang after the first flip is queued. Fortunately the
  6153. * blit ring generates interrupts properly, so use it instead.
  6154. */
  6155. static int intel_gen7_queue_flip(struct drm_device *dev,
  6156. struct drm_crtc *crtc,
  6157. struct drm_framebuffer *fb,
  6158. struct drm_i915_gem_object *obj)
  6159. {
  6160. struct drm_i915_private *dev_priv = dev->dev_private;
  6161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6162. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6163. int ret;
  6164. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6165. if (ret)
  6166. goto out;
  6167. ret = intel_ring_begin(ring, 4);
  6168. if (ret)
  6169. goto out;
  6170. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6171. intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
  6172. intel_ring_emit(ring, (obj->gtt_offset));
  6173. intel_ring_emit(ring, (MI_NOOP));
  6174. intel_ring_advance(ring);
  6175. out:
  6176. return ret;
  6177. }
  6178. static int intel_default_queue_flip(struct drm_device *dev,
  6179. struct drm_crtc *crtc,
  6180. struct drm_framebuffer *fb,
  6181. struct drm_i915_gem_object *obj)
  6182. {
  6183. return -ENODEV;
  6184. }
  6185. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6186. struct drm_framebuffer *fb,
  6187. struct drm_pending_vblank_event *event)
  6188. {
  6189. struct drm_device *dev = crtc->dev;
  6190. struct drm_i915_private *dev_priv = dev->dev_private;
  6191. struct intel_framebuffer *intel_fb;
  6192. struct drm_i915_gem_object *obj;
  6193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6194. struct intel_unpin_work *work;
  6195. unsigned long flags;
  6196. int ret;
  6197. work = kzalloc(sizeof *work, GFP_KERNEL);
  6198. if (work == NULL)
  6199. return -ENOMEM;
  6200. work->event = event;
  6201. work->dev = crtc->dev;
  6202. intel_fb = to_intel_framebuffer(crtc->fb);
  6203. work->old_fb_obj = intel_fb->obj;
  6204. INIT_WORK(&work->work, intel_unpin_work_fn);
  6205. /* We borrow the event spin lock for protecting unpin_work */
  6206. spin_lock_irqsave(&dev->event_lock, flags);
  6207. if (intel_crtc->unpin_work) {
  6208. spin_unlock_irqrestore(&dev->event_lock, flags);
  6209. kfree(work);
  6210. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6211. return -EBUSY;
  6212. }
  6213. intel_crtc->unpin_work = work;
  6214. spin_unlock_irqrestore(&dev->event_lock, flags);
  6215. intel_fb = to_intel_framebuffer(fb);
  6216. obj = intel_fb->obj;
  6217. mutex_lock(&dev->struct_mutex);
  6218. /* Reference the objects for the scheduled work. */
  6219. drm_gem_object_reference(&work->old_fb_obj->base);
  6220. drm_gem_object_reference(&obj->base);
  6221. crtc->fb = fb;
  6222. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6223. if (ret)
  6224. goto cleanup_objs;
  6225. work->pending_flip_obj = obj;
  6226. work->enable_stall_check = true;
  6227. /* Block clients from rendering to the new back buffer until
  6228. * the flip occurs and the object is no longer visible.
  6229. */
  6230. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6231. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6232. if (ret)
  6233. goto cleanup_pending;
  6234. intel_disable_fbc(dev);
  6235. mutex_unlock(&dev->struct_mutex);
  6236. trace_i915_flip_request(intel_crtc->plane, obj);
  6237. return 0;
  6238. cleanup_pending:
  6239. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6240. cleanup_objs:
  6241. drm_gem_object_unreference(&work->old_fb_obj->base);
  6242. drm_gem_object_unreference(&obj->base);
  6243. mutex_unlock(&dev->struct_mutex);
  6244. spin_lock_irqsave(&dev->event_lock, flags);
  6245. intel_crtc->unpin_work = NULL;
  6246. spin_unlock_irqrestore(&dev->event_lock, flags);
  6247. kfree(work);
  6248. return ret;
  6249. }
  6250. static void intel_sanitize_modesetting(struct drm_device *dev,
  6251. int pipe, int plane)
  6252. {
  6253. struct drm_i915_private *dev_priv = dev->dev_private;
  6254. u32 reg, val;
  6255. if (HAS_PCH_SPLIT(dev))
  6256. return;
  6257. /* Who knows what state these registers were left in by the BIOS or
  6258. * grub?
  6259. *
  6260. * If we leave the registers in a conflicting state (e.g. with the
  6261. * display plane reading from the other pipe than the one we intend
  6262. * to use) then when we attempt to teardown the active mode, we will
  6263. * not disable the pipes and planes in the correct order -- leaving
  6264. * a plane reading from a disabled pipe and possibly leading to
  6265. * undefined behaviour.
  6266. */
  6267. reg = DSPCNTR(plane);
  6268. val = I915_READ(reg);
  6269. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6270. return;
  6271. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6272. return;
  6273. /* This display plane is active and attached to the other CPU pipe. */
  6274. pipe = !pipe;
  6275. /* Disable the plane and wait for it to stop reading from the pipe. */
  6276. intel_disable_plane(dev_priv, plane, pipe);
  6277. intel_disable_pipe(dev_priv, pipe);
  6278. }
  6279. static void intel_crtc_reset(struct drm_crtc *crtc)
  6280. {
  6281. struct drm_device *dev = crtc->dev;
  6282. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6283. /* Reset flags back to the 'unknown' status so that they
  6284. * will be correctly set on the initial modeset.
  6285. */
  6286. intel_crtc->dpms_mode = -1;
  6287. /* We need to fix up any BIOS configuration that conflicts with
  6288. * our expectations.
  6289. */
  6290. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6291. }
  6292. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6293. .dpms = intel_crtc_dpms,
  6294. .mode_fixup = intel_crtc_mode_fixup,
  6295. .mode_set = intel_crtc_mode_set,
  6296. .mode_set_base = intel_pipe_set_base,
  6297. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6298. .load_lut = intel_crtc_load_lut,
  6299. .disable = intel_crtc_disable,
  6300. };
  6301. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6302. .reset = intel_crtc_reset,
  6303. .cursor_set = intel_crtc_cursor_set,
  6304. .cursor_move = intel_crtc_cursor_move,
  6305. .gamma_set = intel_crtc_gamma_set,
  6306. .set_config = drm_crtc_helper_set_config,
  6307. .destroy = intel_crtc_destroy,
  6308. .page_flip = intel_crtc_page_flip,
  6309. };
  6310. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6311. {
  6312. drm_i915_private_t *dev_priv = dev->dev_private;
  6313. struct intel_crtc *intel_crtc;
  6314. int i;
  6315. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6316. if (intel_crtc == NULL)
  6317. return;
  6318. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6319. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6320. for (i = 0; i < 256; i++) {
  6321. intel_crtc->lut_r[i] = i;
  6322. intel_crtc->lut_g[i] = i;
  6323. intel_crtc->lut_b[i] = i;
  6324. }
  6325. /* Swap pipes & planes for FBC on pre-965 */
  6326. intel_crtc->pipe = pipe;
  6327. intel_crtc->plane = pipe;
  6328. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6329. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6330. intel_crtc->plane = !pipe;
  6331. }
  6332. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6333. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6334. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6335. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6336. intel_crtc_reset(&intel_crtc->base);
  6337. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6338. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6339. if (HAS_PCH_SPLIT(dev)) {
  6340. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6341. intel_crtc->no_pll = true;
  6342. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6343. intel_helper_funcs.commit = ironlake_crtc_commit;
  6344. } else {
  6345. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6346. intel_helper_funcs.commit = i9xx_crtc_commit;
  6347. }
  6348. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6349. intel_crtc->busy = false;
  6350. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6351. (unsigned long)intel_crtc);
  6352. }
  6353. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6354. struct drm_file *file)
  6355. {
  6356. drm_i915_private_t *dev_priv = dev->dev_private;
  6357. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6358. struct drm_mode_object *drmmode_obj;
  6359. struct intel_crtc *crtc;
  6360. if (!dev_priv) {
  6361. DRM_ERROR("called with no initialization\n");
  6362. return -EINVAL;
  6363. }
  6364. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6365. DRM_MODE_OBJECT_CRTC);
  6366. if (!drmmode_obj) {
  6367. DRM_ERROR("no such CRTC id\n");
  6368. return -EINVAL;
  6369. }
  6370. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6371. pipe_from_crtc_id->pipe = crtc->pipe;
  6372. return 0;
  6373. }
  6374. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6375. {
  6376. struct intel_encoder *encoder;
  6377. int index_mask = 0;
  6378. int entry = 0;
  6379. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6380. if (type_mask & encoder->clone_mask)
  6381. index_mask |= (1 << entry);
  6382. entry++;
  6383. }
  6384. return index_mask;
  6385. }
  6386. static bool has_edp_a(struct drm_device *dev)
  6387. {
  6388. struct drm_i915_private *dev_priv = dev->dev_private;
  6389. if (!IS_MOBILE(dev))
  6390. return false;
  6391. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6392. return false;
  6393. if (IS_GEN5(dev) &&
  6394. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6395. return false;
  6396. return true;
  6397. }
  6398. static void intel_setup_outputs(struct drm_device *dev)
  6399. {
  6400. struct drm_i915_private *dev_priv = dev->dev_private;
  6401. struct intel_encoder *encoder;
  6402. bool dpd_is_edp = false;
  6403. bool has_lvds = false;
  6404. if (IS_MOBILE(dev) && !IS_I830(dev))
  6405. has_lvds = intel_lvds_init(dev);
  6406. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6407. /* disable the panel fitter on everything but LVDS */
  6408. I915_WRITE(PFIT_CONTROL, 0);
  6409. }
  6410. if (HAS_PCH_SPLIT(dev)) {
  6411. dpd_is_edp = intel_dpd_is_edp(dev);
  6412. if (has_edp_a(dev))
  6413. intel_dp_init(dev, DP_A);
  6414. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6415. intel_dp_init(dev, PCH_DP_D);
  6416. }
  6417. intel_crt_init(dev);
  6418. if (HAS_PCH_SPLIT(dev)) {
  6419. int found;
  6420. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6421. /* PCH SDVOB multiplex with HDMIB */
  6422. found = intel_sdvo_init(dev, PCH_SDVOB);
  6423. if (!found)
  6424. intel_hdmi_init(dev, HDMIB);
  6425. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6426. intel_dp_init(dev, PCH_DP_B);
  6427. }
  6428. if (I915_READ(HDMIC) & PORT_DETECTED)
  6429. intel_hdmi_init(dev, HDMIC);
  6430. if (I915_READ(HDMID) & PORT_DETECTED)
  6431. intel_hdmi_init(dev, HDMID);
  6432. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6433. intel_dp_init(dev, PCH_DP_C);
  6434. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6435. intel_dp_init(dev, PCH_DP_D);
  6436. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6437. bool found = false;
  6438. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6439. DRM_DEBUG_KMS("probing SDVOB\n");
  6440. found = intel_sdvo_init(dev, SDVOB);
  6441. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6442. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6443. intel_hdmi_init(dev, SDVOB);
  6444. }
  6445. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6446. DRM_DEBUG_KMS("probing DP_B\n");
  6447. intel_dp_init(dev, DP_B);
  6448. }
  6449. }
  6450. /* Before G4X SDVOC doesn't have its own detect register */
  6451. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6452. DRM_DEBUG_KMS("probing SDVOC\n");
  6453. found = intel_sdvo_init(dev, SDVOC);
  6454. }
  6455. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6456. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6457. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6458. intel_hdmi_init(dev, SDVOC);
  6459. }
  6460. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6461. DRM_DEBUG_KMS("probing DP_C\n");
  6462. intel_dp_init(dev, DP_C);
  6463. }
  6464. }
  6465. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6466. (I915_READ(DP_D) & DP_DETECTED)) {
  6467. DRM_DEBUG_KMS("probing DP_D\n");
  6468. intel_dp_init(dev, DP_D);
  6469. }
  6470. } else if (IS_GEN2(dev))
  6471. intel_dvo_init(dev);
  6472. if (SUPPORTS_TV(dev))
  6473. intel_tv_init(dev);
  6474. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6475. encoder->base.possible_crtcs = encoder->crtc_mask;
  6476. encoder->base.possible_clones =
  6477. intel_encoder_clones(dev, encoder->clone_mask);
  6478. }
  6479. /* disable all the possible outputs/crtcs before entering KMS mode */
  6480. drm_helper_disable_unused_functions(dev);
  6481. if (HAS_PCH_SPLIT(dev))
  6482. ironlake_init_pch_refclk(dev);
  6483. }
  6484. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6485. {
  6486. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6487. drm_framebuffer_cleanup(fb);
  6488. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6489. kfree(intel_fb);
  6490. }
  6491. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6492. struct drm_file *file,
  6493. unsigned int *handle)
  6494. {
  6495. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6496. struct drm_i915_gem_object *obj = intel_fb->obj;
  6497. return drm_gem_handle_create(file, &obj->base, handle);
  6498. }
  6499. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6500. .destroy = intel_user_framebuffer_destroy,
  6501. .create_handle = intel_user_framebuffer_create_handle,
  6502. };
  6503. int intel_framebuffer_init(struct drm_device *dev,
  6504. struct intel_framebuffer *intel_fb,
  6505. struct drm_mode_fb_cmd *mode_cmd,
  6506. struct drm_i915_gem_object *obj)
  6507. {
  6508. int ret;
  6509. if (obj->tiling_mode == I915_TILING_Y)
  6510. return -EINVAL;
  6511. if (mode_cmd->pitch & 63)
  6512. return -EINVAL;
  6513. switch (mode_cmd->bpp) {
  6514. case 8:
  6515. case 16:
  6516. /* Only pre-ILK can handle 5:5:5 */
  6517. if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
  6518. return -EINVAL;
  6519. break;
  6520. case 24:
  6521. case 32:
  6522. break;
  6523. default:
  6524. return -EINVAL;
  6525. }
  6526. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6527. if (ret) {
  6528. DRM_ERROR("framebuffer init failed %d\n", ret);
  6529. return ret;
  6530. }
  6531. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6532. intel_fb->obj = obj;
  6533. return 0;
  6534. }
  6535. static struct drm_framebuffer *
  6536. intel_user_framebuffer_create(struct drm_device *dev,
  6537. struct drm_file *filp,
  6538. struct drm_mode_fb_cmd *mode_cmd)
  6539. {
  6540. struct drm_i915_gem_object *obj;
  6541. obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
  6542. if (&obj->base == NULL)
  6543. return ERR_PTR(-ENOENT);
  6544. return intel_framebuffer_create(dev, mode_cmd, obj);
  6545. }
  6546. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6547. .fb_create = intel_user_framebuffer_create,
  6548. .output_poll_changed = intel_fb_output_poll_changed,
  6549. };
  6550. static struct drm_i915_gem_object *
  6551. intel_alloc_context_page(struct drm_device *dev)
  6552. {
  6553. struct drm_i915_gem_object *ctx;
  6554. int ret;
  6555. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6556. ctx = i915_gem_alloc_object(dev, 4096);
  6557. if (!ctx) {
  6558. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6559. return NULL;
  6560. }
  6561. ret = i915_gem_object_pin(ctx, 4096, true);
  6562. if (ret) {
  6563. DRM_ERROR("failed to pin power context: %d\n", ret);
  6564. goto err_unref;
  6565. }
  6566. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6567. if (ret) {
  6568. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6569. goto err_unpin;
  6570. }
  6571. return ctx;
  6572. err_unpin:
  6573. i915_gem_object_unpin(ctx);
  6574. err_unref:
  6575. drm_gem_object_unreference(&ctx->base);
  6576. mutex_unlock(&dev->struct_mutex);
  6577. return NULL;
  6578. }
  6579. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6580. {
  6581. struct drm_i915_private *dev_priv = dev->dev_private;
  6582. u16 rgvswctl;
  6583. rgvswctl = I915_READ16(MEMSWCTL);
  6584. if (rgvswctl & MEMCTL_CMD_STS) {
  6585. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6586. return false; /* still busy with another command */
  6587. }
  6588. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6589. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6590. I915_WRITE16(MEMSWCTL, rgvswctl);
  6591. POSTING_READ16(MEMSWCTL);
  6592. rgvswctl |= MEMCTL_CMD_STS;
  6593. I915_WRITE16(MEMSWCTL, rgvswctl);
  6594. return true;
  6595. }
  6596. void ironlake_enable_drps(struct drm_device *dev)
  6597. {
  6598. struct drm_i915_private *dev_priv = dev->dev_private;
  6599. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6600. u8 fmax, fmin, fstart, vstart;
  6601. /* Enable temp reporting */
  6602. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6603. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6604. /* 100ms RC evaluation intervals */
  6605. I915_WRITE(RCUPEI, 100000);
  6606. I915_WRITE(RCDNEI, 100000);
  6607. /* Set max/min thresholds to 90ms and 80ms respectively */
  6608. I915_WRITE(RCBMAXAVG, 90000);
  6609. I915_WRITE(RCBMINAVG, 80000);
  6610. I915_WRITE(MEMIHYST, 1);
  6611. /* Set up min, max, and cur for interrupt handling */
  6612. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6613. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6614. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6615. MEMMODE_FSTART_SHIFT;
  6616. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6617. PXVFREQ_PX_SHIFT;
  6618. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6619. dev_priv->fstart = fstart;
  6620. dev_priv->max_delay = fstart;
  6621. dev_priv->min_delay = fmin;
  6622. dev_priv->cur_delay = fstart;
  6623. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6624. fmax, fmin, fstart);
  6625. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6626. /*
  6627. * Interrupts will be enabled in ironlake_irq_postinstall
  6628. */
  6629. I915_WRITE(VIDSTART, vstart);
  6630. POSTING_READ(VIDSTART);
  6631. rgvmodectl |= MEMMODE_SWMODE_EN;
  6632. I915_WRITE(MEMMODECTL, rgvmodectl);
  6633. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6634. DRM_ERROR("stuck trying to change perf mode\n");
  6635. msleep(1);
  6636. ironlake_set_drps(dev, fstart);
  6637. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6638. I915_READ(0x112e0);
  6639. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6640. dev_priv->last_count2 = I915_READ(0x112f4);
  6641. getrawmonotonic(&dev_priv->last_time2);
  6642. }
  6643. void ironlake_disable_drps(struct drm_device *dev)
  6644. {
  6645. struct drm_i915_private *dev_priv = dev->dev_private;
  6646. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6647. /* Ack interrupts, disable EFC interrupt */
  6648. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6649. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6650. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6651. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6652. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6653. /* Go back to the starting frequency */
  6654. ironlake_set_drps(dev, dev_priv->fstart);
  6655. msleep(1);
  6656. rgvswctl |= MEMCTL_CMD_STS;
  6657. I915_WRITE(MEMSWCTL, rgvswctl);
  6658. msleep(1);
  6659. }
  6660. void gen6_set_rps(struct drm_device *dev, u8 val)
  6661. {
  6662. struct drm_i915_private *dev_priv = dev->dev_private;
  6663. u32 swreq;
  6664. swreq = (val & 0x3ff) << 25;
  6665. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6666. }
  6667. void gen6_disable_rps(struct drm_device *dev)
  6668. {
  6669. struct drm_i915_private *dev_priv = dev->dev_private;
  6670. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6671. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6672. I915_WRITE(GEN6_PMIER, 0);
  6673. /* Complete PM interrupt masking here doesn't race with the rps work
  6674. * item again unmasking PM interrupts because that is using a different
  6675. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6676. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6677. spin_lock_irq(&dev_priv->rps_lock);
  6678. dev_priv->pm_iir = 0;
  6679. spin_unlock_irq(&dev_priv->rps_lock);
  6680. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6681. }
  6682. static unsigned long intel_pxfreq(u32 vidfreq)
  6683. {
  6684. unsigned long freq;
  6685. int div = (vidfreq & 0x3f0000) >> 16;
  6686. int post = (vidfreq & 0x3000) >> 12;
  6687. int pre = (vidfreq & 0x7);
  6688. if (!pre)
  6689. return 0;
  6690. freq = ((div * 133333) / ((1<<post) * pre));
  6691. return freq;
  6692. }
  6693. void intel_init_emon(struct drm_device *dev)
  6694. {
  6695. struct drm_i915_private *dev_priv = dev->dev_private;
  6696. u32 lcfuse;
  6697. u8 pxw[16];
  6698. int i;
  6699. /* Disable to program */
  6700. I915_WRITE(ECR, 0);
  6701. POSTING_READ(ECR);
  6702. /* Program energy weights for various events */
  6703. I915_WRITE(SDEW, 0x15040d00);
  6704. I915_WRITE(CSIEW0, 0x007f0000);
  6705. I915_WRITE(CSIEW1, 0x1e220004);
  6706. I915_WRITE(CSIEW2, 0x04000004);
  6707. for (i = 0; i < 5; i++)
  6708. I915_WRITE(PEW + (i * 4), 0);
  6709. for (i = 0; i < 3; i++)
  6710. I915_WRITE(DEW + (i * 4), 0);
  6711. /* Program P-state weights to account for frequency power adjustment */
  6712. for (i = 0; i < 16; i++) {
  6713. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  6714. unsigned long freq = intel_pxfreq(pxvidfreq);
  6715. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6716. PXVFREQ_PX_SHIFT;
  6717. unsigned long val;
  6718. val = vid * vid;
  6719. val *= (freq / 1000);
  6720. val *= 255;
  6721. val /= (127*127*900);
  6722. if (val > 0xff)
  6723. DRM_ERROR("bad pxval: %ld\n", val);
  6724. pxw[i] = val;
  6725. }
  6726. /* Render standby states get 0 weight */
  6727. pxw[14] = 0;
  6728. pxw[15] = 0;
  6729. for (i = 0; i < 4; i++) {
  6730. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6731. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6732. I915_WRITE(PXW + (i * 4), val);
  6733. }
  6734. /* Adjust magic regs to magic values (more experimental results) */
  6735. I915_WRITE(OGW0, 0);
  6736. I915_WRITE(OGW1, 0);
  6737. I915_WRITE(EG0, 0x00007f00);
  6738. I915_WRITE(EG1, 0x0000000e);
  6739. I915_WRITE(EG2, 0x000e0000);
  6740. I915_WRITE(EG3, 0x68000300);
  6741. I915_WRITE(EG4, 0x42000000);
  6742. I915_WRITE(EG5, 0x00140031);
  6743. I915_WRITE(EG6, 0);
  6744. I915_WRITE(EG7, 0);
  6745. for (i = 0; i < 8; i++)
  6746. I915_WRITE(PXWL + (i * 4), 0);
  6747. /* Enable PMON + select events */
  6748. I915_WRITE(ECR, 0x80000019);
  6749. lcfuse = I915_READ(LCFUSE02);
  6750. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  6751. }
  6752. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  6753. {
  6754. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  6755. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  6756. u32 pcu_mbox, rc6_mask = 0;
  6757. int cur_freq, min_freq, max_freq;
  6758. int i;
  6759. /* Here begins a magic sequence of register writes to enable
  6760. * auto-downclocking.
  6761. *
  6762. * Perhaps there might be some value in exposing these to
  6763. * userspace...
  6764. */
  6765. I915_WRITE(GEN6_RC_STATE, 0);
  6766. mutex_lock(&dev_priv->dev->struct_mutex);
  6767. gen6_gt_force_wake_get(dev_priv);
  6768. /* disable the counters and set deterministic thresholds */
  6769. I915_WRITE(GEN6_RC_CONTROL, 0);
  6770. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  6771. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  6772. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  6773. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  6774. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  6775. for (i = 0; i < I915_NUM_RINGS; i++)
  6776. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  6777. I915_WRITE(GEN6_RC_SLEEP, 0);
  6778. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  6779. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  6780. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  6781. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  6782. if (i915_enable_rc6)
  6783. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  6784. GEN6_RC_CTL_RC6_ENABLE;
  6785. I915_WRITE(GEN6_RC_CONTROL,
  6786. rc6_mask |
  6787. GEN6_RC_CTL_EI_MODE(1) |
  6788. GEN6_RC_CTL_HW_ENABLE);
  6789. I915_WRITE(GEN6_RPNSWREQ,
  6790. GEN6_FREQUENCY(10) |
  6791. GEN6_OFFSET(0) |
  6792. GEN6_AGGRESSIVE_TURBO);
  6793. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  6794. GEN6_FREQUENCY(12));
  6795. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  6796. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  6797. 18 << 24 |
  6798. 6 << 16);
  6799. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  6800. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  6801. I915_WRITE(GEN6_RP_UP_EI, 100000);
  6802. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  6803. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  6804. I915_WRITE(GEN6_RP_CONTROL,
  6805. GEN6_RP_MEDIA_TURBO |
  6806. GEN6_RP_USE_NORMAL_FREQ |
  6807. GEN6_RP_MEDIA_IS_GFX |
  6808. GEN6_RP_ENABLE |
  6809. GEN6_RP_UP_BUSY_AVG |
  6810. GEN6_RP_DOWN_IDLE_CONT);
  6811. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6812. 500))
  6813. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6814. I915_WRITE(GEN6_PCODE_DATA, 0);
  6815. I915_WRITE(GEN6_PCODE_MAILBOX,
  6816. GEN6_PCODE_READY |
  6817. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6818. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6819. 500))
  6820. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6821. min_freq = (rp_state_cap & 0xff0000) >> 16;
  6822. max_freq = rp_state_cap & 0xff;
  6823. cur_freq = (gt_perf_status & 0xff00) >> 8;
  6824. /* Check for overclock support */
  6825. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6826. 500))
  6827. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6828. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  6829. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  6830. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6831. 500))
  6832. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6833. if (pcu_mbox & (1<<31)) { /* OC supported */
  6834. max_freq = pcu_mbox & 0xff;
  6835. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  6836. }
  6837. /* In units of 100MHz */
  6838. dev_priv->max_delay = max_freq;
  6839. dev_priv->min_delay = min_freq;
  6840. dev_priv->cur_delay = cur_freq;
  6841. /* requires MSI enabled */
  6842. I915_WRITE(GEN6_PMIER,
  6843. GEN6_PM_MBOX_EVENT |
  6844. GEN6_PM_THERMAL_EVENT |
  6845. GEN6_PM_RP_DOWN_TIMEOUT |
  6846. GEN6_PM_RP_UP_THRESHOLD |
  6847. GEN6_PM_RP_DOWN_THRESHOLD |
  6848. GEN6_PM_RP_UP_EI_EXPIRED |
  6849. GEN6_PM_RP_DOWN_EI_EXPIRED);
  6850. spin_lock_irq(&dev_priv->rps_lock);
  6851. WARN_ON(dev_priv->pm_iir != 0);
  6852. I915_WRITE(GEN6_PMIMR, 0);
  6853. spin_unlock_irq(&dev_priv->rps_lock);
  6854. /* enable all PM interrupts */
  6855. I915_WRITE(GEN6_PMINTRMSK, 0);
  6856. gen6_gt_force_wake_put(dev_priv);
  6857. mutex_unlock(&dev_priv->dev->struct_mutex);
  6858. }
  6859. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  6860. {
  6861. int min_freq = 15;
  6862. int gpu_freq, ia_freq, max_ia_freq;
  6863. int scaling_factor = 180;
  6864. max_ia_freq = cpufreq_quick_get_max(0);
  6865. /*
  6866. * Default to measured freq if none found, PCU will ensure we don't go
  6867. * over
  6868. */
  6869. if (!max_ia_freq)
  6870. max_ia_freq = tsc_khz;
  6871. /* Convert from kHz to MHz */
  6872. max_ia_freq /= 1000;
  6873. mutex_lock(&dev_priv->dev->struct_mutex);
  6874. /*
  6875. * For each potential GPU frequency, load a ring frequency we'd like
  6876. * to use for memory access. We do this by specifying the IA frequency
  6877. * the PCU should use as a reference to determine the ring frequency.
  6878. */
  6879. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  6880. gpu_freq--) {
  6881. int diff = dev_priv->max_delay - gpu_freq;
  6882. /*
  6883. * For GPU frequencies less than 750MHz, just use the lowest
  6884. * ring freq.
  6885. */
  6886. if (gpu_freq < min_freq)
  6887. ia_freq = 800;
  6888. else
  6889. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  6890. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  6891. I915_WRITE(GEN6_PCODE_DATA,
  6892. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  6893. gpu_freq);
  6894. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  6895. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6896. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  6897. GEN6_PCODE_READY) == 0, 10)) {
  6898. DRM_ERROR("pcode write of freq table timed out\n");
  6899. continue;
  6900. }
  6901. }
  6902. mutex_unlock(&dev_priv->dev->struct_mutex);
  6903. }
  6904. static void ironlake_init_clock_gating(struct drm_device *dev)
  6905. {
  6906. struct drm_i915_private *dev_priv = dev->dev_private;
  6907. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6908. /* Required for FBC */
  6909. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  6910. DPFCRUNIT_CLOCK_GATE_DISABLE |
  6911. DPFDUNIT_CLOCK_GATE_DISABLE;
  6912. /* Required for CxSR */
  6913. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  6914. I915_WRITE(PCH_3DCGDIS0,
  6915. MARIUNIT_CLOCK_GATE_DISABLE |
  6916. SVSMUNIT_CLOCK_GATE_DISABLE);
  6917. I915_WRITE(PCH_3DCGDIS1,
  6918. VFMUNIT_CLOCK_GATE_DISABLE);
  6919. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6920. /*
  6921. * According to the spec the following bits should be set in
  6922. * order to enable memory self-refresh
  6923. * The bit 22/21 of 0x42004
  6924. * The bit 5 of 0x42020
  6925. * The bit 15 of 0x45000
  6926. */
  6927. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6928. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6929. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6930. I915_WRITE(ILK_DSPCLK_GATE,
  6931. (I915_READ(ILK_DSPCLK_GATE) |
  6932. ILK_DPARB_CLK_GATE));
  6933. I915_WRITE(DISP_ARB_CTL,
  6934. (I915_READ(DISP_ARB_CTL) |
  6935. DISP_FBC_WM_DIS));
  6936. I915_WRITE(WM3_LP_ILK, 0);
  6937. I915_WRITE(WM2_LP_ILK, 0);
  6938. I915_WRITE(WM1_LP_ILK, 0);
  6939. /*
  6940. * Based on the document from hardware guys the following bits
  6941. * should be set unconditionally in order to enable FBC.
  6942. * The bit 22 of 0x42000
  6943. * The bit 22 of 0x42004
  6944. * The bit 7,8,9 of 0x42020.
  6945. */
  6946. if (IS_IRONLAKE_M(dev)) {
  6947. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6948. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6949. ILK_FBCQ_DIS);
  6950. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6951. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6952. ILK_DPARB_GATE);
  6953. I915_WRITE(ILK_DSPCLK_GATE,
  6954. I915_READ(ILK_DSPCLK_GATE) |
  6955. ILK_DPFC_DIS1 |
  6956. ILK_DPFC_DIS2 |
  6957. ILK_CLK_FBC);
  6958. }
  6959. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6960. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6961. ILK_ELPIN_409_SELECT);
  6962. I915_WRITE(_3D_CHICKEN2,
  6963. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6964. _3D_CHICKEN2_WM_READ_PIPELINED);
  6965. }
  6966. static void gen6_init_clock_gating(struct drm_device *dev)
  6967. {
  6968. struct drm_i915_private *dev_priv = dev->dev_private;
  6969. int pipe;
  6970. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6971. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6972. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6973. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6974. ILK_ELPIN_409_SELECT);
  6975. I915_WRITE(WM3_LP_ILK, 0);
  6976. I915_WRITE(WM2_LP_ILK, 0);
  6977. I915_WRITE(WM1_LP_ILK, 0);
  6978. /*
  6979. * According to the spec the following bits should be
  6980. * set in order to enable memory self-refresh and fbc:
  6981. * The bit21 and bit22 of 0x42000
  6982. * The bit21 and bit22 of 0x42004
  6983. * The bit5 and bit7 of 0x42020
  6984. * The bit14 of 0x70180
  6985. * The bit14 of 0x71180
  6986. */
  6987. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6988. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6989. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6990. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6991. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6992. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6993. I915_WRITE(ILK_DSPCLK_GATE,
  6994. I915_READ(ILK_DSPCLK_GATE) |
  6995. ILK_DPARB_CLK_GATE |
  6996. ILK_DPFD_CLK_GATE);
  6997. for_each_pipe(pipe) {
  6998. I915_WRITE(DSPCNTR(pipe),
  6999. I915_READ(DSPCNTR(pipe)) |
  7000. DISPPLANE_TRICKLE_FEED_DISABLE);
  7001. intel_flush_display_plane(dev_priv, pipe);
  7002. }
  7003. }
  7004. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7005. {
  7006. struct drm_i915_private *dev_priv = dev->dev_private;
  7007. int pipe;
  7008. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7009. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7010. I915_WRITE(WM3_LP_ILK, 0);
  7011. I915_WRITE(WM2_LP_ILK, 0);
  7012. I915_WRITE(WM1_LP_ILK, 0);
  7013. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7014. for_each_pipe(pipe) {
  7015. I915_WRITE(DSPCNTR(pipe),
  7016. I915_READ(DSPCNTR(pipe)) |
  7017. DISPPLANE_TRICKLE_FEED_DISABLE);
  7018. intel_flush_display_plane(dev_priv, pipe);
  7019. }
  7020. }
  7021. static void g4x_init_clock_gating(struct drm_device *dev)
  7022. {
  7023. struct drm_i915_private *dev_priv = dev->dev_private;
  7024. uint32_t dspclk_gate;
  7025. I915_WRITE(RENCLK_GATE_D1, 0);
  7026. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7027. GS_UNIT_CLOCK_GATE_DISABLE |
  7028. CL_UNIT_CLOCK_GATE_DISABLE);
  7029. I915_WRITE(RAMCLK_GATE_D, 0);
  7030. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7031. OVRUNIT_CLOCK_GATE_DISABLE |
  7032. OVCUNIT_CLOCK_GATE_DISABLE;
  7033. if (IS_GM45(dev))
  7034. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7035. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7036. }
  7037. static void crestline_init_clock_gating(struct drm_device *dev)
  7038. {
  7039. struct drm_i915_private *dev_priv = dev->dev_private;
  7040. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7041. I915_WRITE(RENCLK_GATE_D2, 0);
  7042. I915_WRITE(DSPCLK_GATE_D, 0);
  7043. I915_WRITE(RAMCLK_GATE_D, 0);
  7044. I915_WRITE16(DEUC, 0);
  7045. }
  7046. static void broadwater_init_clock_gating(struct drm_device *dev)
  7047. {
  7048. struct drm_i915_private *dev_priv = dev->dev_private;
  7049. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7050. I965_RCC_CLOCK_GATE_DISABLE |
  7051. I965_RCPB_CLOCK_GATE_DISABLE |
  7052. I965_ISC_CLOCK_GATE_DISABLE |
  7053. I965_FBC_CLOCK_GATE_DISABLE);
  7054. I915_WRITE(RENCLK_GATE_D2, 0);
  7055. }
  7056. static void gen3_init_clock_gating(struct drm_device *dev)
  7057. {
  7058. struct drm_i915_private *dev_priv = dev->dev_private;
  7059. u32 dstate = I915_READ(D_STATE);
  7060. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7061. DSTATE_DOT_CLOCK_GATING;
  7062. I915_WRITE(D_STATE, dstate);
  7063. }
  7064. static void i85x_init_clock_gating(struct drm_device *dev)
  7065. {
  7066. struct drm_i915_private *dev_priv = dev->dev_private;
  7067. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7068. }
  7069. static void i830_init_clock_gating(struct drm_device *dev)
  7070. {
  7071. struct drm_i915_private *dev_priv = dev->dev_private;
  7072. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7073. }
  7074. static void ibx_init_clock_gating(struct drm_device *dev)
  7075. {
  7076. struct drm_i915_private *dev_priv = dev->dev_private;
  7077. /*
  7078. * On Ibex Peak and Cougar Point, we need to disable clock
  7079. * gating for the panel power sequencer or it will fail to
  7080. * start up when no ports are active.
  7081. */
  7082. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7083. }
  7084. static void cpt_init_clock_gating(struct drm_device *dev)
  7085. {
  7086. struct drm_i915_private *dev_priv = dev->dev_private;
  7087. int pipe;
  7088. /*
  7089. * On Ibex Peak and Cougar Point, we need to disable clock
  7090. * gating for the panel power sequencer or it will fail to
  7091. * start up when no ports are active.
  7092. */
  7093. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7094. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7095. DPLS_EDP_PPS_FIX_DIS);
  7096. /* Without this, mode sets may fail silently on FDI */
  7097. for_each_pipe(pipe)
  7098. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7099. }
  7100. static void ironlake_teardown_rc6(struct drm_device *dev)
  7101. {
  7102. struct drm_i915_private *dev_priv = dev->dev_private;
  7103. if (dev_priv->renderctx) {
  7104. i915_gem_object_unpin(dev_priv->renderctx);
  7105. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7106. dev_priv->renderctx = NULL;
  7107. }
  7108. if (dev_priv->pwrctx) {
  7109. i915_gem_object_unpin(dev_priv->pwrctx);
  7110. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7111. dev_priv->pwrctx = NULL;
  7112. }
  7113. }
  7114. static void ironlake_disable_rc6(struct drm_device *dev)
  7115. {
  7116. struct drm_i915_private *dev_priv = dev->dev_private;
  7117. if (I915_READ(PWRCTXA)) {
  7118. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7119. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7120. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7121. 50);
  7122. I915_WRITE(PWRCTXA, 0);
  7123. POSTING_READ(PWRCTXA);
  7124. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7125. POSTING_READ(RSTDBYCTL);
  7126. }
  7127. ironlake_teardown_rc6(dev);
  7128. }
  7129. static int ironlake_setup_rc6(struct drm_device *dev)
  7130. {
  7131. struct drm_i915_private *dev_priv = dev->dev_private;
  7132. if (dev_priv->renderctx == NULL)
  7133. dev_priv->renderctx = intel_alloc_context_page(dev);
  7134. if (!dev_priv->renderctx)
  7135. return -ENOMEM;
  7136. if (dev_priv->pwrctx == NULL)
  7137. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7138. if (!dev_priv->pwrctx) {
  7139. ironlake_teardown_rc6(dev);
  7140. return -ENOMEM;
  7141. }
  7142. return 0;
  7143. }
  7144. void ironlake_enable_rc6(struct drm_device *dev)
  7145. {
  7146. struct drm_i915_private *dev_priv = dev->dev_private;
  7147. int ret;
  7148. /* rc6 disabled by default due to repeated reports of hanging during
  7149. * boot and resume.
  7150. */
  7151. if (!i915_enable_rc6)
  7152. return;
  7153. mutex_lock(&dev->struct_mutex);
  7154. ret = ironlake_setup_rc6(dev);
  7155. if (ret) {
  7156. mutex_unlock(&dev->struct_mutex);
  7157. return;
  7158. }
  7159. /*
  7160. * GPU can automatically power down the render unit if given a page
  7161. * to save state.
  7162. */
  7163. ret = BEGIN_LP_RING(6);
  7164. if (ret) {
  7165. ironlake_teardown_rc6(dev);
  7166. mutex_unlock(&dev->struct_mutex);
  7167. return;
  7168. }
  7169. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7170. OUT_RING(MI_SET_CONTEXT);
  7171. OUT_RING(dev_priv->renderctx->gtt_offset |
  7172. MI_MM_SPACE_GTT |
  7173. MI_SAVE_EXT_STATE_EN |
  7174. MI_RESTORE_EXT_STATE_EN |
  7175. MI_RESTORE_INHIBIT);
  7176. OUT_RING(MI_SUSPEND_FLUSH);
  7177. OUT_RING(MI_NOOP);
  7178. OUT_RING(MI_FLUSH);
  7179. ADVANCE_LP_RING();
  7180. /*
  7181. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7182. * does an implicit flush, combined with MI_FLUSH above, it should be
  7183. * safe to assume that renderctx is valid
  7184. */
  7185. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7186. if (ret) {
  7187. DRM_ERROR("failed to enable ironlake power power savings\n");
  7188. ironlake_teardown_rc6(dev);
  7189. mutex_unlock(&dev->struct_mutex);
  7190. return;
  7191. }
  7192. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7193. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7194. mutex_unlock(&dev->struct_mutex);
  7195. }
  7196. void intel_init_clock_gating(struct drm_device *dev)
  7197. {
  7198. struct drm_i915_private *dev_priv = dev->dev_private;
  7199. dev_priv->display.init_clock_gating(dev);
  7200. if (dev_priv->display.init_pch_clock_gating)
  7201. dev_priv->display.init_pch_clock_gating(dev);
  7202. }
  7203. /* Set up chip specific display functions */
  7204. static void intel_init_display(struct drm_device *dev)
  7205. {
  7206. struct drm_i915_private *dev_priv = dev->dev_private;
  7207. /* We always want a DPMS function */
  7208. if (HAS_PCH_SPLIT(dev)) {
  7209. dev_priv->display.dpms = ironlake_crtc_dpms;
  7210. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7211. dev_priv->display.update_plane = ironlake_update_plane;
  7212. } else {
  7213. dev_priv->display.dpms = i9xx_crtc_dpms;
  7214. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7215. dev_priv->display.update_plane = i9xx_update_plane;
  7216. }
  7217. if (I915_HAS_FBC(dev)) {
  7218. if (HAS_PCH_SPLIT(dev)) {
  7219. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7220. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7221. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7222. } else if (IS_GM45(dev)) {
  7223. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7224. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7225. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7226. } else if (IS_CRESTLINE(dev)) {
  7227. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7228. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7229. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7230. }
  7231. /* 855GM needs testing */
  7232. }
  7233. /* Returns the core display clock speed */
  7234. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7235. dev_priv->display.get_display_clock_speed =
  7236. i945_get_display_clock_speed;
  7237. else if (IS_I915G(dev))
  7238. dev_priv->display.get_display_clock_speed =
  7239. i915_get_display_clock_speed;
  7240. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7241. dev_priv->display.get_display_clock_speed =
  7242. i9xx_misc_get_display_clock_speed;
  7243. else if (IS_I915GM(dev))
  7244. dev_priv->display.get_display_clock_speed =
  7245. i915gm_get_display_clock_speed;
  7246. else if (IS_I865G(dev))
  7247. dev_priv->display.get_display_clock_speed =
  7248. i865_get_display_clock_speed;
  7249. else if (IS_I85X(dev))
  7250. dev_priv->display.get_display_clock_speed =
  7251. i855_get_display_clock_speed;
  7252. else /* 852, 830 */
  7253. dev_priv->display.get_display_clock_speed =
  7254. i830_get_display_clock_speed;
  7255. /* For FIFO watermark updates */
  7256. if (HAS_PCH_SPLIT(dev)) {
  7257. if (HAS_PCH_IBX(dev))
  7258. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7259. else if (HAS_PCH_CPT(dev))
  7260. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7261. if (IS_GEN5(dev)) {
  7262. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7263. dev_priv->display.update_wm = ironlake_update_wm;
  7264. else {
  7265. DRM_DEBUG_KMS("Failed to get proper latency. "
  7266. "Disable CxSR\n");
  7267. dev_priv->display.update_wm = NULL;
  7268. }
  7269. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7270. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7271. dev_priv->display.write_eld = ironlake_write_eld;
  7272. } else if (IS_GEN6(dev)) {
  7273. if (SNB_READ_WM0_LATENCY()) {
  7274. dev_priv->display.update_wm = sandybridge_update_wm;
  7275. } else {
  7276. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7277. "Disable CxSR\n");
  7278. dev_priv->display.update_wm = NULL;
  7279. }
  7280. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7281. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7282. dev_priv->display.write_eld = ironlake_write_eld;
  7283. } else if (IS_IVYBRIDGE(dev)) {
  7284. /* FIXME: detect B0+ stepping and use auto training */
  7285. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7286. if (SNB_READ_WM0_LATENCY()) {
  7287. dev_priv->display.update_wm = sandybridge_update_wm;
  7288. } else {
  7289. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7290. "Disable CxSR\n");
  7291. dev_priv->display.update_wm = NULL;
  7292. }
  7293. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7294. dev_priv->display.write_eld = ironlake_write_eld;
  7295. } else
  7296. dev_priv->display.update_wm = NULL;
  7297. } else if (IS_PINEVIEW(dev)) {
  7298. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7299. dev_priv->is_ddr3,
  7300. dev_priv->fsb_freq,
  7301. dev_priv->mem_freq)) {
  7302. DRM_INFO("failed to find known CxSR latency "
  7303. "(found ddr%s fsb freq %d, mem freq %d), "
  7304. "disabling CxSR\n",
  7305. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7306. dev_priv->fsb_freq, dev_priv->mem_freq);
  7307. /* Disable CxSR and never update its watermark again */
  7308. pineview_disable_cxsr(dev);
  7309. dev_priv->display.update_wm = NULL;
  7310. } else
  7311. dev_priv->display.update_wm = pineview_update_wm;
  7312. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7313. } else if (IS_G4X(dev)) {
  7314. dev_priv->display.write_eld = g4x_write_eld;
  7315. dev_priv->display.update_wm = g4x_update_wm;
  7316. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7317. } else if (IS_GEN4(dev)) {
  7318. dev_priv->display.update_wm = i965_update_wm;
  7319. if (IS_CRESTLINE(dev))
  7320. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7321. else if (IS_BROADWATER(dev))
  7322. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7323. } else if (IS_GEN3(dev)) {
  7324. dev_priv->display.update_wm = i9xx_update_wm;
  7325. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7326. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7327. } else if (IS_I865G(dev)) {
  7328. dev_priv->display.update_wm = i830_update_wm;
  7329. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7330. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7331. } else if (IS_I85X(dev)) {
  7332. dev_priv->display.update_wm = i9xx_update_wm;
  7333. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7334. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7335. } else {
  7336. dev_priv->display.update_wm = i830_update_wm;
  7337. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7338. if (IS_845G(dev))
  7339. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7340. else
  7341. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7342. }
  7343. /* Default just returns -ENODEV to indicate unsupported */
  7344. dev_priv->display.queue_flip = intel_default_queue_flip;
  7345. switch (INTEL_INFO(dev)->gen) {
  7346. case 2:
  7347. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7348. break;
  7349. case 3:
  7350. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7351. break;
  7352. case 4:
  7353. case 5:
  7354. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7355. break;
  7356. case 6:
  7357. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7358. break;
  7359. case 7:
  7360. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7361. break;
  7362. }
  7363. }
  7364. /*
  7365. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7366. * resume, or other times. This quirk makes sure that's the case for
  7367. * affected systems.
  7368. */
  7369. static void quirk_pipea_force(struct drm_device *dev)
  7370. {
  7371. struct drm_i915_private *dev_priv = dev->dev_private;
  7372. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7373. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7374. }
  7375. /*
  7376. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7377. */
  7378. static void quirk_ssc_force_disable(struct drm_device *dev)
  7379. {
  7380. struct drm_i915_private *dev_priv = dev->dev_private;
  7381. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7382. }
  7383. struct intel_quirk {
  7384. int device;
  7385. int subsystem_vendor;
  7386. int subsystem_device;
  7387. void (*hook)(struct drm_device *dev);
  7388. };
  7389. struct intel_quirk intel_quirks[] = {
  7390. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  7391. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  7392. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7393. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7394. /* Thinkpad R31 needs pipe A force quirk */
  7395. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7396. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7397. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7398. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7399. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7400. /* ThinkPad X40 needs pipe A force quirk */
  7401. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7402. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7403. /* 855 & before need to leave pipe A & dpll A up */
  7404. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7405. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7406. /* Lenovo U160 cannot use SSC on LVDS */
  7407. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7408. /* Sony Vaio Y cannot use SSC on LVDS */
  7409. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7410. };
  7411. static void intel_init_quirks(struct drm_device *dev)
  7412. {
  7413. struct pci_dev *d = dev->pdev;
  7414. int i;
  7415. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7416. struct intel_quirk *q = &intel_quirks[i];
  7417. if (d->device == q->device &&
  7418. (d->subsystem_vendor == q->subsystem_vendor ||
  7419. q->subsystem_vendor == PCI_ANY_ID) &&
  7420. (d->subsystem_device == q->subsystem_device ||
  7421. q->subsystem_device == PCI_ANY_ID))
  7422. q->hook(dev);
  7423. }
  7424. }
  7425. /* Disable the VGA plane that we never use */
  7426. static void i915_disable_vga(struct drm_device *dev)
  7427. {
  7428. struct drm_i915_private *dev_priv = dev->dev_private;
  7429. u8 sr1;
  7430. u32 vga_reg;
  7431. if (HAS_PCH_SPLIT(dev))
  7432. vga_reg = CPU_VGACNTRL;
  7433. else
  7434. vga_reg = VGACNTRL;
  7435. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7436. outb(1, VGA_SR_INDEX);
  7437. sr1 = inb(VGA_SR_DATA);
  7438. outb(sr1 | 1<<5, VGA_SR_DATA);
  7439. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7440. udelay(300);
  7441. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7442. POSTING_READ(vga_reg);
  7443. }
  7444. void intel_modeset_init(struct drm_device *dev)
  7445. {
  7446. struct drm_i915_private *dev_priv = dev->dev_private;
  7447. int i;
  7448. drm_mode_config_init(dev);
  7449. dev->mode_config.min_width = 0;
  7450. dev->mode_config.min_height = 0;
  7451. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7452. intel_init_quirks(dev);
  7453. intel_init_display(dev);
  7454. if (IS_GEN2(dev)) {
  7455. dev->mode_config.max_width = 2048;
  7456. dev->mode_config.max_height = 2048;
  7457. } else if (IS_GEN3(dev)) {
  7458. dev->mode_config.max_width = 4096;
  7459. dev->mode_config.max_height = 4096;
  7460. } else {
  7461. dev->mode_config.max_width = 8192;
  7462. dev->mode_config.max_height = 8192;
  7463. }
  7464. dev->mode_config.fb_base = dev->agp->base;
  7465. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7466. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7467. for (i = 0; i < dev_priv->num_pipe; i++) {
  7468. intel_crtc_init(dev, i);
  7469. }
  7470. /* Just disable it once at startup */
  7471. i915_disable_vga(dev);
  7472. intel_setup_outputs(dev);
  7473. intel_init_clock_gating(dev);
  7474. if (IS_IRONLAKE_M(dev)) {
  7475. ironlake_enable_drps(dev);
  7476. intel_init_emon(dev);
  7477. }
  7478. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7479. gen6_enable_rps(dev_priv);
  7480. gen6_update_ring_freq(dev_priv);
  7481. }
  7482. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7483. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7484. (unsigned long)dev);
  7485. }
  7486. void intel_modeset_gem_init(struct drm_device *dev)
  7487. {
  7488. if (IS_IRONLAKE_M(dev))
  7489. ironlake_enable_rc6(dev);
  7490. intel_setup_overlay(dev);
  7491. }
  7492. void intel_modeset_cleanup(struct drm_device *dev)
  7493. {
  7494. struct drm_i915_private *dev_priv = dev->dev_private;
  7495. struct drm_crtc *crtc;
  7496. struct intel_crtc *intel_crtc;
  7497. drm_kms_helper_poll_fini(dev);
  7498. mutex_lock(&dev->struct_mutex);
  7499. intel_unregister_dsm_handler();
  7500. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7501. /* Skip inactive CRTCs */
  7502. if (!crtc->fb)
  7503. continue;
  7504. intel_crtc = to_intel_crtc(crtc);
  7505. intel_increase_pllclock(crtc);
  7506. }
  7507. intel_disable_fbc(dev);
  7508. if (IS_IRONLAKE_M(dev))
  7509. ironlake_disable_drps(dev);
  7510. if (IS_GEN6(dev) || IS_GEN7(dev))
  7511. gen6_disable_rps(dev);
  7512. if (IS_IRONLAKE_M(dev))
  7513. ironlake_disable_rc6(dev);
  7514. mutex_unlock(&dev->struct_mutex);
  7515. /* Disable the irq before mode object teardown, for the irq might
  7516. * enqueue unpin/hotplug work. */
  7517. drm_irq_uninstall(dev);
  7518. cancel_work_sync(&dev_priv->hotplug_work);
  7519. cancel_work_sync(&dev_priv->rps_work);
  7520. /* flush any delayed tasks or pending work */
  7521. flush_scheduled_work();
  7522. /* Shut off idle work before the crtcs get freed. */
  7523. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7524. intel_crtc = to_intel_crtc(crtc);
  7525. del_timer_sync(&intel_crtc->idle_timer);
  7526. }
  7527. del_timer_sync(&dev_priv->idle_timer);
  7528. cancel_work_sync(&dev_priv->idle_work);
  7529. drm_mode_config_cleanup(dev);
  7530. }
  7531. /*
  7532. * Return which encoder is currently attached for connector.
  7533. */
  7534. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7535. {
  7536. return &intel_attached_encoder(connector)->base;
  7537. }
  7538. void intel_connector_attach_encoder(struct intel_connector *connector,
  7539. struct intel_encoder *encoder)
  7540. {
  7541. connector->encoder = encoder;
  7542. drm_mode_connector_attach_encoder(&connector->base,
  7543. &encoder->base);
  7544. }
  7545. /*
  7546. * set vga decode state - true == enable VGA decode
  7547. */
  7548. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7549. {
  7550. struct drm_i915_private *dev_priv = dev->dev_private;
  7551. u16 gmch_ctrl;
  7552. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7553. if (state)
  7554. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7555. else
  7556. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7557. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7558. return 0;
  7559. }
  7560. #ifdef CONFIG_DEBUG_FS
  7561. #include <linux/seq_file.h>
  7562. struct intel_display_error_state {
  7563. struct intel_cursor_error_state {
  7564. u32 control;
  7565. u32 position;
  7566. u32 base;
  7567. u32 size;
  7568. } cursor[2];
  7569. struct intel_pipe_error_state {
  7570. u32 conf;
  7571. u32 source;
  7572. u32 htotal;
  7573. u32 hblank;
  7574. u32 hsync;
  7575. u32 vtotal;
  7576. u32 vblank;
  7577. u32 vsync;
  7578. } pipe[2];
  7579. struct intel_plane_error_state {
  7580. u32 control;
  7581. u32 stride;
  7582. u32 size;
  7583. u32 pos;
  7584. u32 addr;
  7585. u32 surface;
  7586. u32 tile_offset;
  7587. } plane[2];
  7588. };
  7589. struct intel_display_error_state *
  7590. intel_display_capture_error_state(struct drm_device *dev)
  7591. {
  7592. drm_i915_private_t *dev_priv = dev->dev_private;
  7593. struct intel_display_error_state *error;
  7594. int i;
  7595. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7596. if (error == NULL)
  7597. return NULL;
  7598. for (i = 0; i < 2; i++) {
  7599. error->cursor[i].control = I915_READ(CURCNTR(i));
  7600. error->cursor[i].position = I915_READ(CURPOS(i));
  7601. error->cursor[i].base = I915_READ(CURBASE(i));
  7602. error->plane[i].control = I915_READ(DSPCNTR(i));
  7603. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7604. error->plane[i].size = I915_READ(DSPSIZE(i));
  7605. error->plane[i].pos = I915_READ(DSPPOS(i));
  7606. error->plane[i].addr = I915_READ(DSPADDR(i));
  7607. if (INTEL_INFO(dev)->gen >= 4) {
  7608. error->plane[i].surface = I915_READ(DSPSURF(i));
  7609. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7610. }
  7611. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7612. error->pipe[i].source = I915_READ(PIPESRC(i));
  7613. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7614. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7615. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7616. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7617. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7618. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7619. }
  7620. return error;
  7621. }
  7622. void
  7623. intel_display_print_error_state(struct seq_file *m,
  7624. struct drm_device *dev,
  7625. struct intel_display_error_state *error)
  7626. {
  7627. int i;
  7628. for (i = 0; i < 2; i++) {
  7629. seq_printf(m, "Pipe [%d]:\n", i);
  7630. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7631. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7632. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7633. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7634. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7635. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7636. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7637. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7638. seq_printf(m, "Plane [%d]:\n", i);
  7639. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7640. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7641. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7642. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7643. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7644. if (INTEL_INFO(dev)->gen >= 4) {
  7645. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7646. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7647. }
  7648. seq_printf(m, "Cursor [%d]:\n", i);
  7649. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7650. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7651. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7652. }
  7653. }
  7654. #endif