Kconfig 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913
  1. # x86 configuration
  2. mainmenu "Linux Kernel Configuration for x86"
  3. # Select 32 or 64 bit
  4. config 64BIT
  5. bool "64-bit kernel" if ARCH = "x86"
  6. default ARCH = "x86_64"
  7. help
  8. Say yes to build a 64-bit kernel - formerly known as x86_64
  9. Say no to build a 32-bit kernel - formerly known as i386
  10. config X86_32
  11. def_bool !64BIT
  12. config X86_64
  13. def_bool 64BIT
  14. ### Arch settings
  15. config X86
  16. def_bool y
  17. select HAVE_AOUT if X86_32
  18. select HAVE_UNSTABLE_SCHED_CLOCK
  19. select HAVE_IDE
  20. select HAVE_OPROFILE
  21. select HAVE_IOREMAP_PROT
  22. select HAVE_KPROBES
  23. select ARCH_WANT_OPTIONAL_GPIOLIB
  24. select HAVE_KRETPROBES
  25. select HAVE_DYNAMIC_FTRACE
  26. select HAVE_FTRACE
  27. select HAVE_KVM if ((X86_32 && !X86_VOYAGER && !X86_VISWS && !X86_NUMAQ) || X86_64)
  28. select HAVE_ARCH_KGDB if !X86_VOYAGER
  29. select HAVE_ARCH_TRACEHOOK
  30. select HAVE_GENERIC_DMA_COHERENT if X86_32
  31. select HAVE_EFFICIENT_UNALIGNED_ACCESS
  32. config ARCH_DEFCONFIG
  33. string
  34. default "arch/x86/configs/i386_defconfig" if X86_32
  35. default "arch/x86/configs/x86_64_defconfig" if X86_64
  36. config GENERIC_LOCKBREAK
  37. def_bool n
  38. config GENERIC_TIME
  39. def_bool y
  40. config GENERIC_CMOS_UPDATE
  41. def_bool y
  42. config CLOCKSOURCE_WATCHDOG
  43. def_bool y
  44. config GENERIC_CLOCKEVENTS
  45. def_bool y
  46. config GENERIC_CLOCKEVENTS_BROADCAST
  47. def_bool y
  48. depends on X86_64 || (X86_32 && X86_LOCAL_APIC)
  49. config LOCKDEP_SUPPORT
  50. def_bool y
  51. config STACKTRACE_SUPPORT
  52. def_bool y
  53. config HAVE_LATENCYTOP_SUPPORT
  54. def_bool y
  55. config FAST_CMPXCHG_LOCAL
  56. bool
  57. default y
  58. config MMU
  59. def_bool y
  60. config ZONE_DMA
  61. def_bool y
  62. config SBUS
  63. bool
  64. config GENERIC_ISA_DMA
  65. def_bool y
  66. config GENERIC_IOMAP
  67. def_bool y
  68. config GENERIC_BUG
  69. def_bool y
  70. depends on BUG
  71. config GENERIC_HWEIGHT
  72. def_bool y
  73. config GENERIC_GPIO
  74. def_bool n
  75. config ARCH_MAY_HAVE_PC_FDC
  76. def_bool y
  77. config RWSEM_GENERIC_SPINLOCK
  78. def_bool !X86_XADD
  79. config RWSEM_XCHGADD_ALGORITHM
  80. def_bool X86_XADD
  81. config ARCH_HAS_ILOG2_U32
  82. def_bool n
  83. config ARCH_HAS_ILOG2_U64
  84. def_bool n
  85. config ARCH_HAS_CPU_IDLE_WAIT
  86. def_bool y
  87. config GENERIC_CALIBRATE_DELAY
  88. def_bool y
  89. config GENERIC_TIME_VSYSCALL
  90. bool
  91. default X86_64
  92. config ARCH_HAS_CPU_RELAX
  93. def_bool y
  94. config ARCH_HAS_CACHE_LINE_SIZE
  95. def_bool y
  96. config HAVE_SETUP_PER_CPU_AREA
  97. def_bool X86_64_SMP || (X86_SMP && !X86_VOYAGER)
  98. config HAVE_CPUMASK_OF_CPU_MAP
  99. def_bool X86_64_SMP
  100. config ARCH_HIBERNATION_POSSIBLE
  101. def_bool y
  102. depends on !SMP || !X86_VOYAGER
  103. config ARCH_SUSPEND_POSSIBLE
  104. def_bool y
  105. depends on !X86_VOYAGER
  106. config ZONE_DMA32
  107. bool
  108. default X86_64
  109. config ARCH_POPULATES_NODE_MAP
  110. def_bool y
  111. config AUDIT_ARCH
  112. bool
  113. default X86_64
  114. config ARCH_SUPPORTS_OPTIMIZED_INLINING
  115. def_bool y
  116. # Use the generic interrupt handling code in kernel/irq/:
  117. config GENERIC_HARDIRQS
  118. bool
  119. default y
  120. config GENERIC_IRQ_PROBE
  121. bool
  122. default y
  123. config GENERIC_PENDING_IRQ
  124. bool
  125. depends on GENERIC_HARDIRQS && SMP
  126. default y
  127. config X86_SMP
  128. bool
  129. depends on SMP && ((X86_32 && !X86_VOYAGER) || X86_64)
  130. select USE_GENERIC_SMP_HELPERS
  131. default y
  132. config X86_32_SMP
  133. def_bool y
  134. depends on X86_32 && SMP
  135. config X86_64_SMP
  136. def_bool y
  137. depends on X86_64 && SMP
  138. config X86_HT
  139. bool
  140. depends on SMP
  141. depends on (X86_32 && !X86_VOYAGER) || X86_64
  142. default y
  143. config X86_BIOS_REBOOT
  144. bool
  145. depends on !X86_VOYAGER
  146. default y
  147. config X86_TRAMPOLINE
  148. bool
  149. depends on X86_SMP || (X86_VOYAGER && SMP) || (64BIT && ACPI_SLEEP)
  150. default y
  151. config KTIME_SCALAR
  152. def_bool X86_32
  153. source "init/Kconfig"
  154. menu "Processor type and features"
  155. source "kernel/time/Kconfig"
  156. config SMP
  157. bool "Symmetric multi-processing support"
  158. ---help---
  159. This enables support for systems with more than one CPU. If you have
  160. a system with only one CPU, like most personal computers, say N. If
  161. you have a system with more than one CPU, say Y.
  162. If you say N here, the kernel will run on single and multiprocessor
  163. machines, but will use only one CPU of a multiprocessor machine. If
  164. you say Y here, the kernel will run on many, but not all,
  165. singleprocessor machines. On a singleprocessor machine, the kernel
  166. will run faster if you say N here.
  167. Note that if you say Y here and choose architecture "586" or
  168. "Pentium" under "Processor family", the kernel will not work on 486
  169. architectures. Similarly, multiprocessor kernels for the "PPro"
  170. architecture may not work on all Pentium based boards.
  171. People using multiprocessor machines who say Y here should also say
  172. Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
  173. Management" code will be disabled if you say Y here.
  174. See also <file:Documentation/i386/IO-APIC.txt>,
  175. <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
  176. <http://www.tldp.org/docs.html#howto>.
  177. If you don't know what to do here, say N.
  178. config X86_FIND_SMP_CONFIG
  179. def_bool y
  180. depends on X86_MPPARSE || X86_VOYAGER
  181. if ACPI
  182. config X86_MPPARSE
  183. def_bool y
  184. bool "Enable MPS table"
  185. depends on X86_LOCAL_APIC
  186. help
  187. For old smp systems that do not have proper acpi support. Newer systems
  188. (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
  189. endif
  190. if !ACPI
  191. config X86_MPPARSE
  192. def_bool y
  193. depends on X86_LOCAL_APIC
  194. endif
  195. choice
  196. prompt "Subarchitecture Type"
  197. default X86_PC
  198. config X86_PC
  199. bool "PC-compatible"
  200. help
  201. Choose this option if your computer is a standard PC or compatible.
  202. config X86_ELAN
  203. bool "AMD Elan"
  204. depends on X86_32
  205. help
  206. Select this for an AMD Elan processor.
  207. Do not use this option for K6/Athlon/Opteron processors!
  208. If unsure, choose "PC-compatible" instead.
  209. config X86_VOYAGER
  210. bool "Voyager (NCR)"
  211. depends on X86_32 && (SMP || BROKEN) && !PCI
  212. help
  213. Voyager is an MCA-based 32-way capable SMP architecture proprietary
  214. to NCR Corp. Machine classes 345x/35xx/4100/51xx are Voyager-based.
  215. *** WARNING ***
  216. If you do not specifically know you have a Voyager based machine,
  217. say N here, otherwise the kernel you build will not be bootable.
  218. config X86_GENERICARCH
  219. bool "Generic architecture"
  220. depends on X86_32
  221. help
  222. This option compiles in the NUMAQ, Summit, bigsmp, ES7000, default
  223. subarchitectures. It is intended for a generic binary kernel.
  224. if you select them all, kernel will probe it one by one. and will
  225. fallback to default.
  226. if X86_GENERICARCH
  227. config X86_NUMAQ
  228. bool "NUMAQ (IBM/Sequent)"
  229. depends on SMP && X86_32 && PCI && X86_MPPARSE
  230. select NUMA
  231. help
  232. This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
  233. NUMA multiquad box. This changes the way that processors are
  234. bootstrapped, and uses Clustered Logical APIC addressing mode instead
  235. of Flat Logical. You will need a new lynxer.elf file to flash your
  236. firmware with - send email to <Martin.Bligh@us.ibm.com>.
  237. config X86_SUMMIT
  238. bool "Summit/EXA (IBM x440)"
  239. depends on X86_32 && SMP
  240. help
  241. This option is needed for IBM systems that use the Summit/EXA chipset.
  242. In particular, it is needed for the x440.
  243. config X86_ES7000
  244. bool "Support for Unisys ES7000 IA32 series"
  245. depends on X86_32 && SMP
  246. help
  247. Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
  248. supposed to run on an IA32-based Unisys ES7000 system.
  249. config X86_BIGSMP
  250. bool "Support for big SMP systems with more than 8 CPUs"
  251. depends on X86_32 && SMP
  252. help
  253. This option is needed for the systems that have more than 8 CPUs
  254. and if the system is not of any sub-arch type above.
  255. endif
  256. config X86_VSMP
  257. bool "Support for ScaleMP vSMP"
  258. select PARAVIRT
  259. depends on X86_64 && PCI
  260. help
  261. Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
  262. supposed to run on these EM64T-based machines. Only choose this option
  263. if you have one of these machines.
  264. endchoice
  265. config X86_VISWS
  266. bool "SGI 320/540 (Visual Workstation)"
  267. depends on X86_32 && PCI && !X86_VOYAGER && X86_MPPARSE && PCI_GODIRECT
  268. help
  269. The SGI Visual Workstation series is an IA32-based workstation
  270. based on SGI systems chips with some legacy PC hardware attached.
  271. Say Y here to create a kernel to run on the SGI 320 or 540.
  272. A kernel compiled for the Visual Workstation will run on general
  273. PCs as well. See <file:Documentation/sgi-visws.txt> for details.
  274. config X86_RDC321X
  275. bool "RDC R-321x SoC"
  276. depends on X86_32
  277. select M486
  278. select X86_REBOOTFIXUPS
  279. help
  280. This option is needed for RDC R-321x system-on-chip, also known
  281. as R-8610-(G).
  282. If you don't have one of these chips, you should say N here.
  283. config SCHED_NO_NO_OMIT_FRAME_POINTER
  284. def_bool y
  285. prompt "Single-depth WCHAN output"
  286. depends on X86_32
  287. help
  288. Calculate simpler /proc/<PID>/wchan values. If this option
  289. is disabled then wchan values will recurse back to the
  290. caller function. This provides more accurate wchan values,
  291. at the expense of slightly more scheduling overhead.
  292. If in doubt, say "Y".
  293. menuconfig PARAVIRT_GUEST
  294. bool "Paravirtualized guest support"
  295. help
  296. Say Y here to get to see options related to running Linux under
  297. various hypervisors. This option alone does not add any kernel code.
  298. If you say N, all options in this submenu will be skipped and disabled.
  299. if PARAVIRT_GUEST
  300. source "arch/x86/xen/Kconfig"
  301. config VMI
  302. bool "VMI Guest support"
  303. select PARAVIRT
  304. depends on X86_32
  305. depends on !X86_VOYAGER
  306. help
  307. VMI provides a paravirtualized interface to the VMware ESX server
  308. (it could be used by other hypervisors in theory too, but is not
  309. at the moment), by linking the kernel to a GPL-ed ROM module
  310. provided by the hypervisor.
  311. config KVM_CLOCK
  312. bool "KVM paravirtualized clock"
  313. select PARAVIRT
  314. select PARAVIRT_CLOCK
  315. depends on !X86_VOYAGER
  316. help
  317. Turning on this option will allow you to run a paravirtualized clock
  318. when running over the KVM hypervisor. Instead of relying on a PIT
  319. (or probably other) emulation by the underlying device model, the host
  320. provides the guest with timing infrastructure such as time of day, and
  321. system time
  322. config KVM_GUEST
  323. bool "KVM Guest support"
  324. select PARAVIRT
  325. depends on !X86_VOYAGER
  326. help
  327. This option enables various optimizations for running under the KVM
  328. hypervisor.
  329. source "arch/x86/lguest/Kconfig"
  330. config PARAVIRT
  331. bool "Enable paravirtualization code"
  332. depends on !X86_VOYAGER
  333. help
  334. This changes the kernel so it can modify itself when it is run
  335. under a hypervisor, potentially improving performance significantly
  336. over full virtualization. However, when run without a hypervisor
  337. the kernel is theoretically slower and slightly larger.
  338. config PARAVIRT_CLOCK
  339. bool
  340. default n
  341. endif
  342. config PARAVIRT_DEBUG
  343. bool "paravirt-ops debugging"
  344. depends on PARAVIRT && DEBUG_KERNEL
  345. help
  346. Enable to debug paravirt_ops internals. Specifically, BUG if
  347. a paravirt_op is missing when it is called.
  348. config MEMTEST
  349. bool "Memtest"
  350. help
  351. This option adds a kernel parameter 'memtest', which allows memtest
  352. to be set.
  353. memtest=0, mean disabled; -- default
  354. memtest=1, mean do 1 test pattern;
  355. ...
  356. memtest=4, mean do 4 test patterns.
  357. If you are unsure how to answer this question, answer N.
  358. config X86_SUMMIT_NUMA
  359. def_bool y
  360. depends on X86_32 && NUMA && X86_GENERICARCH
  361. config X86_CYCLONE_TIMER
  362. def_bool y
  363. depends on X86_GENERICARCH
  364. config ES7000_CLUSTERED_APIC
  365. def_bool y
  366. depends on SMP && X86_ES7000 && MPENTIUMIII
  367. source "arch/x86/Kconfig.cpu"
  368. config HPET_TIMER
  369. def_bool X86_64
  370. prompt "HPET Timer Support" if X86_32
  371. help
  372. Use the IA-PC HPET (High Precision Event Timer) to manage
  373. time in preference to the PIT and RTC, if a HPET is
  374. present.
  375. HPET is the next generation timer replacing legacy 8254s.
  376. The HPET provides a stable time base on SMP
  377. systems, unlike the TSC, but it is more expensive to access,
  378. as it is off-chip. You can find the HPET spec at
  379. <http://www.intel.com/hardwaredesign/hpetspec.htm>.
  380. You can safely choose Y here. However, HPET will only be
  381. activated if the platform and the BIOS support this feature.
  382. Otherwise the 8254 will be used for timing services.
  383. Choose N to continue using the legacy 8254 timer.
  384. config HPET_EMULATE_RTC
  385. def_bool y
  386. depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
  387. # Mark as embedded because too many people got it wrong.
  388. # The code disables itself when not needed.
  389. config DMI
  390. default y
  391. bool "Enable DMI scanning" if EMBEDDED
  392. help
  393. Enabled scanning of DMI to identify machine quirks. Say Y
  394. here unless you have verified that your setup is not
  395. affected by entries in the DMI blacklist. Required by PNP
  396. BIOS code.
  397. config GART_IOMMU
  398. bool "GART IOMMU support" if EMBEDDED
  399. default y
  400. select SWIOTLB
  401. select AGP
  402. depends on X86_64 && PCI
  403. help
  404. Support for full DMA access of devices with 32bit memory access only
  405. on systems with more than 3GB. This is usually needed for USB,
  406. sound, many IDE/SATA chipsets and some other devices.
  407. Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
  408. based hardware IOMMU and a software bounce buffer based IOMMU used
  409. on Intel systems and as fallback.
  410. The code is only active when needed (enough memory and limited
  411. device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
  412. too.
  413. config CALGARY_IOMMU
  414. bool "IBM Calgary IOMMU support"
  415. select SWIOTLB
  416. depends on X86_64 && PCI && EXPERIMENTAL
  417. help
  418. Support for hardware IOMMUs in IBM's xSeries x366 and x460
  419. systems. Needed to run systems with more than 3GB of memory
  420. properly with 32-bit PCI devices that do not support DAC
  421. (Double Address Cycle). Calgary also supports bus level
  422. isolation, where all DMAs pass through the IOMMU. This
  423. prevents them from going anywhere except their intended
  424. destination. This catches hard-to-find kernel bugs and
  425. mis-behaving drivers and devices that do not use the DMA-API
  426. properly to set up their DMA buffers. The IOMMU can be
  427. turned off at boot time with the iommu=off parameter.
  428. Normally the kernel will make the right choice by itself.
  429. If unsure, say Y.
  430. config CALGARY_IOMMU_ENABLED_BY_DEFAULT
  431. def_bool y
  432. prompt "Should Calgary be enabled by default?"
  433. depends on CALGARY_IOMMU
  434. help
  435. Should Calgary be enabled by default? if you choose 'y', Calgary
  436. will be used (if it exists). If you choose 'n', Calgary will not be
  437. used even if it exists. If you choose 'n' and would like to use
  438. Calgary anyway, pass 'iommu=calgary' on the kernel command line.
  439. If unsure, say Y.
  440. config AMD_IOMMU
  441. bool "AMD IOMMU support"
  442. select SWIOTLB
  443. select PCI_MSI
  444. depends on X86_64 && PCI && ACPI
  445. help
  446. With this option you can enable support for AMD IOMMU hardware in
  447. your system. An IOMMU is a hardware component which provides
  448. remapping of DMA memory accesses from devices. With an AMD IOMMU you
  449. can isolate the the DMA memory of different devices and protect the
  450. system from misbehaving device drivers or hardware.
  451. You can find out if your system has an AMD IOMMU if you look into
  452. your BIOS for an option to enable it or if you have an IVRS ACPI
  453. table.
  454. # need this always selected by IOMMU for the VIA workaround
  455. config SWIOTLB
  456. bool
  457. help
  458. Support for software bounce buffers used on x86-64 systems
  459. which don't have a hardware IOMMU (e.g. the current generation
  460. of Intel's x86-64 CPUs). Using this PCI devices which can only
  461. access 32-bits of memory can be used on systems with more than
  462. 3 GB of memory. If unsure, say Y.
  463. config IOMMU_HELPER
  464. def_bool (CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU)
  465. config MAXSMP
  466. bool "Configure Maximum number of SMP Processors and NUMA Nodes"
  467. depends on X86_64 && SMP && BROKEN
  468. default n
  469. help
  470. Configure maximum number of CPUS and NUMA Nodes for this architecture.
  471. If unsure, say N.
  472. config NR_CPUS
  473. int "Maximum number of CPUs (2-512)" if !MAXSMP
  474. range 2 512
  475. depends on SMP
  476. default "4096" if MAXSMP
  477. default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000
  478. default "8"
  479. help
  480. This allows you to specify the maximum number of CPUs which this
  481. kernel will support. The maximum supported value is 512 and the
  482. minimum value which makes sense is 2.
  483. This is purely to save memory - each supported CPU adds
  484. approximately eight kilobytes to the kernel image.
  485. config SCHED_SMT
  486. bool "SMT (Hyperthreading) scheduler support"
  487. depends on X86_HT
  488. help
  489. SMT scheduler support improves the CPU scheduler's decision making
  490. when dealing with Intel Pentium 4 chips with HyperThreading at a
  491. cost of slightly increased overhead in some places. If unsure say
  492. N here.
  493. config SCHED_MC
  494. def_bool y
  495. prompt "Multi-core scheduler support"
  496. depends on X86_HT
  497. help
  498. Multi-core scheduler support improves the CPU scheduler's decision
  499. making when dealing with multi-core CPU chips at a cost of slightly
  500. increased overhead in some places. If unsure say N here.
  501. source "kernel/Kconfig.preempt"
  502. config X86_UP_APIC
  503. bool "Local APIC support on uniprocessors"
  504. depends on X86_32 && !SMP && !(X86_VOYAGER || X86_GENERICARCH)
  505. help
  506. A local APIC (Advanced Programmable Interrupt Controller) is an
  507. integrated interrupt controller in the CPU. If you have a single-CPU
  508. system which has a processor with a local APIC, you can say Y here to
  509. enable and use it. If you say Y here even though your machine doesn't
  510. have a local APIC, then the kernel will still run with no slowdown at
  511. all. The local APIC supports CPU-generated self-interrupts (timer,
  512. performance counters), and the NMI watchdog which detects hard
  513. lockups.
  514. config X86_UP_IOAPIC
  515. bool "IO-APIC support on uniprocessors"
  516. depends on X86_UP_APIC
  517. help
  518. An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
  519. SMP-capable replacement for PC-style interrupt controllers. Most
  520. SMP systems and many recent uniprocessor systems have one.
  521. If you have a single-CPU system with an IO-APIC, you can say Y here
  522. to use it. If you say Y here even though your machine doesn't have
  523. an IO-APIC, then the kernel will still run with no slowdown at all.
  524. config X86_LOCAL_APIC
  525. def_bool y
  526. depends on X86_64 || (X86_32 && (X86_UP_APIC || (SMP && !X86_VOYAGER) || X86_GENERICARCH))
  527. config X86_IO_APIC
  528. def_bool y
  529. depends on X86_64 || (X86_32 && (X86_UP_IOAPIC || (SMP && !X86_VOYAGER) || X86_GENERICARCH))
  530. config X86_VISWS_APIC
  531. def_bool y
  532. depends on X86_32 && X86_VISWS
  533. config X86_MCE
  534. bool "Machine Check Exception"
  535. depends on !X86_VOYAGER
  536. ---help---
  537. Machine Check Exception support allows the processor to notify the
  538. kernel if it detects a problem (e.g. overheating, component failure).
  539. The action the kernel takes depends on the severity of the problem,
  540. ranging from a warning message on the console, to halting the machine.
  541. Your processor must be a Pentium or newer to support this - check the
  542. flags in /proc/cpuinfo for mce. Note that some older Pentium systems
  543. have a design flaw which leads to false MCE events - hence MCE is
  544. disabled on all P5 processors, unless explicitly enabled with "mce"
  545. as a boot argument. Similarly, if MCE is built in and creates a
  546. problem on some new non-standard machine, you can boot with "nomce"
  547. to disable it. MCE support simply ignores non-MCE processors like
  548. the 386 and 486, so nearly everyone can say Y here.
  549. config X86_MCE_INTEL
  550. def_bool y
  551. prompt "Intel MCE features"
  552. depends on X86_64 && X86_MCE && X86_LOCAL_APIC
  553. help
  554. Additional support for intel specific MCE features such as
  555. the thermal monitor.
  556. config X86_MCE_AMD
  557. def_bool y
  558. prompt "AMD MCE features"
  559. depends on X86_64 && X86_MCE && X86_LOCAL_APIC
  560. help
  561. Additional support for AMD specific MCE features such as
  562. the DRAM Error Threshold.
  563. config X86_MCE_NONFATAL
  564. tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4"
  565. depends on X86_32 && X86_MCE
  566. help
  567. Enabling this feature starts a timer that triggers every 5 seconds which
  568. will look at the machine check registers to see if anything happened.
  569. Non-fatal problems automatically get corrected (but still logged).
  570. Disable this if you don't want to see these messages.
  571. Seeing the messages this option prints out may be indicative of dying
  572. or out-of-spec (ie, overclocked) hardware.
  573. This option only does something on certain CPUs.
  574. (AMD Athlon/Duron and Intel Pentium 4)
  575. config X86_MCE_P4THERMAL
  576. bool "check for P4 thermal throttling interrupt."
  577. depends on X86_32 && X86_MCE && (X86_UP_APIC || SMP)
  578. help
  579. Enabling this feature will cause a message to be printed when the P4
  580. enters thermal throttling.
  581. config VM86
  582. bool "Enable VM86 support" if EMBEDDED
  583. default y
  584. depends on X86_32
  585. help
  586. This option is required by programs like DOSEMU to run 16-bit legacy
  587. code on X86 processors. It also may be needed by software like
  588. XFree86 to initialize some video cards via BIOS. Disabling this
  589. option saves about 6k.
  590. config TOSHIBA
  591. tristate "Toshiba Laptop support"
  592. depends on X86_32
  593. ---help---
  594. This adds a driver to safely access the System Management Mode of
  595. the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
  596. not work on models with a Phoenix BIOS. The System Management Mode
  597. is used to set the BIOS and power saving options on Toshiba portables.
  598. For information on utilities to make use of this driver see the
  599. Toshiba Linux utilities web site at:
  600. <http://www.buzzard.org.uk/toshiba/>.
  601. Say Y if you intend to run this kernel on a Toshiba portable.
  602. Say N otherwise.
  603. config I8K
  604. tristate "Dell laptop support"
  605. ---help---
  606. This adds a driver to safely access the System Management Mode
  607. of the CPU on the Dell Inspiron 8000. The System Management Mode
  608. is used to read cpu temperature and cooling fan status and to
  609. control the fans on the I8K portables.
  610. This driver has been tested only on the Inspiron 8000 but it may
  611. also work with other Dell laptops. You can force loading on other
  612. models by passing the parameter `force=1' to the module. Use at
  613. your own risk.
  614. For information on utilities to make use of this driver see the
  615. I8K Linux utilities web site at:
  616. <http://people.debian.org/~dz/i8k/>
  617. Say Y if you intend to run this kernel on a Dell Inspiron 8000.
  618. Say N otherwise.
  619. config X86_REBOOTFIXUPS
  620. def_bool n
  621. prompt "Enable X86 board specific fixups for reboot"
  622. depends on X86_32 && X86
  623. ---help---
  624. This enables chipset and/or board specific fixups to be done
  625. in order to get reboot to work correctly. This is only needed on
  626. some combinations of hardware and BIOS. The symptom, for which
  627. this config is intended, is when reboot ends with a stalled/hung
  628. system.
  629. Currently, the only fixup is for the Geode machines using
  630. CS5530A and CS5536 chipsets and the RDC R-321x SoC.
  631. Say Y if you want to enable the fixup. Currently, it's safe to
  632. enable this option even if you don't need it.
  633. Say N otherwise.
  634. config MICROCODE
  635. tristate "/dev/cpu/microcode - microcode support"
  636. select FW_LOADER
  637. ---help---
  638. If you say Y here, you will be able to update the microcode on
  639. certain Intel and AMD processors. The Intel support is for the
  640. IA32 family, e.g. Pentium Pro, Pentium II, Pentium III,
  641. Pentium 4, Xeon etc. The AMD support is for family 0x10 and
  642. 0x11 processors, e.g. Opteron, Phenom and Turion 64 Ultra.
  643. You will obviously need the actual microcode binary data itself
  644. which is not shipped with the Linux kernel.
  645. This option selects the general module only, you need to select
  646. at least one vendor specific module as well.
  647. To compile this driver as a module, choose M here: the
  648. module will be called microcode.
  649. config MICROCODE_INTEL
  650. bool "Intel microcode patch loading support"
  651. depends on MICROCODE
  652. default MICROCODE
  653. select FW_LOADER
  654. --help---
  655. This options enables microcode patch loading support for Intel
  656. processors.
  657. For latest news and information on obtaining all the required
  658. Intel ingredients for this driver, check:
  659. <http://www.urbanmyth.org/microcode/>.
  660. config MICROCODE_AMD
  661. bool "AMD microcode patch loading support"
  662. depends on MICROCODE
  663. select FW_LOADER
  664. --help---
  665. If you select this option, microcode patch loading support for AMD
  666. processors will be enabled.
  667. config MICROCODE_OLD_INTERFACE
  668. def_bool y
  669. depends on MICROCODE
  670. config X86_MSR
  671. tristate "/dev/cpu/*/msr - Model-specific register support"
  672. help
  673. This device gives privileged processes access to the x86
  674. Model-Specific Registers (MSRs). It is a character device with
  675. major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
  676. MSR accesses are directed to a specific CPU on multi-processor
  677. systems.
  678. config X86_CPUID
  679. tristate "/dev/cpu/*/cpuid - CPU information support"
  680. help
  681. This device gives processes access to the x86 CPUID instruction to
  682. be executed on a specific processor. It is a character device
  683. with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
  684. /dev/cpu/31/cpuid.
  685. choice
  686. prompt "High Memory Support"
  687. default HIGHMEM4G if !X86_NUMAQ
  688. default HIGHMEM64G if X86_NUMAQ
  689. depends on X86_32
  690. config NOHIGHMEM
  691. bool "off"
  692. depends on !X86_NUMAQ
  693. ---help---
  694. Linux can use up to 64 Gigabytes of physical memory on x86 systems.
  695. However, the address space of 32-bit x86 processors is only 4
  696. Gigabytes large. That means that, if you have a large amount of
  697. physical memory, not all of it can be "permanently mapped" by the
  698. kernel. The physical memory that's not permanently mapped is called
  699. "high memory".
  700. If you are compiling a kernel which will never run on a machine with
  701. more than 1 Gigabyte total physical RAM, answer "off" here (default
  702. choice and suitable for most users). This will result in a "3GB/1GB"
  703. split: 3GB are mapped so that each process sees a 3GB virtual memory
  704. space and the remaining part of the 4GB virtual memory space is used
  705. by the kernel to permanently map as much physical memory as
  706. possible.
  707. If the machine has between 1 and 4 Gigabytes physical RAM, then
  708. answer "4GB" here.
  709. If more than 4 Gigabytes is used then answer "64GB" here. This
  710. selection turns Intel PAE (Physical Address Extension) mode on.
  711. PAE implements 3-level paging on IA32 processors. PAE is fully
  712. supported by Linux, PAE mode is implemented on all recent Intel
  713. processors (Pentium Pro and better). NOTE: If you say "64GB" here,
  714. then the kernel will not boot on CPUs that don't support PAE!
  715. The actual amount of total physical memory will either be
  716. auto detected or can be forced by using a kernel command line option
  717. such as "mem=256M". (Try "man bootparam" or see the documentation of
  718. your boot loader (lilo or loadlin) about how to pass options to the
  719. kernel at boot time.)
  720. If unsure, say "off".
  721. config HIGHMEM4G
  722. bool "4GB"
  723. depends on !X86_NUMAQ
  724. help
  725. Select this if you have a 32-bit processor and between 1 and 4
  726. gigabytes of physical RAM.
  727. config HIGHMEM64G
  728. bool "64GB"
  729. depends on !M386 && !M486
  730. select X86_PAE
  731. help
  732. Select this if you have a 32-bit processor and more than 4
  733. gigabytes of physical RAM.
  734. endchoice
  735. choice
  736. depends on EXPERIMENTAL
  737. prompt "Memory split" if EMBEDDED
  738. default VMSPLIT_3G
  739. depends on X86_32
  740. help
  741. Select the desired split between kernel and user memory.
  742. If the address range available to the kernel is less than the
  743. physical memory installed, the remaining memory will be available
  744. as "high memory". Accessing high memory is a little more costly
  745. than low memory, as it needs to be mapped into the kernel first.
  746. Note that increasing the kernel address space limits the range
  747. available to user programs, making the address space there
  748. tighter. Selecting anything other than the default 3G/1G split
  749. will also likely make your kernel incompatible with binary-only
  750. kernel modules.
  751. If you are not absolutely sure what you are doing, leave this
  752. option alone!
  753. config VMSPLIT_3G
  754. bool "3G/1G user/kernel split"
  755. config VMSPLIT_3G_OPT
  756. depends on !X86_PAE
  757. bool "3G/1G user/kernel split (for full 1G low memory)"
  758. config VMSPLIT_2G
  759. bool "2G/2G user/kernel split"
  760. config VMSPLIT_2G_OPT
  761. depends on !X86_PAE
  762. bool "2G/2G user/kernel split (for full 2G low memory)"
  763. config VMSPLIT_1G
  764. bool "1G/3G user/kernel split"
  765. endchoice
  766. config PAGE_OFFSET
  767. hex
  768. default 0xB0000000 if VMSPLIT_3G_OPT
  769. default 0x80000000 if VMSPLIT_2G
  770. default 0x78000000 if VMSPLIT_2G_OPT
  771. default 0x40000000 if VMSPLIT_1G
  772. default 0xC0000000
  773. depends on X86_32
  774. config HIGHMEM
  775. def_bool y
  776. depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
  777. config X86_PAE
  778. def_bool n
  779. prompt "PAE (Physical Address Extension) Support"
  780. depends on X86_32 && !HIGHMEM4G
  781. select RESOURCES_64BIT
  782. help
  783. PAE is required for NX support, and furthermore enables
  784. larger swapspace support for non-overcommit purposes. It
  785. has the cost of more pagetable lookup overhead, and also
  786. consumes more pagetable space per process.
  787. # Common NUMA Features
  788. config NUMA
  789. bool "Numa Memory Allocation and Scheduler Support (EXPERIMENTAL)"
  790. depends on SMP
  791. depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI) && EXPERIMENTAL)
  792. default n if X86_PC
  793. default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
  794. help
  795. Enable NUMA (Non Uniform Memory Access) support.
  796. The kernel will try to allocate memory used by a CPU on the
  797. local memory controller of the CPU and add some more
  798. NUMA awareness to the kernel.
  799. For 32-bit this is currently highly experimental and should be only
  800. used for kernel development. It might also cause boot failures.
  801. For 64-bit this is recommended on all multiprocessor Opteron systems.
  802. If the system is EM64T, you should say N unless your system is
  803. EM64T NUMA.
  804. comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
  805. depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
  806. config K8_NUMA
  807. def_bool y
  808. prompt "Old style AMD Opteron NUMA detection"
  809. depends on X86_64 && NUMA && PCI
  810. help
  811. Enable K8 NUMA node topology detection. You should say Y here if
  812. you have a multi processor AMD K8 system. This uses an old
  813. method to read the NUMA configuration directly from the builtin
  814. Northbridge of Opteron. It is recommended to use X86_64_ACPI_NUMA
  815. instead, which also takes priority if both are compiled in.
  816. config X86_64_ACPI_NUMA
  817. def_bool y
  818. prompt "ACPI NUMA detection"
  819. depends on X86_64 && NUMA && ACPI && PCI
  820. select ACPI_NUMA
  821. help
  822. Enable ACPI SRAT based node topology detection.
  823. # Some NUMA nodes have memory ranges that span
  824. # other nodes. Even though a pfn is valid and
  825. # between a node's start and end pfns, it may not
  826. # reside on that node. See memmap_init_zone()
  827. # for details.
  828. config NODES_SPAN_OTHER_NODES
  829. def_bool y
  830. depends on X86_64_ACPI_NUMA
  831. config NUMA_EMU
  832. bool "NUMA emulation"
  833. depends on X86_64 && NUMA
  834. help
  835. Enable NUMA emulation. A flat machine will be split
  836. into virtual nodes when booted with "numa=fake=N", where N is the
  837. number of nodes. This is only useful for debugging.
  838. config NODES_SHIFT
  839. int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
  840. range 1 9 if X86_64
  841. default "9" if MAXSMP
  842. default "6" if X86_64
  843. default "4" if X86_NUMAQ
  844. default "3"
  845. depends on NEED_MULTIPLE_NODES
  846. help
  847. Specify the maximum number of NUMA Nodes available on the target
  848. system. Increases memory reserved to accomodate various tables.
  849. config HAVE_ARCH_BOOTMEM_NODE
  850. def_bool y
  851. depends on X86_32 && NUMA
  852. config ARCH_HAVE_MEMORY_PRESENT
  853. def_bool y
  854. depends on X86_32 && DISCONTIGMEM
  855. config NEED_NODE_MEMMAP_SIZE
  856. def_bool y
  857. depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
  858. config HAVE_ARCH_ALLOC_REMAP
  859. def_bool y
  860. depends on X86_32 && NUMA
  861. config ARCH_FLATMEM_ENABLE
  862. def_bool y
  863. depends on X86_32 && ARCH_SELECT_MEMORY_MODEL && !NUMA
  864. config ARCH_DISCONTIGMEM_ENABLE
  865. def_bool y
  866. depends on NUMA && X86_32
  867. config ARCH_DISCONTIGMEM_DEFAULT
  868. def_bool y
  869. depends on NUMA && X86_32
  870. config ARCH_SPARSEMEM_DEFAULT
  871. def_bool y
  872. depends on X86_64
  873. config ARCH_SPARSEMEM_ENABLE
  874. def_bool y
  875. depends on X86_64 || NUMA || (EXPERIMENTAL && X86_PC) || X86_GENERICARCH
  876. select SPARSEMEM_STATIC if X86_32
  877. select SPARSEMEM_VMEMMAP_ENABLE if X86_64
  878. config ARCH_SELECT_MEMORY_MODEL
  879. def_bool y
  880. depends on ARCH_SPARSEMEM_ENABLE
  881. config ARCH_MEMORY_PROBE
  882. def_bool X86_64
  883. depends on MEMORY_HOTPLUG
  884. source "mm/Kconfig"
  885. config HIGHPTE
  886. bool "Allocate 3rd-level pagetables from highmem"
  887. depends on X86_32 && (HIGHMEM4G || HIGHMEM64G)
  888. help
  889. The VM uses one page table entry for each page of physical memory.
  890. For systems with a lot of RAM, this can be wasteful of precious
  891. low memory. Setting this option will put user-space page table
  892. entries in high memory.
  893. config X86_CHECK_BIOS_CORRUPTION
  894. bool "Check for low memory corruption"
  895. help
  896. Periodically check for memory corruption in low memory, which
  897. is suspected to be caused by BIOS. Even when enabled in the
  898. configuration, it is disabled at runtime. Enable it by
  899. setting "memory_corruption_check=1" on the kernel command
  900. line. By default it scans the low 64k of memory every 60
  901. seconds; see the memory_corruption_check_size and
  902. memory_corruption_check_period parameters in
  903. Documentation/kernel-parameters.txt to adjust this.
  904. When enabled with the default parameters, this option has
  905. almost no overhead, as it reserves a relatively small amount
  906. of memory and scans it infrequently. It both detects corruption
  907. and prevents it from affecting the running system.
  908. It is, however, intended as a diagnostic tool; if repeatable
  909. BIOS-originated corruption always affects the same memory,
  910. you can use memmap= to prevent the kernel from using that
  911. memory.
  912. config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
  913. bool "Set the default setting of memory_corruption_check"
  914. depends on X86_CHECK_BIOS_CORRUPTION
  915. default y
  916. help
  917. Set whether the default state of memory_corruption_check is
  918. on or off.
  919. config X86_RESERVE_LOW_64K
  920. bool "Reserve low 64K of RAM on AMI/Phoenix BIOSen"
  921. default y
  922. help
  923. Reserve the first 64K of physical RAM on BIOSes that are known
  924. to potentially corrupt that memory range. A numbers of BIOSes are
  925. known to utilize this area during suspend/resume, so it must not
  926. be used by the kernel.
  927. Set this to N if you are absolutely sure that you trust the BIOS
  928. to get all its memory reservations and usages right.
  929. If you have doubts about the BIOS (e.g. suspend/resume does not
  930. work or there's kernel crashes after certain hardware hotplug
  931. events) and it's not AMI or Phoenix, then you might want to enable
  932. X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check typical
  933. corruption patterns.
  934. Say Y if unsure.
  935. config MATH_EMULATION
  936. bool
  937. prompt "Math emulation" if X86_32
  938. ---help---
  939. Linux can emulate a math coprocessor (used for floating point
  940. operations) if you don't have one. 486DX and Pentium processors have
  941. a math coprocessor built in, 486SX and 386 do not, unless you added
  942. a 487DX or 387, respectively. (The messages during boot time can
  943. give you some hints here ["man dmesg"].) Everyone needs either a
  944. coprocessor or this emulation.
  945. If you don't have a math coprocessor, you need to say Y here; if you
  946. say Y here even though you have a coprocessor, the coprocessor will
  947. be used nevertheless. (This behavior can be changed with the kernel
  948. command line option "no387", which comes handy if your coprocessor
  949. is broken. Try "man bootparam" or see the documentation of your boot
  950. loader (lilo or loadlin) about how to pass options to the kernel at
  951. boot time.) This means that it is a good idea to say Y here if you
  952. intend to use this kernel on different machines.
  953. More information about the internals of the Linux math coprocessor
  954. emulation can be found in <file:arch/x86/math-emu/README>.
  955. If you are not sure, say Y; apart from resulting in a 66 KB bigger
  956. kernel, it won't hurt.
  957. config MTRR
  958. bool "MTRR (Memory Type Range Register) support"
  959. ---help---
  960. On Intel P6 family processors (Pentium Pro, Pentium II and later)
  961. the Memory Type Range Registers (MTRRs) may be used to control
  962. processor access to memory ranges. This is most useful if you have
  963. a video (VGA) card on a PCI or AGP bus. Enabling write-combining
  964. allows bus write transfers to be combined into a larger transfer
  965. before bursting over the PCI/AGP bus. This can increase performance
  966. of image write operations 2.5 times or more. Saying Y here creates a
  967. /proc/mtrr file which may be used to manipulate your processor's
  968. MTRRs. Typically the X server should use this.
  969. This code has a reasonably generic interface so that similar
  970. control registers on other processors can be easily supported
  971. as well:
  972. The Cyrix 6x86, 6x86MX and M II processors have Address Range
  973. Registers (ARRs) which provide a similar functionality to MTRRs. For
  974. these, the ARRs are used to emulate the MTRRs.
  975. The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
  976. MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
  977. write-combining. All of these processors are supported by this code
  978. and it makes sense to say Y here if you have one of them.
  979. Saying Y here also fixes a problem with buggy SMP BIOSes which only
  980. set the MTRRs for the boot CPU and not for the secondary CPUs. This
  981. can lead to all sorts of problems, so it's good to say Y here.
  982. You can safely say Y even if your machine doesn't have MTRRs, you'll
  983. just add about 9 KB to your kernel.
  984. See <file:Documentation/x86/mtrr.txt> for more information.
  985. config MTRR_SANITIZER
  986. def_bool y
  987. prompt "MTRR cleanup support"
  988. depends on MTRR
  989. help
  990. Convert MTRR layout from continuous to discrete, so X drivers can
  991. add writeback entries.
  992. Can be disabled with disable_mtrr_cleanup on the kernel command line.
  993. The largest mtrr entry size for a continous block can be set with
  994. mtrr_chunk_size.
  995. If unsure, say Y.
  996. config MTRR_SANITIZER_ENABLE_DEFAULT
  997. int "MTRR cleanup enable value (0-1)"
  998. range 0 1
  999. default "0"
  1000. depends on MTRR_SANITIZER
  1001. help
  1002. Enable mtrr cleanup default value
  1003. config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
  1004. int "MTRR cleanup spare reg num (0-7)"
  1005. range 0 7
  1006. default "1"
  1007. depends on MTRR_SANITIZER
  1008. help
  1009. mtrr cleanup spare entries default, it can be changed via
  1010. mtrr_spare_reg_nr=N on the kernel command line.
  1011. config X86_PAT
  1012. bool
  1013. prompt "x86 PAT support"
  1014. depends on MTRR
  1015. help
  1016. Use PAT attributes to setup page level cache control.
  1017. PATs are the modern equivalents of MTRRs and are much more
  1018. flexible than MTRRs.
  1019. Say N here if you see bootup problems (boot crash, boot hang,
  1020. spontaneous reboots) or a non-working video driver.
  1021. If unsure, say Y.
  1022. config EFI
  1023. def_bool n
  1024. prompt "EFI runtime service support"
  1025. depends on ACPI
  1026. ---help---
  1027. This enables the kernel to use EFI runtime services that are
  1028. available (such as the EFI variable services).
  1029. This option is only useful on systems that have EFI firmware.
  1030. In addition, you should use the latest ELILO loader available
  1031. at <http://elilo.sourceforge.net> in order to take advantage
  1032. of EFI runtime services. However, even with this option, the
  1033. resultant kernel should continue to boot on existing non-EFI
  1034. platforms.
  1035. config SECCOMP
  1036. def_bool y
  1037. prompt "Enable seccomp to safely compute untrusted bytecode"
  1038. help
  1039. This kernel feature is useful for number crunching applications
  1040. that may need to compute untrusted bytecode during their
  1041. execution. By using pipes or other transports made available to
  1042. the process as file descriptors supporting the read/write
  1043. syscalls, it's possible to isolate those applications in
  1044. their own address space using seccomp. Once seccomp is
  1045. enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
  1046. and the task is only allowed to execute a few safe syscalls
  1047. defined by each seccomp mode.
  1048. If unsure, say Y. Only embedded should say N here.
  1049. config CC_STACKPROTECTOR
  1050. bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
  1051. depends on X86_64 && EXPERIMENTAL && BROKEN
  1052. help
  1053. This option turns on the -fstack-protector GCC feature. This
  1054. feature puts, at the beginning of critical functions, a canary
  1055. value on the stack just before the return address, and validates
  1056. the value just before actually returning. Stack based buffer
  1057. overflows (that need to overwrite this return address) now also
  1058. overwrite the canary, which gets detected and the attack is then
  1059. neutralized via a kernel panic.
  1060. This feature requires gcc version 4.2 or above, or a distribution
  1061. gcc with the feature backported. Older versions are automatically
  1062. detected and for those versions, this configuration option is ignored.
  1063. config CC_STACKPROTECTOR_ALL
  1064. bool "Use stack-protector for all functions"
  1065. depends on CC_STACKPROTECTOR
  1066. help
  1067. Normally, GCC only inserts the canary value protection for
  1068. functions that use large-ish on-stack buffers. By enabling
  1069. this option, GCC will be asked to do this for ALL functions.
  1070. source kernel/Kconfig.hz
  1071. config KEXEC
  1072. bool "kexec system call"
  1073. depends on X86_BIOS_REBOOT
  1074. help
  1075. kexec is a system call that implements the ability to shutdown your
  1076. current kernel, and to start another kernel. It is like a reboot
  1077. but it is independent of the system firmware. And like a reboot
  1078. you can start any kernel with it, not just Linux.
  1079. The name comes from the similarity to the exec system call.
  1080. It is an ongoing process to be certain the hardware in a machine
  1081. is properly shutdown, so do not be surprised if this code does not
  1082. initially work for you. It may help to enable device hotplugging
  1083. support. As of this writing the exact hardware interface is
  1084. strongly in flux, so no good recommendation can be made.
  1085. config CRASH_DUMP
  1086. bool "kernel crash dumps"
  1087. depends on X86_64 || (X86_32 && HIGHMEM)
  1088. help
  1089. Generate crash dump after being started by kexec.
  1090. This should be normally only set in special crash dump kernels
  1091. which are loaded in the main kernel with kexec-tools into
  1092. a specially reserved region and then later executed after
  1093. a crash by kdump/kexec. The crash dump kernel must be compiled
  1094. to a memory address not used by the main kernel or BIOS using
  1095. PHYSICAL_START, or it must be built as a relocatable image
  1096. (CONFIG_RELOCATABLE=y).
  1097. For more details see Documentation/kdump/kdump.txt
  1098. config KEXEC_JUMP
  1099. bool "kexec jump (EXPERIMENTAL)"
  1100. depends on EXPERIMENTAL
  1101. depends on KEXEC && HIBERNATION && X86_32
  1102. help
  1103. Jump between original kernel and kexeced kernel and invoke
  1104. code in physical address mode via KEXEC
  1105. config PHYSICAL_START
  1106. hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
  1107. default "0x1000000" if X86_NUMAQ
  1108. default "0x200000" if X86_64
  1109. default "0x100000"
  1110. help
  1111. This gives the physical address where the kernel is loaded.
  1112. If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
  1113. bzImage will decompress itself to above physical address and
  1114. run from there. Otherwise, bzImage will run from the address where
  1115. it has been loaded by the boot loader and will ignore above physical
  1116. address.
  1117. In normal kdump cases one does not have to set/change this option
  1118. as now bzImage can be compiled as a completely relocatable image
  1119. (CONFIG_RELOCATABLE=y) and be used to load and run from a different
  1120. address. This option is mainly useful for the folks who don't want
  1121. to use a bzImage for capturing the crash dump and want to use a
  1122. vmlinux instead. vmlinux is not relocatable hence a kernel needs
  1123. to be specifically compiled to run from a specific memory area
  1124. (normally a reserved region) and this option comes handy.
  1125. So if you are using bzImage for capturing the crash dump, leave
  1126. the value here unchanged to 0x100000 and set CONFIG_RELOCATABLE=y.
  1127. Otherwise if you plan to use vmlinux for capturing the crash dump
  1128. change this value to start of the reserved region (Typically 16MB
  1129. 0x1000000). In other words, it can be set based on the "X" value as
  1130. specified in the "crashkernel=YM@XM" command line boot parameter
  1131. passed to the panic-ed kernel. Typically this parameter is set as
  1132. crashkernel=64M@16M. Please take a look at
  1133. Documentation/kdump/kdump.txt for more details about crash dumps.
  1134. Usage of bzImage for capturing the crash dump is recommended as
  1135. one does not have to build two kernels. Same kernel can be used
  1136. as production kernel and capture kernel. Above option should have
  1137. gone away after relocatable bzImage support is introduced. But it
  1138. is present because there are users out there who continue to use
  1139. vmlinux for dump capture. This option should go away down the
  1140. line.
  1141. Don't change this unless you know what you are doing.
  1142. config RELOCATABLE
  1143. bool "Build a relocatable kernel (EXPERIMENTAL)"
  1144. depends on EXPERIMENTAL
  1145. help
  1146. This builds a kernel image that retains relocation information
  1147. so it can be loaded someplace besides the default 1MB.
  1148. The relocations tend to make the kernel binary about 10% larger,
  1149. but are discarded at runtime.
  1150. One use is for the kexec on panic case where the recovery kernel
  1151. must live at a different physical address than the primary
  1152. kernel.
  1153. Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
  1154. it has been loaded at and the compile time physical address
  1155. (CONFIG_PHYSICAL_START) is ignored.
  1156. config PHYSICAL_ALIGN
  1157. hex
  1158. prompt "Alignment value to which kernel should be aligned" if X86_32
  1159. default "0x100000" if X86_32
  1160. default "0x200000" if X86_64
  1161. range 0x2000 0x400000
  1162. help
  1163. This value puts the alignment restrictions on physical address
  1164. where kernel is loaded and run from. Kernel is compiled for an
  1165. address which meets above alignment restriction.
  1166. If bootloader loads the kernel at a non-aligned address and
  1167. CONFIG_RELOCATABLE is set, kernel will move itself to nearest
  1168. address aligned to above value and run from there.
  1169. If bootloader loads the kernel at a non-aligned address and
  1170. CONFIG_RELOCATABLE is not set, kernel will ignore the run time
  1171. load address and decompress itself to the address it has been
  1172. compiled for and run from there. The address for which kernel is
  1173. compiled already meets above alignment restrictions. Hence the
  1174. end result is that kernel runs from a physical address meeting
  1175. above alignment restrictions.
  1176. Don't change this unless you know what you are doing.
  1177. config HOTPLUG_CPU
  1178. bool "Support for hot-pluggable CPUs"
  1179. depends on SMP && HOTPLUG && !X86_VOYAGER
  1180. ---help---
  1181. Say Y here to allow turning CPUs off and on. CPUs can be
  1182. controlled through /sys/devices/system/cpu.
  1183. ( Note: power management support will enable this option
  1184. automatically on SMP systems. )
  1185. Say N if you want to disable CPU hotplug.
  1186. config COMPAT_VDSO
  1187. def_bool y
  1188. prompt "Compat VDSO support"
  1189. depends on X86_32 || IA32_EMULATION
  1190. help
  1191. Map the 32-bit VDSO to the predictable old-style address too.
  1192. ---help---
  1193. Say N here if you are running a sufficiently recent glibc
  1194. version (2.3.3 or later), to remove the high-mapped
  1195. VDSO mapping and to exclusively use the randomized VDSO.
  1196. If unsure, say Y.
  1197. config CMDLINE_BOOL
  1198. bool "Built-in kernel command line"
  1199. default n
  1200. help
  1201. Allow for specifying boot arguments to the kernel at
  1202. build time. On some systems (e.g. embedded ones), it is
  1203. necessary or convenient to provide some or all of the
  1204. kernel boot arguments with the kernel itself (that is,
  1205. to not rely on the boot loader to provide them.)
  1206. To compile command line arguments into the kernel,
  1207. set this option to 'Y', then fill in the
  1208. the boot arguments in CONFIG_CMDLINE.
  1209. Systems with fully functional boot loaders (i.e. non-embedded)
  1210. should leave this option set to 'N'.
  1211. config CMDLINE
  1212. string "Built-in kernel command string"
  1213. depends on CMDLINE_BOOL
  1214. default ""
  1215. help
  1216. Enter arguments here that should be compiled into the kernel
  1217. image and used at boot time. If the boot loader provides a
  1218. command line at boot time, it is appended to this string to
  1219. form the full kernel command line, when the system boots.
  1220. However, you can use the CONFIG_CMDLINE_OVERRIDE option to
  1221. change this behavior.
  1222. In most cases, the command line (whether built-in or provided
  1223. by the boot loader) should specify the device for the root
  1224. file system.
  1225. config CMDLINE_OVERRIDE
  1226. bool "Built-in command line overrides boot loader arguments"
  1227. default n
  1228. depends on CMDLINE_BOOL
  1229. help
  1230. Set this option to 'Y' to have the kernel ignore the boot loader
  1231. command line, and use ONLY the built-in command line.
  1232. This is used to work around broken boot loaders. This should
  1233. be set to 'N' under normal conditions.
  1234. endmenu
  1235. config ARCH_ENABLE_MEMORY_HOTPLUG
  1236. def_bool y
  1237. depends on X86_64 || (X86_32 && HIGHMEM)
  1238. config HAVE_ARCH_EARLY_PFN_TO_NID
  1239. def_bool X86_64
  1240. depends on NUMA
  1241. menu "Power management options"
  1242. depends on !X86_VOYAGER
  1243. config ARCH_HIBERNATION_HEADER
  1244. def_bool y
  1245. depends on X86_64 && HIBERNATION
  1246. source "kernel/power/Kconfig"
  1247. source "drivers/acpi/Kconfig"
  1248. config X86_APM_BOOT
  1249. bool
  1250. default y
  1251. depends on APM || APM_MODULE
  1252. menuconfig APM
  1253. tristate "APM (Advanced Power Management) BIOS support"
  1254. depends on X86_32 && PM_SLEEP
  1255. ---help---
  1256. APM is a BIOS specification for saving power using several different
  1257. techniques. This is mostly useful for battery powered laptops with
  1258. APM compliant BIOSes. If you say Y here, the system time will be
  1259. reset after a RESUME operation, the /proc/apm device will provide
  1260. battery status information, and user-space programs will receive
  1261. notification of APM "events" (e.g. battery status change).
  1262. If you select "Y" here, you can disable actual use of the APM
  1263. BIOS by passing the "apm=off" option to the kernel at boot time.
  1264. Note that the APM support is almost completely disabled for
  1265. machines with more than one CPU.
  1266. In order to use APM, you will need supporting software. For location
  1267. and more information, read <file:Documentation/power/pm.txt> and the
  1268. Battery Powered Linux mini-HOWTO, available from
  1269. <http://www.tldp.org/docs.html#howto>.
  1270. This driver does not spin down disk drives (see the hdparm(8)
  1271. manpage ("man 8 hdparm") for that), and it doesn't turn off
  1272. VESA-compliant "green" monitors.
  1273. This driver does not support the TI 4000M TravelMate and the ACER
  1274. 486/DX4/75 because they don't have compliant BIOSes. Many "green"
  1275. desktop machines also don't have compliant BIOSes, and this driver
  1276. may cause those machines to panic during the boot phase.
  1277. Generally, if you don't have a battery in your machine, there isn't
  1278. much point in using this driver and you should say N. If you get
  1279. random kernel OOPSes or reboots that don't seem to be related to
  1280. anything, try disabling/enabling this option (or disabling/enabling
  1281. APM in your BIOS).
  1282. Some other things you should try when experiencing seemingly random,
  1283. "weird" problems:
  1284. 1) make sure that you have enough swap space and that it is
  1285. enabled.
  1286. 2) pass the "no-hlt" option to the kernel
  1287. 3) switch on floating point emulation in the kernel and pass
  1288. the "no387" option to the kernel
  1289. 4) pass the "floppy=nodma" option to the kernel
  1290. 5) pass the "mem=4M" option to the kernel (thereby disabling
  1291. all but the first 4 MB of RAM)
  1292. 6) make sure that the CPU is not over clocked.
  1293. 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
  1294. 8) disable the cache from your BIOS settings
  1295. 9) install a fan for the video card or exchange video RAM
  1296. 10) install a better fan for the CPU
  1297. 11) exchange RAM chips
  1298. 12) exchange the motherboard.
  1299. To compile this driver as a module, choose M here: the
  1300. module will be called apm.
  1301. if APM
  1302. config APM_IGNORE_USER_SUSPEND
  1303. bool "Ignore USER SUSPEND"
  1304. help
  1305. This option will ignore USER SUSPEND requests. On machines with a
  1306. compliant APM BIOS, you want to say N. However, on the NEC Versa M
  1307. series notebooks, it is necessary to say Y because of a BIOS bug.
  1308. config APM_DO_ENABLE
  1309. bool "Enable PM at boot time"
  1310. ---help---
  1311. Enable APM features at boot time. From page 36 of the APM BIOS
  1312. specification: "When disabled, the APM BIOS does not automatically
  1313. power manage devices, enter the Standby State, enter the Suspend
  1314. State, or take power saving steps in response to CPU Idle calls."
  1315. This driver will make CPU Idle calls when Linux is idle (unless this
  1316. feature is turned off -- see "Do CPU IDLE calls", below). This
  1317. should always save battery power, but more complicated APM features
  1318. will be dependent on your BIOS implementation. You may need to turn
  1319. this option off if your computer hangs at boot time when using APM
  1320. support, or if it beeps continuously instead of suspending. Turn
  1321. this off if you have a NEC UltraLite Versa 33/C or a Toshiba
  1322. T400CDT. This is off by default since most machines do fine without
  1323. this feature.
  1324. config APM_CPU_IDLE
  1325. bool "Make CPU Idle calls when idle"
  1326. help
  1327. Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
  1328. On some machines, this can activate improved power savings, such as
  1329. a slowed CPU clock rate, when the machine is idle. These idle calls
  1330. are made after the idle loop has run for some length of time (e.g.,
  1331. 333 mS). On some machines, this will cause a hang at boot time or
  1332. whenever the CPU becomes idle. (On machines with more than one CPU,
  1333. this option does nothing.)
  1334. config APM_DISPLAY_BLANK
  1335. bool "Enable console blanking using APM"
  1336. help
  1337. Enable console blanking using the APM. Some laptops can use this to
  1338. turn off the LCD backlight when the screen blanker of the Linux
  1339. virtual console blanks the screen. Note that this is only used by
  1340. the virtual console screen blanker, and won't turn off the backlight
  1341. when using the X Window system. This also doesn't have anything to
  1342. do with your VESA-compliant power-saving monitor. Further, this
  1343. option doesn't work for all laptops -- it might not turn off your
  1344. backlight at all, or it might print a lot of errors to the console,
  1345. especially if you are using gpm.
  1346. config APM_ALLOW_INTS
  1347. bool "Allow interrupts during APM BIOS calls"
  1348. help
  1349. Normally we disable external interrupts while we are making calls to
  1350. the APM BIOS as a measure to lessen the effects of a badly behaving
  1351. BIOS implementation. The BIOS should reenable interrupts if it
  1352. needs to. Unfortunately, some BIOSes do not -- especially those in
  1353. many of the newer IBM Thinkpads. If you experience hangs when you
  1354. suspend, try setting this to Y. Otherwise, say N.
  1355. config APM_REAL_MODE_POWER_OFF
  1356. bool "Use real mode APM BIOS call to power off"
  1357. help
  1358. Use real mode APM BIOS calls to switch off the computer. This is
  1359. a work-around for a number of buggy BIOSes. Switch this option on if
  1360. your computer crashes instead of powering off properly.
  1361. endif # APM
  1362. source "arch/x86/kernel/cpu/cpufreq/Kconfig"
  1363. source "drivers/cpuidle/Kconfig"
  1364. endmenu
  1365. menu "Bus options (PCI etc.)"
  1366. config PCI
  1367. bool "PCI support"
  1368. default y
  1369. select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
  1370. help
  1371. Find out whether you have a PCI motherboard. PCI is the name of a
  1372. bus system, i.e. the way the CPU talks to the other stuff inside
  1373. your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
  1374. VESA. If you have PCI, say Y, otherwise N.
  1375. choice
  1376. prompt "PCI access mode"
  1377. depends on X86_32 && PCI
  1378. default PCI_GOANY
  1379. ---help---
  1380. On PCI systems, the BIOS can be used to detect the PCI devices and
  1381. determine their configuration. However, some old PCI motherboards
  1382. have BIOS bugs and may crash if this is done. Also, some embedded
  1383. PCI-based systems don't have any BIOS at all. Linux can also try to
  1384. detect the PCI hardware directly without using the BIOS.
  1385. With this option, you can specify how Linux should detect the
  1386. PCI devices. If you choose "BIOS", the BIOS will be used,
  1387. if you choose "Direct", the BIOS won't be used, and if you
  1388. choose "MMConfig", then PCI Express MMCONFIG will be used.
  1389. If you choose "Any", the kernel will try MMCONFIG, then the
  1390. direct access method and falls back to the BIOS if that doesn't
  1391. work. If unsure, go with the default, which is "Any".
  1392. config PCI_GOBIOS
  1393. bool "BIOS"
  1394. config PCI_GOMMCONFIG
  1395. bool "MMConfig"
  1396. config PCI_GODIRECT
  1397. bool "Direct"
  1398. config PCI_GOOLPC
  1399. bool "OLPC"
  1400. depends on OLPC
  1401. config PCI_GOANY
  1402. bool "Any"
  1403. endchoice
  1404. config PCI_BIOS
  1405. def_bool y
  1406. depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
  1407. # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
  1408. config PCI_DIRECT
  1409. def_bool y
  1410. depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC))
  1411. config PCI_MMCONFIG
  1412. def_bool y
  1413. depends on X86_32 && PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY)
  1414. config PCI_OLPC
  1415. def_bool y
  1416. depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
  1417. config PCI_DOMAINS
  1418. def_bool y
  1419. depends on PCI
  1420. config PCI_MMCONFIG
  1421. bool "Support mmconfig PCI config space access"
  1422. depends on X86_64 && PCI && ACPI
  1423. config DMAR
  1424. bool "Support for DMA Remapping Devices (EXPERIMENTAL)"
  1425. depends on X86_64 && PCI_MSI && ACPI && EXPERIMENTAL
  1426. help
  1427. DMA remapping (DMAR) devices support enables independent address
  1428. translations for Direct Memory Access (DMA) from devices.
  1429. These DMA remapping devices are reported via ACPI tables
  1430. and include PCI device scope covered by these DMA
  1431. remapping devices.
  1432. config DMAR_GFX_WA
  1433. def_bool y
  1434. prompt "Support for Graphics workaround"
  1435. depends on DMAR
  1436. help
  1437. Current Graphics drivers tend to use physical address
  1438. for DMA and avoid using DMA APIs. Setting this config
  1439. option permits the IOMMU driver to set a unity map for
  1440. all the OS-visible memory. Hence the driver can continue
  1441. to use physical addresses for DMA.
  1442. config DMAR_FLOPPY_WA
  1443. def_bool y
  1444. depends on DMAR
  1445. help
  1446. Floppy disk drivers are know to bypass DMA API calls
  1447. thereby failing to work when IOMMU is enabled. This
  1448. workaround will setup a 1:1 mapping for the first
  1449. 16M to make floppy (an ISA device) work.
  1450. config INTR_REMAP
  1451. bool "Support for Interrupt Remapping (EXPERIMENTAL)"
  1452. depends on X86_64 && X86_IO_APIC && PCI_MSI && ACPI && EXPERIMENTAL
  1453. help
  1454. Supports Interrupt remapping for IO-APIC and MSI devices.
  1455. To use x2apic mode in the CPU's which support x2APIC enhancements or
  1456. to support platforms with CPU's having > 8 bit APIC ID, say Y.
  1457. source "drivers/pci/pcie/Kconfig"
  1458. source "drivers/pci/Kconfig"
  1459. # x86_64 have no ISA slots, but do have ISA-style DMA.
  1460. config ISA_DMA_API
  1461. def_bool y
  1462. if X86_32
  1463. config ISA
  1464. bool "ISA support"
  1465. depends on !X86_VOYAGER
  1466. help
  1467. Find out whether you have ISA slots on your motherboard. ISA is the
  1468. name of a bus system, i.e. the way the CPU talks to the other stuff
  1469. inside your box. Other bus systems are PCI, EISA, MicroChannel
  1470. (MCA) or VESA. ISA is an older system, now being displaced by PCI;
  1471. newer boards don't support it. If you have ISA, say Y, otherwise N.
  1472. config EISA
  1473. bool "EISA support"
  1474. depends on ISA
  1475. ---help---
  1476. The Extended Industry Standard Architecture (EISA) bus was
  1477. developed as an open alternative to the IBM MicroChannel bus.
  1478. The EISA bus provided some of the features of the IBM MicroChannel
  1479. bus while maintaining backward compatibility with cards made for
  1480. the older ISA bus. The EISA bus saw limited use between 1988 and
  1481. 1995 when it was made obsolete by the PCI bus.
  1482. Say Y here if you are building a kernel for an EISA-based machine.
  1483. Otherwise, say N.
  1484. source "drivers/eisa/Kconfig"
  1485. config MCA
  1486. bool "MCA support" if !X86_VOYAGER
  1487. default y if X86_VOYAGER
  1488. help
  1489. MicroChannel Architecture is found in some IBM PS/2 machines and
  1490. laptops. It is a bus system similar to PCI or ISA. See
  1491. <file:Documentation/mca.txt> (and especially the web page given
  1492. there) before attempting to build an MCA bus kernel.
  1493. source "drivers/mca/Kconfig"
  1494. config SCx200
  1495. tristate "NatSemi SCx200 support"
  1496. depends on !X86_VOYAGER
  1497. help
  1498. This provides basic support for National Semiconductor's
  1499. (now AMD's) Geode processors. The driver probes for the
  1500. PCI-IDs of several on-chip devices, so its a good dependency
  1501. for other scx200_* drivers.
  1502. If compiled as a module, the driver is named scx200.
  1503. config SCx200HR_TIMER
  1504. tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
  1505. depends on SCx200 && GENERIC_TIME
  1506. default y
  1507. help
  1508. This driver provides a clocksource built upon the on-chip
  1509. 27MHz high-resolution timer. Its also a workaround for
  1510. NSC Geode SC-1100's buggy TSC, which loses time when the
  1511. processor goes idle (as is done by the scheduler). The
  1512. other workaround is idle=poll boot option.
  1513. config GEODE_MFGPT_TIMER
  1514. def_bool y
  1515. prompt "Geode Multi-Function General Purpose Timer (MFGPT) events"
  1516. depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
  1517. help
  1518. This driver provides a clock event source based on the MFGPT
  1519. timer(s) in the CS5535 and CS5536 companion chip for the geode.
  1520. MFGPTs have a better resolution and max interval than the
  1521. generic PIT, and are suitable for use as high-res timers.
  1522. config OLPC
  1523. bool "One Laptop Per Child support"
  1524. default n
  1525. help
  1526. Add support for detecting the unique features of the OLPC
  1527. XO hardware.
  1528. endif # X86_32
  1529. config K8_NB
  1530. def_bool y
  1531. depends on AGP_AMD64 || (X86_64 && (GART_IOMMU || (PCI && NUMA)))
  1532. source "drivers/pcmcia/Kconfig"
  1533. source "drivers/pci/hotplug/Kconfig"
  1534. endmenu
  1535. menu "Executable file formats / Emulations"
  1536. source "fs/Kconfig.binfmt"
  1537. config IA32_EMULATION
  1538. bool "IA32 Emulation"
  1539. depends on X86_64
  1540. select COMPAT_BINFMT_ELF
  1541. help
  1542. Include code to run 32-bit programs under a 64-bit kernel. You should
  1543. likely turn this on, unless you're 100% sure that you don't have any
  1544. 32-bit programs left.
  1545. config IA32_AOUT
  1546. tristate "IA32 a.out support"
  1547. depends on IA32_EMULATION
  1548. help
  1549. Support old a.out binaries in the 32bit emulation.
  1550. config COMPAT
  1551. def_bool y
  1552. depends on IA32_EMULATION
  1553. config COMPAT_FOR_U64_ALIGNMENT
  1554. def_bool COMPAT
  1555. depends on X86_64
  1556. config SYSVIPC_COMPAT
  1557. def_bool y
  1558. depends on COMPAT && SYSVIPC
  1559. endmenu
  1560. source "net/Kconfig"
  1561. source "drivers/Kconfig"
  1562. source "drivers/firmware/Kconfig"
  1563. source "fs/Kconfig"
  1564. source "arch/x86/Kconfig.debug"
  1565. source "security/Kconfig"
  1566. source "crypto/Kconfig"
  1567. source "arch/x86/kvm/Kconfig"
  1568. source "lib/Kconfig"