x86.c 143 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <trace/events/kvm.h>
  42. #undef TRACE_INCLUDE_FILE
  43. #define CREATE_TRACE_POINTS
  44. #include "trace.h"
  45. #include <asm/debugreg.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/msr.h>
  48. #include <asm/desc.h>
  49. #include <asm/mtrr.h>
  50. #include <asm/mce.h>
  51. #define MAX_IO_MSRS 256
  52. #define CR0_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  54. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  55. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  56. #define CR4_RESERVED_BITS \
  57. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  58. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  59. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  60. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  61. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  62. #define KVM_MAX_MCE_BANKS 32
  63. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  64. /* EFER defaults:
  65. * - enable syscall per default because its emulated by KVM
  66. * - enable LME and LMA per default on 64 bit KVM
  67. */
  68. #ifdef CONFIG_X86_64
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  70. #else
  71. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  72. #endif
  73. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  74. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  75. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  76. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  77. struct kvm_cpuid_entry2 __user *entries);
  78. struct kvm_x86_ops *kvm_x86_ops;
  79. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  80. int ignore_msrs = 0;
  81. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  82. #define KVM_NR_SHARED_MSRS 16
  83. struct kvm_shared_msrs_global {
  84. int nr;
  85. u32 msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. struct kvm_shared_msr_values {
  91. u64 host;
  92. u64 curr;
  93. } values[KVM_NR_SHARED_MSRS];
  94. };
  95. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  96. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  97. struct kvm_stats_debugfs_item debugfs_entries[] = {
  98. { "pf_fixed", VCPU_STAT(pf_fixed) },
  99. { "pf_guest", VCPU_STAT(pf_guest) },
  100. { "tlb_flush", VCPU_STAT(tlb_flush) },
  101. { "invlpg", VCPU_STAT(invlpg) },
  102. { "exits", VCPU_STAT(exits) },
  103. { "io_exits", VCPU_STAT(io_exits) },
  104. { "mmio_exits", VCPU_STAT(mmio_exits) },
  105. { "signal_exits", VCPU_STAT(signal_exits) },
  106. { "irq_window", VCPU_STAT(irq_window_exits) },
  107. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  108. { "halt_exits", VCPU_STAT(halt_exits) },
  109. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  110. { "hypercalls", VCPU_STAT(hypercalls) },
  111. { "request_irq", VCPU_STAT(request_irq_exits) },
  112. { "irq_exits", VCPU_STAT(irq_exits) },
  113. { "host_state_reload", VCPU_STAT(host_state_reload) },
  114. { "efer_reload", VCPU_STAT(efer_reload) },
  115. { "fpu_reload", VCPU_STAT(fpu_reload) },
  116. { "insn_emulation", VCPU_STAT(insn_emulation) },
  117. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  118. { "irq_injections", VCPU_STAT(irq_injections) },
  119. { "nmi_injections", VCPU_STAT(nmi_injections) },
  120. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  121. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  122. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  123. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  124. { "mmu_flooded", VM_STAT(mmu_flooded) },
  125. { "mmu_recycled", VM_STAT(mmu_recycled) },
  126. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  127. { "mmu_unsync", VM_STAT(mmu_unsync) },
  128. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  129. { "largepages", VM_STAT(lpages) },
  130. { NULL }
  131. };
  132. static void kvm_on_user_return(struct user_return_notifier *urn)
  133. {
  134. unsigned slot;
  135. struct kvm_shared_msrs *locals
  136. = container_of(urn, struct kvm_shared_msrs, urn);
  137. struct kvm_shared_msr_values *values;
  138. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  139. values = &locals->values[slot];
  140. if (values->host != values->curr) {
  141. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  142. values->curr = values->host;
  143. }
  144. }
  145. locals->registered = false;
  146. user_return_notifier_unregister(urn);
  147. }
  148. static void shared_msr_update(unsigned slot, u32 msr)
  149. {
  150. struct kvm_shared_msrs *smsr;
  151. u64 value;
  152. smsr = &__get_cpu_var(shared_msrs);
  153. /* only read, and nobody should modify it at this time,
  154. * so don't need lock */
  155. if (slot >= shared_msrs_global.nr) {
  156. printk(KERN_ERR "kvm: invalid MSR slot!");
  157. return;
  158. }
  159. rdmsrl_safe(msr, &value);
  160. smsr->values[slot].host = value;
  161. smsr->values[slot].curr = value;
  162. }
  163. void kvm_define_shared_msr(unsigned slot, u32 msr)
  164. {
  165. if (slot >= shared_msrs_global.nr)
  166. shared_msrs_global.nr = slot + 1;
  167. shared_msrs_global.msrs[slot] = msr;
  168. /* we need ensured the shared_msr_global have been updated */
  169. smp_wmb();
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  172. static void kvm_shared_msr_cpu_online(void)
  173. {
  174. unsigned i;
  175. for (i = 0; i < shared_msrs_global.nr; ++i)
  176. shared_msr_update(i, shared_msrs_global.msrs[i]);
  177. }
  178. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  179. {
  180. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  181. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  182. return;
  183. smsr->values[slot].curr = value;
  184. wrmsrl(shared_msrs_global.msrs[slot], value);
  185. if (!smsr->registered) {
  186. smsr->urn.on_user_return = kvm_on_user_return;
  187. user_return_notifier_register(&smsr->urn);
  188. smsr->registered = true;
  189. }
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  192. static void drop_user_return_notifiers(void *ignore)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (smsr->registered)
  196. kvm_on_user_return(&smsr->urn);
  197. }
  198. unsigned long segment_base(u16 selector)
  199. {
  200. struct desc_ptr gdt;
  201. struct desc_struct *d;
  202. unsigned long table_base;
  203. unsigned long v;
  204. if (selector == 0)
  205. return 0;
  206. native_store_gdt(&gdt);
  207. table_base = gdt.address;
  208. if (selector & 4) { /* from ldt */
  209. u16 ldt_selector = kvm_read_ldt();
  210. table_base = segment_base(ldt_selector);
  211. }
  212. d = (struct desc_struct *)(table_base + (selector & ~7));
  213. v = get_desc_base(d);
  214. #ifdef CONFIG_X86_64
  215. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  216. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  217. #endif
  218. return v;
  219. }
  220. EXPORT_SYMBOL_GPL(segment_base);
  221. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  222. {
  223. if (irqchip_in_kernel(vcpu->kvm))
  224. return vcpu->arch.apic_base;
  225. else
  226. return vcpu->arch.apic_base;
  227. }
  228. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  229. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  230. {
  231. /* TODO: reserve bits check */
  232. if (irqchip_in_kernel(vcpu->kvm))
  233. kvm_lapic_set_base(vcpu, data);
  234. else
  235. vcpu->arch.apic_base = data;
  236. }
  237. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  238. #define EXCPT_BENIGN 0
  239. #define EXCPT_CONTRIBUTORY 1
  240. #define EXCPT_PF 2
  241. static int exception_class(int vector)
  242. {
  243. switch (vector) {
  244. case PF_VECTOR:
  245. return EXCPT_PF;
  246. case DE_VECTOR:
  247. case TS_VECTOR:
  248. case NP_VECTOR:
  249. case SS_VECTOR:
  250. case GP_VECTOR:
  251. return EXCPT_CONTRIBUTORY;
  252. default:
  253. break;
  254. }
  255. return EXCPT_BENIGN;
  256. }
  257. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  258. unsigned nr, bool has_error, u32 error_code)
  259. {
  260. u32 prev_nr;
  261. int class1, class2;
  262. if (!vcpu->arch.exception.pending) {
  263. queue:
  264. vcpu->arch.exception.pending = true;
  265. vcpu->arch.exception.has_error_code = has_error;
  266. vcpu->arch.exception.nr = nr;
  267. vcpu->arch.exception.error_code = error_code;
  268. return;
  269. }
  270. /* to check exception */
  271. prev_nr = vcpu->arch.exception.nr;
  272. if (prev_nr == DF_VECTOR) {
  273. /* triple fault -> shutdown */
  274. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  275. return;
  276. }
  277. class1 = exception_class(prev_nr);
  278. class2 = exception_class(nr);
  279. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  280. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  281. /* generate double fault per SDM Table 5-5 */
  282. vcpu->arch.exception.pending = true;
  283. vcpu->arch.exception.has_error_code = true;
  284. vcpu->arch.exception.nr = DF_VECTOR;
  285. vcpu->arch.exception.error_code = 0;
  286. } else
  287. /* replace previous exception with a new one in a hope
  288. that instruction re-execution will regenerate lost
  289. exception */
  290. goto queue;
  291. }
  292. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  293. {
  294. kvm_multiple_exception(vcpu, nr, false, 0);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  297. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  298. u32 error_code)
  299. {
  300. ++vcpu->stat.pf_guest;
  301. vcpu->arch.cr2 = addr;
  302. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  303. }
  304. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  305. {
  306. vcpu->arch.nmi_pending = 1;
  307. }
  308. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  309. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  310. {
  311. kvm_multiple_exception(vcpu, nr, true, error_code);
  312. }
  313. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  314. /*
  315. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  316. * a #GP and return false.
  317. */
  318. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  319. {
  320. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  321. return true;
  322. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  323. return false;
  324. }
  325. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  326. /*
  327. * Load the pae pdptrs. Return true is they are all valid.
  328. */
  329. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  330. {
  331. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  332. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  333. int i;
  334. int ret;
  335. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  336. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  337. offset * sizeof(u64), sizeof(pdpte));
  338. if (ret < 0) {
  339. ret = 0;
  340. goto out;
  341. }
  342. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  343. if (is_present_gpte(pdpte[i]) &&
  344. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  345. ret = 0;
  346. goto out;
  347. }
  348. }
  349. ret = 1;
  350. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_avail);
  353. __set_bit(VCPU_EXREG_PDPTR,
  354. (unsigned long *)&vcpu->arch.regs_dirty);
  355. out:
  356. return ret;
  357. }
  358. EXPORT_SYMBOL_GPL(load_pdptrs);
  359. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  360. {
  361. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  362. bool changed = true;
  363. int r;
  364. if (is_long_mode(vcpu) || !is_pae(vcpu))
  365. return false;
  366. if (!test_bit(VCPU_EXREG_PDPTR,
  367. (unsigned long *)&vcpu->arch.regs_avail))
  368. return true;
  369. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  370. if (r < 0)
  371. goto out;
  372. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  373. out:
  374. return changed;
  375. }
  376. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  377. {
  378. cr0 |= X86_CR0_ET;
  379. #ifdef CONFIG_X86_64
  380. if (cr0 & 0xffffffff00000000UL) {
  381. kvm_inject_gp(vcpu, 0);
  382. return;
  383. }
  384. #endif
  385. cr0 &= ~CR0_RESERVED_BITS;
  386. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  387. kvm_inject_gp(vcpu, 0);
  388. return;
  389. }
  390. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  391. kvm_inject_gp(vcpu, 0);
  392. return;
  393. }
  394. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  395. #ifdef CONFIG_X86_64
  396. if ((vcpu->arch.efer & EFER_LME)) {
  397. int cs_db, cs_l;
  398. if (!is_pae(vcpu)) {
  399. kvm_inject_gp(vcpu, 0);
  400. return;
  401. }
  402. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  403. if (cs_l) {
  404. kvm_inject_gp(vcpu, 0);
  405. return;
  406. }
  407. } else
  408. #endif
  409. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  410. kvm_inject_gp(vcpu, 0);
  411. return;
  412. }
  413. }
  414. kvm_x86_ops->set_cr0(vcpu, cr0);
  415. kvm_mmu_reset_context(vcpu);
  416. return;
  417. }
  418. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  419. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  420. {
  421. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  422. }
  423. EXPORT_SYMBOL_GPL(kvm_lmsw);
  424. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  425. {
  426. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  427. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  428. if (cr4 & CR4_RESERVED_BITS) {
  429. kvm_inject_gp(vcpu, 0);
  430. return;
  431. }
  432. if (is_long_mode(vcpu)) {
  433. if (!(cr4 & X86_CR4_PAE)) {
  434. kvm_inject_gp(vcpu, 0);
  435. return;
  436. }
  437. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  438. && ((cr4 ^ old_cr4) & pdptr_bits)
  439. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  440. kvm_inject_gp(vcpu, 0);
  441. return;
  442. }
  443. if (cr4 & X86_CR4_VMXE) {
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. kvm_x86_ops->set_cr4(vcpu, cr4);
  448. vcpu->arch.cr4 = cr4;
  449. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  450. kvm_mmu_reset_context(vcpu);
  451. }
  452. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  453. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  454. {
  455. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  456. kvm_mmu_sync_roots(vcpu);
  457. kvm_mmu_flush_tlb(vcpu);
  458. return;
  459. }
  460. if (is_long_mode(vcpu)) {
  461. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  462. kvm_inject_gp(vcpu, 0);
  463. return;
  464. }
  465. } else {
  466. if (is_pae(vcpu)) {
  467. if (cr3 & CR3_PAE_RESERVED_BITS) {
  468. kvm_inject_gp(vcpu, 0);
  469. return;
  470. }
  471. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  472. kvm_inject_gp(vcpu, 0);
  473. return;
  474. }
  475. }
  476. /*
  477. * We don't check reserved bits in nonpae mode, because
  478. * this isn't enforced, and VMware depends on this.
  479. */
  480. }
  481. /*
  482. * Does the new cr3 value map to physical memory? (Note, we
  483. * catch an invalid cr3 even in real-mode, because it would
  484. * cause trouble later on when we turn on paging anyway.)
  485. *
  486. * A real CPU would silently accept an invalid cr3 and would
  487. * attempt to use it - with largely undefined (and often hard
  488. * to debug) behavior on the guest side.
  489. */
  490. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  491. kvm_inject_gp(vcpu, 0);
  492. else {
  493. vcpu->arch.cr3 = cr3;
  494. vcpu->arch.mmu.new_cr3(vcpu);
  495. }
  496. }
  497. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  498. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  499. {
  500. if (cr8 & CR8_RESERVED_BITS) {
  501. kvm_inject_gp(vcpu, 0);
  502. return;
  503. }
  504. if (irqchip_in_kernel(vcpu->kvm))
  505. kvm_lapic_set_tpr(vcpu, cr8);
  506. else
  507. vcpu->arch.cr8 = cr8;
  508. }
  509. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  510. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  511. {
  512. if (irqchip_in_kernel(vcpu->kvm))
  513. return kvm_lapic_get_cr8(vcpu);
  514. else
  515. return vcpu->arch.cr8;
  516. }
  517. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  518. static inline u32 bit(int bitno)
  519. {
  520. return 1 << (bitno & 31);
  521. }
  522. /*
  523. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  524. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  525. *
  526. * This list is modified at module load time to reflect the
  527. * capabilities of the host cpu. This capabilities test skips MSRs that are
  528. * kvm-specific. Those are put in the beginning of the list.
  529. */
  530. #define KVM_SAVE_MSRS_BEGIN 5
  531. static u32 msrs_to_save[] = {
  532. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  533. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  534. HV_X64_MSR_APIC_ASSIST_PAGE,
  535. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  536. MSR_K6_STAR,
  537. #ifdef CONFIG_X86_64
  538. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  539. #endif
  540. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  541. };
  542. static unsigned num_msrs_to_save;
  543. static u32 emulated_msrs[] = {
  544. MSR_IA32_MISC_ENABLE,
  545. };
  546. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  547. {
  548. if (efer & efer_reserved_bits) {
  549. kvm_inject_gp(vcpu, 0);
  550. return;
  551. }
  552. if (is_paging(vcpu)
  553. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  554. kvm_inject_gp(vcpu, 0);
  555. return;
  556. }
  557. if (efer & EFER_FFXSR) {
  558. struct kvm_cpuid_entry2 *feat;
  559. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  560. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  561. kvm_inject_gp(vcpu, 0);
  562. return;
  563. }
  564. }
  565. if (efer & EFER_SVME) {
  566. struct kvm_cpuid_entry2 *feat;
  567. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  568. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  569. kvm_inject_gp(vcpu, 0);
  570. return;
  571. }
  572. }
  573. kvm_x86_ops->set_efer(vcpu, efer);
  574. efer &= ~EFER_LMA;
  575. efer |= vcpu->arch.efer & EFER_LMA;
  576. vcpu->arch.efer = efer;
  577. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  578. kvm_mmu_reset_context(vcpu);
  579. }
  580. void kvm_enable_efer_bits(u64 mask)
  581. {
  582. efer_reserved_bits &= ~mask;
  583. }
  584. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  585. /*
  586. * Writes msr value into into the appropriate "register".
  587. * Returns 0 on success, non-0 otherwise.
  588. * Assumes vcpu_load() was already called.
  589. */
  590. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  591. {
  592. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  593. }
  594. /*
  595. * Adapt set_msr() to msr_io()'s calling convention
  596. */
  597. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  598. {
  599. return kvm_set_msr(vcpu, index, *data);
  600. }
  601. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  602. {
  603. static int version;
  604. struct pvclock_wall_clock wc;
  605. struct timespec boot;
  606. if (!wall_clock)
  607. return;
  608. version++;
  609. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  610. /*
  611. * The guest calculates current wall clock time by adding
  612. * system time (updated by kvm_write_guest_time below) to the
  613. * wall clock specified here. guest system time equals host
  614. * system time for us, thus we must fill in host boot time here.
  615. */
  616. getboottime(&boot);
  617. wc.sec = boot.tv_sec;
  618. wc.nsec = boot.tv_nsec;
  619. wc.version = version;
  620. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  621. version++;
  622. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  623. }
  624. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  625. {
  626. uint32_t quotient, remainder;
  627. /* Don't try to replace with do_div(), this one calculates
  628. * "(dividend << 32) / divisor" */
  629. __asm__ ( "divl %4"
  630. : "=a" (quotient), "=d" (remainder)
  631. : "0" (0), "1" (dividend), "r" (divisor) );
  632. return quotient;
  633. }
  634. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  635. {
  636. uint64_t nsecs = 1000000000LL;
  637. int32_t shift = 0;
  638. uint64_t tps64;
  639. uint32_t tps32;
  640. tps64 = tsc_khz * 1000LL;
  641. while (tps64 > nsecs*2) {
  642. tps64 >>= 1;
  643. shift--;
  644. }
  645. tps32 = (uint32_t)tps64;
  646. while (tps32 <= (uint32_t)nsecs) {
  647. tps32 <<= 1;
  648. shift++;
  649. }
  650. hv_clock->tsc_shift = shift;
  651. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  652. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  653. __func__, tsc_khz, hv_clock->tsc_shift,
  654. hv_clock->tsc_to_system_mul);
  655. }
  656. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  657. static void kvm_write_guest_time(struct kvm_vcpu *v)
  658. {
  659. struct timespec ts;
  660. unsigned long flags;
  661. struct kvm_vcpu_arch *vcpu = &v->arch;
  662. void *shared_kaddr;
  663. unsigned long this_tsc_khz;
  664. if ((!vcpu->time_page))
  665. return;
  666. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  667. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  668. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  669. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  670. }
  671. put_cpu_var(cpu_tsc_khz);
  672. /* Keep irq disabled to prevent changes to the clock */
  673. local_irq_save(flags);
  674. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  675. ktime_get_ts(&ts);
  676. monotonic_to_bootbased(&ts);
  677. local_irq_restore(flags);
  678. /* With all the info we got, fill in the values */
  679. vcpu->hv_clock.system_time = ts.tv_nsec +
  680. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  681. /*
  682. * The interface expects us to write an even number signaling that the
  683. * update is finished. Since the guest won't see the intermediate
  684. * state, we just increase by 2 at the end.
  685. */
  686. vcpu->hv_clock.version += 2;
  687. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  688. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  689. sizeof(vcpu->hv_clock));
  690. kunmap_atomic(shared_kaddr, KM_USER0);
  691. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  692. }
  693. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  694. {
  695. struct kvm_vcpu_arch *vcpu = &v->arch;
  696. if (!vcpu->time_page)
  697. return 0;
  698. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  699. return 1;
  700. }
  701. static bool msr_mtrr_valid(unsigned msr)
  702. {
  703. switch (msr) {
  704. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  705. case MSR_MTRRfix64K_00000:
  706. case MSR_MTRRfix16K_80000:
  707. case MSR_MTRRfix16K_A0000:
  708. case MSR_MTRRfix4K_C0000:
  709. case MSR_MTRRfix4K_C8000:
  710. case MSR_MTRRfix4K_D0000:
  711. case MSR_MTRRfix4K_D8000:
  712. case MSR_MTRRfix4K_E0000:
  713. case MSR_MTRRfix4K_E8000:
  714. case MSR_MTRRfix4K_F0000:
  715. case MSR_MTRRfix4K_F8000:
  716. case MSR_MTRRdefType:
  717. case MSR_IA32_CR_PAT:
  718. return true;
  719. case 0x2f8:
  720. return true;
  721. }
  722. return false;
  723. }
  724. static bool valid_pat_type(unsigned t)
  725. {
  726. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  727. }
  728. static bool valid_mtrr_type(unsigned t)
  729. {
  730. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  731. }
  732. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  733. {
  734. int i;
  735. if (!msr_mtrr_valid(msr))
  736. return false;
  737. if (msr == MSR_IA32_CR_PAT) {
  738. for (i = 0; i < 8; i++)
  739. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  740. return false;
  741. return true;
  742. } else if (msr == MSR_MTRRdefType) {
  743. if (data & ~0xcff)
  744. return false;
  745. return valid_mtrr_type(data & 0xff);
  746. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  747. for (i = 0; i < 8 ; i++)
  748. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  749. return false;
  750. return true;
  751. }
  752. /* variable MTRRs */
  753. return valid_mtrr_type(data & 0xff);
  754. }
  755. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  756. {
  757. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  758. if (!mtrr_valid(vcpu, msr, data))
  759. return 1;
  760. if (msr == MSR_MTRRdefType) {
  761. vcpu->arch.mtrr_state.def_type = data;
  762. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  763. } else if (msr == MSR_MTRRfix64K_00000)
  764. p[0] = data;
  765. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  766. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  767. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  768. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  769. else if (msr == MSR_IA32_CR_PAT)
  770. vcpu->arch.pat = data;
  771. else { /* Variable MTRRs */
  772. int idx, is_mtrr_mask;
  773. u64 *pt;
  774. idx = (msr - 0x200) / 2;
  775. is_mtrr_mask = msr - 0x200 - 2 * idx;
  776. if (!is_mtrr_mask)
  777. pt =
  778. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  779. else
  780. pt =
  781. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  782. *pt = data;
  783. }
  784. kvm_mmu_reset_context(vcpu);
  785. return 0;
  786. }
  787. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  788. {
  789. u64 mcg_cap = vcpu->arch.mcg_cap;
  790. unsigned bank_num = mcg_cap & 0xff;
  791. switch (msr) {
  792. case MSR_IA32_MCG_STATUS:
  793. vcpu->arch.mcg_status = data;
  794. break;
  795. case MSR_IA32_MCG_CTL:
  796. if (!(mcg_cap & MCG_CTL_P))
  797. return 1;
  798. if (data != 0 && data != ~(u64)0)
  799. return -1;
  800. vcpu->arch.mcg_ctl = data;
  801. break;
  802. default:
  803. if (msr >= MSR_IA32_MC0_CTL &&
  804. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  805. u32 offset = msr - MSR_IA32_MC0_CTL;
  806. /* only 0 or all 1s can be written to IA32_MCi_CTL
  807. * some Linux kernels though clear bit 10 in bank 4 to
  808. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  809. * this to avoid an uncatched #GP in the guest
  810. */
  811. if ((offset & 0x3) == 0 &&
  812. data != 0 && (data | (1 << 10)) != ~(u64)0)
  813. return -1;
  814. vcpu->arch.mce_banks[offset] = data;
  815. break;
  816. }
  817. return 1;
  818. }
  819. return 0;
  820. }
  821. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  822. {
  823. struct kvm *kvm = vcpu->kvm;
  824. int lm = is_long_mode(vcpu);
  825. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  826. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  827. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  828. : kvm->arch.xen_hvm_config.blob_size_32;
  829. u32 page_num = data & ~PAGE_MASK;
  830. u64 page_addr = data & PAGE_MASK;
  831. u8 *page;
  832. int r;
  833. r = -E2BIG;
  834. if (page_num >= blob_size)
  835. goto out;
  836. r = -ENOMEM;
  837. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  838. if (!page)
  839. goto out;
  840. r = -EFAULT;
  841. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  842. goto out_free;
  843. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  844. goto out_free;
  845. r = 0;
  846. out_free:
  847. kfree(page);
  848. out:
  849. return r;
  850. }
  851. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  852. {
  853. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  854. }
  855. static bool kvm_hv_msr_partition_wide(u32 msr)
  856. {
  857. bool r = false;
  858. switch (msr) {
  859. case HV_X64_MSR_GUEST_OS_ID:
  860. case HV_X64_MSR_HYPERCALL:
  861. r = true;
  862. break;
  863. }
  864. return r;
  865. }
  866. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  867. {
  868. struct kvm *kvm = vcpu->kvm;
  869. switch (msr) {
  870. case HV_X64_MSR_GUEST_OS_ID:
  871. kvm->arch.hv_guest_os_id = data;
  872. /* setting guest os id to zero disables hypercall page */
  873. if (!kvm->arch.hv_guest_os_id)
  874. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  875. break;
  876. case HV_X64_MSR_HYPERCALL: {
  877. u64 gfn;
  878. unsigned long addr;
  879. u8 instructions[4];
  880. /* if guest os id is not set hypercall should remain disabled */
  881. if (!kvm->arch.hv_guest_os_id)
  882. break;
  883. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  884. kvm->arch.hv_hypercall = data;
  885. break;
  886. }
  887. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  888. addr = gfn_to_hva(kvm, gfn);
  889. if (kvm_is_error_hva(addr))
  890. return 1;
  891. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  892. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  893. if (copy_to_user((void __user *)addr, instructions, 4))
  894. return 1;
  895. kvm->arch.hv_hypercall = data;
  896. break;
  897. }
  898. default:
  899. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  900. "data 0x%llx\n", msr, data);
  901. return 1;
  902. }
  903. return 0;
  904. }
  905. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  906. {
  907. switch (msr) {
  908. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  909. unsigned long addr;
  910. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  911. vcpu->arch.hv_vapic = data;
  912. break;
  913. }
  914. addr = gfn_to_hva(vcpu->kvm, data >>
  915. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  916. if (kvm_is_error_hva(addr))
  917. return 1;
  918. if (clear_user((void __user *)addr, PAGE_SIZE))
  919. return 1;
  920. vcpu->arch.hv_vapic = data;
  921. break;
  922. }
  923. case HV_X64_MSR_EOI:
  924. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  925. case HV_X64_MSR_ICR:
  926. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  927. case HV_X64_MSR_TPR:
  928. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  929. default:
  930. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  931. "data 0x%llx\n", msr, data);
  932. return 1;
  933. }
  934. return 0;
  935. }
  936. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  937. {
  938. switch (msr) {
  939. case MSR_EFER:
  940. set_efer(vcpu, data);
  941. break;
  942. case MSR_K7_HWCR:
  943. data &= ~(u64)0x40; /* ignore flush filter disable */
  944. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  945. if (data != 0) {
  946. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  947. data);
  948. return 1;
  949. }
  950. break;
  951. case MSR_FAM10H_MMIO_CONF_BASE:
  952. if (data != 0) {
  953. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  954. "0x%llx\n", data);
  955. return 1;
  956. }
  957. break;
  958. case MSR_AMD64_NB_CFG:
  959. break;
  960. case MSR_IA32_DEBUGCTLMSR:
  961. if (!data) {
  962. /* We support the non-activated case already */
  963. break;
  964. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  965. /* Values other than LBR and BTF are vendor-specific,
  966. thus reserved and should throw a #GP */
  967. return 1;
  968. }
  969. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  970. __func__, data);
  971. break;
  972. case MSR_IA32_UCODE_REV:
  973. case MSR_IA32_UCODE_WRITE:
  974. case MSR_VM_HSAVE_PA:
  975. case MSR_AMD64_PATCH_LOADER:
  976. break;
  977. case 0x200 ... 0x2ff:
  978. return set_msr_mtrr(vcpu, msr, data);
  979. case MSR_IA32_APICBASE:
  980. kvm_set_apic_base(vcpu, data);
  981. break;
  982. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  983. return kvm_x2apic_msr_write(vcpu, msr, data);
  984. case MSR_IA32_MISC_ENABLE:
  985. vcpu->arch.ia32_misc_enable_msr = data;
  986. break;
  987. case MSR_KVM_WALL_CLOCK:
  988. vcpu->kvm->arch.wall_clock = data;
  989. kvm_write_wall_clock(vcpu->kvm, data);
  990. break;
  991. case MSR_KVM_SYSTEM_TIME: {
  992. if (vcpu->arch.time_page) {
  993. kvm_release_page_dirty(vcpu->arch.time_page);
  994. vcpu->arch.time_page = NULL;
  995. }
  996. vcpu->arch.time = data;
  997. /* we verify if the enable bit is set... */
  998. if (!(data & 1))
  999. break;
  1000. /* ...but clean it before doing the actual write */
  1001. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1002. vcpu->arch.time_page =
  1003. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1004. if (is_error_page(vcpu->arch.time_page)) {
  1005. kvm_release_page_clean(vcpu->arch.time_page);
  1006. vcpu->arch.time_page = NULL;
  1007. }
  1008. kvm_request_guest_time_update(vcpu);
  1009. break;
  1010. }
  1011. case MSR_IA32_MCG_CTL:
  1012. case MSR_IA32_MCG_STATUS:
  1013. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1014. return set_msr_mce(vcpu, msr, data);
  1015. /* Performance counters are not protected by a CPUID bit,
  1016. * so we should check all of them in the generic path for the sake of
  1017. * cross vendor migration.
  1018. * Writing a zero into the event select MSRs disables them,
  1019. * which we perfectly emulate ;-). Any other value should be at least
  1020. * reported, some guests depend on them.
  1021. */
  1022. case MSR_P6_EVNTSEL0:
  1023. case MSR_P6_EVNTSEL1:
  1024. case MSR_K7_EVNTSEL0:
  1025. case MSR_K7_EVNTSEL1:
  1026. case MSR_K7_EVNTSEL2:
  1027. case MSR_K7_EVNTSEL3:
  1028. if (data != 0)
  1029. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1030. "0x%x data 0x%llx\n", msr, data);
  1031. break;
  1032. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1033. * so we ignore writes to make it happy.
  1034. */
  1035. case MSR_P6_PERFCTR0:
  1036. case MSR_P6_PERFCTR1:
  1037. case MSR_K7_PERFCTR0:
  1038. case MSR_K7_PERFCTR1:
  1039. case MSR_K7_PERFCTR2:
  1040. case MSR_K7_PERFCTR3:
  1041. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1042. "0x%x data 0x%llx\n", msr, data);
  1043. break;
  1044. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1045. if (kvm_hv_msr_partition_wide(msr)) {
  1046. int r;
  1047. mutex_lock(&vcpu->kvm->lock);
  1048. r = set_msr_hyperv_pw(vcpu, msr, data);
  1049. mutex_unlock(&vcpu->kvm->lock);
  1050. return r;
  1051. } else
  1052. return set_msr_hyperv(vcpu, msr, data);
  1053. break;
  1054. default:
  1055. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1056. return xen_hvm_config(vcpu, data);
  1057. if (!ignore_msrs) {
  1058. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1059. msr, data);
  1060. return 1;
  1061. } else {
  1062. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1063. msr, data);
  1064. break;
  1065. }
  1066. }
  1067. return 0;
  1068. }
  1069. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1070. /*
  1071. * Reads an msr value (of 'msr_index') into 'pdata'.
  1072. * Returns 0 on success, non-0 otherwise.
  1073. * Assumes vcpu_load() was already called.
  1074. */
  1075. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1076. {
  1077. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1078. }
  1079. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1080. {
  1081. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1082. if (!msr_mtrr_valid(msr))
  1083. return 1;
  1084. if (msr == MSR_MTRRdefType)
  1085. *pdata = vcpu->arch.mtrr_state.def_type +
  1086. (vcpu->arch.mtrr_state.enabled << 10);
  1087. else if (msr == MSR_MTRRfix64K_00000)
  1088. *pdata = p[0];
  1089. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1090. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1091. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1092. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1093. else if (msr == MSR_IA32_CR_PAT)
  1094. *pdata = vcpu->arch.pat;
  1095. else { /* Variable MTRRs */
  1096. int idx, is_mtrr_mask;
  1097. u64 *pt;
  1098. idx = (msr - 0x200) / 2;
  1099. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1100. if (!is_mtrr_mask)
  1101. pt =
  1102. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1103. else
  1104. pt =
  1105. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1106. *pdata = *pt;
  1107. }
  1108. return 0;
  1109. }
  1110. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1111. {
  1112. u64 data;
  1113. u64 mcg_cap = vcpu->arch.mcg_cap;
  1114. unsigned bank_num = mcg_cap & 0xff;
  1115. switch (msr) {
  1116. case MSR_IA32_P5_MC_ADDR:
  1117. case MSR_IA32_P5_MC_TYPE:
  1118. data = 0;
  1119. break;
  1120. case MSR_IA32_MCG_CAP:
  1121. data = vcpu->arch.mcg_cap;
  1122. break;
  1123. case MSR_IA32_MCG_CTL:
  1124. if (!(mcg_cap & MCG_CTL_P))
  1125. return 1;
  1126. data = vcpu->arch.mcg_ctl;
  1127. break;
  1128. case MSR_IA32_MCG_STATUS:
  1129. data = vcpu->arch.mcg_status;
  1130. break;
  1131. default:
  1132. if (msr >= MSR_IA32_MC0_CTL &&
  1133. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1134. u32 offset = msr - MSR_IA32_MC0_CTL;
  1135. data = vcpu->arch.mce_banks[offset];
  1136. break;
  1137. }
  1138. return 1;
  1139. }
  1140. *pdata = data;
  1141. return 0;
  1142. }
  1143. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1144. {
  1145. u64 data = 0;
  1146. struct kvm *kvm = vcpu->kvm;
  1147. switch (msr) {
  1148. case HV_X64_MSR_GUEST_OS_ID:
  1149. data = kvm->arch.hv_guest_os_id;
  1150. break;
  1151. case HV_X64_MSR_HYPERCALL:
  1152. data = kvm->arch.hv_hypercall;
  1153. break;
  1154. default:
  1155. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1156. return 1;
  1157. }
  1158. *pdata = data;
  1159. return 0;
  1160. }
  1161. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1162. {
  1163. u64 data = 0;
  1164. switch (msr) {
  1165. case HV_X64_MSR_VP_INDEX: {
  1166. int r;
  1167. struct kvm_vcpu *v;
  1168. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1169. if (v == vcpu)
  1170. data = r;
  1171. break;
  1172. }
  1173. case HV_X64_MSR_EOI:
  1174. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1175. case HV_X64_MSR_ICR:
  1176. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1177. case HV_X64_MSR_TPR:
  1178. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1179. default:
  1180. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1181. return 1;
  1182. }
  1183. *pdata = data;
  1184. return 0;
  1185. }
  1186. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1187. {
  1188. u64 data;
  1189. switch (msr) {
  1190. case MSR_IA32_PLATFORM_ID:
  1191. case MSR_IA32_UCODE_REV:
  1192. case MSR_IA32_EBL_CR_POWERON:
  1193. case MSR_IA32_DEBUGCTLMSR:
  1194. case MSR_IA32_LASTBRANCHFROMIP:
  1195. case MSR_IA32_LASTBRANCHTOIP:
  1196. case MSR_IA32_LASTINTFROMIP:
  1197. case MSR_IA32_LASTINTTOIP:
  1198. case MSR_K8_SYSCFG:
  1199. case MSR_K7_HWCR:
  1200. case MSR_VM_HSAVE_PA:
  1201. case MSR_P6_PERFCTR0:
  1202. case MSR_P6_PERFCTR1:
  1203. case MSR_P6_EVNTSEL0:
  1204. case MSR_P6_EVNTSEL1:
  1205. case MSR_K7_EVNTSEL0:
  1206. case MSR_K7_PERFCTR0:
  1207. case MSR_K8_INT_PENDING_MSG:
  1208. case MSR_AMD64_NB_CFG:
  1209. case MSR_FAM10H_MMIO_CONF_BASE:
  1210. data = 0;
  1211. break;
  1212. case MSR_MTRRcap:
  1213. data = 0x500 | KVM_NR_VAR_MTRR;
  1214. break;
  1215. case 0x200 ... 0x2ff:
  1216. return get_msr_mtrr(vcpu, msr, pdata);
  1217. case 0xcd: /* fsb frequency */
  1218. data = 3;
  1219. break;
  1220. case MSR_IA32_APICBASE:
  1221. data = kvm_get_apic_base(vcpu);
  1222. break;
  1223. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1224. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1225. break;
  1226. case MSR_IA32_MISC_ENABLE:
  1227. data = vcpu->arch.ia32_misc_enable_msr;
  1228. break;
  1229. case MSR_IA32_PERF_STATUS:
  1230. /* TSC increment by tick */
  1231. data = 1000ULL;
  1232. /* CPU multiplier */
  1233. data |= (((uint64_t)4ULL) << 40);
  1234. break;
  1235. case MSR_EFER:
  1236. data = vcpu->arch.efer;
  1237. break;
  1238. case MSR_KVM_WALL_CLOCK:
  1239. data = vcpu->kvm->arch.wall_clock;
  1240. break;
  1241. case MSR_KVM_SYSTEM_TIME:
  1242. data = vcpu->arch.time;
  1243. break;
  1244. case MSR_IA32_P5_MC_ADDR:
  1245. case MSR_IA32_P5_MC_TYPE:
  1246. case MSR_IA32_MCG_CAP:
  1247. case MSR_IA32_MCG_CTL:
  1248. case MSR_IA32_MCG_STATUS:
  1249. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1250. return get_msr_mce(vcpu, msr, pdata);
  1251. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1252. if (kvm_hv_msr_partition_wide(msr)) {
  1253. int r;
  1254. mutex_lock(&vcpu->kvm->lock);
  1255. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1256. mutex_unlock(&vcpu->kvm->lock);
  1257. return r;
  1258. } else
  1259. return get_msr_hyperv(vcpu, msr, pdata);
  1260. break;
  1261. default:
  1262. if (!ignore_msrs) {
  1263. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1264. return 1;
  1265. } else {
  1266. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1267. data = 0;
  1268. }
  1269. break;
  1270. }
  1271. *pdata = data;
  1272. return 0;
  1273. }
  1274. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1275. /*
  1276. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1277. *
  1278. * @return number of msrs set successfully.
  1279. */
  1280. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1281. struct kvm_msr_entry *entries,
  1282. int (*do_msr)(struct kvm_vcpu *vcpu,
  1283. unsigned index, u64 *data))
  1284. {
  1285. int i, idx;
  1286. vcpu_load(vcpu);
  1287. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1288. for (i = 0; i < msrs->nmsrs; ++i)
  1289. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1290. break;
  1291. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1292. vcpu_put(vcpu);
  1293. return i;
  1294. }
  1295. /*
  1296. * Read or write a bunch of msrs. Parameters are user addresses.
  1297. *
  1298. * @return number of msrs set successfully.
  1299. */
  1300. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1301. int (*do_msr)(struct kvm_vcpu *vcpu,
  1302. unsigned index, u64 *data),
  1303. int writeback)
  1304. {
  1305. struct kvm_msrs msrs;
  1306. struct kvm_msr_entry *entries;
  1307. int r, n;
  1308. unsigned size;
  1309. r = -EFAULT;
  1310. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1311. goto out;
  1312. r = -E2BIG;
  1313. if (msrs.nmsrs >= MAX_IO_MSRS)
  1314. goto out;
  1315. r = -ENOMEM;
  1316. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1317. entries = vmalloc(size);
  1318. if (!entries)
  1319. goto out;
  1320. r = -EFAULT;
  1321. if (copy_from_user(entries, user_msrs->entries, size))
  1322. goto out_free;
  1323. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1324. if (r < 0)
  1325. goto out_free;
  1326. r = -EFAULT;
  1327. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1328. goto out_free;
  1329. r = n;
  1330. out_free:
  1331. vfree(entries);
  1332. out:
  1333. return r;
  1334. }
  1335. int kvm_dev_ioctl_check_extension(long ext)
  1336. {
  1337. int r;
  1338. switch (ext) {
  1339. case KVM_CAP_IRQCHIP:
  1340. case KVM_CAP_HLT:
  1341. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1342. case KVM_CAP_SET_TSS_ADDR:
  1343. case KVM_CAP_EXT_CPUID:
  1344. case KVM_CAP_CLOCKSOURCE:
  1345. case KVM_CAP_PIT:
  1346. case KVM_CAP_NOP_IO_DELAY:
  1347. case KVM_CAP_MP_STATE:
  1348. case KVM_CAP_SYNC_MMU:
  1349. case KVM_CAP_REINJECT_CONTROL:
  1350. case KVM_CAP_IRQ_INJECT_STATUS:
  1351. case KVM_CAP_ASSIGN_DEV_IRQ:
  1352. case KVM_CAP_IRQFD:
  1353. case KVM_CAP_IOEVENTFD:
  1354. case KVM_CAP_PIT2:
  1355. case KVM_CAP_PIT_STATE2:
  1356. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1357. case KVM_CAP_XEN_HVM:
  1358. case KVM_CAP_ADJUST_CLOCK:
  1359. case KVM_CAP_VCPU_EVENTS:
  1360. case KVM_CAP_HYPERV:
  1361. case KVM_CAP_HYPERV_VAPIC:
  1362. case KVM_CAP_HYPERV_SPIN:
  1363. case KVM_CAP_PCI_SEGMENT:
  1364. case KVM_CAP_DEBUGREGS:
  1365. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1366. r = 1;
  1367. break;
  1368. case KVM_CAP_COALESCED_MMIO:
  1369. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1370. break;
  1371. case KVM_CAP_VAPIC:
  1372. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1373. break;
  1374. case KVM_CAP_NR_VCPUS:
  1375. r = KVM_MAX_VCPUS;
  1376. break;
  1377. case KVM_CAP_NR_MEMSLOTS:
  1378. r = KVM_MEMORY_SLOTS;
  1379. break;
  1380. case KVM_CAP_PV_MMU: /* obsolete */
  1381. r = 0;
  1382. break;
  1383. case KVM_CAP_IOMMU:
  1384. r = iommu_found();
  1385. break;
  1386. case KVM_CAP_MCE:
  1387. r = KVM_MAX_MCE_BANKS;
  1388. break;
  1389. default:
  1390. r = 0;
  1391. break;
  1392. }
  1393. return r;
  1394. }
  1395. long kvm_arch_dev_ioctl(struct file *filp,
  1396. unsigned int ioctl, unsigned long arg)
  1397. {
  1398. void __user *argp = (void __user *)arg;
  1399. long r;
  1400. switch (ioctl) {
  1401. case KVM_GET_MSR_INDEX_LIST: {
  1402. struct kvm_msr_list __user *user_msr_list = argp;
  1403. struct kvm_msr_list msr_list;
  1404. unsigned n;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1407. goto out;
  1408. n = msr_list.nmsrs;
  1409. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1410. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1411. goto out;
  1412. r = -E2BIG;
  1413. if (n < msr_list.nmsrs)
  1414. goto out;
  1415. r = -EFAULT;
  1416. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1417. num_msrs_to_save * sizeof(u32)))
  1418. goto out;
  1419. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1420. &emulated_msrs,
  1421. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1422. goto out;
  1423. r = 0;
  1424. break;
  1425. }
  1426. case KVM_GET_SUPPORTED_CPUID: {
  1427. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1428. struct kvm_cpuid2 cpuid;
  1429. r = -EFAULT;
  1430. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1431. goto out;
  1432. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1433. cpuid_arg->entries);
  1434. if (r)
  1435. goto out;
  1436. r = -EFAULT;
  1437. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1438. goto out;
  1439. r = 0;
  1440. break;
  1441. }
  1442. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1443. u64 mce_cap;
  1444. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1445. r = -EFAULT;
  1446. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1447. goto out;
  1448. r = 0;
  1449. break;
  1450. }
  1451. default:
  1452. r = -EINVAL;
  1453. }
  1454. out:
  1455. return r;
  1456. }
  1457. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1458. {
  1459. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1460. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1461. unsigned long khz = cpufreq_quick_get(cpu);
  1462. if (!khz)
  1463. khz = tsc_khz;
  1464. per_cpu(cpu_tsc_khz, cpu) = khz;
  1465. }
  1466. kvm_request_guest_time_update(vcpu);
  1467. }
  1468. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1469. {
  1470. kvm_put_guest_fpu(vcpu);
  1471. kvm_x86_ops->vcpu_put(vcpu);
  1472. }
  1473. static int is_efer_nx(void)
  1474. {
  1475. unsigned long long efer = 0;
  1476. rdmsrl_safe(MSR_EFER, &efer);
  1477. return efer & EFER_NX;
  1478. }
  1479. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1480. {
  1481. int i;
  1482. struct kvm_cpuid_entry2 *e, *entry;
  1483. entry = NULL;
  1484. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1485. e = &vcpu->arch.cpuid_entries[i];
  1486. if (e->function == 0x80000001) {
  1487. entry = e;
  1488. break;
  1489. }
  1490. }
  1491. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1492. entry->edx &= ~(1 << 20);
  1493. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1494. }
  1495. }
  1496. /* when an old userspace process fills a new kernel module */
  1497. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1498. struct kvm_cpuid *cpuid,
  1499. struct kvm_cpuid_entry __user *entries)
  1500. {
  1501. int r, i;
  1502. struct kvm_cpuid_entry *cpuid_entries;
  1503. r = -E2BIG;
  1504. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1505. goto out;
  1506. r = -ENOMEM;
  1507. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1508. if (!cpuid_entries)
  1509. goto out;
  1510. r = -EFAULT;
  1511. if (copy_from_user(cpuid_entries, entries,
  1512. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1513. goto out_free;
  1514. for (i = 0; i < cpuid->nent; i++) {
  1515. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1516. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1517. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1518. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1519. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1520. vcpu->arch.cpuid_entries[i].index = 0;
  1521. vcpu->arch.cpuid_entries[i].flags = 0;
  1522. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1523. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1524. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1525. }
  1526. vcpu->arch.cpuid_nent = cpuid->nent;
  1527. cpuid_fix_nx_cap(vcpu);
  1528. r = 0;
  1529. kvm_apic_set_version(vcpu);
  1530. kvm_x86_ops->cpuid_update(vcpu);
  1531. out_free:
  1532. vfree(cpuid_entries);
  1533. out:
  1534. return r;
  1535. }
  1536. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1537. struct kvm_cpuid2 *cpuid,
  1538. struct kvm_cpuid_entry2 __user *entries)
  1539. {
  1540. int r;
  1541. r = -E2BIG;
  1542. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1543. goto out;
  1544. r = -EFAULT;
  1545. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1546. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1547. goto out;
  1548. vcpu->arch.cpuid_nent = cpuid->nent;
  1549. kvm_apic_set_version(vcpu);
  1550. kvm_x86_ops->cpuid_update(vcpu);
  1551. return 0;
  1552. out:
  1553. return r;
  1554. }
  1555. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1556. struct kvm_cpuid2 *cpuid,
  1557. struct kvm_cpuid_entry2 __user *entries)
  1558. {
  1559. int r;
  1560. r = -E2BIG;
  1561. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1562. goto out;
  1563. r = -EFAULT;
  1564. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1565. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1566. goto out;
  1567. return 0;
  1568. out:
  1569. cpuid->nent = vcpu->arch.cpuid_nent;
  1570. return r;
  1571. }
  1572. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1573. u32 index)
  1574. {
  1575. entry->function = function;
  1576. entry->index = index;
  1577. cpuid_count(entry->function, entry->index,
  1578. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1579. entry->flags = 0;
  1580. }
  1581. #define F(x) bit(X86_FEATURE_##x)
  1582. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1583. u32 index, int *nent, int maxnent)
  1584. {
  1585. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1586. #ifdef CONFIG_X86_64
  1587. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1588. ? F(GBPAGES) : 0;
  1589. unsigned f_lm = F(LM);
  1590. #else
  1591. unsigned f_gbpages = 0;
  1592. unsigned f_lm = 0;
  1593. #endif
  1594. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1595. /* cpuid 1.edx */
  1596. const u32 kvm_supported_word0_x86_features =
  1597. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1598. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1599. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1600. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1601. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1602. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1603. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1604. 0 /* HTT, TM, Reserved, PBE */;
  1605. /* cpuid 0x80000001.edx */
  1606. const u32 kvm_supported_word1_x86_features =
  1607. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1608. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1609. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1610. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1611. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1612. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1613. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1614. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1615. /* cpuid 1.ecx */
  1616. const u32 kvm_supported_word4_x86_features =
  1617. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1618. 0 /* DS-CPL, VMX, SMX, EST */ |
  1619. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1620. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1621. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1622. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1623. 0 /* Reserved, XSAVE, OSXSAVE */;
  1624. /* cpuid 0x80000001.ecx */
  1625. const u32 kvm_supported_word6_x86_features =
  1626. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1627. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1628. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1629. 0 /* SKINIT */ | 0 /* WDT */;
  1630. /* all calls to cpuid_count() should be made on the same cpu */
  1631. get_cpu();
  1632. do_cpuid_1_ent(entry, function, index);
  1633. ++*nent;
  1634. switch (function) {
  1635. case 0:
  1636. entry->eax = min(entry->eax, (u32)0xb);
  1637. break;
  1638. case 1:
  1639. entry->edx &= kvm_supported_word0_x86_features;
  1640. entry->ecx &= kvm_supported_word4_x86_features;
  1641. /* we support x2apic emulation even if host does not support
  1642. * it since we emulate x2apic in software */
  1643. entry->ecx |= F(X2APIC);
  1644. break;
  1645. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1646. * may return different values. This forces us to get_cpu() before
  1647. * issuing the first command, and also to emulate this annoying behavior
  1648. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1649. case 2: {
  1650. int t, times = entry->eax & 0xff;
  1651. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1652. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1653. for (t = 1; t < times && *nent < maxnent; ++t) {
  1654. do_cpuid_1_ent(&entry[t], function, 0);
  1655. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1656. ++*nent;
  1657. }
  1658. break;
  1659. }
  1660. /* function 4 and 0xb have additional index. */
  1661. case 4: {
  1662. int i, cache_type;
  1663. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1664. /* read more entries until cache_type is zero */
  1665. for (i = 1; *nent < maxnent; ++i) {
  1666. cache_type = entry[i - 1].eax & 0x1f;
  1667. if (!cache_type)
  1668. break;
  1669. do_cpuid_1_ent(&entry[i], function, i);
  1670. entry[i].flags |=
  1671. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1672. ++*nent;
  1673. }
  1674. break;
  1675. }
  1676. case 0xb: {
  1677. int i, level_type;
  1678. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1679. /* read more entries until level_type is zero */
  1680. for (i = 1; *nent < maxnent; ++i) {
  1681. level_type = entry[i - 1].ecx & 0xff00;
  1682. if (!level_type)
  1683. break;
  1684. do_cpuid_1_ent(&entry[i], function, i);
  1685. entry[i].flags |=
  1686. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1687. ++*nent;
  1688. }
  1689. break;
  1690. }
  1691. case 0x80000000:
  1692. entry->eax = min(entry->eax, 0x8000001a);
  1693. break;
  1694. case 0x80000001:
  1695. entry->edx &= kvm_supported_word1_x86_features;
  1696. entry->ecx &= kvm_supported_word6_x86_features;
  1697. break;
  1698. }
  1699. put_cpu();
  1700. }
  1701. #undef F
  1702. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1703. struct kvm_cpuid_entry2 __user *entries)
  1704. {
  1705. struct kvm_cpuid_entry2 *cpuid_entries;
  1706. int limit, nent = 0, r = -E2BIG;
  1707. u32 func;
  1708. if (cpuid->nent < 1)
  1709. goto out;
  1710. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1711. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1712. r = -ENOMEM;
  1713. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1714. if (!cpuid_entries)
  1715. goto out;
  1716. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1717. limit = cpuid_entries[0].eax;
  1718. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1719. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1720. &nent, cpuid->nent);
  1721. r = -E2BIG;
  1722. if (nent >= cpuid->nent)
  1723. goto out_free;
  1724. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1725. limit = cpuid_entries[nent - 1].eax;
  1726. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1727. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1728. &nent, cpuid->nent);
  1729. r = -E2BIG;
  1730. if (nent >= cpuid->nent)
  1731. goto out_free;
  1732. r = -EFAULT;
  1733. if (copy_to_user(entries, cpuid_entries,
  1734. nent * sizeof(struct kvm_cpuid_entry2)))
  1735. goto out_free;
  1736. cpuid->nent = nent;
  1737. r = 0;
  1738. out_free:
  1739. vfree(cpuid_entries);
  1740. out:
  1741. return r;
  1742. }
  1743. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1744. struct kvm_lapic_state *s)
  1745. {
  1746. vcpu_load(vcpu);
  1747. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1748. vcpu_put(vcpu);
  1749. return 0;
  1750. }
  1751. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1752. struct kvm_lapic_state *s)
  1753. {
  1754. vcpu_load(vcpu);
  1755. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1756. kvm_apic_post_state_restore(vcpu);
  1757. update_cr8_intercept(vcpu);
  1758. vcpu_put(vcpu);
  1759. return 0;
  1760. }
  1761. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1762. struct kvm_interrupt *irq)
  1763. {
  1764. if (irq->irq < 0 || irq->irq >= 256)
  1765. return -EINVAL;
  1766. if (irqchip_in_kernel(vcpu->kvm))
  1767. return -ENXIO;
  1768. vcpu_load(vcpu);
  1769. kvm_queue_interrupt(vcpu, irq->irq, false);
  1770. vcpu_put(vcpu);
  1771. return 0;
  1772. }
  1773. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1774. {
  1775. vcpu_load(vcpu);
  1776. kvm_inject_nmi(vcpu);
  1777. vcpu_put(vcpu);
  1778. return 0;
  1779. }
  1780. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1781. struct kvm_tpr_access_ctl *tac)
  1782. {
  1783. if (tac->flags)
  1784. return -EINVAL;
  1785. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1786. return 0;
  1787. }
  1788. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1789. u64 mcg_cap)
  1790. {
  1791. int r;
  1792. unsigned bank_num = mcg_cap & 0xff, bank;
  1793. r = -EINVAL;
  1794. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1795. goto out;
  1796. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1797. goto out;
  1798. r = 0;
  1799. vcpu->arch.mcg_cap = mcg_cap;
  1800. /* Init IA32_MCG_CTL to all 1s */
  1801. if (mcg_cap & MCG_CTL_P)
  1802. vcpu->arch.mcg_ctl = ~(u64)0;
  1803. /* Init IA32_MCi_CTL to all 1s */
  1804. for (bank = 0; bank < bank_num; bank++)
  1805. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1806. out:
  1807. return r;
  1808. }
  1809. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1810. struct kvm_x86_mce *mce)
  1811. {
  1812. u64 mcg_cap = vcpu->arch.mcg_cap;
  1813. unsigned bank_num = mcg_cap & 0xff;
  1814. u64 *banks = vcpu->arch.mce_banks;
  1815. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1816. return -EINVAL;
  1817. /*
  1818. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1819. * reporting is disabled
  1820. */
  1821. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1822. vcpu->arch.mcg_ctl != ~(u64)0)
  1823. return 0;
  1824. banks += 4 * mce->bank;
  1825. /*
  1826. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1827. * reporting is disabled for the bank
  1828. */
  1829. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1830. return 0;
  1831. if (mce->status & MCI_STATUS_UC) {
  1832. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1833. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1834. printk(KERN_DEBUG "kvm: set_mce: "
  1835. "injects mce exception while "
  1836. "previous one is in progress!\n");
  1837. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1838. return 0;
  1839. }
  1840. if (banks[1] & MCI_STATUS_VAL)
  1841. mce->status |= MCI_STATUS_OVER;
  1842. banks[2] = mce->addr;
  1843. banks[3] = mce->misc;
  1844. vcpu->arch.mcg_status = mce->mcg_status;
  1845. banks[1] = mce->status;
  1846. kvm_queue_exception(vcpu, MC_VECTOR);
  1847. } else if (!(banks[1] & MCI_STATUS_VAL)
  1848. || !(banks[1] & MCI_STATUS_UC)) {
  1849. if (banks[1] & MCI_STATUS_VAL)
  1850. mce->status |= MCI_STATUS_OVER;
  1851. banks[2] = mce->addr;
  1852. banks[3] = mce->misc;
  1853. banks[1] = mce->status;
  1854. } else
  1855. banks[1] |= MCI_STATUS_OVER;
  1856. return 0;
  1857. }
  1858. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1859. struct kvm_vcpu_events *events)
  1860. {
  1861. vcpu_load(vcpu);
  1862. events->exception.injected =
  1863. vcpu->arch.exception.pending &&
  1864. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  1865. events->exception.nr = vcpu->arch.exception.nr;
  1866. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1867. events->exception.error_code = vcpu->arch.exception.error_code;
  1868. events->interrupt.injected =
  1869. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  1870. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1871. events->interrupt.soft = 0;
  1872. events->interrupt.shadow =
  1873. kvm_x86_ops->get_interrupt_shadow(vcpu,
  1874. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  1875. events->nmi.injected = vcpu->arch.nmi_injected;
  1876. events->nmi.pending = vcpu->arch.nmi_pending;
  1877. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1878. events->sipi_vector = vcpu->arch.sipi_vector;
  1879. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1880. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1881. | KVM_VCPUEVENT_VALID_SHADOW);
  1882. vcpu_put(vcpu);
  1883. }
  1884. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1885. struct kvm_vcpu_events *events)
  1886. {
  1887. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1888. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1889. | KVM_VCPUEVENT_VALID_SHADOW))
  1890. return -EINVAL;
  1891. vcpu_load(vcpu);
  1892. vcpu->arch.exception.pending = events->exception.injected;
  1893. vcpu->arch.exception.nr = events->exception.nr;
  1894. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1895. vcpu->arch.exception.error_code = events->exception.error_code;
  1896. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1897. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1898. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1899. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1900. kvm_pic_clear_isr_ack(vcpu->kvm);
  1901. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  1902. kvm_x86_ops->set_interrupt_shadow(vcpu,
  1903. events->interrupt.shadow);
  1904. vcpu->arch.nmi_injected = events->nmi.injected;
  1905. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1906. vcpu->arch.nmi_pending = events->nmi.pending;
  1907. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1908. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1909. vcpu->arch.sipi_vector = events->sipi_vector;
  1910. vcpu_put(vcpu);
  1911. return 0;
  1912. }
  1913. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  1914. struct kvm_debugregs *dbgregs)
  1915. {
  1916. vcpu_load(vcpu);
  1917. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  1918. dbgregs->dr6 = vcpu->arch.dr6;
  1919. dbgregs->dr7 = vcpu->arch.dr7;
  1920. dbgregs->flags = 0;
  1921. vcpu_put(vcpu);
  1922. }
  1923. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  1924. struct kvm_debugregs *dbgregs)
  1925. {
  1926. if (dbgregs->flags)
  1927. return -EINVAL;
  1928. vcpu_load(vcpu);
  1929. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  1930. vcpu->arch.dr6 = dbgregs->dr6;
  1931. vcpu->arch.dr7 = dbgregs->dr7;
  1932. vcpu_put(vcpu);
  1933. return 0;
  1934. }
  1935. long kvm_arch_vcpu_ioctl(struct file *filp,
  1936. unsigned int ioctl, unsigned long arg)
  1937. {
  1938. struct kvm_vcpu *vcpu = filp->private_data;
  1939. void __user *argp = (void __user *)arg;
  1940. int r;
  1941. struct kvm_lapic_state *lapic = NULL;
  1942. switch (ioctl) {
  1943. case KVM_GET_LAPIC: {
  1944. r = -EINVAL;
  1945. if (!vcpu->arch.apic)
  1946. goto out;
  1947. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1948. r = -ENOMEM;
  1949. if (!lapic)
  1950. goto out;
  1951. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1952. if (r)
  1953. goto out;
  1954. r = -EFAULT;
  1955. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1956. goto out;
  1957. r = 0;
  1958. break;
  1959. }
  1960. case KVM_SET_LAPIC: {
  1961. r = -EINVAL;
  1962. if (!vcpu->arch.apic)
  1963. goto out;
  1964. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1965. r = -ENOMEM;
  1966. if (!lapic)
  1967. goto out;
  1968. r = -EFAULT;
  1969. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1970. goto out;
  1971. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1972. if (r)
  1973. goto out;
  1974. r = 0;
  1975. break;
  1976. }
  1977. case KVM_INTERRUPT: {
  1978. struct kvm_interrupt irq;
  1979. r = -EFAULT;
  1980. if (copy_from_user(&irq, argp, sizeof irq))
  1981. goto out;
  1982. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1983. if (r)
  1984. goto out;
  1985. r = 0;
  1986. break;
  1987. }
  1988. case KVM_NMI: {
  1989. r = kvm_vcpu_ioctl_nmi(vcpu);
  1990. if (r)
  1991. goto out;
  1992. r = 0;
  1993. break;
  1994. }
  1995. case KVM_SET_CPUID: {
  1996. struct kvm_cpuid __user *cpuid_arg = argp;
  1997. struct kvm_cpuid cpuid;
  1998. r = -EFAULT;
  1999. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2000. goto out;
  2001. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2002. if (r)
  2003. goto out;
  2004. break;
  2005. }
  2006. case KVM_SET_CPUID2: {
  2007. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2008. struct kvm_cpuid2 cpuid;
  2009. r = -EFAULT;
  2010. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2011. goto out;
  2012. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2013. cpuid_arg->entries);
  2014. if (r)
  2015. goto out;
  2016. break;
  2017. }
  2018. case KVM_GET_CPUID2: {
  2019. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2020. struct kvm_cpuid2 cpuid;
  2021. r = -EFAULT;
  2022. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2023. goto out;
  2024. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2025. cpuid_arg->entries);
  2026. if (r)
  2027. goto out;
  2028. r = -EFAULT;
  2029. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2030. goto out;
  2031. r = 0;
  2032. break;
  2033. }
  2034. case KVM_GET_MSRS:
  2035. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2036. break;
  2037. case KVM_SET_MSRS:
  2038. r = msr_io(vcpu, argp, do_set_msr, 0);
  2039. break;
  2040. case KVM_TPR_ACCESS_REPORTING: {
  2041. struct kvm_tpr_access_ctl tac;
  2042. r = -EFAULT;
  2043. if (copy_from_user(&tac, argp, sizeof tac))
  2044. goto out;
  2045. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2046. if (r)
  2047. goto out;
  2048. r = -EFAULT;
  2049. if (copy_to_user(argp, &tac, sizeof tac))
  2050. goto out;
  2051. r = 0;
  2052. break;
  2053. };
  2054. case KVM_SET_VAPIC_ADDR: {
  2055. struct kvm_vapic_addr va;
  2056. r = -EINVAL;
  2057. if (!irqchip_in_kernel(vcpu->kvm))
  2058. goto out;
  2059. r = -EFAULT;
  2060. if (copy_from_user(&va, argp, sizeof va))
  2061. goto out;
  2062. r = 0;
  2063. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2064. break;
  2065. }
  2066. case KVM_X86_SETUP_MCE: {
  2067. u64 mcg_cap;
  2068. r = -EFAULT;
  2069. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2070. goto out;
  2071. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2072. break;
  2073. }
  2074. case KVM_X86_SET_MCE: {
  2075. struct kvm_x86_mce mce;
  2076. r = -EFAULT;
  2077. if (copy_from_user(&mce, argp, sizeof mce))
  2078. goto out;
  2079. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2080. break;
  2081. }
  2082. case KVM_GET_VCPU_EVENTS: {
  2083. struct kvm_vcpu_events events;
  2084. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2085. r = -EFAULT;
  2086. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2087. break;
  2088. r = 0;
  2089. break;
  2090. }
  2091. case KVM_SET_VCPU_EVENTS: {
  2092. struct kvm_vcpu_events events;
  2093. r = -EFAULT;
  2094. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2095. break;
  2096. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2097. break;
  2098. }
  2099. case KVM_GET_DEBUGREGS: {
  2100. struct kvm_debugregs dbgregs;
  2101. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2102. r = -EFAULT;
  2103. if (copy_to_user(argp, &dbgregs,
  2104. sizeof(struct kvm_debugregs)))
  2105. break;
  2106. r = 0;
  2107. break;
  2108. }
  2109. case KVM_SET_DEBUGREGS: {
  2110. struct kvm_debugregs dbgregs;
  2111. r = -EFAULT;
  2112. if (copy_from_user(&dbgregs, argp,
  2113. sizeof(struct kvm_debugregs)))
  2114. break;
  2115. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2116. break;
  2117. }
  2118. default:
  2119. r = -EINVAL;
  2120. }
  2121. out:
  2122. kfree(lapic);
  2123. return r;
  2124. }
  2125. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2126. {
  2127. int ret;
  2128. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2129. return -1;
  2130. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2131. return ret;
  2132. }
  2133. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2134. u64 ident_addr)
  2135. {
  2136. kvm->arch.ept_identity_map_addr = ident_addr;
  2137. return 0;
  2138. }
  2139. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2140. u32 kvm_nr_mmu_pages)
  2141. {
  2142. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2143. return -EINVAL;
  2144. mutex_lock(&kvm->slots_lock);
  2145. spin_lock(&kvm->mmu_lock);
  2146. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2147. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2148. spin_unlock(&kvm->mmu_lock);
  2149. mutex_unlock(&kvm->slots_lock);
  2150. return 0;
  2151. }
  2152. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2153. {
  2154. return kvm->arch.n_alloc_mmu_pages;
  2155. }
  2156. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2157. {
  2158. int i;
  2159. struct kvm_mem_alias *alias;
  2160. struct kvm_mem_aliases *aliases;
  2161. aliases = rcu_dereference(kvm->arch.aliases);
  2162. for (i = 0; i < aliases->naliases; ++i) {
  2163. alias = &aliases->aliases[i];
  2164. if (alias->flags & KVM_ALIAS_INVALID)
  2165. continue;
  2166. if (gfn >= alias->base_gfn
  2167. && gfn < alias->base_gfn + alias->npages)
  2168. return alias->target_gfn + gfn - alias->base_gfn;
  2169. }
  2170. return gfn;
  2171. }
  2172. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2173. {
  2174. int i;
  2175. struct kvm_mem_alias *alias;
  2176. struct kvm_mem_aliases *aliases;
  2177. aliases = rcu_dereference(kvm->arch.aliases);
  2178. for (i = 0; i < aliases->naliases; ++i) {
  2179. alias = &aliases->aliases[i];
  2180. if (gfn >= alias->base_gfn
  2181. && gfn < alias->base_gfn + alias->npages)
  2182. return alias->target_gfn + gfn - alias->base_gfn;
  2183. }
  2184. return gfn;
  2185. }
  2186. /*
  2187. * Set a new alias region. Aliases map a portion of physical memory into
  2188. * another portion. This is useful for memory windows, for example the PC
  2189. * VGA region.
  2190. */
  2191. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2192. struct kvm_memory_alias *alias)
  2193. {
  2194. int r, n;
  2195. struct kvm_mem_alias *p;
  2196. struct kvm_mem_aliases *aliases, *old_aliases;
  2197. r = -EINVAL;
  2198. /* General sanity checks */
  2199. if (alias->memory_size & (PAGE_SIZE - 1))
  2200. goto out;
  2201. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2202. goto out;
  2203. if (alias->slot >= KVM_ALIAS_SLOTS)
  2204. goto out;
  2205. if (alias->guest_phys_addr + alias->memory_size
  2206. < alias->guest_phys_addr)
  2207. goto out;
  2208. if (alias->target_phys_addr + alias->memory_size
  2209. < alias->target_phys_addr)
  2210. goto out;
  2211. r = -ENOMEM;
  2212. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2213. if (!aliases)
  2214. goto out;
  2215. mutex_lock(&kvm->slots_lock);
  2216. /* invalidate any gfn reference in case of deletion/shrinking */
  2217. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2218. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2219. old_aliases = kvm->arch.aliases;
  2220. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2221. synchronize_srcu_expedited(&kvm->srcu);
  2222. kvm_mmu_zap_all(kvm);
  2223. kfree(old_aliases);
  2224. r = -ENOMEM;
  2225. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2226. if (!aliases)
  2227. goto out_unlock;
  2228. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2229. p = &aliases->aliases[alias->slot];
  2230. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2231. p->npages = alias->memory_size >> PAGE_SHIFT;
  2232. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2233. p->flags &= ~(KVM_ALIAS_INVALID);
  2234. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2235. if (aliases->aliases[n - 1].npages)
  2236. break;
  2237. aliases->naliases = n;
  2238. old_aliases = kvm->arch.aliases;
  2239. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2240. synchronize_srcu_expedited(&kvm->srcu);
  2241. kfree(old_aliases);
  2242. r = 0;
  2243. out_unlock:
  2244. mutex_unlock(&kvm->slots_lock);
  2245. out:
  2246. return r;
  2247. }
  2248. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2249. {
  2250. int r;
  2251. r = 0;
  2252. switch (chip->chip_id) {
  2253. case KVM_IRQCHIP_PIC_MASTER:
  2254. memcpy(&chip->chip.pic,
  2255. &pic_irqchip(kvm)->pics[0],
  2256. sizeof(struct kvm_pic_state));
  2257. break;
  2258. case KVM_IRQCHIP_PIC_SLAVE:
  2259. memcpy(&chip->chip.pic,
  2260. &pic_irqchip(kvm)->pics[1],
  2261. sizeof(struct kvm_pic_state));
  2262. break;
  2263. case KVM_IRQCHIP_IOAPIC:
  2264. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2265. break;
  2266. default:
  2267. r = -EINVAL;
  2268. break;
  2269. }
  2270. return r;
  2271. }
  2272. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2273. {
  2274. int r;
  2275. r = 0;
  2276. switch (chip->chip_id) {
  2277. case KVM_IRQCHIP_PIC_MASTER:
  2278. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2279. memcpy(&pic_irqchip(kvm)->pics[0],
  2280. &chip->chip.pic,
  2281. sizeof(struct kvm_pic_state));
  2282. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2283. break;
  2284. case KVM_IRQCHIP_PIC_SLAVE:
  2285. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2286. memcpy(&pic_irqchip(kvm)->pics[1],
  2287. &chip->chip.pic,
  2288. sizeof(struct kvm_pic_state));
  2289. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2290. break;
  2291. case KVM_IRQCHIP_IOAPIC:
  2292. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2293. break;
  2294. default:
  2295. r = -EINVAL;
  2296. break;
  2297. }
  2298. kvm_pic_update_irq(pic_irqchip(kvm));
  2299. return r;
  2300. }
  2301. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2302. {
  2303. int r = 0;
  2304. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2305. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2306. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2307. return r;
  2308. }
  2309. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2310. {
  2311. int r = 0;
  2312. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2313. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2314. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2315. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2316. return r;
  2317. }
  2318. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2319. {
  2320. int r = 0;
  2321. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2322. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2323. sizeof(ps->channels));
  2324. ps->flags = kvm->arch.vpit->pit_state.flags;
  2325. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2326. return r;
  2327. }
  2328. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2329. {
  2330. int r = 0, start = 0;
  2331. u32 prev_legacy, cur_legacy;
  2332. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2333. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2334. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2335. if (!prev_legacy && cur_legacy)
  2336. start = 1;
  2337. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2338. sizeof(kvm->arch.vpit->pit_state.channels));
  2339. kvm->arch.vpit->pit_state.flags = ps->flags;
  2340. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2341. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2342. return r;
  2343. }
  2344. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2345. struct kvm_reinject_control *control)
  2346. {
  2347. if (!kvm->arch.vpit)
  2348. return -ENXIO;
  2349. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2350. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2351. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2352. return 0;
  2353. }
  2354. /*
  2355. * Get (and clear) the dirty memory log for a memory slot.
  2356. */
  2357. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2358. struct kvm_dirty_log *log)
  2359. {
  2360. int r, i;
  2361. struct kvm_memory_slot *memslot;
  2362. unsigned long n;
  2363. unsigned long is_dirty = 0;
  2364. unsigned long *dirty_bitmap = NULL;
  2365. mutex_lock(&kvm->slots_lock);
  2366. r = -EINVAL;
  2367. if (log->slot >= KVM_MEMORY_SLOTS)
  2368. goto out;
  2369. memslot = &kvm->memslots->memslots[log->slot];
  2370. r = -ENOENT;
  2371. if (!memslot->dirty_bitmap)
  2372. goto out;
  2373. n = kvm_dirty_bitmap_bytes(memslot);
  2374. r = -ENOMEM;
  2375. dirty_bitmap = vmalloc(n);
  2376. if (!dirty_bitmap)
  2377. goto out;
  2378. memset(dirty_bitmap, 0, n);
  2379. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2380. is_dirty = memslot->dirty_bitmap[i];
  2381. /* If nothing is dirty, don't bother messing with page tables. */
  2382. if (is_dirty) {
  2383. struct kvm_memslots *slots, *old_slots;
  2384. spin_lock(&kvm->mmu_lock);
  2385. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2386. spin_unlock(&kvm->mmu_lock);
  2387. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2388. if (!slots)
  2389. goto out_free;
  2390. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2391. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2392. old_slots = kvm->memslots;
  2393. rcu_assign_pointer(kvm->memslots, slots);
  2394. synchronize_srcu_expedited(&kvm->srcu);
  2395. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2396. kfree(old_slots);
  2397. }
  2398. r = 0;
  2399. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2400. r = -EFAULT;
  2401. out_free:
  2402. vfree(dirty_bitmap);
  2403. out:
  2404. mutex_unlock(&kvm->slots_lock);
  2405. return r;
  2406. }
  2407. long kvm_arch_vm_ioctl(struct file *filp,
  2408. unsigned int ioctl, unsigned long arg)
  2409. {
  2410. struct kvm *kvm = filp->private_data;
  2411. void __user *argp = (void __user *)arg;
  2412. int r = -ENOTTY;
  2413. /*
  2414. * This union makes it completely explicit to gcc-3.x
  2415. * that these two variables' stack usage should be
  2416. * combined, not added together.
  2417. */
  2418. union {
  2419. struct kvm_pit_state ps;
  2420. struct kvm_pit_state2 ps2;
  2421. struct kvm_memory_alias alias;
  2422. struct kvm_pit_config pit_config;
  2423. } u;
  2424. switch (ioctl) {
  2425. case KVM_SET_TSS_ADDR:
  2426. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2427. if (r < 0)
  2428. goto out;
  2429. break;
  2430. case KVM_SET_IDENTITY_MAP_ADDR: {
  2431. u64 ident_addr;
  2432. r = -EFAULT;
  2433. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2434. goto out;
  2435. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2436. if (r < 0)
  2437. goto out;
  2438. break;
  2439. }
  2440. case KVM_SET_MEMORY_REGION: {
  2441. struct kvm_memory_region kvm_mem;
  2442. struct kvm_userspace_memory_region kvm_userspace_mem;
  2443. r = -EFAULT;
  2444. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2445. goto out;
  2446. kvm_userspace_mem.slot = kvm_mem.slot;
  2447. kvm_userspace_mem.flags = kvm_mem.flags;
  2448. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2449. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2450. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2451. if (r)
  2452. goto out;
  2453. break;
  2454. }
  2455. case KVM_SET_NR_MMU_PAGES:
  2456. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2457. if (r)
  2458. goto out;
  2459. break;
  2460. case KVM_GET_NR_MMU_PAGES:
  2461. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2462. break;
  2463. case KVM_SET_MEMORY_ALIAS:
  2464. r = -EFAULT;
  2465. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2466. goto out;
  2467. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2468. if (r)
  2469. goto out;
  2470. break;
  2471. case KVM_CREATE_IRQCHIP: {
  2472. struct kvm_pic *vpic;
  2473. mutex_lock(&kvm->lock);
  2474. r = -EEXIST;
  2475. if (kvm->arch.vpic)
  2476. goto create_irqchip_unlock;
  2477. r = -ENOMEM;
  2478. vpic = kvm_create_pic(kvm);
  2479. if (vpic) {
  2480. r = kvm_ioapic_init(kvm);
  2481. if (r) {
  2482. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2483. &vpic->dev);
  2484. kfree(vpic);
  2485. goto create_irqchip_unlock;
  2486. }
  2487. } else
  2488. goto create_irqchip_unlock;
  2489. smp_wmb();
  2490. kvm->arch.vpic = vpic;
  2491. smp_wmb();
  2492. r = kvm_setup_default_irq_routing(kvm);
  2493. if (r) {
  2494. mutex_lock(&kvm->irq_lock);
  2495. kvm_ioapic_destroy(kvm);
  2496. kvm_destroy_pic(kvm);
  2497. mutex_unlock(&kvm->irq_lock);
  2498. }
  2499. create_irqchip_unlock:
  2500. mutex_unlock(&kvm->lock);
  2501. break;
  2502. }
  2503. case KVM_CREATE_PIT:
  2504. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2505. goto create_pit;
  2506. case KVM_CREATE_PIT2:
  2507. r = -EFAULT;
  2508. if (copy_from_user(&u.pit_config, argp,
  2509. sizeof(struct kvm_pit_config)))
  2510. goto out;
  2511. create_pit:
  2512. mutex_lock(&kvm->slots_lock);
  2513. r = -EEXIST;
  2514. if (kvm->arch.vpit)
  2515. goto create_pit_unlock;
  2516. r = -ENOMEM;
  2517. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2518. if (kvm->arch.vpit)
  2519. r = 0;
  2520. create_pit_unlock:
  2521. mutex_unlock(&kvm->slots_lock);
  2522. break;
  2523. case KVM_IRQ_LINE_STATUS:
  2524. case KVM_IRQ_LINE: {
  2525. struct kvm_irq_level irq_event;
  2526. r = -EFAULT;
  2527. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2528. goto out;
  2529. if (irqchip_in_kernel(kvm)) {
  2530. __s32 status;
  2531. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2532. irq_event.irq, irq_event.level);
  2533. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2534. irq_event.status = status;
  2535. if (copy_to_user(argp, &irq_event,
  2536. sizeof irq_event))
  2537. goto out;
  2538. }
  2539. r = 0;
  2540. }
  2541. break;
  2542. }
  2543. case KVM_GET_IRQCHIP: {
  2544. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2545. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2546. r = -ENOMEM;
  2547. if (!chip)
  2548. goto out;
  2549. r = -EFAULT;
  2550. if (copy_from_user(chip, argp, sizeof *chip))
  2551. goto get_irqchip_out;
  2552. r = -ENXIO;
  2553. if (!irqchip_in_kernel(kvm))
  2554. goto get_irqchip_out;
  2555. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2556. if (r)
  2557. goto get_irqchip_out;
  2558. r = -EFAULT;
  2559. if (copy_to_user(argp, chip, sizeof *chip))
  2560. goto get_irqchip_out;
  2561. r = 0;
  2562. get_irqchip_out:
  2563. kfree(chip);
  2564. if (r)
  2565. goto out;
  2566. break;
  2567. }
  2568. case KVM_SET_IRQCHIP: {
  2569. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2570. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2571. r = -ENOMEM;
  2572. if (!chip)
  2573. goto out;
  2574. r = -EFAULT;
  2575. if (copy_from_user(chip, argp, sizeof *chip))
  2576. goto set_irqchip_out;
  2577. r = -ENXIO;
  2578. if (!irqchip_in_kernel(kvm))
  2579. goto set_irqchip_out;
  2580. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2581. if (r)
  2582. goto set_irqchip_out;
  2583. r = 0;
  2584. set_irqchip_out:
  2585. kfree(chip);
  2586. if (r)
  2587. goto out;
  2588. break;
  2589. }
  2590. case KVM_GET_PIT: {
  2591. r = -EFAULT;
  2592. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2593. goto out;
  2594. r = -ENXIO;
  2595. if (!kvm->arch.vpit)
  2596. goto out;
  2597. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2598. if (r)
  2599. goto out;
  2600. r = -EFAULT;
  2601. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2602. goto out;
  2603. r = 0;
  2604. break;
  2605. }
  2606. case KVM_SET_PIT: {
  2607. r = -EFAULT;
  2608. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2609. goto out;
  2610. r = -ENXIO;
  2611. if (!kvm->arch.vpit)
  2612. goto out;
  2613. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2614. if (r)
  2615. goto out;
  2616. r = 0;
  2617. break;
  2618. }
  2619. case KVM_GET_PIT2: {
  2620. r = -ENXIO;
  2621. if (!kvm->arch.vpit)
  2622. goto out;
  2623. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2624. if (r)
  2625. goto out;
  2626. r = -EFAULT;
  2627. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2628. goto out;
  2629. r = 0;
  2630. break;
  2631. }
  2632. case KVM_SET_PIT2: {
  2633. r = -EFAULT;
  2634. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2635. goto out;
  2636. r = -ENXIO;
  2637. if (!kvm->arch.vpit)
  2638. goto out;
  2639. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2640. if (r)
  2641. goto out;
  2642. r = 0;
  2643. break;
  2644. }
  2645. case KVM_REINJECT_CONTROL: {
  2646. struct kvm_reinject_control control;
  2647. r = -EFAULT;
  2648. if (copy_from_user(&control, argp, sizeof(control)))
  2649. goto out;
  2650. r = kvm_vm_ioctl_reinject(kvm, &control);
  2651. if (r)
  2652. goto out;
  2653. r = 0;
  2654. break;
  2655. }
  2656. case KVM_XEN_HVM_CONFIG: {
  2657. r = -EFAULT;
  2658. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2659. sizeof(struct kvm_xen_hvm_config)))
  2660. goto out;
  2661. r = -EINVAL;
  2662. if (kvm->arch.xen_hvm_config.flags)
  2663. goto out;
  2664. r = 0;
  2665. break;
  2666. }
  2667. case KVM_SET_CLOCK: {
  2668. struct timespec now;
  2669. struct kvm_clock_data user_ns;
  2670. u64 now_ns;
  2671. s64 delta;
  2672. r = -EFAULT;
  2673. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2674. goto out;
  2675. r = -EINVAL;
  2676. if (user_ns.flags)
  2677. goto out;
  2678. r = 0;
  2679. ktime_get_ts(&now);
  2680. now_ns = timespec_to_ns(&now);
  2681. delta = user_ns.clock - now_ns;
  2682. kvm->arch.kvmclock_offset = delta;
  2683. break;
  2684. }
  2685. case KVM_GET_CLOCK: {
  2686. struct timespec now;
  2687. struct kvm_clock_data user_ns;
  2688. u64 now_ns;
  2689. ktime_get_ts(&now);
  2690. now_ns = timespec_to_ns(&now);
  2691. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2692. user_ns.flags = 0;
  2693. r = -EFAULT;
  2694. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2695. goto out;
  2696. r = 0;
  2697. break;
  2698. }
  2699. default:
  2700. ;
  2701. }
  2702. out:
  2703. return r;
  2704. }
  2705. static void kvm_init_msr_list(void)
  2706. {
  2707. u32 dummy[2];
  2708. unsigned i, j;
  2709. /* skip the first msrs in the list. KVM-specific */
  2710. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2711. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2712. continue;
  2713. if (j < i)
  2714. msrs_to_save[j] = msrs_to_save[i];
  2715. j++;
  2716. }
  2717. num_msrs_to_save = j;
  2718. }
  2719. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2720. const void *v)
  2721. {
  2722. if (vcpu->arch.apic &&
  2723. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2724. return 0;
  2725. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2726. }
  2727. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2728. {
  2729. if (vcpu->arch.apic &&
  2730. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2731. return 0;
  2732. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2733. }
  2734. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2735. {
  2736. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2737. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2738. }
  2739. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2740. {
  2741. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2742. access |= PFERR_FETCH_MASK;
  2743. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2744. }
  2745. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2746. {
  2747. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2748. access |= PFERR_WRITE_MASK;
  2749. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2750. }
  2751. /* uses this to access any guest's mapped memory without checking CPL */
  2752. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2753. {
  2754. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2755. }
  2756. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2757. struct kvm_vcpu *vcpu, u32 access,
  2758. u32 *error)
  2759. {
  2760. void *data = val;
  2761. int r = X86EMUL_CONTINUE;
  2762. while (bytes) {
  2763. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2764. unsigned offset = addr & (PAGE_SIZE-1);
  2765. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2766. int ret;
  2767. if (gpa == UNMAPPED_GVA) {
  2768. r = X86EMUL_PROPAGATE_FAULT;
  2769. goto out;
  2770. }
  2771. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2772. if (ret < 0) {
  2773. r = X86EMUL_UNHANDLEABLE;
  2774. goto out;
  2775. }
  2776. bytes -= toread;
  2777. data += toread;
  2778. addr += toread;
  2779. }
  2780. out:
  2781. return r;
  2782. }
  2783. /* used for instruction fetching */
  2784. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2785. struct kvm_vcpu *vcpu, u32 *error)
  2786. {
  2787. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2788. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2789. access | PFERR_FETCH_MASK, error);
  2790. }
  2791. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2792. struct kvm_vcpu *vcpu, u32 *error)
  2793. {
  2794. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2795. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2796. error);
  2797. }
  2798. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2799. struct kvm_vcpu *vcpu, u32 *error)
  2800. {
  2801. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2802. }
  2803. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2804. struct kvm_vcpu *vcpu, u32 *error)
  2805. {
  2806. void *data = val;
  2807. int r = X86EMUL_CONTINUE;
  2808. while (bytes) {
  2809. gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
  2810. unsigned offset = addr & (PAGE_SIZE-1);
  2811. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2812. int ret;
  2813. if (gpa == UNMAPPED_GVA) {
  2814. r = X86EMUL_PROPAGATE_FAULT;
  2815. goto out;
  2816. }
  2817. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2818. if (ret < 0) {
  2819. r = X86EMUL_UNHANDLEABLE;
  2820. goto out;
  2821. }
  2822. bytes -= towrite;
  2823. data += towrite;
  2824. addr += towrite;
  2825. }
  2826. out:
  2827. return r;
  2828. }
  2829. static int emulator_read_emulated(unsigned long addr,
  2830. void *val,
  2831. unsigned int bytes,
  2832. struct kvm_vcpu *vcpu)
  2833. {
  2834. gpa_t gpa;
  2835. u32 error_code;
  2836. if (vcpu->mmio_read_completed) {
  2837. memcpy(val, vcpu->mmio_data, bytes);
  2838. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2839. vcpu->mmio_phys_addr, *(u64 *)val);
  2840. vcpu->mmio_read_completed = 0;
  2841. return X86EMUL_CONTINUE;
  2842. }
  2843. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2844. if (gpa == UNMAPPED_GVA) {
  2845. kvm_inject_page_fault(vcpu, addr, error_code);
  2846. return X86EMUL_PROPAGATE_FAULT;
  2847. }
  2848. /* For APIC access vmexit */
  2849. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2850. goto mmio;
  2851. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2852. == X86EMUL_CONTINUE)
  2853. return X86EMUL_CONTINUE;
  2854. mmio:
  2855. /*
  2856. * Is this MMIO handled locally?
  2857. */
  2858. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2859. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2860. return X86EMUL_CONTINUE;
  2861. }
  2862. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2863. vcpu->mmio_needed = 1;
  2864. vcpu->mmio_phys_addr = gpa;
  2865. vcpu->mmio_size = bytes;
  2866. vcpu->mmio_is_write = 0;
  2867. return X86EMUL_UNHANDLEABLE;
  2868. }
  2869. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2870. const void *val, int bytes)
  2871. {
  2872. int ret;
  2873. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2874. if (ret < 0)
  2875. return 0;
  2876. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2877. return 1;
  2878. }
  2879. static int emulator_write_emulated_onepage(unsigned long addr,
  2880. const void *val,
  2881. unsigned int bytes,
  2882. struct kvm_vcpu *vcpu)
  2883. {
  2884. gpa_t gpa;
  2885. u32 error_code;
  2886. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2887. if (gpa == UNMAPPED_GVA) {
  2888. kvm_inject_page_fault(vcpu, addr, error_code);
  2889. return X86EMUL_PROPAGATE_FAULT;
  2890. }
  2891. /* For APIC access vmexit */
  2892. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2893. goto mmio;
  2894. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2895. return X86EMUL_CONTINUE;
  2896. mmio:
  2897. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2898. /*
  2899. * Is this MMIO handled locally?
  2900. */
  2901. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2902. return X86EMUL_CONTINUE;
  2903. vcpu->mmio_needed = 1;
  2904. vcpu->mmio_phys_addr = gpa;
  2905. vcpu->mmio_size = bytes;
  2906. vcpu->mmio_is_write = 1;
  2907. memcpy(vcpu->mmio_data, val, bytes);
  2908. return X86EMUL_CONTINUE;
  2909. }
  2910. int emulator_write_emulated(unsigned long addr,
  2911. const void *val,
  2912. unsigned int bytes,
  2913. struct kvm_vcpu *vcpu)
  2914. {
  2915. /* Crossing a page boundary? */
  2916. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2917. int rc, now;
  2918. now = -addr & ~PAGE_MASK;
  2919. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2920. if (rc != X86EMUL_CONTINUE)
  2921. return rc;
  2922. addr += now;
  2923. val += now;
  2924. bytes -= now;
  2925. }
  2926. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2927. }
  2928. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2929. static int emulator_cmpxchg_emulated(unsigned long addr,
  2930. const void *old,
  2931. const void *new,
  2932. unsigned int bytes,
  2933. struct kvm_vcpu *vcpu)
  2934. {
  2935. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2936. #ifndef CONFIG_X86_64
  2937. /* guests cmpxchg8b have to be emulated atomically */
  2938. if (bytes == 8) {
  2939. gpa_t gpa;
  2940. struct page *page;
  2941. char *kaddr;
  2942. u64 val;
  2943. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  2944. if (gpa == UNMAPPED_GVA ||
  2945. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2946. goto emul_write;
  2947. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2948. goto emul_write;
  2949. val = *(u64 *)new;
  2950. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2951. kaddr = kmap_atomic(page, KM_USER0);
  2952. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2953. kunmap_atomic(kaddr, KM_USER0);
  2954. kvm_release_page_dirty(page);
  2955. }
  2956. emul_write:
  2957. #endif
  2958. return emulator_write_emulated(addr, new, bytes, vcpu);
  2959. }
  2960. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2961. {
  2962. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2963. }
  2964. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2965. {
  2966. kvm_mmu_invlpg(vcpu, address);
  2967. return X86EMUL_CONTINUE;
  2968. }
  2969. int emulate_clts(struct kvm_vcpu *vcpu)
  2970. {
  2971. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2972. kvm_x86_ops->fpu_activate(vcpu);
  2973. return X86EMUL_CONTINUE;
  2974. }
  2975. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2976. {
  2977. return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
  2978. }
  2979. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2980. {
  2981. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2982. return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
  2983. }
  2984. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2985. {
  2986. u8 opcodes[4];
  2987. unsigned long rip = kvm_rip_read(vcpu);
  2988. unsigned long rip_linear;
  2989. if (!printk_ratelimit())
  2990. return;
  2991. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2992. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  2993. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2994. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2995. }
  2996. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2997. static struct x86_emulate_ops emulate_ops = {
  2998. .read_std = kvm_read_guest_virt_system,
  2999. .fetch = kvm_fetch_guest_virt,
  3000. .read_emulated = emulator_read_emulated,
  3001. .write_emulated = emulator_write_emulated,
  3002. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3003. };
  3004. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3005. {
  3006. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3007. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3008. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3009. vcpu->arch.regs_dirty = ~0;
  3010. }
  3011. int emulate_instruction(struct kvm_vcpu *vcpu,
  3012. unsigned long cr2,
  3013. u16 error_code,
  3014. int emulation_type)
  3015. {
  3016. int r, shadow_mask;
  3017. struct decode_cache *c;
  3018. struct kvm_run *run = vcpu->run;
  3019. kvm_clear_exception_queue(vcpu);
  3020. vcpu->arch.mmio_fault_cr2 = cr2;
  3021. /*
  3022. * TODO: fix emulate.c to use guest_read/write_register
  3023. * instead of direct ->regs accesses, can save hundred cycles
  3024. * on Intel for instructions that don't read/change RSP, for
  3025. * for example.
  3026. */
  3027. cache_all_regs(vcpu);
  3028. vcpu->mmio_is_write = 0;
  3029. vcpu->arch.pio.string = 0;
  3030. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3031. int cs_db, cs_l;
  3032. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3033. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3034. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3035. vcpu->arch.emulate_ctxt.mode =
  3036. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3037. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3038. ? X86EMUL_MODE_VM86 : cs_l
  3039. ? X86EMUL_MODE_PROT64 : cs_db
  3040. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3041. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3042. /* Only allow emulation of specific instructions on #UD
  3043. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3044. c = &vcpu->arch.emulate_ctxt.decode;
  3045. if (emulation_type & EMULTYPE_TRAP_UD) {
  3046. if (!c->twobyte)
  3047. return EMULATE_FAIL;
  3048. switch (c->b) {
  3049. case 0x01: /* VMMCALL */
  3050. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3051. return EMULATE_FAIL;
  3052. break;
  3053. case 0x34: /* sysenter */
  3054. case 0x35: /* sysexit */
  3055. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3056. return EMULATE_FAIL;
  3057. break;
  3058. case 0x05: /* syscall */
  3059. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3060. return EMULATE_FAIL;
  3061. break;
  3062. default:
  3063. return EMULATE_FAIL;
  3064. }
  3065. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3066. return EMULATE_FAIL;
  3067. }
  3068. ++vcpu->stat.insn_emulation;
  3069. if (r) {
  3070. ++vcpu->stat.insn_emulation_fail;
  3071. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3072. return EMULATE_DONE;
  3073. return EMULATE_FAIL;
  3074. }
  3075. }
  3076. if (emulation_type & EMULTYPE_SKIP) {
  3077. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3078. return EMULATE_DONE;
  3079. }
  3080. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3081. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3082. if (r == 0)
  3083. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3084. if (vcpu->arch.pio.string)
  3085. return EMULATE_DO_MMIO;
  3086. if (r || vcpu->mmio_is_write) {
  3087. run->exit_reason = KVM_EXIT_MMIO;
  3088. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3089. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3090. run->mmio.len = vcpu->mmio_size;
  3091. run->mmio.is_write = vcpu->mmio_is_write;
  3092. }
  3093. if (r) {
  3094. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3095. return EMULATE_DONE;
  3096. if (!vcpu->mmio_needed) {
  3097. kvm_report_emulation_failure(vcpu, "mmio");
  3098. return EMULATE_FAIL;
  3099. }
  3100. return EMULATE_DO_MMIO;
  3101. }
  3102. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3103. if (vcpu->mmio_is_write) {
  3104. vcpu->mmio_needed = 0;
  3105. return EMULATE_DO_MMIO;
  3106. }
  3107. return EMULATE_DONE;
  3108. }
  3109. EXPORT_SYMBOL_GPL(emulate_instruction);
  3110. static int pio_copy_data(struct kvm_vcpu *vcpu)
  3111. {
  3112. void *p = vcpu->arch.pio_data;
  3113. gva_t q = vcpu->arch.pio.guest_gva;
  3114. unsigned bytes;
  3115. int ret;
  3116. u32 error_code;
  3117. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  3118. if (vcpu->arch.pio.in)
  3119. ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
  3120. else
  3121. ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
  3122. if (ret == X86EMUL_PROPAGATE_FAULT)
  3123. kvm_inject_page_fault(vcpu, q, error_code);
  3124. return ret;
  3125. }
  3126. int complete_pio(struct kvm_vcpu *vcpu)
  3127. {
  3128. struct kvm_pio_request *io = &vcpu->arch.pio;
  3129. long delta;
  3130. int r;
  3131. unsigned long val;
  3132. if (!io->string) {
  3133. if (io->in) {
  3134. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3135. memcpy(&val, vcpu->arch.pio_data, io->size);
  3136. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  3137. }
  3138. } else {
  3139. if (io->in) {
  3140. r = pio_copy_data(vcpu);
  3141. if (r)
  3142. goto out;
  3143. }
  3144. delta = 1;
  3145. if (io->rep) {
  3146. delta *= io->cur_count;
  3147. /*
  3148. * The size of the register should really depend on
  3149. * current address size.
  3150. */
  3151. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3152. val -= delta;
  3153. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  3154. }
  3155. if (io->down)
  3156. delta = -delta;
  3157. delta *= io->size;
  3158. if (io->in) {
  3159. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3160. val += delta;
  3161. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  3162. } else {
  3163. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3164. val += delta;
  3165. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  3166. }
  3167. }
  3168. out:
  3169. io->count -= io->cur_count;
  3170. io->cur_count = 0;
  3171. return 0;
  3172. }
  3173. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3174. {
  3175. /* TODO: String I/O for in kernel device */
  3176. int r;
  3177. if (vcpu->arch.pio.in)
  3178. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3179. vcpu->arch.pio.size, pd);
  3180. else
  3181. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3182. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3183. pd);
  3184. return r;
  3185. }
  3186. static int pio_string_write(struct kvm_vcpu *vcpu)
  3187. {
  3188. struct kvm_pio_request *io = &vcpu->arch.pio;
  3189. void *pd = vcpu->arch.pio_data;
  3190. int i, r = 0;
  3191. for (i = 0; i < io->cur_count; i++) {
  3192. if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3193. io->port, io->size, pd)) {
  3194. r = -EOPNOTSUPP;
  3195. break;
  3196. }
  3197. pd += io->size;
  3198. }
  3199. return r;
  3200. }
  3201. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  3202. {
  3203. unsigned long val;
  3204. trace_kvm_pio(!in, port, size, 1);
  3205. vcpu->run->exit_reason = KVM_EXIT_IO;
  3206. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3207. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3208. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3209. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  3210. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3211. vcpu->arch.pio.in = in;
  3212. vcpu->arch.pio.string = 0;
  3213. vcpu->arch.pio.down = 0;
  3214. vcpu->arch.pio.rep = 0;
  3215. if (!vcpu->arch.pio.in) {
  3216. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3217. memcpy(vcpu->arch.pio_data, &val, 4);
  3218. }
  3219. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3220. complete_pio(vcpu);
  3221. return 1;
  3222. }
  3223. return 0;
  3224. }
  3225. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  3226. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  3227. int size, unsigned long count, int down,
  3228. gva_t address, int rep, unsigned port)
  3229. {
  3230. unsigned now, in_page;
  3231. int ret = 0;
  3232. trace_kvm_pio(!in, port, size, count);
  3233. vcpu->run->exit_reason = KVM_EXIT_IO;
  3234. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3235. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3236. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3237. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  3238. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3239. vcpu->arch.pio.in = in;
  3240. vcpu->arch.pio.string = 1;
  3241. vcpu->arch.pio.down = down;
  3242. vcpu->arch.pio.rep = rep;
  3243. if (!count) {
  3244. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3245. return 1;
  3246. }
  3247. if (!down)
  3248. in_page = PAGE_SIZE - offset_in_page(address);
  3249. else
  3250. in_page = offset_in_page(address) + size;
  3251. now = min(count, (unsigned long)in_page / size);
  3252. if (!now)
  3253. now = 1;
  3254. if (down) {
  3255. /*
  3256. * String I/O in reverse. Yuck. Kill the guest, fix later.
  3257. */
  3258. pr_unimpl(vcpu, "guest string pio down\n");
  3259. kvm_inject_gp(vcpu, 0);
  3260. return 1;
  3261. }
  3262. vcpu->run->io.count = now;
  3263. vcpu->arch.pio.cur_count = now;
  3264. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  3265. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3266. vcpu->arch.pio.guest_gva = address;
  3267. if (!vcpu->arch.pio.in) {
  3268. /* string PIO write */
  3269. ret = pio_copy_data(vcpu);
  3270. if (ret == X86EMUL_PROPAGATE_FAULT)
  3271. return 1;
  3272. if (ret == 0 && !pio_string_write(vcpu)) {
  3273. complete_pio(vcpu);
  3274. if (vcpu->arch.pio.count == 0)
  3275. ret = 1;
  3276. }
  3277. }
  3278. /* no string PIO read support yet */
  3279. return ret;
  3280. }
  3281. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  3282. static void bounce_off(void *info)
  3283. {
  3284. /* nothing */
  3285. }
  3286. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3287. void *data)
  3288. {
  3289. struct cpufreq_freqs *freq = data;
  3290. struct kvm *kvm;
  3291. struct kvm_vcpu *vcpu;
  3292. int i, send_ipi = 0;
  3293. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3294. return 0;
  3295. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3296. return 0;
  3297. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3298. spin_lock(&kvm_lock);
  3299. list_for_each_entry(kvm, &vm_list, vm_list) {
  3300. kvm_for_each_vcpu(i, vcpu, kvm) {
  3301. if (vcpu->cpu != freq->cpu)
  3302. continue;
  3303. if (!kvm_request_guest_time_update(vcpu))
  3304. continue;
  3305. if (vcpu->cpu != smp_processor_id())
  3306. send_ipi++;
  3307. }
  3308. }
  3309. spin_unlock(&kvm_lock);
  3310. if (freq->old < freq->new && send_ipi) {
  3311. /*
  3312. * We upscale the frequency. Must make the guest
  3313. * doesn't see old kvmclock values while running with
  3314. * the new frequency, otherwise we risk the guest sees
  3315. * time go backwards.
  3316. *
  3317. * In case we update the frequency for another cpu
  3318. * (which might be in guest context) send an interrupt
  3319. * to kick the cpu out of guest context. Next time
  3320. * guest context is entered kvmclock will be updated,
  3321. * so the guest will not see stale values.
  3322. */
  3323. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3324. }
  3325. return 0;
  3326. }
  3327. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3328. .notifier_call = kvmclock_cpufreq_notifier
  3329. };
  3330. static void kvm_timer_init(void)
  3331. {
  3332. int cpu;
  3333. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3334. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3335. CPUFREQ_TRANSITION_NOTIFIER);
  3336. for_each_online_cpu(cpu) {
  3337. unsigned long khz = cpufreq_get(cpu);
  3338. if (!khz)
  3339. khz = tsc_khz;
  3340. per_cpu(cpu_tsc_khz, cpu) = khz;
  3341. }
  3342. } else {
  3343. for_each_possible_cpu(cpu)
  3344. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3345. }
  3346. }
  3347. int kvm_arch_init(void *opaque)
  3348. {
  3349. int r;
  3350. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3351. if (kvm_x86_ops) {
  3352. printk(KERN_ERR "kvm: already loaded the other module\n");
  3353. r = -EEXIST;
  3354. goto out;
  3355. }
  3356. if (!ops->cpu_has_kvm_support()) {
  3357. printk(KERN_ERR "kvm: no hardware support\n");
  3358. r = -EOPNOTSUPP;
  3359. goto out;
  3360. }
  3361. if (ops->disabled_by_bios()) {
  3362. printk(KERN_ERR "kvm: disabled by bios\n");
  3363. r = -EOPNOTSUPP;
  3364. goto out;
  3365. }
  3366. r = kvm_mmu_module_init();
  3367. if (r)
  3368. goto out;
  3369. kvm_init_msr_list();
  3370. kvm_x86_ops = ops;
  3371. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3372. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3373. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3374. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3375. kvm_timer_init();
  3376. return 0;
  3377. out:
  3378. return r;
  3379. }
  3380. void kvm_arch_exit(void)
  3381. {
  3382. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3383. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3384. CPUFREQ_TRANSITION_NOTIFIER);
  3385. kvm_x86_ops = NULL;
  3386. kvm_mmu_module_exit();
  3387. }
  3388. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3389. {
  3390. ++vcpu->stat.halt_exits;
  3391. if (irqchip_in_kernel(vcpu->kvm)) {
  3392. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3393. return 1;
  3394. } else {
  3395. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3396. return 0;
  3397. }
  3398. }
  3399. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3400. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3401. unsigned long a1)
  3402. {
  3403. if (is_long_mode(vcpu))
  3404. return a0;
  3405. else
  3406. return a0 | ((gpa_t)a1 << 32);
  3407. }
  3408. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3409. {
  3410. u64 param, ingpa, outgpa, ret;
  3411. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3412. bool fast, longmode;
  3413. int cs_db, cs_l;
  3414. /*
  3415. * hypercall generates UD from non zero cpl and real mode
  3416. * per HYPER-V spec
  3417. */
  3418. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3419. kvm_queue_exception(vcpu, UD_VECTOR);
  3420. return 0;
  3421. }
  3422. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3423. longmode = is_long_mode(vcpu) && cs_l == 1;
  3424. if (!longmode) {
  3425. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3426. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3427. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3428. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3429. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3430. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3431. }
  3432. #ifdef CONFIG_X86_64
  3433. else {
  3434. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3435. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3436. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3437. }
  3438. #endif
  3439. code = param & 0xffff;
  3440. fast = (param >> 16) & 0x1;
  3441. rep_cnt = (param >> 32) & 0xfff;
  3442. rep_idx = (param >> 48) & 0xfff;
  3443. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3444. switch (code) {
  3445. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3446. kvm_vcpu_on_spin(vcpu);
  3447. break;
  3448. default:
  3449. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3450. break;
  3451. }
  3452. ret = res | (((u64)rep_done & 0xfff) << 32);
  3453. if (longmode) {
  3454. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3455. } else {
  3456. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3457. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3458. }
  3459. return 1;
  3460. }
  3461. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3462. {
  3463. unsigned long nr, a0, a1, a2, a3, ret;
  3464. int r = 1;
  3465. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3466. return kvm_hv_hypercall(vcpu);
  3467. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3468. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3469. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3470. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3471. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3472. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3473. if (!is_long_mode(vcpu)) {
  3474. nr &= 0xFFFFFFFF;
  3475. a0 &= 0xFFFFFFFF;
  3476. a1 &= 0xFFFFFFFF;
  3477. a2 &= 0xFFFFFFFF;
  3478. a3 &= 0xFFFFFFFF;
  3479. }
  3480. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3481. ret = -KVM_EPERM;
  3482. goto out;
  3483. }
  3484. switch (nr) {
  3485. case KVM_HC_VAPIC_POLL_IRQ:
  3486. ret = 0;
  3487. break;
  3488. case KVM_HC_MMU_OP:
  3489. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3490. break;
  3491. default:
  3492. ret = -KVM_ENOSYS;
  3493. break;
  3494. }
  3495. out:
  3496. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3497. ++vcpu->stat.hypercalls;
  3498. return r;
  3499. }
  3500. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3501. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3502. {
  3503. char instruction[3];
  3504. unsigned long rip = kvm_rip_read(vcpu);
  3505. /*
  3506. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3507. * to ensure that the updated hypercall appears atomically across all
  3508. * VCPUs.
  3509. */
  3510. kvm_mmu_zap_all(vcpu->kvm);
  3511. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3512. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3513. }
  3514. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3515. {
  3516. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3517. }
  3518. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3519. {
  3520. struct desc_ptr dt = { limit, base };
  3521. kvm_x86_ops->set_gdt(vcpu, &dt);
  3522. }
  3523. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3524. {
  3525. struct desc_ptr dt = { limit, base };
  3526. kvm_x86_ops->set_idt(vcpu, &dt);
  3527. }
  3528. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3529. unsigned long *rflags)
  3530. {
  3531. kvm_lmsw(vcpu, msw);
  3532. *rflags = kvm_get_rflags(vcpu);
  3533. }
  3534. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3535. {
  3536. unsigned long value;
  3537. switch (cr) {
  3538. case 0:
  3539. value = kvm_read_cr0(vcpu);
  3540. break;
  3541. case 2:
  3542. value = vcpu->arch.cr2;
  3543. break;
  3544. case 3:
  3545. value = vcpu->arch.cr3;
  3546. break;
  3547. case 4:
  3548. value = kvm_read_cr4(vcpu);
  3549. break;
  3550. case 8:
  3551. value = kvm_get_cr8(vcpu);
  3552. break;
  3553. default:
  3554. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3555. return 0;
  3556. }
  3557. return value;
  3558. }
  3559. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3560. unsigned long *rflags)
  3561. {
  3562. switch (cr) {
  3563. case 0:
  3564. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3565. *rflags = kvm_get_rflags(vcpu);
  3566. break;
  3567. case 2:
  3568. vcpu->arch.cr2 = val;
  3569. break;
  3570. case 3:
  3571. kvm_set_cr3(vcpu, val);
  3572. break;
  3573. case 4:
  3574. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3575. break;
  3576. case 8:
  3577. kvm_set_cr8(vcpu, val & 0xfUL);
  3578. break;
  3579. default:
  3580. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3581. }
  3582. }
  3583. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3584. {
  3585. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3586. int j, nent = vcpu->arch.cpuid_nent;
  3587. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3588. /* when no next entry is found, the current entry[i] is reselected */
  3589. for (j = i + 1; ; j = (j + 1) % nent) {
  3590. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3591. if (ej->function == e->function) {
  3592. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3593. return j;
  3594. }
  3595. }
  3596. return 0; /* silence gcc, even though control never reaches here */
  3597. }
  3598. /* find an entry with matching function, matching index (if needed), and that
  3599. * should be read next (if it's stateful) */
  3600. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3601. u32 function, u32 index)
  3602. {
  3603. if (e->function != function)
  3604. return 0;
  3605. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3606. return 0;
  3607. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3608. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3609. return 0;
  3610. return 1;
  3611. }
  3612. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3613. u32 function, u32 index)
  3614. {
  3615. int i;
  3616. struct kvm_cpuid_entry2 *best = NULL;
  3617. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3618. struct kvm_cpuid_entry2 *e;
  3619. e = &vcpu->arch.cpuid_entries[i];
  3620. if (is_matching_cpuid_entry(e, function, index)) {
  3621. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3622. move_to_next_stateful_cpuid_entry(vcpu, i);
  3623. best = e;
  3624. break;
  3625. }
  3626. /*
  3627. * Both basic or both extended?
  3628. */
  3629. if (((e->function ^ function) & 0x80000000) == 0)
  3630. if (!best || e->function > best->function)
  3631. best = e;
  3632. }
  3633. return best;
  3634. }
  3635. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3636. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3637. {
  3638. struct kvm_cpuid_entry2 *best;
  3639. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3640. if (best)
  3641. return best->eax & 0xff;
  3642. return 36;
  3643. }
  3644. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3645. {
  3646. u32 function, index;
  3647. struct kvm_cpuid_entry2 *best;
  3648. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3649. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3650. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3651. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3652. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3653. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3654. best = kvm_find_cpuid_entry(vcpu, function, index);
  3655. if (best) {
  3656. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3657. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3658. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3659. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3660. }
  3661. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3662. trace_kvm_cpuid(function,
  3663. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3664. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3665. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3666. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3667. }
  3668. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3669. /*
  3670. * Check if userspace requested an interrupt window, and that the
  3671. * interrupt window is open.
  3672. *
  3673. * No need to exit to userspace if we already have an interrupt queued.
  3674. */
  3675. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3676. {
  3677. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3678. vcpu->run->request_interrupt_window &&
  3679. kvm_arch_interrupt_allowed(vcpu));
  3680. }
  3681. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3682. {
  3683. struct kvm_run *kvm_run = vcpu->run;
  3684. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3685. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3686. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3687. if (irqchip_in_kernel(vcpu->kvm))
  3688. kvm_run->ready_for_interrupt_injection = 1;
  3689. else
  3690. kvm_run->ready_for_interrupt_injection =
  3691. kvm_arch_interrupt_allowed(vcpu) &&
  3692. !kvm_cpu_has_interrupt(vcpu) &&
  3693. !kvm_event_needs_reinjection(vcpu);
  3694. }
  3695. static void vapic_enter(struct kvm_vcpu *vcpu)
  3696. {
  3697. struct kvm_lapic *apic = vcpu->arch.apic;
  3698. struct page *page;
  3699. if (!apic || !apic->vapic_addr)
  3700. return;
  3701. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3702. vcpu->arch.apic->vapic_page = page;
  3703. }
  3704. static void vapic_exit(struct kvm_vcpu *vcpu)
  3705. {
  3706. struct kvm_lapic *apic = vcpu->arch.apic;
  3707. int idx;
  3708. if (!apic || !apic->vapic_addr)
  3709. return;
  3710. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3711. kvm_release_page_dirty(apic->vapic_page);
  3712. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3713. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3714. }
  3715. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3716. {
  3717. int max_irr, tpr;
  3718. if (!kvm_x86_ops->update_cr8_intercept)
  3719. return;
  3720. if (!vcpu->arch.apic)
  3721. return;
  3722. if (!vcpu->arch.apic->vapic_addr)
  3723. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3724. else
  3725. max_irr = -1;
  3726. if (max_irr != -1)
  3727. max_irr >>= 4;
  3728. tpr = kvm_lapic_get_cr8(vcpu);
  3729. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3730. }
  3731. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3732. {
  3733. /* try to reinject previous events if any */
  3734. if (vcpu->arch.exception.pending) {
  3735. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3736. vcpu->arch.exception.has_error_code,
  3737. vcpu->arch.exception.error_code);
  3738. return;
  3739. }
  3740. if (vcpu->arch.nmi_injected) {
  3741. kvm_x86_ops->set_nmi(vcpu);
  3742. return;
  3743. }
  3744. if (vcpu->arch.interrupt.pending) {
  3745. kvm_x86_ops->set_irq(vcpu);
  3746. return;
  3747. }
  3748. /* try to inject new event if pending */
  3749. if (vcpu->arch.nmi_pending) {
  3750. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3751. vcpu->arch.nmi_pending = false;
  3752. vcpu->arch.nmi_injected = true;
  3753. kvm_x86_ops->set_nmi(vcpu);
  3754. }
  3755. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3756. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3757. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3758. false);
  3759. kvm_x86_ops->set_irq(vcpu);
  3760. }
  3761. }
  3762. }
  3763. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3764. {
  3765. int r;
  3766. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3767. vcpu->run->request_interrupt_window;
  3768. if (vcpu->requests)
  3769. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3770. kvm_mmu_unload(vcpu);
  3771. r = kvm_mmu_reload(vcpu);
  3772. if (unlikely(r))
  3773. goto out;
  3774. if (vcpu->requests) {
  3775. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3776. __kvm_migrate_timers(vcpu);
  3777. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3778. kvm_write_guest_time(vcpu);
  3779. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3780. kvm_mmu_sync_roots(vcpu);
  3781. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3782. kvm_x86_ops->tlb_flush(vcpu);
  3783. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3784. &vcpu->requests)) {
  3785. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3786. r = 0;
  3787. goto out;
  3788. }
  3789. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3790. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3791. r = 0;
  3792. goto out;
  3793. }
  3794. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3795. vcpu->fpu_active = 0;
  3796. kvm_x86_ops->fpu_deactivate(vcpu);
  3797. }
  3798. }
  3799. preempt_disable();
  3800. kvm_x86_ops->prepare_guest_switch(vcpu);
  3801. if (vcpu->fpu_active)
  3802. kvm_load_guest_fpu(vcpu);
  3803. local_irq_disable();
  3804. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3805. smp_mb__after_clear_bit();
  3806. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3807. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3808. local_irq_enable();
  3809. preempt_enable();
  3810. r = 1;
  3811. goto out;
  3812. }
  3813. inject_pending_event(vcpu);
  3814. /* enable NMI/IRQ window open exits if needed */
  3815. if (vcpu->arch.nmi_pending)
  3816. kvm_x86_ops->enable_nmi_window(vcpu);
  3817. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3818. kvm_x86_ops->enable_irq_window(vcpu);
  3819. if (kvm_lapic_enabled(vcpu)) {
  3820. update_cr8_intercept(vcpu);
  3821. kvm_lapic_sync_to_vapic(vcpu);
  3822. }
  3823. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3824. kvm_guest_enter();
  3825. if (unlikely(vcpu->arch.switch_db_regs)) {
  3826. set_debugreg(0, 7);
  3827. set_debugreg(vcpu->arch.eff_db[0], 0);
  3828. set_debugreg(vcpu->arch.eff_db[1], 1);
  3829. set_debugreg(vcpu->arch.eff_db[2], 2);
  3830. set_debugreg(vcpu->arch.eff_db[3], 3);
  3831. }
  3832. trace_kvm_entry(vcpu->vcpu_id);
  3833. kvm_x86_ops->run(vcpu);
  3834. /*
  3835. * If the guest has used debug registers, at least dr7
  3836. * will be disabled while returning to the host.
  3837. * If we don't have active breakpoints in the host, we don't
  3838. * care about the messed up debug address registers. But if
  3839. * we have some of them active, restore the old state.
  3840. */
  3841. if (hw_breakpoint_active())
  3842. hw_breakpoint_restore();
  3843. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3844. local_irq_enable();
  3845. ++vcpu->stat.exits;
  3846. /*
  3847. * We must have an instruction between local_irq_enable() and
  3848. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3849. * the interrupt shadow. The stat.exits increment will do nicely.
  3850. * But we need to prevent reordering, hence this barrier():
  3851. */
  3852. barrier();
  3853. kvm_guest_exit();
  3854. preempt_enable();
  3855. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3856. /*
  3857. * Profile KVM exit RIPs:
  3858. */
  3859. if (unlikely(prof_on == KVM_PROFILING)) {
  3860. unsigned long rip = kvm_rip_read(vcpu);
  3861. profile_hit(KVM_PROFILING, (void *)rip);
  3862. }
  3863. kvm_lapic_sync_from_vapic(vcpu);
  3864. r = kvm_x86_ops->handle_exit(vcpu);
  3865. out:
  3866. return r;
  3867. }
  3868. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3869. {
  3870. int r;
  3871. struct kvm *kvm = vcpu->kvm;
  3872. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3873. pr_debug("vcpu %d received sipi with vector # %x\n",
  3874. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3875. kvm_lapic_reset(vcpu);
  3876. r = kvm_arch_vcpu_reset(vcpu);
  3877. if (r)
  3878. return r;
  3879. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3880. }
  3881. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3882. vapic_enter(vcpu);
  3883. r = 1;
  3884. while (r > 0) {
  3885. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3886. r = vcpu_enter_guest(vcpu);
  3887. else {
  3888. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3889. kvm_vcpu_block(vcpu);
  3890. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3891. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3892. {
  3893. switch(vcpu->arch.mp_state) {
  3894. case KVM_MP_STATE_HALTED:
  3895. vcpu->arch.mp_state =
  3896. KVM_MP_STATE_RUNNABLE;
  3897. case KVM_MP_STATE_RUNNABLE:
  3898. break;
  3899. case KVM_MP_STATE_SIPI_RECEIVED:
  3900. default:
  3901. r = -EINTR;
  3902. break;
  3903. }
  3904. }
  3905. }
  3906. if (r <= 0)
  3907. break;
  3908. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3909. if (kvm_cpu_has_pending_timer(vcpu))
  3910. kvm_inject_pending_timer_irqs(vcpu);
  3911. if (dm_request_for_irq_injection(vcpu)) {
  3912. r = -EINTR;
  3913. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3914. ++vcpu->stat.request_irq_exits;
  3915. }
  3916. if (signal_pending(current)) {
  3917. r = -EINTR;
  3918. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3919. ++vcpu->stat.signal_exits;
  3920. }
  3921. if (need_resched()) {
  3922. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3923. kvm_resched(vcpu);
  3924. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3925. }
  3926. }
  3927. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3928. post_kvm_run_save(vcpu);
  3929. vapic_exit(vcpu);
  3930. return r;
  3931. }
  3932. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3933. {
  3934. int r;
  3935. sigset_t sigsaved;
  3936. vcpu_load(vcpu);
  3937. if (vcpu->sigset_active)
  3938. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3939. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3940. kvm_vcpu_block(vcpu);
  3941. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3942. r = -EAGAIN;
  3943. goto out;
  3944. }
  3945. /* re-sync apic's tpr */
  3946. if (!irqchip_in_kernel(vcpu->kvm))
  3947. kvm_set_cr8(vcpu, kvm_run->cr8);
  3948. if (vcpu->arch.pio.cur_count) {
  3949. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3950. r = complete_pio(vcpu);
  3951. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3952. if (r)
  3953. goto out;
  3954. }
  3955. if (vcpu->mmio_needed) {
  3956. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3957. vcpu->mmio_read_completed = 1;
  3958. vcpu->mmio_needed = 0;
  3959. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3960. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3961. EMULTYPE_NO_DECODE);
  3962. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3963. if (r == EMULATE_DO_MMIO) {
  3964. /*
  3965. * Read-modify-write. Back to userspace.
  3966. */
  3967. r = 0;
  3968. goto out;
  3969. }
  3970. }
  3971. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3972. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3973. kvm_run->hypercall.ret);
  3974. r = __vcpu_run(vcpu);
  3975. out:
  3976. if (vcpu->sigset_active)
  3977. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3978. vcpu_put(vcpu);
  3979. return r;
  3980. }
  3981. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3982. {
  3983. vcpu_load(vcpu);
  3984. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3985. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3986. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3987. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3988. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3989. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3990. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3991. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3992. #ifdef CONFIG_X86_64
  3993. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3994. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3995. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3996. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3997. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3998. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3999. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4000. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4001. #endif
  4002. regs->rip = kvm_rip_read(vcpu);
  4003. regs->rflags = kvm_get_rflags(vcpu);
  4004. vcpu_put(vcpu);
  4005. return 0;
  4006. }
  4007. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4008. {
  4009. vcpu_load(vcpu);
  4010. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4011. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4012. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4013. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4014. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4015. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4016. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4017. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4018. #ifdef CONFIG_X86_64
  4019. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4020. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4021. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4022. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4023. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4024. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4025. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4026. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4027. #endif
  4028. kvm_rip_write(vcpu, regs->rip);
  4029. kvm_set_rflags(vcpu, regs->rflags);
  4030. vcpu->arch.exception.pending = false;
  4031. vcpu_put(vcpu);
  4032. return 0;
  4033. }
  4034. void kvm_get_segment(struct kvm_vcpu *vcpu,
  4035. struct kvm_segment *var, int seg)
  4036. {
  4037. kvm_x86_ops->get_segment(vcpu, var, seg);
  4038. }
  4039. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4040. {
  4041. struct kvm_segment cs;
  4042. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4043. *db = cs.db;
  4044. *l = cs.l;
  4045. }
  4046. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4047. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4048. struct kvm_sregs *sregs)
  4049. {
  4050. struct desc_ptr dt;
  4051. vcpu_load(vcpu);
  4052. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4053. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4054. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4055. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4056. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4057. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4058. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4059. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4060. kvm_x86_ops->get_idt(vcpu, &dt);
  4061. sregs->idt.limit = dt.size;
  4062. sregs->idt.base = dt.address;
  4063. kvm_x86_ops->get_gdt(vcpu, &dt);
  4064. sregs->gdt.limit = dt.size;
  4065. sregs->gdt.base = dt.address;
  4066. sregs->cr0 = kvm_read_cr0(vcpu);
  4067. sregs->cr2 = vcpu->arch.cr2;
  4068. sregs->cr3 = vcpu->arch.cr3;
  4069. sregs->cr4 = kvm_read_cr4(vcpu);
  4070. sregs->cr8 = kvm_get_cr8(vcpu);
  4071. sregs->efer = vcpu->arch.efer;
  4072. sregs->apic_base = kvm_get_apic_base(vcpu);
  4073. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4074. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4075. set_bit(vcpu->arch.interrupt.nr,
  4076. (unsigned long *)sregs->interrupt_bitmap);
  4077. vcpu_put(vcpu);
  4078. return 0;
  4079. }
  4080. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4081. struct kvm_mp_state *mp_state)
  4082. {
  4083. vcpu_load(vcpu);
  4084. mp_state->mp_state = vcpu->arch.mp_state;
  4085. vcpu_put(vcpu);
  4086. return 0;
  4087. }
  4088. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4089. struct kvm_mp_state *mp_state)
  4090. {
  4091. vcpu_load(vcpu);
  4092. vcpu->arch.mp_state = mp_state->mp_state;
  4093. vcpu_put(vcpu);
  4094. return 0;
  4095. }
  4096. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  4097. struct kvm_segment *var, int seg)
  4098. {
  4099. kvm_x86_ops->set_segment(vcpu, var, seg);
  4100. }
  4101. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  4102. struct kvm_segment *kvm_desct)
  4103. {
  4104. kvm_desct->base = get_desc_base(seg_desc);
  4105. kvm_desct->limit = get_desc_limit(seg_desc);
  4106. if (seg_desc->g) {
  4107. kvm_desct->limit <<= 12;
  4108. kvm_desct->limit |= 0xfff;
  4109. }
  4110. kvm_desct->selector = selector;
  4111. kvm_desct->type = seg_desc->type;
  4112. kvm_desct->present = seg_desc->p;
  4113. kvm_desct->dpl = seg_desc->dpl;
  4114. kvm_desct->db = seg_desc->d;
  4115. kvm_desct->s = seg_desc->s;
  4116. kvm_desct->l = seg_desc->l;
  4117. kvm_desct->g = seg_desc->g;
  4118. kvm_desct->avl = seg_desc->avl;
  4119. if (!selector)
  4120. kvm_desct->unusable = 1;
  4121. else
  4122. kvm_desct->unusable = 0;
  4123. kvm_desct->padding = 0;
  4124. }
  4125. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  4126. u16 selector,
  4127. struct desc_ptr *dtable)
  4128. {
  4129. if (selector & 1 << 2) {
  4130. struct kvm_segment kvm_seg;
  4131. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  4132. if (kvm_seg.unusable)
  4133. dtable->size = 0;
  4134. else
  4135. dtable->size = kvm_seg.limit;
  4136. dtable->address = kvm_seg.base;
  4137. }
  4138. else
  4139. kvm_x86_ops->get_gdt(vcpu, dtable);
  4140. }
  4141. /* allowed just for 8 bytes segments */
  4142. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4143. struct desc_struct *seg_desc)
  4144. {
  4145. struct desc_ptr dtable;
  4146. u16 index = selector >> 3;
  4147. int ret;
  4148. u32 err;
  4149. gva_t addr;
  4150. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4151. if (dtable.size < index * 8 + 7) {
  4152. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  4153. return X86EMUL_PROPAGATE_FAULT;
  4154. }
  4155. addr = dtable.base + index * 8;
  4156. ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
  4157. vcpu, &err);
  4158. if (ret == X86EMUL_PROPAGATE_FAULT)
  4159. kvm_inject_page_fault(vcpu, addr, err);
  4160. return ret;
  4161. }
  4162. /* allowed just for 8 bytes segments */
  4163. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4164. struct desc_struct *seg_desc)
  4165. {
  4166. struct desc_ptr dtable;
  4167. u16 index = selector >> 3;
  4168. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4169. if (dtable.size < index * 8 + 7)
  4170. return 1;
  4171. return kvm_write_guest_virt(dtable.address + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
  4172. }
  4173. static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
  4174. struct desc_struct *seg_desc)
  4175. {
  4176. u32 base_addr = get_desc_base(seg_desc);
  4177. return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
  4178. }
  4179. static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
  4180. struct desc_struct *seg_desc)
  4181. {
  4182. u32 base_addr = get_desc_base(seg_desc);
  4183. return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
  4184. }
  4185. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  4186. {
  4187. struct kvm_segment kvm_seg;
  4188. kvm_get_segment(vcpu, &kvm_seg, seg);
  4189. return kvm_seg.selector;
  4190. }
  4191. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4192. {
  4193. struct kvm_segment segvar = {
  4194. .base = selector << 4,
  4195. .limit = 0xffff,
  4196. .selector = selector,
  4197. .type = 3,
  4198. .present = 1,
  4199. .dpl = 3,
  4200. .db = 0,
  4201. .s = 1,
  4202. .l = 0,
  4203. .g = 0,
  4204. .avl = 0,
  4205. .unusable = 0,
  4206. };
  4207. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  4208. return X86EMUL_CONTINUE;
  4209. }
  4210. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  4211. {
  4212. return (seg != VCPU_SREG_LDTR) &&
  4213. (seg != VCPU_SREG_TR) &&
  4214. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  4215. }
  4216. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4217. {
  4218. struct kvm_segment kvm_seg;
  4219. struct desc_struct seg_desc;
  4220. u8 dpl, rpl, cpl;
  4221. unsigned err_vec = GP_VECTOR;
  4222. u32 err_code = 0;
  4223. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  4224. int ret;
  4225. if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
  4226. return kvm_load_realmode_segment(vcpu, selector, seg);
  4227. /* NULL selector is not valid for TR, CS and SS */
  4228. if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
  4229. && null_selector)
  4230. goto exception;
  4231. /* TR should be in GDT only */
  4232. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  4233. goto exception;
  4234. ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4235. if (ret)
  4236. return ret;
  4237. seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
  4238. if (null_selector) { /* for NULL selector skip all following checks */
  4239. kvm_seg.unusable = 1;
  4240. goto load;
  4241. }
  4242. err_code = selector & 0xfffc;
  4243. err_vec = GP_VECTOR;
  4244. /* can't load system descriptor into segment selecor */
  4245. if (seg <= VCPU_SREG_GS && !kvm_seg.s)
  4246. goto exception;
  4247. if (!kvm_seg.present) {
  4248. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  4249. goto exception;
  4250. }
  4251. rpl = selector & 3;
  4252. dpl = kvm_seg.dpl;
  4253. cpl = kvm_x86_ops->get_cpl(vcpu);
  4254. switch (seg) {
  4255. case VCPU_SREG_SS:
  4256. /*
  4257. * segment is not a writable data segment or segment
  4258. * selector's RPL != CPL or segment selector's RPL != CPL
  4259. */
  4260. if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
  4261. goto exception;
  4262. break;
  4263. case VCPU_SREG_CS:
  4264. if (!(kvm_seg.type & 8))
  4265. goto exception;
  4266. if (kvm_seg.type & 4) {
  4267. /* conforming */
  4268. if (dpl > cpl)
  4269. goto exception;
  4270. } else {
  4271. /* nonconforming */
  4272. if (rpl > cpl || dpl != cpl)
  4273. goto exception;
  4274. }
  4275. /* CS(RPL) <- CPL */
  4276. selector = (selector & 0xfffc) | cpl;
  4277. break;
  4278. case VCPU_SREG_TR:
  4279. if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
  4280. goto exception;
  4281. break;
  4282. case VCPU_SREG_LDTR:
  4283. if (kvm_seg.s || kvm_seg.type != 2)
  4284. goto exception;
  4285. break;
  4286. default: /* DS, ES, FS, or GS */
  4287. /*
  4288. * segment is not a data or readable code segment or
  4289. * ((segment is a data or nonconforming code segment)
  4290. * and (both RPL and CPL > DPL))
  4291. */
  4292. if ((kvm_seg.type & 0xa) == 0x8 ||
  4293. (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
  4294. goto exception;
  4295. break;
  4296. }
  4297. if (!kvm_seg.unusable && kvm_seg.s) {
  4298. /* mark segment as accessed */
  4299. kvm_seg.type |= 1;
  4300. seg_desc.type |= 1;
  4301. save_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4302. }
  4303. load:
  4304. kvm_set_segment(vcpu, &kvm_seg, seg);
  4305. return X86EMUL_CONTINUE;
  4306. exception:
  4307. kvm_queue_exception_e(vcpu, err_vec, err_code);
  4308. return X86EMUL_PROPAGATE_FAULT;
  4309. }
  4310. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  4311. struct tss_segment_32 *tss)
  4312. {
  4313. tss->cr3 = vcpu->arch.cr3;
  4314. tss->eip = kvm_rip_read(vcpu);
  4315. tss->eflags = kvm_get_rflags(vcpu);
  4316. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4317. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4318. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4319. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4320. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4321. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4322. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4323. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4324. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4325. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4326. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4327. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4328. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  4329. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  4330. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4331. }
  4332. static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
  4333. {
  4334. struct kvm_segment kvm_seg;
  4335. kvm_get_segment(vcpu, &kvm_seg, seg);
  4336. kvm_seg.selector = sel;
  4337. kvm_set_segment(vcpu, &kvm_seg, seg);
  4338. }
  4339. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  4340. struct tss_segment_32 *tss)
  4341. {
  4342. kvm_set_cr3(vcpu, tss->cr3);
  4343. kvm_rip_write(vcpu, tss->eip);
  4344. kvm_set_rflags(vcpu, tss->eflags | 2);
  4345. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  4346. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  4347. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  4348. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  4349. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  4350. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  4351. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  4352. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  4353. /*
  4354. * SDM says that segment selectors are loaded before segment
  4355. * descriptors
  4356. */
  4357. kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
  4358. kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
  4359. kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
  4360. kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
  4361. kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
  4362. kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
  4363. kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
  4364. /*
  4365. * Now load segment descriptors. If fault happenes at this stage
  4366. * it is handled in a context of new task
  4367. */
  4368. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
  4369. return 1;
  4370. if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
  4371. return 1;
  4372. if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
  4373. return 1;
  4374. if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
  4375. return 1;
  4376. if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
  4377. return 1;
  4378. if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
  4379. return 1;
  4380. if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
  4381. return 1;
  4382. return 0;
  4383. }
  4384. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  4385. struct tss_segment_16 *tss)
  4386. {
  4387. tss->ip = kvm_rip_read(vcpu);
  4388. tss->flag = kvm_get_rflags(vcpu);
  4389. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4390. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4391. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4392. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4393. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4394. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4395. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4396. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4397. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4398. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4399. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4400. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4401. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4402. }
  4403. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  4404. struct tss_segment_16 *tss)
  4405. {
  4406. kvm_rip_write(vcpu, tss->ip);
  4407. kvm_set_rflags(vcpu, tss->flag | 2);
  4408. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  4409. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  4410. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  4411. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  4412. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  4413. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  4414. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  4415. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  4416. /*
  4417. * SDM says that segment selectors are loaded before segment
  4418. * descriptors
  4419. */
  4420. kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
  4421. kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
  4422. kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
  4423. kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
  4424. kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
  4425. /*
  4426. * Now load segment descriptors. If fault happenes at this stage
  4427. * it is handled in a context of new task
  4428. */
  4429. if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
  4430. return 1;
  4431. if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
  4432. return 1;
  4433. if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
  4434. return 1;
  4435. if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
  4436. return 1;
  4437. if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
  4438. return 1;
  4439. return 0;
  4440. }
  4441. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  4442. u16 old_tss_sel, u32 old_tss_base,
  4443. struct desc_struct *nseg_desc)
  4444. {
  4445. struct tss_segment_16 tss_segment_16;
  4446. int ret = 0;
  4447. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4448. sizeof tss_segment_16))
  4449. goto out;
  4450. save_state_to_tss16(vcpu, &tss_segment_16);
  4451. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4452. sizeof tss_segment_16))
  4453. goto out;
  4454. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4455. &tss_segment_16, sizeof tss_segment_16))
  4456. goto out;
  4457. if (old_tss_sel != 0xffff) {
  4458. tss_segment_16.prev_task_link = old_tss_sel;
  4459. if (kvm_write_guest(vcpu->kvm,
  4460. get_tss_base_addr_write(vcpu, nseg_desc),
  4461. &tss_segment_16.prev_task_link,
  4462. sizeof tss_segment_16.prev_task_link))
  4463. goto out;
  4464. }
  4465. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4466. goto out;
  4467. ret = 1;
  4468. out:
  4469. return ret;
  4470. }
  4471. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4472. u16 old_tss_sel, u32 old_tss_base,
  4473. struct desc_struct *nseg_desc)
  4474. {
  4475. struct tss_segment_32 tss_segment_32;
  4476. int ret = 0;
  4477. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4478. sizeof tss_segment_32))
  4479. goto out;
  4480. save_state_to_tss32(vcpu, &tss_segment_32);
  4481. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4482. sizeof tss_segment_32))
  4483. goto out;
  4484. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4485. &tss_segment_32, sizeof tss_segment_32))
  4486. goto out;
  4487. if (old_tss_sel != 0xffff) {
  4488. tss_segment_32.prev_task_link = old_tss_sel;
  4489. if (kvm_write_guest(vcpu->kvm,
  4490. get_tss_base_addr_write(vcpu, nseg_desc),
  4491. &tss_segment_32.prev_task_link,
  4492. sizeof tss_segment_32.prev_task_link))
  4493. goto out;
  4494. }
  4495. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4496. goto out;
  4497. ret = 1;
  4498. out:
  4499. return ret;
  4500. }
  4501. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4502. {
  4503. struct kvm_segment tr_seg;
  4504. struct desc_struct cseg_desc;
  4505. struct desc_struct nseg_desc;
  4506. int ret = 0;
  4507. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4508. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4509. u32 desc_limit;
  4510. old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
  4511. /* FIXME: Handle errors. Failure to read either TSS or their
  4512. * descriptors should generate a pagefault.
  4513. */
  4514. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4515. goto out;
  4516. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4517. goto out;
  4518. if (reason != TASK_SWITCH_IRET) {
  4519. int cpl;
  4520. cpl = kvm_x86_ops->get_cpl(vcpu);
  4521. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4522. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4523. return 1;
  4524. }
  4525. }
  4526. desc_limit = get_desc_limit(&nseg_desc);
  4527. if (!nseg_desc.p ||
  4528. ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
  4529. desc_limit < 0x2b)) {
  4530. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4531. return 1;
  4532. }
  4533. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4534. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4535. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4536. }
  4537. if (reason == TASK_SWITCH_IRET) {
  4538. u32 eflags = kvm_get_rflags(vcpu);
  4539. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4540. }
  4541. /* set back link to prev task only if NT bit is set in eflags
  4542. note that old_tss_sel is not used afetr this point */
  4543. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4544. old_tss_sel = 0xffff;
  4545. if (nseg_desc.type & 8)
  4546. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4547. old_tss_base, &nseg_desc);
  4548. else
  4549. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4550. old_tss_base, &nseg_desc);
  4551. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4552. u32 eflags = kvm_get_rflags(vcpu);
  4553. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4554. }
  4555. if (reason != TASK_SWITCH_IRET) {
  4556. nseg_desc.type |= (1 << 1);
  4557. save_guest_segment_descriptor(vcpu, tss_selector,
  4558. &nseg_desc);
  4559. }
  4560. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
  4561. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4562. tr_seg.type = 11;
  4563. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4564. out:
  4565. return ret;
  4566. }
  4567. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4568. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4569. struct kvm_sregs *sregs)
  4570. {
  4571. int mmu_reset_needed = 0;
  4572. int pending_vec, max_bits;
  4573. struct desc_ptr dt;
  4574. vcpu_load(vcpu);
  4575. dt.size = sregs->idt.limit;
  4576. dt.address = sregs->idt.base;
  4577. kvm_x86_ops->set_idt(vcpu, &dt);
  4578. dt.size = sregs->gdt.limit;
  4579. dt.address = sregs->gdt.base;
  4580. kvm_x86_ops->set_gdt(vcpu, &dt);
  4581. vcpu->arch.cr2 = sregs->cr2;
  4582. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4583. vcpu->arch.cr3 = sregs->cr3;
  4584. kvm_set_cr8(vcpu, sregs->cr8);
  4585. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4586. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4587. kvm_set_apic_base(vcpu, sregs->apic_base);
  4588. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4589. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4590. vcpu->arch.cr0 = sregs->cr0;
  4591. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4592. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4593. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4594. load_pdptrs(vcpu, vcpu->arch.cr3);
  4595. mmu_reset_needed = 1;
  4596. }
  4597. if (mmu_reset_needed)
  4598. kvm_mmu_reset_context(vcpu);
  4599. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4600. pending_vec = find_first_bit(
  4601. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4602. if (pending_vec < max_bits) {
  4603. kvm_queue_interrupt(vcpu, pending_vec, false);
  4604. pr_debug("Set back pending irq %d\n", pending_vec);
  4605. if (irqchip_in_kernel(vcpu->kvm))
  4606. kvm_pic_clear_isr_ack(vcpu->kvm);
  4607. }
  4608. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4609. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4610. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4611. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4612. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4613. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4614. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4615. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4616. update_cr8_intercept(vcpu);
  4617. /* Older userspace won't unhalt the vcpu on reset. */
  4618. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4619. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4620. !is_protmode(vcpu))
  4621. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4622. vcpu_put(vcpu);
  4623. return 0;
  4624. }
  4625. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4626. struct kvm_guest_debug *dbg)
  4627. {
  4628. unsigned long rflags;
  4629. int i, r;
  4630. vcpu_load(vcpu);
  4631. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4632. r = -EBUSY;
  4633. if (vcpu->arch.exception.pending)
  4634. goto unlock_out;
  4635. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4636. kvm_queue_exception(vcpu, DB_VECTOR);
  4637. else
  4638. kvm_queue_exception(vcpu, BP_VECTOR);
  4639. }
  4640. /*
  4641. * Read rflags as long as potentially injected trace flags are still
  4642. * filtered out.
  4643. */
  4644. rflags = kvm_get_rflags(vcpu);
  4645. vcpu->guest_debug = dbg->control;
  4646. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4647. vcpu->guest_debug = 0;
  4648. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4649. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4650. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4651. vcpu->arch.switch_db_regs =
  4652. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4653. } else {
  4654. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4655. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4656. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4657. }
  4658. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4659. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4660. get_segment_base(vcpu, VCPU_SREG_CS);
  4661. /*
  4662. * Trigger an rflags update that will inject or remove the trace
  4663. * flags.
  4664. */
  4665. kvm_set_rflags(vcpu, rflags);
  4666. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4667. r = 0;
  4668. unlock_out:
  4669. vcpu_put(vcpu);
  4670. return r;
  4671. }
  4672. /*
  4673. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4674. * we have asm/x86/processor.h
  4675. */
  4676. struct fxsave {
  4677. u16 cwd;
  4678. u16 swd;
  4679. u16 twd;
  4680. u16 fop;
  4681. u64 rip;
  4682. u64 rdp;
  4683. u32 mxcsr;
  4684. u32 mxcsr_mask;
  4685. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4686. #ifdef CONFIG_X86_64
  4687. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4688. #else
  4689. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4690. #endif
  4691. };
  4692. /*
  4693. * Translate a guest virtual address to a guest physical address.
  4694. */
  4695. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4696. struct kvm_translation *tr)
  4697. {
  4698. unsigned long vaddr = tr->linear_address;
  4699. gpa_t gpa;
  4700. int idx;
  4701. vcpu_load(vcpu);
  4702. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4703. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4704. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4705. tr->physical_address = gpa;
  4706. tr->valid = gpa != UNMAPPED_GVA;
  4707. tr->writeable = 1;
  4708. tr->usermode = 0;
  4709. vcpu_put(vcpu);
  4710. return 0;
  4711. }
  4712. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4713. {
  4714. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4715. vcpu_load(vcpu);
  4716. memcpy(fpu->fpr, fxsave->st_space, 128);
  4717. fpu->fcw = fxsave->cwd;
  4718. fpu->fsw = fxsave->swd;
  4719. fpu->ftwx = fxsave->twd;
  4720. fpu->last_opcode = fxsave->fop;
  4721. fpu->last_ip = fxsave->rip;
  4722. fpu->last_dp = fxsave->rdp;
  4723. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4724. vcpu_put(vcpu);
  4725. return 0;
  4726. }
  4727. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4728. {
  4729. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4730. vcpu_load(vcpu);
  4731. memcpy(fxsave->st_space, fpu->fpr, 128);
  4732. fxsave->cwd = fpu->fcw;
  4733. fxsave->swd = fpu->fsw;
  4734. fxsave->twd = fpu->ftwx;
  4735. fxsave->fop = fpu->last_opcode;
  4736. fxsave->rip = fpu->last_ip;
  4737. fxsave->rdp = fpu->last_dp;
  4738. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4739. vcpu_put(vcpu);
  4740. return 0;
  4741. }
  4742. void fx_init(struct kvm_vcpu *vcpu)
  4743. {
  4744. unsigned after_mxcsr_mask;
  4745. /*
  4746. * Touch the fpu the first time in non atomic context as if
  4747. * this is the first fpu instruction the exception handler
  4748. * will fire before the instruction returns and it'll have to
  4749. * allocate ram with GFP_KERNEL.
  4750. */
  4751. if (!used_math())
  4752. kvm_fx_save(&vcpu->arch.host_fx_image);
  4753. /* Initialize guest FPU by resetting ours and saving into guest's */
  4754. preempt_disable();
  4755. kvm_fx_save(&vcpu->arch.host_fx_image);
  4756. kvm_fx_finit();
  4757. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4758. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4759. preempt_enable();
  4760. vcpu->arch.cr0 |= X86_CR0_ET;
  4761. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4762. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4763. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4764. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4765. }
  4766. EXPORT_SYMBOL_GPL(fx_init);
  4767. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4768. {
  4769. if (vcpu->guest_fpu_loaded)
  4770. return;
  4771. vcpu->guest_fpu_loaded = 1;
  4772. kvm_fx_save(&vcpu->arch.host_fx_image);
  4773. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4774. trace_kvm_fpu(1);
  4775. }
  4776. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4777. {
  4778. if (!vcpu->guest_fpu_loaded)
  4779. return;
  4780. vcpu->guest_fpu_loaded = 0;
  4781. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4782. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4783. ++vcpu->stat.fpu_reload;
  4784. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4785. trace_kvm_fpu(0);
  4786. }
  4787. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4788. {
  4789. if (vcpu->arch.time_page) {
  4790. kvm_release_page_dirty(vcpu->arch.time_page);
  4791. vcpu->arch.time_page = NULL;
  4792. }
  4793. kvm_x86_ops->vcpu_free(vcpu);
  4794. }
  4795. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4796. unsigned int id)
  4797. {
  4798. return kvm_x86_ops->vcpu_create(kvm, id);
  4799. }
  4800. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4801. {
  4802. int r;
  4803. /* We do fxsave: this must be aligned. */
  4804. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4805. vcpu->arch.mtrr_state.have_fixed = 1;
  4806. vcpu_load(vcpu);
  4807. r = kvm_arch_vcpu_reset(vcpu);
  4808. if (r == 0)
  4809. r = kvm_mmu_setup(vcpu);
  4810. vcpu_put(vcpu);
  4811. if (r < 0)
  4812. goto free_vcpu;
  4813. return 0;
  4814. free_vcpu:
  4815. kvm_x86_ops->vcpu_free(vcpu);
  4816. return r;
  4817. }
  4818. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4819. {
  4820. vcpu_load(vcpu);
  4821. kvm_mmu_unload(vcpu);
  4822. vcpu_put(vcpu);
  4823. kvm_x86_ops->vcpu_free(vcpu);
  4824. }
  4825. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4826. {
  4827. vcpu->arch.nmi_pending = false;
  4828. vcpu->arch.nmi_injected = false;
  4829. vcpu->arch.switch_db_regs = 0;
  4830. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4831. vcpu->arch.dr6 = DR6_FIXED_1;
  4832. vcpu->arch.dr7 = DR7_FIXED_1;
  4833. return kvm_x86_ops->vcpu_reset(vcpu);
  4834. }
  4835. int kvm_arch_hardware_enable(void *garbage)
  4836. {
  4837. /*
  4838. * Since this may be called from a hotplug notifcation,
  4839. * we can't get the CPU frequency directly.
  4840. */
  4841. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4842. int cpu = raw_smp_processor_id();
  4843. per_cpu(cpu_tsc_khz, cpu) = 0;
  4844. }
  4845. kvm_shared_msr_cpu_online();
  4846. return kvm_x86_ops->hardware_enable(garbage);
  4847. }
  4848. void kvm_arch_hardware_disable(void *garbage)
  4849. {
  4850. kvm_x86_ops->hardware_disable(garbage);
  4851. drop_user_return_notifiers(garbage);
  4852. }
  4853. int kvm_arch_hardware_setup(void)
  4854. {
  4855. return kvm_x86_ops->hardware_setup();
  4856. }
  4857. void kvm_arch_hardware_unsetup(void)
  4858. {
  4859. kvm_x86_ops->hardware_unsetup();
  4860. }
  4861. void kvm_arch_check_processor_compat(void *rtn)
  4862. {
  4863. kvm_x86_ops->check_processor_compatibility(rtn);
  4864. }
  4865. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4866. {
  4867. struct page *page;
  4868. struct kvm *kvm;
  4869. int r;
  4870. BUG_ON(vcpu->kvm == NULL);
  4871. kvm = vcpu->kvm;
  4872. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4873. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4874. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4875. else
  4876. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4877. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4878. if (!page) {
  4879. r = -ENOMEM;
  4880. goto fail;
  4881. }
  4882. vcpu->arch.pio_data = page_address(page);
  4883. r = kvm_mmu_create(vcpu);
  4884. if (r < 0)
  4885. goto fail_free_pio_data;
  4886. if (irqchip_in_kernel(kvm)) {
  4887. r = kvm_create_lapic(vcpu);
  4888. if (r < 0)
  4889. goto fail_mmu_destroy;
  4890. }
  4891. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4892. GFP_KERNEL);
  4893. if (!vcpu->arch.mce_banks) {
  4894. r = -ENOMEM;
  4895. goto fail_free_lapic;
  4896. }
  4897. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4898. return 0;
  4899. fail_free_lapic:
  4900. kvm_free_lapic(vcpu);
  4901. fail_mmu_destroy:
  4902. kvm_mmu_destroy(vcpu);
  4903. fail_free_pio_data:
  4904. free_page((unsigned long)vcpu->arch.pio_data);
  4905. fail:
  4906. return r;
  4907. }
  4908. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4909. {
  4910. int idx;
  4911. kfree(vcpu->arch.mce_banks);
  4912. kvm_free_lapic(vcpu);
  4913. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4914. kvm_mmu_destroy(vcpu);
  4915. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4916. free_page((unsigned long)vcpu->arch.pio_data);
  4917. }
  4918. struct kvm *kvm_arch_create_vm(void)
  4919. {
  4920. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4921. if (!kvm)
  4922. return ERR_PTR(-ENOMEM);
  4923. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4924. if (!kvm->arch.aliases) {
  4925. kfree(kvm);
  4926. return ERR_PTR(-ENOMEM);
  4927. }
  4928. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4929. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4930. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4931. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4932. rdtscll(kvm->arch.vm_init_tsc);
  4933. return kvm;
  4934. }
  4935. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4936. {
  4937. vcpu_load(vcpu);
  4938. kvm_mmu_unload(vcpu);
  4939. vcpu_put(vcpu);
  4940. }
  4941. static void kvm_free_vcpus(struct kvm *kvm)
  4942. {
  4943. unsigned int i;
  4944. struct kvm_vcpu *vcpu;
  4945. /*
  4946. * Unpin any mmu pages first.
  4947. */
  4948. kvm_for_each_vcpu(i, vcpu, kvm)
  4949. kvm_unload_vcpu_mmu(vcpu);
  4950. kvm_for_each_vcpu(i, vcpu, kvm)
  4951. kvm_arch_vcpu_free(vcpu);
  4952. mutex_lock(&kvm->lock);
  4953. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4954. kvm->vcpus[i] = NULL;
  4955. atomic_set(&kvm->online_vcpus, 0);
  4956. mutex_unlock(&kvm->lock);
  4957. }
  4958. void kvm_arch_sync_events(struct kvm *kvm)
  4959. {
  4960. kvm_free_all_assigned_devices(kvm);
  4961. }
  4962. void kvm_arch_destroy_vm(struct kvm *kvm)
  4963. {
  4964. kvm_iommu_unmap_guest(kvm);
  4965. kvm_free_pit(kvm);
  4966. kfree(kvm->arch.vpic);
  4967. kfree(kvm->arch.vioapic);
  4968. kvm_free_vcpus(kvm);
  4969. kvm_free_physmem(kvm);
  4970. if (kvm->arch.apic_access_page)
  4971. put_page(kvm->arch.apic_access_page);
  4972. if (kvm->arch.ept_identity_pagetable)
  4973. put_page(kvm->arch.ept_identity_pagetable);
  4974. cleanup_srcu_struct(&kvm->srcu);
  4975. kfree(kvm->arch.aliases);
  4976. kfree(kvm);
  4977. }
  4978. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4979. struct kvm_memory_slot *memslot,
  4980. struct kvm_memory_slot old,
  4981. struct kvm_userspace_memory_region *mem,
  4982. int user_alloc)
  4983. {
  4984. int npages = memslot->npages;
  4985. /*To keep backward compatibility with older userspace,
  4986. *x86 needs to hanlde !user_alloc case.
  4987. */
  4988. if (!user_alloc) {
  4989. if (npages && !old.rmap) {
  4990. unsigned long userspace_addr;
  4991. down_write(&current->mm->mmap_sem);
  4992. userspace_addr = do_mmap(NULL, 0,
  4993. npages * PAGE_SIZE,
  4994. PROT_READ | PROT_WRITE,
  4995. MAP_PRIVATE | MAP_ANONYMOUS,
  4996. 0);
  4997. up_write(&current->mm->mmap_sem);
  4998. if (IS_ERR((void *)userspace_addr))
  4999. return PTR_ERR((void *)userspace_addr);
  5000. memslot->userspace_addr = userspace_addr;
  5001. }
  5002. }
  5003. return 0;
  5004. }
  5005. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5006. struct kvm_userspace_memory_region *mem,
  5007. struct kvm_memory_slot old,
  5008. int user_alloc)
  5009. {
  5010. int npages = mem->memory_size >> PAGE_SHIFT;
  5011. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5012. int ret;
  5013. down_write(&current->mm->mmap_sem);
  5014. ret = do_munmap(current->mm, old.userspace_addr,
  5015. old.npages * PAGE_SIZE);
  5016. up_write(&current->mm->mmap_sem);
  5017. if (ret < 0)
  5018. printk(KERN_WARNING
  5019. "kvm_vm_ioctl_set_memory_region: "
  5020. "failed to munmap memory\n");
  5021. }
  5022. spin_lock(&kvm->mmu_lock);
  5023. if (!kvm->arch.n_requested_mmu_pages) {
  5024. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5025. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5026. }
  5027. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5028. spin_unlock(&kvm->mmu_lock);
  5029. }
  5030. void kvm_arch_flush_shadow(struct kvm *kvm)
  5031. {
  5032. kvm_mmu_zap_all(kvm);
  5033. kvm_reload_remote_mmus(kvm);
  5034. }
  5035. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5036. {
  5037. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5038. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5039. || vcpu->arch.nmi_pending ||
  5040. (kvm_arch_interrupt_allowed(vcpu) &&
  5041. kvm_cpu_has_interrupt(vcpu));
  5042. }
  5043. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5044. {
  5045. int me;
  5046. int cpu = vcpu->cpu;
  5047. if (waitqueue_active(&vcpu->wq)) {
  5048. wake_up_interruptible(&vcpu->wq);
  5049. ++vcpu->stat.halt_wakeup;
  5050. }
  5051. me = get_cpu();
  5052. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5053. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  5054. smp_send_reschedule(cpu);
  5055. put_cpu();
  5056. }
  5057. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5058. {
  5059. return kvm_x86_ops->interrupt_allowed(vcpu);
  5060. }
  5061. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5062. {
  5063. unsigned long current_rip = kvm_rip_read(vcpu) +
  5064. get_segment_base(vcpu, VCPU_SREG_CS);
  5065. return current_rip == linear_rip;
  5066. }
  5067. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5068. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5069. {
  5070. unsigned long rflags;
  5071. rflags = kvm_x86_ops->get_rflags(vcpu);
  5072. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5073. rflags &= ~X86_EFLAGS_TF;
  5074. return rflags;
  5075. }
  5076. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5077. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5078. {
  5079. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5080. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5081. rflags |= X86_EFLAGS_TF;
  5082. kvm_x86_ops->set_rflags(vcpu, rflags);
  5083. }
  5084. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5085. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5086. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5087. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5088. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5089. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5090. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5091. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5092. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5093. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5094. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5095. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5096. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);