dma_v3.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. /*
  2. * This file is provided under a dual BSD/GPLv2 license. When using or
  3. * redistributing this file, you may do so under either license.
  4. *
  5. * GPL LICENSE SUMMARY
  6. *
  7. * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License,
  11. * version 2, as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc.,
  20. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21. *
  22. * The full GNU General Public License is included in this distribution in
  23. * the file called "COPYING".
  24. *
  25. * BSD LICENSE
  26. *
  27. * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
  28. *
  29. * Redistribution and use in source and binary forms, with or without
  30. * modification, are permitted provided that the following conditions are met:
  31. *
  32. * * Redistributions of source code must retain the above copyright
  33. * notice, this list of conditions and the following disclaimer.
  34. * * Redistributions in binary form must reproduce the above copyright
  35. * notice, this list of conditions and the following disclaimer in
  36. * the documentation and/or other materials provided with the
  37. * distribution.
  38. * * Neither the name of Intel Corporation nor the names of its
  39. * contributors may be used to endorse or promote products derived
  40. * from this software without specific prior written permission.
  41. *
  42. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  43. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  44. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  45. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  46. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  47. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  48. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  49. * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  50. * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  51. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  52. * POSSIBILITY OF SUCH DAMAGE.
  53. */
  54. /*
  55. * Support routines for v3+ hardware
  56. */
  57. #include <linux/pci.h>
  58. #include <linux/dmaengine.h>
  59. #include <linux/dma-mapping.h>
  60. #include "registers.h"
  61. #include "hw.h"
  62. #include "dma.h"
  63. #include "dma_v2.h"
  64. /* ioat hardware assumes at least two sources for raid operations */
  65. #define src_cnt_to_sw(x) ((x) + 2)
  66. #define src_cnt_to_hw(x) ((x) - 2)
  67. /* provide a lookup table for setting the source address in the base or
  68. * extended descriptor of an xor or pq descriptor
  69. */
  70. static const u8 xor_idx_to_desc __read_mostly = 0xd0;
  71. static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 };
  72. static const u8 pq_idx_to_desc __read_mostly = 0xf8;
  73. static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 };
  74. static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
  75. {
  76. struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
  77. return raw->field[xor_idx_to_field[idx]];
  78. }
  79. static void xor_set_src(struct ioat_raw_descriptor *descs[2],
  80. dma_addr_t addr, u32 offset, int idx)
  81. {
  82. struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
  83. raw->field[xor_idx_to_field[idx]] = addr + offset;
  84. }
  85. static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
  86. {
  87. struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
  88. return raw->field[pq_idx_to_field[idx]];
  89. }
  90. static void pq_set_src(struct ioat_raw_descriptor *descs[2],
  91. dma_addr_t addr, u32 offset, u8 coef, int idx)
  92. {
  93. struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
  94. struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
  95. raw->field[pq_idx_to_field[idx]] = addr + offset;
  96. pq->coef[idx] = coef;
  97. }
  98. static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
  99. struct ioat_ring_ent *desc, int idx)
  100. {
  101. struct ioat_chan_common *chan = &ioat->base;
  102. struct pci_dev *pdev = chan->device->pdev;
  103. size_t len = desc->len;
  104. size_t offset = len - desc->hw->size;
  105. struct dma_async_tx_descriptor *tx = &desc->txd;
  106. enum dma_ctrl_flags flags = tx->flags;
  107. switch (desc->hw->ctl_f.op) {
  108. case IOAT_OP_COPY:
  109. ioat_dma_unmap(chan, flags, len, desc->hw);
  110. break;
  111. case IOAT_OP_FILL: {
  112. struct ioat_fill_descriptor *hw = desc->fill;
  113. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
  114. ioat_unmap(pdev, hw->dst_addr - offset, len,
  115. PCI_DMA_FROMDEVICE, flags, 1);
  116. break;
  117. }
  118. case IOAT_OP_XOR_VAL:
  119. case IOAT_OP_XOR: {
  120. struct ioat_xor_descriptor *xor = desc->xor;
  121. struct ioat_ring_ent *ext;
  122. struct ioat_xor_ext_descriptor *xor_ex = NULL;
  123. int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
  124. struct ioat_raw_descriptor *descs[2];
  125. int i;
  126. if (src_cnt > 5) {
  127. ext = ioat2_get_ring_ent(ioat, idx + 1);
  128. xor_ex = ext->xor_ex;
  129. }
  130. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  131. descs[0] = (struct ioat_raw_descriptor *) xor;
  132. descs[1] = (struct ioat_raw_descriptor *) xor_ex;
  133. for (i = 0; i < src_cnt; i++) {
  134. dma_addr_t src = xor_get_src(descs, i);
  135. ioat_unmap(pdev, src - offset, len,
  136. PCI_DMA_TODEVICE, flags, 0);
  137. }
  138. /* dest is a source in xor validate operations */
  139. if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
  140. ioat_unmap(pdev, xor->dst_addr - offset, len,
  141. PCI_DMA_TODEVICE, flags, 1);
  142. break;
  143. }
  144. }
  145. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
  146. ioat_unmap(pdev, xor->dst_addr - offset, len,
  147. PCI_DMA_FROMDEVICE, flags, 1);
  148. break;
  149. }
  150. case IOAT_OP_PQ_VAL:
  151. case IOAT_OP_PQ: {
  152. struct ioat_pq_descriptor *pq = desc->pq;
  153. struct ioat_ring_ent *ext;
  154. struct ioat_pq_ext_descriptor *pq_ex = NULL;
  155. int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
  156. struct ioat_raw_descriptor *descs[2];
  157. int i;
  158. if (src_cnt > 3) {
  159. ext = ioat2_get_ring_ent(ioat, idx + 1);
  160. pq_ex = ext->pq_ex;
  161. }
  162. /* in the 'continue' case don't unmap the dests as sources */
  163. if (dmaf_p_disabled_continue(flags))
  164. src_cnt--;
  165. else if (dmaf_continue(flags))
  166. src_cnt -= 3;
  167. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  168. descs[0] = (struct ioat_raw_descriptor *) pq;
  169. descs[1] = (struct ioat_raw_descriptor *) pq_ex;
  170. for (i = 0; i < src_cnt; i++) {
  171. dma_addr_t src = pq_get_src(descs, i);
  172. ioat_unmap(pdev, src - offset, len,
  173. PCI_DMA_TODEVICE, flags, 0);
  174. }
  175. /* the dests are sources in pq validate operations */
  176. if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
  177. if (!(flags & DMA_PREP_PQ_DISABLE_P))
  178. ioat_unmap(pdev, pq->p_addr - offset,
  179. len, PCI_DMA_TODEVICE, flags, 0);
  180. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  181. ioat_unmap(pdev, pq->q_addr - offset,
  182. len, PCI_DMA_TODEVICE, flags, 0);
  183. break;
  184. }
  185. }
  186. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  187. if (!(flags & DMA_PREP_PQ_DISABLE_P))
  188. ioat_unmap(pdev, pq->p_addr - offset, len,
  189. PCI_DMA_BIDIRECTIONAL, flags, 1);
  190. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  191. ioat_unmap(pdev, pq->q_addr - offset, len,
  192. PCI_DMA_BIDIRECTIONAL, flags, 1);
  193. }
  194. break;
  195. }
  196. default:
  197. dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
  198. __func__, desc->hw->ctl_f.op);
  199. }
  200. }
  201. static bool desc_has_ext(struct ioat_ring_ent *desc)
  202. {
  203. struct ioat_dma_descriptor *hw = desc->hw;
  204. if (hw->ctl_f.op == IOAT_OP_XOR ||
  205. hw->ctl_f.op == IOAT_OP_XOR_VAL) {
  206. struct ioat_xor_descriptor *xor = desc->xor;
  207. if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
  208. return true;
  209. } else if (hw->ctl_f.op == IOAT_OP_PQ ||
  210. hw->ctl_f.op == IOAT_OP_PQ_VAL) {
  211. struct ioat_pq_descriptor *pq = desc->pq;
  212. if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
  213. return true;
  214. }
  215. return false;
  216. }
  217. /**
  218. * __cleanup - reclaim used descriptors
  219. * @ioat: channel (ring) to clean
  220. *
  221. * The difference from the dma_v2.c __cleanup() is that this routine
  222. * handles extended descriptors and dma-unmapping raid operations.
  223. */
  224. static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
  225. {
  226. struct ioat_chan_common *chan = &ioat->base;
  227. struct ioat_ring_ent *desc;
  228. bool seen_current = false;
  229. u16 active;
  230. int i;
  231. dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
  232. __func__, ioat->head, ioat->tail, ioat->issued);
  233. active = ioat2_ring_active(ioat);
  234. for (i = 0; i < active && !seen_current; i++) {
  235. struct dma_async_tx_descriptor *tx;
  236. prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1));
  237. desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
  238. dump_desc_dbg(ioat, desc);
  239. tx = &desc->txd;
  240. if (tx->cookie) {
  241. chan->completed_cookie = tx->cookie;
  242. ioat3_dma_unmap(ioat, desc, ioat->tail + i);
  243. tx->cookie = 0;
  244. if (tx->callback) {
  245. tx->callback(tx->callback_param);
  246. tx->callback = NULL;
  247. }
  248. }
  249. if (tx->phys == phys_complete)
  250. seen_current = true;
  251. /* skip extended descriptors */
  252. if (desc_has_ext(desc)) {
  253. BUG_ON(i + 1 >= active);
  254. i++;
  255. }
  256. }
  257. ioat->tail += i;
  258. BUG_ON(!seen_current); /* no active descs have written a completion? */
  259. chan->last_completion = phys_complete;
  260. if (ioat->head == ioat->tail) {
  261. dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
  262. __func__);
  263. clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
  264. mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
  265. }
  266. }
  267. static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
  268. {
  269. struct ioat_chan_common *chan = &ioat->base;
  270. unsigned long phys_complete;
  271. prefetch(chan->completion);
  272. if (!spin_trylock_bh(&chan->cleanup_lock))
  273. return;
  274. if (!ioat_cleanup_preamble(chan, &phys_complete)) {
  275. spin_unlock_bh(&chan->cleanup_lock);
  276. return;
  277. }
  278. if (!spin_trylock_bh(&ioat->ring_lock)) {
  279. spin_unlock_bh(&chan->cleanup_lock);
  280. return;
  281. }
  282. __cleanup(ioat, phys_complete);
  283. spin_unlock_bh(&ioat->ring_lock);
  284. spin_unlock_bh(&chan->cleanup_lock);
  285. }
  286. static void ioat3_cleanup_tasklet(unsigned long data)
  287. {
  288. struct ioat2_dma_chan *ioat = (void *) data;
  289. ioat3_cleanup(ioat);
  290. writew(IOAT_CHANCTRL_RUN | IOAT3_CHANCTRL_COMPL_DCA_EN,
  291. ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
  292. }
  293. static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
  294. {
  295. struct ioat_chan_common *chan = &ioat->base;
  296. unsigned long phys_complete;
  297. u32 status;
  298. status = ioat_chansts(chan);
  299. if (is_ioat_active(status) || is_ioat_idle(status))
  300. ioat_suspend(chan);
  301. while (is_ioat_active(status) || is_ioat_idle(status)) {
  302. status = ioat_chansts(chan);
  303. cpu_relax();
  304. }
  305. if (ioat_cleanup_preamble(chan, &phys_complete))
  306. __cleanup(ioat, phys_complete);
  307. __ioat2_restart_chan(ioat);
  308. }
  309. static void ioat3_timer_event(unsigned long data)
  310. {
  311. struct ioat2_dma_chan *ioat = (void *) data;
  312. struct ioat_chan_common *chan = &ioat->base;
  313. spin_lock_bh(&chan->cleanup_lock);
  314. if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
  315. unsigned long phys_complete;
  316. u64 status;
  317. spin_lock_bh(&ioat->ring_lock);
  318. status = ioat_chansts(chan);
  319. /* when halted due to errors check for channel
  320. * programming errors before advancing the completion state
  321. */
  322. if (is_ioat_halted(status)) {
  323. u32 chanerr;
  324. chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
  325. BUG_ON(is_ioat_bug(chanerr));
  326. }
  327. /* if we haven't made progress and we have already
  328. * acknowledged a pending completion once, then be more
  329. * forceful with a restart
  330. */
  331. if (ioat_cleanup_preamble(chan, &phys_complete))
  332. __cleanup(ioat, phys_complete);
  333. else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
  334. ioat3_restart_channel(ioat);
  335. else {
  336. set_bit(IOAT_COMPLETION_ACK, &chan->state);
  337. mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
  338. }
  339. spin_unlock_bh(&ioat->ring_lock);
  340. } else {
  341. u16 active;
  342. /* if the ring is idle, empty, and oversized try to step
  343. * down the size
  344. */
  345. spin_lock_bh(&ioat->ring_lock);
  346. active = ioat2_ring_active(ioat);
  347. if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
  348. reshape_ring(ioat, ioat->alloc_order-1);
  349. spin_unlock_bh(&ioat->ring_lock);
  350. /* keep shrinking until we get back to our minimum
  351. * default size
  352. */
  353. if (ioat->alloc_order > ioat_get_alloc_order())
  354. mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
  355. }
  356. spin_unlock_bh(&chan->cleanup_lock);
  357. }
  358. static enum dma_status
  359. ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie,
  360. dma_cookie_t *done, dma_cookie_t *used)
  361. {
  362. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  363. if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS)
  364. return DMA_SUCCESS;
  365. ioat3_cleanup(ioat);
  366. return ioat_is_complete(c, cookie, done, used);
  367. }
  368. static struct dma_async_tx_descriptor *
  369. ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
  370. size_t len, unsigned long flags)
  371. {
  372. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  373. struct ioat_ring_ent *desc;
  374. size_t total_len = len;
  375. struct ioat_fill_descriptor *fill;
  376. int num_descs;
  377. u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
  378. u16 idx;
  379. int i;
  380. num_descs = ioat2_xferlen_to_descs(ioat, len);
  381. if (likely(num_descs) &&
  382. ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0)
  383. /* pass */;
  384. else
  385. return NULL;
  386. for (i = 0; i < num_descs; i++) {
  387. size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
  388. desc = ioat2_get_ring_ent(ioat, idx + i);
  389. fill = desc->fill;
  390. fill->size = xfer_size;
  391. fill->src_data = src_data;
  392. fill->dst_addr = dest;
  393. fill->ctl = 0;
  394. fill->ctl_f.op = IOAT_OP_FILL;
  395. len -= xfer_size;
  396. dest += xfer_size;
  397. dump_desc_dbg(ioat, desc);
  398. }
  399. desc->txd.flags = flags;
  400. desc->len = total_len;
  401. fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  402. fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  403. fill->ctl_f.compl_write = 1;
  404. dump_desc_dbg(ioat, desc);
  405. /* we leave the channel locked to ensure in order submission */
  406. return &desc->txd;
  407. }
  408. static struct dma_async_tx_descriptor *
  409. __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
  410. dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
  411. size_t len, unsigned long flags)
  412. {
  413. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  414. struct ioat_ring_ent *compl_desc;
  415. struct ioat_ring_ent *desc;
  416. struct ioat_ring_ent *ext;
  417. size_t total_len = len;
  418. struct ioat_xor_descriptor *xor;
  419. struct ioat_xor_ext_descriptor *xor_ex = NULL;
  420. struct ioat_dma_descriptor *hw;
  421. u32 offset = 0;
  422. int num_descs;
  423. int with_ext;
  424. int i;
  425. u16 idx;
  426. u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
  427. BUG_ON(src_cnt < 2);
  428. num_descs = ioat2_xferlen_to_descs(ioat, len);
  429. /* we need 2x the number of descriptors to cover greater than 5
  430. * sources
  431. */
  432. if (src_cnt > 5) {
  433. with_ext = 1;
  434. num_descs *= 2;
  435. } else
  436. with_ext = 0;
  437. /* completion writes from the raid engine may pass completion
  438. * writes from the legacy engine, so we need one extra null
  439. * (legacy) descriptor to ensure all completion writes arrive in
  440. * order.
  441. */
  442. if (likely(num_descs) &&
  443. ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
  444. /* pass */;
  445. else
  446. return NULL;
  447. for (i = 0; i < num_descs; i += 1 + with_ext) {
  448. struct ioat_raw_descriptor *descs[2];
  449. size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
  450. int s;
  451. desc = ioat2_get_ring_ent(ioat, idx + i);
  452. xor = desc->xor;
  453. /* save a branch by unconditionally retrieving the
  454. * extended descriptor xor_set_src() knows to not write
  455. * to it in the single descriptor case
  456. */
  457. ext = ioat2_get_ring_ent(ioat, idx + i + 1);
  458. xor_ex = ext->xor_ex;
  459. descs[0] = (struct ioat_raw_descriptor *) xor;
  460. descs[1] = (struct ioat_raw_descriptor *) xor_ex;
  461. for (s = 0; s < src_cnt; s++)
  462. xor_set_src(descs, src[s], offset, s);
  463. xor->size = xfer_size;
  464. xor->dst_addr = dest + offset;
  465. xor->ctl = 0;
  466. xor->ctl_f.op = op;
  467. xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
  468. len -= xfer_size;
  469. offset += xfer_size;
  470. dump_desc_dbg(ioat, desc);
  471. }
  472. /* last xor descriptor carries the unmap parameters and fence bit */
  473. desc->txd.flags = flags;
  474. desc->len = total_len;
  475. if (result)
  476. desc->result = result;
  477. xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  478. /* completion descriptor carries interrupt bit */
  479. compl_desc = ioat2_get_ring_ent(ioat, idx + i);
  480. compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
  481. hw = compl_desc->hw;
  482. hw->ctl = 0;
  483. hw->ctl_f.null = 1;
  484. hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  485. hw->ctl_f.compl_write = 1;
  486. hw->size = NULL_DESC_BUFFER_SIZE;
  487. dump_desc_dbg(ioat, compl_desc);
  488. /* we leave the channel locked to ensure in order submission */
  489. return &desc->txd;
  490. }
  491. static struct dma_async_tx_descriptor *
  492. ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  493. unsigned int src_cnt, size_t len, unsigned long flags)
  494. {
  495. return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
  496. }
  497. struct dma_async_tx_descriptor *
  498. ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
  499. unsigned int src_cnt, size_t len,
  500. enum sum_check_flags *result, unsigned long flags)
  501. {
  502. /* the cleanup routine only sets bits on validate failure, it
  503. * does not clear bits on validate success... so clear it here
  504. */
  505. *result = 0;
  506. return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
  507. src_cnt - 1, len, flags);
  508. }
  509. static void
  510. dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
  511. {
  512. struct device *dev = to_dev(&ioat->base);
  513. struct ioat_pq_descriptor *pq = desc->pq;
  514. struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
  515. struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
  516. int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
  517. int i;
  518. dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
  519. " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
  520. desc_id(desc), (unsigned long long) desc->txd.phys,
  521. (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
  522. desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
  523. pq->ctl_f.compl_write,
  524. pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
  525. pq->ctl_f.src_cnt);
  526. for (i = 0; i < src_cnt; i++)
  527. dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
  528. (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
  529. dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
  530. dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
  531. }
  532. static struct dma_async_tx_descriptor *
  533. __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
  534. const dma_addr_t *dst, const dma_addr_t *src,
  535. unsigned int src_cnt, const unsigned char *scf,
  536. size_t len, unsigned long flags)
  537. {
  538. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  539. struct ioat_chan_common *chan = &ioat->base;
  540. struct ioat_ring_ent *compl_desc;
  541. struct ioat_ring_ent *desc;
  542. struct ioat_ring_ent *ext;
  543. size_t total_len = len;
  544. struct ioat_pq_descriptor *pq;
  545. struct ioat_pq_ext_descriptor *pq_ex = NULL;
  546. struct ioat_dma_descriptor *hw;
  547. u32 offset = 0;
  548. int num_descs;
  549. int with_ext;
  550. int i, s;
  551. u16 idx;
  552. u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
  553. dev_dbg(to_dev(chan), "%s\n", __func__);
  554. /* the engine requires at least two sources (we provide
  555. * at least 1 implied source in the DMA_PREP_CONTINUE case)
  556. */
  557. BUG_ON(src_cnt + dmaf_continue(flags) < 2);
  558. num_descs = ioat2_xferlen_to_descs(ioat, len);
  559. /* we need 2x the number of descriptors to cover greater than 3
  560. * sources
  561. */
  562. if (src_cnt > 3 || flags & DMA_PREP_CONTINUE) {
  563. with_ext = 1;
  564. num_descs *= 2;
  565. } else
  566. with_ext = 0;
  567. /* completion writes from the raid engine may pass completion
  568. * writes from the legacy engine, so we need one extra null
  569. * (legacy) descriptor to ensure all completion writes arrive in
  570. * order.
  571. */
  572. if (likely(num_descs) &&
  573. ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
  574. /* pass */;
  575. else
  576. return NULL;
  577. for (i = 0; i < num_descs; i += 1 + with_ext) {
  578. struct ioat_raw_descriptor *descs[2];
  579. size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
  580. desc = ioat2_get_ring_ent(ioat, idx + i);
  581. pq = desc->pq;
  582. /* save a branch by unconditionally retrieving the
  583. * extended descriptor pq_set_src() knows to not write
  584. * to it in the single descriptor case
  585. */
  586. ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
  587. pq_ex = ext->pq_ex;
  588. descs[0] = (struct ioat_raw_descriptor *) pq;
  589. descs[1] = (struct ioat_raw_descriptor *) pq_ex;
  590. for (s = 0; s < src_cnt; s++)
  591. pq_set_src(descs, src[s], offset, scf[s], s);
  592. /* see the comment for dma_maxpq in include/linux/dmaengine.h */
  593. if (dmaf_p_disabled_continue(flags))
  594. pq_set_src(descs, dst[1], offset, 1, s++);
  595. else if (dmaf_continue(flags)) {
  596. pq_set_src(descs, dst[0], offset, 0, s++);
  597. pq_set_src(descs, dst[1], offset, 1, s++);
  598. pq_set_src(descs, dst[1], offset, 0, s++);
  599. }
  600. pq->size = xfer_size;
  601. pq->p_addr = dst[0] + offset;
  602. pq->q_addr = dst[1] + offset;
  603. pq->ctl = 0;
  604. pq->ctl_f.op = op;
  605. pq->ctl_f.src_cnt = src_cnt_to_hw(s);
  606. pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
  607. pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
  608. len -= xfer_size;
  609. offset += xfer_size;
  610. }
  611. /* last pq descriptor carries the unmap parameters and fence bit */
  612. desc->txd.flags = flags;
  613. desc->len = total_len;
  614. if (result)
  615. desc->result = result;
  616. pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  617. dump_pq_desc_dbg(ioat, desc, ext);
  618. /* completion descriptor carries interrupt bit */
  619. compl_desc = ioat2_get_ring_ent(ioat, idx + i);
  620. compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
  621. hw = compl_desc->hw;
  622. hw->ctl = 0;
  623. hw->ctl_f.null = 1;
  624. hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  625. hw->ctl_f.compl_write = 1;
  626. hw->size = NULL_DESC_BUFFER_SIZE;
  627. dump_desc_dbg(ioat, compl_desc);
  628. /* we leave the channel locked to ensure in order submission */
  629. return &desc->txd;
  630. }
  631. static struct dma_async_tx_descriptor *
  632. ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  633. unsigned int src_cnt, const unsigned char *scf, size_t len,
  634. unsigned long flags)
  635. {
  636. /* handle the single source multiply case from the raid6
  637. * recovery path
  638. */
  639. if (unlikely((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1)) {
  640. dma_addr_t single_source[2];
  641. unsigned char single_source_coef[2];
  642. BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
  643. single_source[0] = src[0];
  644. single_source[1] = src[0];
  645. single_source_coef[0] = scf[0];
  646. single_source_coef[1] = 0;
  647. return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
  648. single_source_coef, len, flags);
  649. } else
  650. return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
  651. len, flags);
  652. }
  653. struct dma_async_tx_descriptor *
  654. ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  655. unsigned int src_cnt, const unsigned char *scf, size_t len,
  656. enum sum_check_flags *pqres, unsigned long flags)
  657. {
  658. /* the cleanup routine only sets bits on validate failure, it
  659. * does not clear bits on validate success... so clear it here
  660. */
  661. *pqres = 0;
  662. return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
  663. flags);
  664. }
  665. static void __devinit ioat3_dma_test_callback(void *dma_async_param)
  666. {
  667. struct completion *cmp = dma_async_param;
  668. complete(cmp);
  669. }
  670. #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
  671. static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
  672. {
  673. int i, src_idx;
  674. struct page *dest;
  675. struct page *xor_srcs[IOAT_NUM_SRC_TEST];
  676. struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
  677. dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
  678. dma_addr_t dma_addr, dest_dma;
  679. struct dma_async_tx_descriptor *tx;
  680. struct dma_chan *dma_chan;
  681. dma_cookie_t cookie;
  682. u8 cmp_byte = 0;
  683. u32 cmp_word;
  684. u32 xor_val_result;
  685. int err = 0;
  686. struct completion cmp;
  687. unsigned long tmo;
  688. struct device *dev = &device->pdev->dev;
  689. struct dma_device *dma = &device->common;
  690. dev_dbg(dev, "%s\n", __func__);
  691. if (!dma_has_cap(DMA_XOR, dma->cap_mask))
  692. return 0;
  693. for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
  694. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  695. if (!xor_srcs[src_idx]) {
  696. while (src_idx--)
  697. __free_page(xor_srcs[src_idx]);
  698. return -ENOMEM;
  699. }
  700. }
  701. dest = alloc_page(GFP_KERNEL);
  702. if (!dest) {
  703. while (src_idx--)
  704. __free_page(xor_srcs[src_idx]);
  705. return -ENOMEM;
  706. }
  707. /* Fill in src buffers */
  708. for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
  709. u8 *ptr = page_address(xor_srcs[src_idx]);
  710. for (i = 0; i < PAGE_SIZE; i++)
  711. ptr[i] = (1 << src_idx);
  712. }
  713. for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
  714. cmp_byte ^= (u8) (1 << src_idx);
  715. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  716. (cmp_byte << 8) | cmp_byte;
  717. memset(page_address(dest), 0, PAGE_SIZE);
  718. dma_chan = container_of(dma->channels.next, struct dma_chan,
  719. device_node);
  720. if (dma->device_alloc_chan_resources(dma_chan) < 1) {
  721. err = -ENODEV;
  722. goto out;
  723. }
  724. /* test xor */
  725. dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  726. for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
  727. dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
  728. DMA_TO_DEVICE);
  729. tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  730. IOAT_NUM_SRC_TEST, PAGE_SIZE,
  731. DMA_PREP_INTERRUPT);
  732. if (!tx) {
  733. dev_err(dev, "Self-test xor prep failed\n");
  734. err = -ENODEV;
  735. goto free_resources;
  736. }
  737. async_tx_ack(tx);
  738. init_completion(&cmp);
  739. tx->callback = ioat3_dma_test_callback;
  740. tx->callback_param = &cmp;
  741. cookie = tx->tx_submit(tx);
  742. if (cookie < 0) {
  743. dev_err(dev, "Self-test xor setup failed\n");
  744. err = -ENODEV;
  745. goto free_resources;
  746. }
  747. dma->device_issue_pending(dma_chan);
  748. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  749. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  750. dev_err(dev, "Self-test xor timed out\n");
  751. err = -ENODEV;
  752. goto free_resources;
  753. }
  754. dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
  755. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  756. u32 *ptr = page_address(dest);
  757. if (ptr[i] != cmp_word) {
  758. dev_err(dev, "Self-test xor failed compare\n");
  759. err = -ENODEV;
  760. goto free_resources;
  761. }
  762. }
  763. dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
  764. /* skip validate if the capability is not present */
  765. if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
  766. goto free_resources;
  767. /* validate the sources with the destintation page */
  768. for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
  769. xor_val_srcs[i] = xor_srcs[i];
  770. xor_val_srcs[i] = dest;
  771. xor_val_result = 1;
  772. for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
  773. dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
  774. DMA_TO_DEVICE);
  775. tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
  776. IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
  777. &xor_val_result, DMA_PREP_INTERRUPT);
  778. if (!tx) {
  779. dev_err(dev, "Self-test zero prep failed\n");
  780. err = -ENODEV;
  781. goto free_resources;
  782. }
  783. async_tx_ack(tx);
  784. init_completion(&cmp);
  785. tx->callback = ioat3_dma_test_callback;
  786. tx->callback_param = &cmp;
  787. cookie = tx->tx_submit(tx);
  788. if (cookie < 0) {
  789. dev_err(dev, "Self-test zero setup failed\n");
  790. err = -ENODEV;
  791. goto free_resources;
  792. }
  793. dma->device_issue_pending(dma_chan);
  794. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  795. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  796. dev_err(dev, "Self-test validate timed out\n");
  797. err = -ENODEV;
  798. goto free_resources;
  799. }
  800. if (xor_val_result != 0) {
  801. dev_err(dev, "Self-test validate failed compare\n");
  802. err = -ENODEV;
  803. goto free_resources;
  804. }
  805. /* skip memset if the capability is not present */
  806. if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
  807. goto free_resources;
  808. /* test memset */
  809. dma_addr = dma_map_page(dev, dest, 0,
  810. PAGE_SIZE, DMA_FROM_DEVICE);
  811. tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
  812. DMA_PREP_INTERRUPT);
  813. if (!tx) {
  814. dev_err(dev, "Self-test memset prep failed\n");
  815. err = -ENODEV;
  816. goto free_resources;
  817. }
  818. async_tx_ack(tx);
  819. init_completion(&cmp);
  820. tx->callback = ioat3_dma_test_callback;
  821. tx->callback_param = &cmp;
  822. cookie = tx->tx_submit(tx);
  823. if (cookie < 0) {
  824. dev_err(dev, "Self-test memset setup failed\n");
  825. err = -ENODEV;
  826. goto free_resources;
  827. }
  828. dma->device_issue_pending(dma_chan);
  829. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  830. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  831. dev_err(dev, "Self-test memset timed out\n");
  832. err = -ENODEV;
  833. goto free_resources;
  834. }
  835. for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
  836. u32 *ptr = page_address(dest);
  837. if (ptr[i]) {
  838. dev_err(dev, "Self-test memset failed compare\n");
  839. err = -ENODEV;
  840. goto free_resources;
  841. }
  842. }
  843. /* test for non-zero parity sum */
  844. xor_val_result = 0;
  845. for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
  846. dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
  847. DMA_TO_DEVICE);
  848. tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
  849. IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
  850. &xor_val_result, DMA_PREP_INTERRUPT);
  851. if (!tx) {
  852. dev_err(dev, "Self-test 2nd zero prep failed\n");
  853. err = -ENODEV;
  854. goto free_resources;
  855. }
  856. async_tx_ack(tx);
  857. init_completion(&cmp);
  858. tx->callback = ioat3_dma_test_callback;
  859. tx->callback_param = &cmp;
  860. cookie = tx->tx_submit(tx);
  861. if (cookie < 0) {
  862. dev_err(dev, "Self-test 2nd zero setup failed\n");
  863. err = -ENODEV;
  864. goto free_resources;
  865. }
  866. dma->device_issue_pending(dma_chan);
  867. tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
  868. if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  869. dev_err(dev, "Self-test 2nd validate timed out\n");
  870. err = -ENODEV;
  871. goto free_resources;
  872. }
  873. if (xor_val_result != SUM_CHECK_P_RESULT) {
  874. dev_err(dev, "Self-test validate failed compare\n");
  875. err = -ENODEV;
  876. goto free_resources;
  877. }
  878. free_resources:
  879. dma->device_free_chan_resources(dma_chan);
  880. out:
  881. src_idx = IOAT_NUM_SRC_TEST;
  882. while (src_idx--)
  883. __free_page(xor_srcs[src_idx]);
  884. __free_page(dest);
  885. return err;
  886. }
  887. static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
  888. {
  889. int rc = ioat_dma_self_test(device);
  890. if (rc)
  891. return rc;
  892. rc = ioat_xor_val_self_test(device);
  893. if (rc)
  894. return rc;
  895. return 0;
  896. }
  897. int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
  898. {
  899. struct pci_dev *pdev = device->pdev;
  900. struct dma_device *dma;
  901. struct dma_chan *c;
  902. struct ioat_chan_common *chan;
  903. int err;
  904. u16 dev_id;
  905. u32 cap;
  906. device->enumerate_channels = ioat2_enumerate_channels;
  907. device->cleanup_tasklet = ioat3_cleanup_tasklet;
  908. device->timer_fn = ioat3_timer_event;
  909. device->self_test = ioat3_dma_self_test;
  910. dma = &device->common;
  911. dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
  912. dma->device_issue_pending = ioat2_issue_pending;
  913. dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
  914. dma->device_free_chan_resources = ioat2_free_chan_resources;
  915. dma->device_is_tx_complete = ioat3_is_complete;
  916. cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
  917. if (cap & IOAT_CAP_FILL_BLOCK) {
  918. dma_cap_set(DMA_MEMSET, dma->cap_mask);
  919. dma->device_prep_dma_memset = ioat3_prep_memset_lock;
  920. }
  921. if (cap & IOAT_CAP_XOR) {
  922. dma->max_xor = 8;
  923. dma->xor_align = 2;
  924. dma_cap_set(DMA_XOR, dma->cap_mask);
  925. dma->device_prep_dma_xor = ioat3_prep_xor;
  926. dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
  927. dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
  928. }
  929. if (cap & IOAT_CAP_PQ) {
  930. dma_set_maxpq(dma, 8, 0);
  931. dma->pq_align = 2;
  932. dma_cap_set(DMA_PQ, dma->cap_mask);
  933. dma->device_prep_dma_pq = ioat3_prep_pq;
  934. dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
  935. dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
  936. }
  937. /* -= IOAT ver.3 workarounds =- */
  938. /* Write CHANERRMSK_INT with 3E07h to mask out the errors
  939. * that can cause stability issues for IOAT ver.3
  940. */
  941. pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
  942. /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
  943. * (workaround for spurious config parity error after restart)
  944. */
  945. pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
  946. if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
  947. pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
  948. err = ioat_probe(device);
  949. if (err)
  950. return err;
  951. ioat_set_tcp_copy_break(262144);
  952. list_for_each_entry(c, &dma->channels, device_node) {
  953. chan = to_chan_common(c);
  954. writel(IOAT_DMA_DCA_ANY_CPU,
  955. chan->reg_base + IOAT_DCACTRL_OFFSET);
  956. }
  957. err = ioat_register(device);
  958. if (err)
  959. return err;
  960. ioat_kobject_add(device, &ioat2_ktype);
  961. if (dca)
  962. device->dca = ioat3_dca_init(pdev, device->reg_base);
  963. return 0;
  964. }