intel_pm.c 157 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static bool intel_crtc_active(struct drm_crtc *crtc)
  44. {
  45. /* Be paranoid as we can arrive here with only partial
  46. * state retrieved from the hardware during setup.
  47. */
  48. return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
  49. }
  50. static void i8xx_disable_fbc(struct drm_device *dev)
  51. {
  52. struct drm_i915_private *dev_priv = dev->dev_private;
  53. u32 fbc_ctl;
  54. /* Disable compression */
  55. fbc_ctl = I915_READ(FBC_CONTROL);
  56. if ((fbc_ctl & FBC_CTL_EN) == 0)
  57. return;
  58. fbc_ctl &= ~FBC_CTL_EN;
  59. I915_WRITE(FBC_CONTROL, fbc_ctl);
  60. /* Wait for compressing bit to clear */
  61. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  62. DRM_DEBUG_KMS("FBC idle timed out\n");
  63. return;
  64. }
  65. DRM_DEBUG_KMS("disabled FBC\n");
  66. }
  67. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68. {
  69. struct drm_device *dev = crtc->dev;
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. struct drm_framebuffer *fb = crtc->fb;
  72. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73. struct drm_i915_gem_object *obj = intel_fb->obj;
  74. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75. int cfb_pitch;
  76. int plane, i;
  77. u32 fbc_ctl, fbc_ctl2;
  78. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  79. if (fb->pitches[0] < cfb_pitch)
  80. cfb_pitch = fb->pitches[0];
  81. /* FBC_CTL wants 64B units */
  82. cfb_pitch = (cfb_pitch / 64) - 1;
  83. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  84. /* Clear old tags */
  85. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  86. I915_WRITE(FBC_TAG + (i * 4), 0);
  87. /* Set it up... */
  88. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  89. fbc_ctl2 |= plane;
  90. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  91. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  92. /* enable it... */
  93. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  94. if (IS_I945GM(dev))
  95. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  96. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  97. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  98. fbc_ctl |= obj->fence_reg;
  99. I915_WRITE(FBC_CONTROL, fbc_ctl);
  100. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  101. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  102. }
  103. static bool i8xx_fbc_enabled(struct drm_device *dev)
  104. {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  107. }
  108. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  109. {
  110. struct drm_device *dev = crtc->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. struct drm_framebuffer *fb = crtc->fb;
  113. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  114. struct drm_i915_gem_object *obj = intel_fb->obj;
  115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  116. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  117. unsigned long stall_watermark = 200;
  118. u32 dpfc_ctl;
  119. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  120. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  121. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  122. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  123. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  124. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  125. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  126. /* enable it... */
  127. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  128. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  129. }
  130. static void g4x_disable_fbc(struct drm_device *dev)
  131. {
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. u32 dpfc_ctl;
  134. /* Disable compression */
  135. dpfc_ctl = I915_READ(DPFC_CONTROL);
  136. if (dpfc_ctl & DPFC_CTL_EN) {
  137. dpfc_ctl &= ~DPFC_CTL_EN;
  138. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  139. DRM_DEBUG_KMS("disabled FBC\n");
  140. }
  141. }
  142. static bool g4x_fbc_enabled(struct drm_device *dev)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  146. }
  147. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 blt_ecoskpd;
  151. /* Make sure blitter notifies FBC of writes */
  152. gen6_gt_force_wake_get(dev_priv);
  153. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  154. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  155. GEN6_BLITTER_LOCK_SHIFT;
  156. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  157. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  158. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  159. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  160. GEN6_BLITTER_LOCK_SHIFT);
  161. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  162. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  163. gen6_gt_force_wake_put(dev_priv);
  164. }
  165. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  166. {
  167. struct drm_device *dev = crtc->dev;
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. struct drm_framebuffer *fb = crtc->fb;
  170. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  171. struct drm_i915_gem_object *obj = intel_fb->obj;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  173. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  174. unsigned long stall_watermark = 200;
  175. u32 dpfc_ctl;
  176. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  177. dpfc_ctl &= DPFC_RESERVED;
  178. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  179. /* Set persistent mode for front-buffer rendering, ala X. */
  180. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  181. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  182. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  183. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  184. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  185. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  186. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  187. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  188. /* enable it... */
  189. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  190. if (IS_GEN6(dev)) {
  191. I915_WRITE(SNB_DPFC_CTL_SA,
  192. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  193. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  194. sandybridge_blit_fbc_update(dev);
  195. }
  196. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  197. }
  198. static void ironlake_disable_fbc(struct drm_device *dev)
  199. {
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 dpfc_ctl;
  202. /* Disable compression */
  203. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  204. if (dpfc_ctl & DPFC_CTL_EN) {
  205. dpfc_ctl &= ~DPFC_CTL_EN;
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  207. if (IS_IVYBRIDGE(dev))
  208. /* WaFbcDisableDpfcClockGating:ivb */
  209. I915_WRITE(ILK_DSPCLK_GATE_D,
  210. I915_READ(ILK_DSPCLK_GATE_D) &
  211. ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  212. if (IS_HASWELL(dev))
  213. /* WaFbcDisableDpfcClockGating:hsw */
  214. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  215. I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
  216. ~HSW_DPFC_GATING_DISABLE);
  217. DRM_DEBUG_KMS("disabled FBC\n");
  218. }
  219. }
  220. static bool ironlake_fbc_enabled(struct drm_device *dev)
  221. {
  222. struct drm_i915_private *dev_priv = dev->dev_private;
  223. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  224. }
  225. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  226. {
  227. struct drm_device *dev = crtc->dev;
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. struct drm_framebuffer *fb = crtc->fb;
  230. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  231. struct drm_i915_gem_object *obj = intel_fb->obj;
  232. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  233. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  234. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  235. IVB_DPFC_CTL_FENCE_EN |
  236. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  237. if (IS_IVYBRIDGE(dev)) {
  238. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  239. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  240. /* WaFbcDisableDpfcClockGating:ivb */
  241. I915_WRITE(ILK_DSPCLK_GATE_D,
  242. I915_READ(ILK_DSPCLK_GATE_D) |
  243. ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  244. } else {
  245. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  246. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  247. HSW_BYPASS_FBC_QUEUE);
  248. /* WaFbcDisableDpfcClockGating:hsw */
  249. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  250. I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
  251. HSW_DPFC_GATING_DISABLE);
  252. }
  253. I915_WRITE(SNB_DPFC_CTL_SA,
  254. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  255. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  256. sandybridge_blit_fbc_update(dev);
  257. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  258. }
  259. bool intel_fbc_enabled(struct drm_device *dev)
  260. {
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. if (!dev_priv->display.fbc_enabled)
  263. return false;
  264. return dev_priv->display.fbc_enabled(dev);
  265. }
  266. static void intel_fbc_work_fn(struct work_struct *__work)
  267. {
  268. struct intel_fbc_work *work =
  269. container_of(to_delayed_work(__work),
  270. struct intel_fbc_work, work);
  271. struct drm_device *dev = work->crtc->dev;
  272. struct drm_i915_private *dev_priv = dev->dev_private;
  273. mutex_lock(&dev->struct_mutex);
  274. if (work == dev_priv->fbc.fbc_work) {
  275. /* Double check that we haven't switched fb without cancelling
  276. * the prior work.
  277. */
  278. if (work->crtc->fb == work->fb) {
  279. dev_priv->display.enable_fbc(work->crtc,
  280. work->interval);
  281. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  282. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  283. dev_priv->fbc.y = work->crtc->y;
  284. }
  285. dev_priv->fbc.fbc_work = NULL;
  286. }
  287. mutex_unlock(&dev->struct_mutex);
  288. kfree(work);
  289. }
  290. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  291. {
  292. if (dev_priv->fbc.fbc_work == NULL)
  293. return;
  294. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  295. /* Synchronisation is provided by struct_mutex and checking of
  296. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  297. * entirely asynchronously.
  298. */
  299. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  300. /* tasklet was killed before being run, clean up */
  301. kfree(dev_priv->fbc.fbc_work);
  302. /* Mark the work as no longer wanted so that if it does
  303. * wake-up (because the work was already running and waiting
  304. * for our mutex), it will discover that is no longer
  305. * necessary to run.
  306. */
  307. dev_priv->fbc.fbc_work = NULL;
  308. }
  309. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  310. {
  311. struct intel_fbc_work *work;
  312. struct drm_device *dev = crtc->dev;
  313. struct drm_i915_private *dev_priv = dev->dev_private;
  314. if (!dev_priv->display.enable_fbc)
  315. return;
  316. intel_cancel_fbc_work(dev_priv);
  317. work = kzalloc(sizeof *work, GFP_KERNEL);
  318. if (work == NULL) {
  319. DRM_ERROR("Failed to allocate FBC work structure\n");
  320. dev_priv->display.enable_fbc(crtc, interval);
  321. return;
  322. }
  323. work->crtc = crtc;
  324. work->fb = crtc->fb;
  325. work->interval = interval;
  326. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  327. dev_priv->fbc.fbc_work = work;
  328. /* Delay the actual enabling to let pageflipping cease and the
  329. * display to settle before starting the compression. Note that
  330. * this delay also serves a second purpose: it allows for a
  331. * vblank to pass after disabling the FBC before we attempt
  332. * to modify the control registers.
  333. *
  334. * A more complicated solution would involve tracking vblanks
  335. * following the termination of the page-flipping sequence
  336. * and indeed performing the enable as a co-routine and not
  337. * waiting synchronously upon the vblank.
  338. *
  339. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  340. */
  341. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  342. }
  343. void intel_disable_fbc(struct drm_device *dev)
  344. {
  345. struct drm_i915_private *dev_priv = dev->dev_private;
  346. intel_cancel_fbc_work(dev_priv);
  347. if (!dev_priv->display.disable_fbc)
  348. return;
  349. dev_priv->display.disable_fbc(dev);
  350. dev_priv->fbc.plane = -1;
  351. }
  352. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  353. enum no_fbc_reason reason)
  354. {
  355. if (dev_priv->fbc.no_fbc_reason == reason)
  356. return false;
  357. dev_priv->fbc.no_fbc_reason = reason;
  358. return true;
  359. }
  360. /**
  361. * intel_update_fbc - enable/disable FBC as needed
  362. * @dev: the drm_device
  363. *
  364. * Set up the framebuffer compression hardware at mode set time. We
  365. * enable it if possible:
  366. * - plane A only (on pre-965)
  367. * - no pixel mulitply/line duplication
  368. * - no alpha buffer discard
  369. * - no dual wide
  370. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  371. *
  372. * We can't assume that any compression will take place (worst case),
  373. * so the compressed buffer has to be the same size as the uncompressed
  374. * one. It also must reside (along with the line length buffer) in
  375. * stolen memory.
  376. *
  377. * We need to enable/disable FBC on a global basis.
  378. */
  379. void intel_update_fbc(struct drm_device *dev)
  380. {
  381. struct drm_i915_private *dev_priv = dev->dev_private;
  382. struct drm_crtc *crtc = NULL, *tmp_crtc;
  383. struct intel_crtc *intel_crtc;
  384. struct drm_framebuffer *fb;
  385. struct intel_framebuffer *intel_fb;
  386. struct drm_i915_gem_object *obj;
  387. unsigned int max_hdisplay, max_vdisplay;
  388. if (!I915_HAS_FBC(dev)) {
  389. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  390. return;
  391. }
  392. if (!i915_powersave) {
  393. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  394. DRM_DEBUG_KMS("fbc disabled per module param\n");
  395. return;
  396. }
  397. /*
  398. * If FBC is already on, we just have to verify that we can
  399. * keep it that way...
  400. * Need to disable if:
  401. * - more than one pipe is active
  402. * - changing FBC params (stride, fence, mode)
  403. * - new fb is too large to fit in compressed buffer
  404. * - going to an unsupported config (interlace, pixel multiply, etc.)
  405. */
  406. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  407. if (intel_crtc_active(tmp_crtc) &&
  408. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  409. if (crtc) {
  410. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  411. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  412. goto out_disable;
  413. }
  414. crtc = tmp_crtc;
  415. }
  416. }
  417. if (!crtc || crtc->fb == NULL) {
  418. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  419. DRM_DEBUG_KMS("no output, disabling\n");
  420. goto out_disable;
  421. }
  422. intel_crtc = to_intel_crtc(crtc);
  423. fb = crtc->fb;
  424. intel_fb = to_intel_framebuffer(fb);
  425. obj = intel_fb->obj;
  426. if (i915_enable_fbc < 0 &&
  427. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  428. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  429. DRM_DEBUG_KMS("disabled per chip default\n");
  430. goto out_disable;
  431. }
  432. if (!i915_enable_fbc) {
  433. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  434. DRM_DEBUG_KMS("fbc disabled per module param\n");
  435. goto out_disable;
  436. }
  437. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  438. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  439. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  440. DRM_DEBUG_KMS("mode incompatible with compression, "
  441. "disabling\n");
  442. goto out_disable;
  443. }
  444. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  445. max_hdisplay = 4096;
  446. max_vdisplay = 2048;
  447. } else {
  448. max_hdisplay = 2048;
  449. max_vdisplay = 1536;
  450. }
  451. if ((crtc->mode.hdisplay > max_hdisplay) ||
  452. (crtc->mode.vdisplay > max_vdisplay)) {
  453. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  454. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  455. goto out_disable;
  456. }
  457. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  458. intel_crtc->plane != 0) {
  459. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  460. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  461. goto out_disable;
  462. }
  463. /* The use of a CPU fence is mandatory in order to detect writes
  464. * by the CPU to the scanout and trigger updates to the FBC.
  465. */
  466. if (obj->tiling_mode != I915_TILING_X ||
  467. obj->fence_reg == I915_FENCE_REG_NONE) {
  468. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  469. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  470. goto out_disable;
  471. }
  472. /* If the kernel debugger is active, always disable compression */
  473. if (in_dbg_master())
  474. goto out_disable;
  475. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  476. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  477. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  478. goto out_disable;
  479. }
  480. /* If the scanout has not changed, don't modify the FBC settings.
  481. * Note that we make the fundamental assumption that the fb->obj
  482. * cannot be unpinned (and have its GTT offset and fence revoked)
  483. * without first being decoupled from the scanout and FBC disabled.
  484. */
  485. if (dev_priv->fbc.plane == intel_crtc->plane &&
  486. dev_priv->fbc.fb_id == fb->base.id &&
  487. dev_priv->fbc.y == crtc->y)
  488. return;
  489. if (intel_fbc_enabled(dev)) {
  490. /* We update FBC along two paths, after changing fb/crtc
  491. * configuration (modeswitching) and after page-flipping
  492. * finishes. For the latter, we know that not only did
  493. * we disable the FBC at the start of the page-flip
  494. * sequence, but also more than one vblank has passed.
  495. *
  496. * For the former case of modeswitching, it is possible
  497. * to switch between two FBC valid configurations
  498. * instantaneously so we do need to disable the FBC
  499. * before we can modify its control registers. We also
  500. * have to wait for the next vblank for that to take
  501. * effect. However, since we delay enabling FBC we can
  502. * assume that a vblank has passed since disabling and
  503. * that we can safely alter the registers in the deferred
  504. * callback.
  505. *
  506. * In the scenario that we go from a valid to invalid
  507. * and then back to valid FBC configuration we have
  508. * no strict enforcement that a vblank occurred since
  509. * disabling the FBC. However, along all current pipe
  510. * disabling paths we do need to wait for a vblank at
  511. * some point. And we wait before enabling FBC anyway.
  512. */
  513. DRM_DEBUG_KMS("disabling active FBC for update\n");
  514. intel_disable_fbc(dev);
  515. }
  516. intel_enable_fbc(crtc, 500);
  517. dev_priv->fbc.no_fbc_reason = FBC_OK;
  518. return;
  519. out_disable:
  520. /* Multiple disables should be harmless */
  521. if (intel_fbc_enabled(dev)) {
  522. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  523. intel_disable_fbc(dev);
  524. }
  525. i915_gem_stolen_cleanup_compression(dev);
  526. }
  527. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. u32 tmp;
  531. tmp = I915_READ(CLKCFG);
  532. switch (tmp & CLKCFG_FSB_MASK) {
  533. case CLKCFG_FSB_533:
  534. dev_priv->fsb_freq = 533; /* 133*4 */
  535. break;
  536. case CLKCFG_FSB_800:
  537. dev_priv->fsb_freq = 800; /* 200*4 */
  538. break;
  539. case CLKCFG_FSB_667:
  540. dev_priv->fsb_freq = 667; /* 167*4 */
  541. break;
  542. case CLKCFG_FSB_400:
  543. dev_priv->fsb_freq = 400; /* 100*4 */
  544. break;
  545. }
  546. switch (tmp & CLKCFG_MEM_MASK) {
  547. case CLKCFG_MEM_533:
  548. dev_priv->mem_freq = 533;
  549. break;
  550. case CLKCFG_MEM_667:
  551. dev_priv->mem_freq = 667;
  552. break;
  553. case CLKCFG_MEM_800:
  554. dev_priv->mem_freq = 800;
  555. break;
  556. }
  557. /* detect pineview DDR3 setting */
  558. tmp = I915_READ(CSHRDDR3CTL);
  559. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  560. }
  561. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  562. {
  563. drm_i915_private_t *dev_priv = dev->dev_private;
  564. u16 ddrpll, csipll;
  565. ddrpll = I915_READ16(DDRMPLL1);
  566. csipll = I915_READ16(CSIPLL0);
  567. switch (ddrpll & 0xff) {
  568. case 0xc:
  569. dev_priv->mem_freq = 800;
  570. break;
  571. case 0x10:
  572. dev_priv->mem_freq = 1066;
  573. break;
  574. case 0x14:
  575. dev_priv->mem_freq = 1333;
  576. break;
  577. case 0x18:
  578. dev_priv->mem_freq = 1600;
  579. break;
  580. default:
  581. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  582. ddrpll & 0xff);
  583. dev_priv->mem_freq = 0;
  584. break;
  585. }
  586. dev_priv->ips.r_t = dev_priv->mem_freq;
  587. switch (csipll & 0x3ff) {
  588. case 0x00c:
  589. dev_priv->fsb_freq = 3200;
  590. break;
  591. case 0x00e:
  592. dev_priv->fsb_freq = 3733;
  593. break;
  594. case 0x010:
  595. dev_priv->fsb_freq = 4266;
  596. break;
  597. case 0x012:
  598. dev_priv->fsb_freq = 4800;
  599. break;
  600. case 0x014:
  601. dev_priv->fsb_freq = 5333;
  602. break;
  603. case 0x016:
  604. dev_priv->fsb_freq = 5866;
  605. break;
  606. case 0x018:
  607. dev_priv->fsb_freq = 6400;
  608. break;
  609. default:
  610. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  611. csipll & 0x3ff);
  612. dev_priv->fsb_freq = 0;
  613. break;
  614. }
  615. if (dev_priv->fsb_freq == 3200) {
  616. dev_priv->ips.c_m = 0;
  617. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  618. dev_priv->ips.c_m = 1;
  619. } else {
  620. dev_priv->ips.c_m = 2;
  621. }
  622. }
  623. static const struct cxsr_latency cxsr_latency_table[] = {
  624. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  625. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  626. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  627. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  628. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  629. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  630. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  631. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  632. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  633. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  634. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  635. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  636. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  637. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  638. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  639. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  640. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  641. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  642. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  643. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  644. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  645. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  646. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  647. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  648. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  649. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  650. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  651. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  652. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  653. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  654. };
  655. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  656. int is_ddr3,
  657. int fsb,
  658. int mem)
  659. {
  660. const struct cxsr_latency *latency;
  661. int i;
  662. if (fsb == 0 || mem == 0)
  663. return NULL;
  664. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  665. latency = &cxsr_latency_table[i];
  666. if (is_desktop == latency->is_desktop &&
  667. is_ddr3 == latency->is_ddr3 &&
  668. fsb == latency->fsb_freq && mem == latency->mem_freq)
  669. return latency;
  670. }
  671. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  672. return NULL;
  673. }
  674. static void pineview_disable_cxsr(struct drm_device *dev)
  675. {
  676. struct drm_i915_private *dev_priv = dev->dev_private;
  677. /* deactivate cxsr */
  678. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  679. }
  680. /*
  681. * Latency for FIFO fetches is dependent on several factors:
  682. * - memory configuration (speed, channels)
  683. * - chipset
  684. * - current MCH state
  685. * It can be fairly high in some situations, so here we assume a fairly
  686. * pessimal value. It's a tradeoff between extra memory fetches (if we
  687. * set this value too high, the FIFO will fetch frequently to stay full)
  688. * and power consumption (set it too low to save power and we might see
  689. * FIFO underruns and display "flicker").
  690. *
  691. * A value of 5us seems to be a good balance; safe for very low end
  692. * platforms but not overly aggressive on lower latency configs.
  693. */
  694. static const int latency_ns = 5000;
  695. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  696. {
  697. struct drm_i915_private *dev_priv = dev->dev_private;
  698. uint32_t dsparb = I915_READ(DSPARB);
  699. int size;
  700. size = dsparb & 0x7f;
  701. if (plane)
  702. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  703. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  704. plane ? "B" : "A", size);
  705. return size;
  706. }
  707. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  708. {
  709. struct drm_i915_private *dev_priv = dev->dev_private;
  710. uint32_t dsparb = I915_READ(DSPARB);
  711. int size;
  712. size = dsparb & 0x1ff;
  713. if (plane)
  714. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  715. size >>= 1; /* Convert to cachelines */
  716. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  717. plane ? "B" : "A", size);
  718. return size;
  719. }
  720. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  721. {
  722. struct drm_i915_private *dev_priv = dev->dev_private;
  723. uint32_t dsparb = I915_READ(DSPARB);
  724. int size;
  725. size = dsparb & 0x7f;
  726. size >>= 2; /* Convert to cachelines */
  727. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  728. plane ? "B" : "A",
  729. size);
  730. return size;
  731. }
  732. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. uint32_t dsparb = I915_READ(DSPARB);
  736. int size;
  737. size = dsparb & 0x7f;
  738. size >>= 1; /* Convert to cachelines */
  739. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  740. plane ? "B" : "A", size);
  741. return size;
  742. }
  743. /* Pineview has different values for various configs */
  744. static const struct intel_watermark_params pineview_display_wm = {
  745. PINEVIEW_DISPLAY_FIFO,
  746. PINEVIEW_MAX_WM,
  747. PINEVIEW_DFT_WM,
  748. PINEVIEW_GUARD_WM,
  749. PINEVIEW_FIFO_LINE_SIZE
  750. };
  751. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  752. PINEVIEW_DISPLAY_FIFO,
  753. PINEVIEW_MAX_WM,
  754. PINEVIEW_DFT_HPLLOFF_WM,
  755. PINEVIEW_GUARD_WM,
  756. PINEVIEW_FIFO_LINE_SIZE
  757. };
  758. static const struct intel_watermark_params pineview_cursor_wm = {
  759. PINEVIEW_CURSOR_FIFO,
  760. PINEVIEW_CURSOR_MAX_WM,
  761. PINEVIEW_CURSOR_DFT_WM,
  762. PINEVIEW_CURSOR_GUARD_WM,
  763. PINEVIEW_FIFO_LINE_SIZE,
  764. };
  765. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  766. PINEVIEW_CURSOR_FIFO,
  767. PINEVIEW_CURSOR_MAX_WM,
  768. PINEVIEW_CURSOR_DFT_WM,
  769. PINEVIEW_CURSOR_GUARD_WM,
  770. PINEVIEW_FIFO_LINE_SIZE
  771. };
  772. static const struct intel_watermark_params g4x_wm_info = {
  773. G4X_FIFO_SIZE,
  774. G4X_MAX_WM,
  775. G4X_MAX_WM,
  776. 2,
  777. G4X_FIFO_LINE_SIZE,
  778. };
  779. static const struct intel_watermark_params g4x_cursor_wm_info = {
  780. I965_CURSOR_FIFO,
  781. I965_CURSOR_MAX_WM,
  782. I965_CURSOR_DFT_WM,
  783. 2,
  784. G4X_FIFO_LINE_SIZE,
  785. };
  786. static const struct intel_watermark_params valleyview_wm_info = {
  787. VALLEYVIEW_FIFO_SIZE,
  788. VALLEYVIEW_MAX_WM,
  789. VALLEYVIEW_MAX_WM,
  790. 2,
  791. G4X_FIFO_LINE_SIZE,
  792. };
  793. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  794. I965_CURSOR_FIFO,
  795. VALLEYVIEW_CURSOR_MAX_WM,
  796. I965_CURSOR_DFT_WM,
  797. 2,
  798. G4X_FIFO_LINE_SIZE,
  799. };
  800. static const struct intel_watermark_params i965_cursor_wm_info = {
  801. I965_CURSOR_FIFO,
  802. I965_CURSOR_MAX_WM,
  803. I965_CURSOR_DFT_WM,
  804. 2,
  805. I915_FIFO_LINE_SIZE,
  806. };
  807. static const struct intel_watermark_params i945_wm_info = {
  808. I945_FIFO_SIZE,
  809. I915_MAX_WM,
  810. 1,
  811. 2,
  812. I915_FIFO_LINE_SIZE
  813. };
  814. static const struct intel_watermark_params i915_wm_info = {
  815. I915_FIFO_SIZE,
  816. I915_MAX_WM,
  817. 1,
  818. 2,
  819. I915_FIFO_LINE_SIZE
  820. };
  821. static const struct intel_watermark_params i855_wm_info = {
  822. I855GM_FIFO_SIZE,
  823. I915_MAX_WM,
  824. 1,
  825. 2,
  826. I830_FIFO_LINE_SIZE
  827. };
  828. static const struct intel_watermark_params i830_wm_info = {
  829. I830_FIFO_SIZE,
  830. I915_MAX_WM,
  831. 1,
  832. 2,
  833. I830_FIFO_LINE_SIZE
  834. };
  835. static const struct intel_watermark_params ironlake_display_wm_info = {
  836. ILK_DISPLAY_FIFO,
  837. ILK_DISPLAY_MAXWM,
  838. ILK_DISPLAY_DFTWM,
  839. 2,
  840. ILK_FIFO_LINE_SIZE
  841. };
  842. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  843. ILK_CURSOR_FIFO,
  844. ILK_CURSOR_MAXWM,
  845. ILK_CURSOR_DFTWM,
  846. 2,
  847. ILK_FIFO_LINE_SIZE
  848. };
  849. static const struct intel_watermark_params ironlake_display_srwm_info = {
  850. ILK_DISPLAY_SR_FIFO,
  851. ILK_DISPLAY_MAX_SRWM,
  852. ILK_DISPLAY_DFT_SRWM,
  853. 2,
  854. ILK_FIFO_LINE_SIZE
  855. };
  856. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  857. ILK_CURSOR_SR_FIFO,
  858. ILK_CURSOR_MAX_SRWM,
  859. ILK_CURSOR_DFT_SRWM,
  860. 2,
  861. ILK_FIFO_LINE_SIZE
  862. };
  863. static const struct intel_watermark_params sandybridge_display_wm_info = {
  864. SNB_DISPLAY_FIFO,
  865. SNB_DISPLAY_MAXWM,
  866. SNB_DISPLAY_DFTWM,
  867. 2,
  868. SNB_FIFO_LINE_SIZE
  869. };
  870. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  871. SNB_CURSOR_FIFO,
  872. SNB_CURSOR_MAXWM,
  873. SNB_CURSOR_DFTWM,
  874. 2,
  875. SNB_FIFO_LINE_SIZE
  876. };
  877. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  878. SNB_DISPLAY_SR_FIFO,
  879. SNB_DISPLAY_MAX_SRWM,
  880. SNB_DISPLAY_DFT_SRWM,
  881. 2,
  882. SNB_FIFO_LINE_SIZE
  883. };
  884. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  885. SNB_CURSOR_SR_FIFO,
  886. SNB_CURSOR_MAX_SRWM,
  887. SNB_CURSOR_DFT_SRWM,
  888. 2,
  889. SNB_FIFO_LINE_SIZE
  890. };
  891. /**
  892. * intel_calculate_wm - calculate watermark level
  893. * @clock_in_khz: pixel clock
  894. * @wm: chip FIFO params
  895. * @pixel_size: display pixel size
  896. * @latency_ns: memory latency for the platform
  897. *
  898. * Calculate the watermark level (the level at which the display plane will
  899. * start fetching from memory again). Each chip has a different display
  900. * FIFO size and allocation, so the caller needs to figure that out and pass
  901. * in the correct intel_watermark_params structure.
  902. *
  903. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  904. * on the pixel size. When it reaches the watermark level, it'll start
  905. * fetching FIFO line sized based chunks from memory until the FIFO fills
  906. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  907. * will occur, and a display engine hang could result.
  908. */
  909. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  910. const struct intel_watermark_params *wm,
  911. int fifo_size,
  912. int pixel_size,
  913. unsigned long latency_ns)
  914. {
  915. long entries_required, wm_size;
  916. /*
  917. * Note: we need to make sure we don't overflow for various clock &
  918. * latency values.
  919. * clocks go from a few thousand to several hundred thousand.
  920. * latency is usually a few thousand
  921. */
  922. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  923. 1000;
  924. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  925. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  926. wm_size = fifo_size - (entries_required + wm->guard_size);
  927. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  928. /* Don't promote wm_size to unsigned... */
  929. if (wm_size > (long)wm->max_wm)
  930. wm_size = wm->max_wm;
  931. if (wm_size <= 0)
  932. wm_size = wm->default_wm;
  933. return wm_size;
  934. }
  935. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  936. {
  937. struct drm_crtc *crtc, *enabled = NULL;
  938. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  939. if (intel_crtc_active(crtc)) {
  940. if (enabled)
  941. return NULL;
  942. enabled = crtc;
  943. }
  944. }
  945. return enabled;
  946. }
  947. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  948. {
  949. struct drm_device *dev = unused_crtc->dev;
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. struct drm_crtc *crtc;
  952. const struct cxsr_latency *latency;
  953. u32 reg;
  954. unsigned long wm;
  955. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  956. dev_priv->fsb_freq, dev_priv->mem_freq);
  957. if (!latency) {
  958. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  959. pineview_disable_cxsr(dev);
  960. return;
  961. }
  962. crtc = single_enabled_crtc(dev);
  963. if (crtc) {
  964. int clock = crtc->mode.clock;
  965. int pixel_size = crtc->fb->bits_per_pixel / 8;
  966. /* Display SR */
  967. wm = intel_calculate_wm(clock, &pineview_display_wm,
  968. pineview_display_wm.fifo_size,
  969. pixel_size, latency->display_sr);
  970. reg = I915_READ(DSPFW1);
  971. reg &= ~DSPFW_SR_MASK;
  972. reg |= wm << DSPFW_SR_SHIFT;
  973. I915_WRITE(DSPFW1, reg);
  974. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  975. /* cursor SR */
  976. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  977. pineview_display_wm.fifo_size,
  978. pixel_size, latency->cursor_sr);
  979. reg = I915_READ(DSPFW3);
  980. reg &= ~DSPFW_CURSOR_SR_MASK;
  981. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  982. I915_WRITE(DSPFW3, reg);
  983. /* Display HPLL off SR */
  984. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  985. pineview_display_hplloff_wm.fifo_size,
  986. pixel_size, latency->display_hpll_disable);
  987. reg = I915_READ(DSPFW3);
  988. reg &= ~DSPFW_HPLL_SR_MASK;
  989. reg |= wm & DSPFW_HPLL_SR_MASK;
  990. I915_WRITE(DSPFW3, reg);
  991. /* cursor HPLL off SR */
  992. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  993. pineview_display_hplloff_wm.fifo_size,
  994. pixel_size, latency->cursor_hpll_disable);
  995. reg = I915_READ(DSPFW3);
  996. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  997. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  998. I915_WRITE(DSPFW3, reg);
  999. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1000. /* activate cxsr */
  1001. I915_WRITE(DSPFW3,
  1002. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1003. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1004. } else {
  1005. pineview_disable_cxsr(dev);
  1006. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1007. }
  1008. }
  1009. static bool g4x_compute_wm0(struct drm_device *dev,
  1010. int plane,
  1011. const struct intel_watermark_params *display,
  1012. int display_latency_ns,
  1013. const struct intel_watermark_params *cursor,
  1014. int cursor_latency_ns,
  1015. int *plane_wm,
  1016. int *cursor_wm)
  1017. {
  1018. struct drm_crtc *crtc;
  1019. int htotal, hdisplay, clock, pixel_size;
  1020. int line_time_us, line_count;
  1021. int entries, tlb_miss;
  1022. crtc = intel_get_crtc_for_plane(dev, plane);
  1023. if (!intel_crtc_active(crtc)) {
  1024. *cursor_wm = cursor->guard_size;
  1025. *plane_wm = display->guard_size;
  1026. return false;
  1027. }
  1028. htotal = crtc->mode.htotal;
  1029. hdisplay = crtc->mode.hdisplay;
  1030. clock = crtc->mode.clock;
  1031. pixel_size = crtc->fb->bits_per_pixel / 8;
  1032. /* Use the small buffer method to calculate plane watermark */
  1033. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1034. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1035. if (tlb_miss > 0)
  1036. entries += tlb_miss;
  1037. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1038. *plane_wm = entries + display->guard_size;
  1039. if (*plane_wm > (int)display->max_wm)
  1040. *plane_wm = display->max_wm;
  1041. /* Use the large buffer method to calculate cursor watermark */
  1042. line_time_us = ((htotal * 1000) / clock);
  1043. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1044. entries = line_count * 64 * pixel_size;
  1045. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1046. if (tlb_miss > 0)
  1047. entries += tlb_miss;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. if (*cursor_wm > (int)cursor->max_wm)
  1051. *cursor_wm = (int)cursor->max_wm;
  1052. return true;
  1053. }
  1054. /*
  1055. * Check the wm result.
  1056. *
  1057. * If any calculated watermark values is larger than the maximum value that
  1058. * can be programmed into the associated watermark register, that watermark
  1059. * must be disabled.
  1060. */
  1061. static bool g4x_check_srwm(struct drm_device *dev,
  1062. int display_wm, int cursor_wm,
  1063. const struct intel_watermark_params *display,
  1064. const struct intel_watermark_params *cursor)
  1065. {
  1066. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1067. display_wm, cursor_wm);
  1068. if (display_wm > display->max_wm) {
  1069. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1070. display_wm, display->max_wm);
  1071. return false;
  1072. }
  1073. if (cursor_wm > cursor->max_wm) {
  1074. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1075. cursor_wm, cursor->max_wm);
  1076. return false;
  1077. }
  1078. if (!(display_wm || cursor_wm)) {
  1079. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1080. return false;
  1081. }
  1082. return true;
  1083. }
  1084. static bool g4x_compute_srwm(struct drm_device *dev,
  1085. int plane,
  1086. int latency_ns,
  1087. const struct intel_watermark_params *display,
  1088. const struct intel_watermark_params *cursor,
  1089. int *display_wm, int *cursor_wm)
  1090. {
  1091. struct drm_crtc *crtc;
  1092. int hdisplay, htotal, pixel_size, clock;
  1093. unsigned long line_time_us;
  1094. int line_count, line_size;
  1095. int small, large;
  1096. int entries;
  1097. if (!latency_ns) {
  1098. *display_wm = *cursor_wm = 0;
  1099. return false;
  1100. }
  1101. crtc = intel_get_crtc_for_plane(dev, plane);
  1102. hdisplay = crtc->mode.hdisplay;
  1103. htotal = crtc->mode.htotal;
  1104. clock = crtc->mode.clock;
  1105. pixel_size = crtc->fb->bits_per_pixel / 8;
  1106. line_time_us = (htotal * 1000) / clock;
  1107. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1108. line_size = hdisplay * pixel_size;
  1109. /* Use the minimum of the small and large buffer method for primary */
  1110. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1111. large = line_count * line_size;
  1112. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1113. *display_wm = entries + display->guard_size;
  1114. /* calculate the self-refresh watermark for display cursor */
  1115. entries = line_count * pixel_size * 64;
  1116. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1117. *cursor_wm = entries + cursor->guard_size;
  1118. return g4x_check_srwm(dev,
  1119. *display_wm, *cursor_wm,
  1120. display, cursor);
  1121. }
  1122. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1123. int plane,
  1124. int *plane_prec_mult,
  1125. int *plane_dl,
  1126. int *cursor_prec_mult,
  1127. int *cursor_dl)
  1128. {
  1129. struct drm_crtc *crtc;
  1130. int clock, pixel_size;
  1131. int entries;
  1132. crtc = intel_get_crtc_for_plane(dev, plane);
  1133. if (!intel_crtc_active(crtc))
  1134. return false;
  1135. clock = crtc->mode.clock; /* VESA DOT Clock */
  1136. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1137. entries = (clock / 1000) * pixel_size;
  1138. *plane_prec_mult = (entries > 256) ?
  1139. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1140. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1141. pixel_size);
  1142. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1143. *cursor_prec_mult = (entries > 256) ?
  1144. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1145. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1146. return true;
  1147. }
  1148. /*
  1149. * Update drain latency registers of memory arbiter
  1150. *
  1151. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1152. * to be programmed. Each plane has a drain latency multiplier and a drain
  1153. * latency value.
  1154. */
  1155. static void vlv_update_drain_latency(struct drm_device *dev)
  1156. {
  1157. struct drm_i915_private *dev_priv = dev->dev_private;
  1158. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1159. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1160. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1161. either 16 or 32 */
  1162. /* For plane A, Cursor A */
  1163. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1164. &cursor_prec_mult, &cursora_dl)) {
  1165. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1166. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1167. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1168. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1169. I915_WRITE(VLV_DDL1, cursora_prec |
  1170. (cursora_dl << DDL_CURSORA_SHIFT) |
  1171. planea_prec | planea_dl);
  1172. }
  1173. /* For plane B, Cursor B */
  1174. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1175. &cursor_prec_mult, &cursorb_dl)) {
  1176. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1177. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1178. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1179. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1180. I915_WRITE(VLV_DDL2, cursorb_prec |
  1181. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1182. planeb_prec | planeb_dl);
  1183. }
  1184. }
  1185. #define single_plane_enabled(mask) is_power_of_2(mask)
  1186. static void valleyview_update_wm(struct drm_crtc *crtc)
  1187. {
  1188. struct drm_device *dev = crtc->dev;
  1189. static const int sr_latency_ns = 12000;
  1190. struct drm_i915_private *dev_priv = dev->dev_private;
  1191. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1192. int plane_sr, cursor_sr;
  1193. int ignore_plane_sr, ignore_cursor_sr;
  1194. unsigned int enabled = 0;
  1195. vlv_update_drain_latency(dev);
  1196. if (g4x_compute_wm0(dev, PIPE_A,
  1197. &valleyview_wm_info, latency_ns,
  1198. &valleyview_cursor_wm_info, latency_ns,
  1199. &planea_wm, &cursora_wm))
  1200. enabled |= 1 << PIPE_A;
  1201. if (g4x_compute_wm0(dev, PIPE_B,
  1202. &valleyview_wm_info, latency_ns,
  1203. &valleyview_cursor_wm_info, latency_ns,
  1204. &planeb_wm, &cursorb_wm))
  1205. enabled |= 1 << PIPE_B;
  1206. if (single_plane_enabled(enabled) &&
  1207. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1208. sr_latency_ns,
  1209. &valleyview_wm_info,
  1210. &valleyview_cursor_wm_info,
  1211. &plane_sr, &ignore_cursor_sr) &&
  1212. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1213. 2*sr_latency_ns,
  1214. &valleyview_wm_info,
  1215. &valleyview_cursor_wm_info,
  1216. &ignore_plane_sr, &cursor_sr)) {
  1217. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1218. } else {
  1219. I915_WRITE(FW_BLC_SELF_VLV,
  1220. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1221. plane_sr = cursor_sr = 0;
  1222. }
  1223. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1224. planea_wm, cursora_wm,
  1225. planeb_wm, cursorb_wm,
  1226. plane_sr, cursor_sr);
  1227. I915_WRITE(DSPFW1,
  1228. (plane_sr << DSPFW_SR_SHIFT) |
  1229. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1230. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1231. planea_wm);
  1232. I915_WRITE(DSPFW2,
  1233. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1234. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1235. I915_WRITE(DSPFW3,
  1236. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1237. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1238. }
  1239. static void g4x_update_wm(struct drm_crtc *crtc)
  1240. {
  1241. struct drm_device *dev = crtc->dev;
  1242. static const int sr_latency_ns = 12000;
  1243. struct drm_i915_private *dev_priv = dev->dev_private;
  1244. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1245. int plane_sr, cursor_sr;
  1246. unsigned int enabled = 0;
  1247. if (g4x_compute_wm0(dev, PIPE_A,
  1248. &g4x_wm_info, latency_ns,
  1249. &g4x_cursor_wm_info, latency_ns,
  1250. &planea_wm, &cursora_wm))
  1251. enabled |= 1 << PIPE_A;
  1252. if (g4x_compute_wm0(dev, PIPE_B,
  1253. &g4x_wm_info, latency_ns,
  1254. &g4x_cursor_wm_info, latency_ns,
  1255. &planeb_wm, &cursorb_wm))
  1256. enabled |= 1 << PIPE_B;
  1257. if (single_plane_enabled(enabled) &&
  1258. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1259. sr_latency_ns,
  1260. &g4x_wm_info,
  1261. &g4x_cursor_wm_info,
  1262. &plane_sr, &cursor_sr)) {
  1263. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1264. } else {
  1265. I915_WRITE(FW_BLC_SELF,
  1266. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1267. plane_sr = cursor_sr = 0;
  1268. }
  1269. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1270. planea_wm, cursora_wm,
  1271. planeb_wm, cursorb_wm,
  1272. plane_sr, cursor_sr);
  1273. I915_WRITE(DSPFW1,
  1274. (plane_sr << DSPFW_SR_SHIFT) |
  1275. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1276. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1277. planea_wm);
  1278. I915_WRITE(DSPFW2,
  1279. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1280. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1281. /* HPLL off in SR has some issues on G4x... disable it */
  1282. I915_WRITE(DSPFW3,
  1283. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1284. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1285. }
  1286. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1287. {
  1288. struct drm_device *dev = unused_crtc->dev;
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. struct drm_crtc *crtc;
  1291. int srwm = 1;
  1292. int cursor_sr = 16;
  1293. /* Calc sr entries for one plane configs */
  1294. crtc = single_enabled_crtc(dev);
  1295. if (crtc) {
  1296. /* self-refresh has much higher latency */
  1297. static const int sr_latency_ns = 12000;
  1298. int clock = crtc->mode.clock;
  1299. int htotal = crtc->mode.htotal;
  1300. int hdisplay = crtc->mode.hdisplay;
  1301. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1302. unsigned long line_time_us;
  1303. int entries;
  1304. line_time_us = ((htotal * 1000) / clock);
  1305. /* Use ns/us then divide to preserve precision */
  1306. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1307. pixel_size * hdisplay;
  1308. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1309. srwm = I965_FIFO_SIZE - entries;
  1310. if (srwm < 0)
  1311. srwm = 1;
  1312. srwm &= 0x1ff;
  1313. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1314. entries, srwm);
  1315. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1316. pixel_size * 64;
  1317. entries = DIV_ROUND_UP(entries,
  1318. i965_cursor_wm_info.cacheline_size);
  1319. cursor_sr = i965_cursor_wm_info.fifo_size -
  1320. (entries + i965_cursor_wm_info.guard_size);
  1321. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1322. cursor_sr = i965_cursor_wm_info.max_wm;
  1323. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1324. "cursor %d\n", srwm, cursor_sr);
  1325. if (IS_CRESTLINE(dev))
  1326. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1327. } else {
  1328. /* Turn off self refresh if both pipes are enabled */
  1329. if (IS_CRESTLINE(dev))
  1330. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1331. & ~FW_BLC_SELF_EN);
  1332. }
  1333. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1334. srwm);
  1335. /* 965 has limitations... */
  1336. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1337. (8 << 16) | (8 << 8) | (8 << 0));
  1338. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1339. /* update cursor SR watermark */
  1340. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1341. }
  1342. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1343. {
  1344. struct drm_device *dev = unused_crtc->dev;
  1345. struct drm_i915_private *dev_priv = dev->dev_private;
  1346. const struct intel_watermark_params *wm_info;
  1347. uint32_t fwater_lo;
  1348. uint32_t fwater_hi;
  1349. int cwm, srwm = 1;
  1350. int fifo_size;
  1351. int planea_wm, planeb_wm;
  1352. struct drm_crtc *crtc, *enabled = NULL;
  1353. if (IS_I945GM(dev))
  1354. wm_info = &i945_wm_info;
  1355. else if (!IS_GEN2(dev))
  1356. wm_info = &i915_wm_info;
  1357. else
  1358. wm_info = &i855_wm_info;
  1359. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1360. crtc = intel_get_crtc_for_plane(dev, 0);
  1361. if (intel_crtc_active(crtc)) {
  1362. int cpp = crtc->fb->bits_per_pixel / 8;
  1363. if (IS_GEN2(dev))
  1364. cpp = 4;
  1365. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1366. wm_info, fifo_size, cpp,
  1367. latency_ns);
  1368. enabled = crtc;
  1369. } else
  1370. planea_wm = fifo_size - wm_info->guard_size;
  1371. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1372. crtc = intel_get_crtc_for_plane(dev, 1);
  1373. if (intel_crtc_active(crtc)) {
  1374. int cpp = crtc->fb->bits_per_pixel / 8;
  1375. if (IS_GEN2(dev))
  1376. cpp = 4;
  1377. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1378. wm_info, fifo_size, cpp,
  1379. latency_ns);
  1380. if (enabled == NULL)
  1381. enabled = crtc;
  1382. else
  1383. enabled = NULL;
  1384. } else
  1385. planeb_wm = fifo_size - wm_info->guard_size;
  1386. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1387. /*
  1388. * Overlay gets an aggressive default since video jitter is bad.
  1389. */
  1390. cwm = 2;
  1391. /* Play safe and disable self-refresh before adjusting watermarks. */
  1392. if (IS_I945G(dev) || IS_I945GM(dev))
  1393. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1394. else if (IS_I915GM(dev))
  1395. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1396. /* Calc sr entries for one plane configs */
  1397. if (HAS_FW_BLC(dev) && enabled) {
  1398. /* self-refresh has much higher latency */
  1399. static const int sr_latency_ns = 6000;
  1400. int clock = enabled->mode.clock;
  1401. int htotal = enabled->mode.htotal;
  1402. int hdisplay = enabled->mode.hdisplay;
  1403. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1404. unsigned long line_time_us;
  1405. int entries;
  1406. line_time_us = (htotal * 1000) / clock;
  1407. /* Use ns/us then divide to preserve precision */
  1408. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1409. pixel_size * hdisplay;
  1410. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1411. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1412. srwm = wm_info->fifo_size - entries;
  1413. if (srwm < 0)
  1414. srwm = 1;
  1415. if (IS_I945G(dev) || IS_I945GM(dev))
  1416. I915_WRITE(FW_BLC_SELF,
  1417. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1418. else if (IS_I915GM(dev))
  1419. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1420. }
  1421. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1422. planea_wm, planeb_wm, cwm, srwm);
  1423. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1424. fwater_hi = (cwm & 0x1f);
  1425. /* Set request length to 8 cachelines per fetch */
  1426. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1427. fwater_hi = fwater_hi | (1 << 8);
  1428. I915_WRITE(FW_BLC, fwater_lo);
  1429. I915_WRITE(FW_BLC2, fwater_hi);
  1430. if (HAS_FW_BLC(dev)) {
  1431. if (enabled) {
  1432. if (IS_I945G(dev) || IS_I945GM(dev))
  1433. I915_WRITE(FW_BLC_SELF,
  1434. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1435. else if (IS_I915GM(dev))
  1436. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1437. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1438. } else
  1439. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1440. }
  1441. }
  1442. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1443. {
  1444. struct drm_device *dev = unused_crtc->dev;
  1445. struct drm_i915_private *dev_priv = dev->dev_private;
  1446. struct drm_crtc *crtc;
  1447. uint32_t fwater_lo;
  1448. int planea_wm;
  1449. crtc = single_enabled_crtc(dev);
  1450. if (crtc == NULL)
  1451. return;
  1452. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1453. dev_priv->display.get_fifo_size(dev, 0),
  1454. 4, latency_ns);
  1455. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1456. fwater_lo |= (3<<8) | planea_wm;
  1457. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1458. I915_WRITE(FW_BLC, fwater_lo);
  1459. }
  1460. /*
  1461. * Check the wm result.
  1462. *
  1463. * If any calculated watermark values is larger than the maximum value that
  1464. * can be programmed into the associated watermark register, that watermark
  1465. * must be disabled.
  1466. */
  1467. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1468. int fbc_wm, int display_wm, int cursor_wm,
  1469. const struct intel_watermark_params *display,
  1470. const struct intel_watermark_params *cursor)
  1471. {
  1472. struct drm_i915_private *dev_priv = dev->dev_private;
  1473. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1474. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1475. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1476. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1477. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1478. /* fbc has it's own way to disable FBC WM */
  1479. I915_WRITE(DISP_ARB_CTL,
  1480. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1481. return false;
  1482. } else if (INTEL_INFO(dev)->gen >= 6) {
  1483. /* enable FBC WM (except on ILK, where it must remain off) */
  1484. I915_WRITE(DISP_ARB_CTL,
  1485. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1486. }
  1487. if (display_wm > display->max_wm) {
  1488. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1489. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1490. return false;
  1491. }
  1492. if (cursor_wm > cursor->max_wm) {
  1493. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1494. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1495. return false;
  1496. }
  1497. if (!(fbc_wm || display_wm || cursor_wm)) {
  1498. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1499. return false;
  1500. }
  1501. return true;
  1502. }
  1503. /*
  1504. * Compute watermark values of WM[1-3],
  1505. */
  1506. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1507. int latency_ns,
  1508. const struct intel_watermark_params *display,
  1509. const struct intel_watermark_params *cursor,
  1510. int *fbc_wm, int *display_wm, int *cursor_wm)
  1511. {
  1512. struct drm_crtc *crtc;
  1513. unsigned long line_time_us;
  1514. int hdisplay, htotal, pixel_size, clock;
  1515. int line_count, line_size;
  1516. int small, large;
  1517. int entries;
  1518. if (!latency_ns) {
  1519. *fbc_wm = *display_wm = *cursor_wm = 0;
  1520. return false;
  1521. }
  1522. crtc = intel_get_crtc_for_plane(dev, plane);
  1523. hdisplay = crtc->mode.hdisplay;
  1524. htotal = crtc->mode.htotal;
  1525. clock = crtc->mode.clock;
  1526. pixel_size = crtc->fb->bits_per_pixel / 8;
  1527. line_time_us = (htotal * 1000) / clock;
  1528. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1529. line_size = hdisplay * pixel_size;
  1530. /* Use the minimum of the small and large buffer method for primary */
  1531. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1532. large = line_count * line_size;
  1533. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1534. *display_wm = entries + display->guard_size;
  1535. /*
  1536. * Spec says:
  1537. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1538. */
  1539. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1540. /* calculate the self-refresh watermark for display cursor */
  1541. entries = line_count * pixel_size * 64;
  1542. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1543. *cursor_wm = entries + cursor->guard_size;
  1544. return ironlake_check_srwm(dev, level,
  1545. *fbc_wm, *display_wm, *cursor_wm,
  1546. display, cursor);
  1547. }
  1548. static void ironlake_update_wm(struct drm_crtc *crtc)
  1549. {
  1550. struct drm_device *dev = crtc->dev;
  1551. struct drm_i915_private *dev_priv = dev->dev_private;
  1552. int fbc_wm, plane_wm, cursor_wm;
  1553. unsigned int enabled;
  1554. enabled = 0;
  1555. if (g4x_compute_wm0(dev, PIPE_A,
  1556. &ironlake_display_wm_info,
  1557. dev_priv->wm.pri_latency[0] * 100,
  1558. &ironlake_cursor_wm_info,
  1559. dev_priv->wm.cur_latency[0] * 100,
  1560. &plane_wm, &cursor_wm)) {
  1561. I915_WRITE(WM0_PIPEA_ILK,
  1562. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1563. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1564. " plane %d, " "cursor: %d\n",
  1565. plane_wm, cursor_wm);
  1566. enabled |= 1 << PIPE_A;
  1567. }
  1568. if (g4x_compute_wm0(dev, PIPE_B,
  1569. &ironlake_display_wm_info,
  1570. dev_priv->wm.pri_latency[0] * 100,
  1571. &ironlake_cursor_wm_info,
  1572. dev_priv->wm.cur_latency[0] * 100,
  1573. &plane_wm, &cursor_wm)) {
  1574. I915_WRITE(WM0_PIPEB_ILK,
  1575. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1576. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1577. " plane %d, cursor: %d\n",
  1578. plane_wm, cursor_wm);
  1579. enabled |= 1 << PIPE_B;
  1580. }
  1581. /*
  1582. * Calculate and update the self-refresh watermark only when one
  1583. * display plane is used.
  1584. */
  1585. I915_WRITE(WM3_LP_ILK, 0);
  1586. I915_WRITE(WM2_LP_ILK, 0);
  1587. I915_WRITE(WM1_LP_ILK, 0);
  1588. if (!single_plane_enabled(enabled))
  1589. return;
  1590. enabled = ffs(enabled) - 1;
  1591. /* WM1 */
  1592. if (!ironlake_compute_srwm(dev, 1, enabled,
  1593. dev_priv->wm.pri_latency[1] * 500,
  1594. &ironlake_display_srwm_info,
  1595. &ironlake_cursor_srwm_info,
  1596. &fbc_wm, &plane_wm, &cursor_wm))
  1597. return;
  1598. I915_WRITE(WM1_LP_ILK,
  1599. WM1_LP_SR_EN |
  1600. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1601. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1602. (plane_wm << WM1_LP_SR_SHIFT) |
  1603. cursor_wm);
  1604. /* WM2 */
  1605. if (!ironlake_compute_srwm(dev, 2, enabled,
  1606. dev_priv->wm.pri_latency[2] * 500,
  1607. &ironlake_display_srwm_info,
  1608. &ironlake_cursor_srwm_info,
  1609. &fbc_wm, &plane_wm, &cursor_wm))
  1610. return;
  1611. I915_WRITE(WM2_LP_ILK,
  1612. WM2_LP_EN |
  1613. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1614. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1615. (plane_wm << WM1_LP_SR_SHIFT) |
  1616. cursor_wm);
  1617. /*
  1618. * WM3 is unsupported on ILK, probably because we don't have latency
  1619. * data for that power state
  1620. */
  1621. }
  1622. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1623. {
  1624. struct drm_device *dev = crtc->dev;
  1625. struct drm_i915_private *dev_priv = dev->dev_private;
  1626. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1627. u32 val;
  1628. int fbc_wm, plane_wm, cursor_wm;
  1629. unsigned int enabled;
  1630. enabled = 0;
  1631. if (g4x_compute_wm0(dev, PIPE_A,
  1632. &sandybridge_display_wm_info, latency,
  1633. &sandybridge_cursor_wm_info, latency,
  1634. &plane_wm, &cursor_wm)) {
  1635. val = I915_READ(WM0_PIPEA_ILK);
  1636. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1637. I915_WRITE(WM0_PIPEA_ILK, val |
  1638. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1639. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1640. " plane %d, " "cursor: %d\n",
  1641. plane_wm, cursor_wm);
  1642. enabled |= 1 << PIPE_A;
  1643. }
  1644. if (g4x_compute_wm0(dev, PIPE_B,
  1645. &sandybridge_display_wm_info, latency,
  1646. &sandybridge_cursor_wm_info, latency,
  1647. &plane_wm, &cursor_wm)) {
  1648. val = I915_READ(WM0_PIPEB_ILK);
  1649. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1650. I915_WRITE(WM0_PIPEB_ILK, val |
  1651. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1652. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1653. " plane %d, cursor: %d\n",
  1654. plane_wm, cursor_wm);
  1655. enabled |= 1 << PIPE_B;
  1656. }
  1657. /*
  1658. * Calculate and update the self-refresh watermark only when one
  1659. * display plane is used.
  1660. *
  1661. * SNB support 3 levels of watermark.
  1662. *
  1663. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1664. * and disabled in the descending order
  1665. *
  1666. */
  1667. I915_WRITE(WM3_LP_ILK, 0);
  1668. I915_WRITE(WM2_LP_ILK, 0);
  1669. I915_WRITE(WM1_LP_ILK, 0);
  1670. if (!single_plane_enabled(enabled) ||
  1671. dev_priv->sprite_scaling_enabled)
  1672. return;
  1673. enabled = ffs(enabled) - 1;
  1674. /* WM1 */
  1675. if (!ironlake_compute_srwm(dev, 1, enabled,
  1676. dev_priv->wm.pri_latency[1] * 500,
  1677. &sandybridge_display_srwm_info,
  1678. &sandybridge_cursor_srwm_info,
  1679. &fbc_wm, &plane_wm, &cursor_wm))
  1680. return;
  1681. I915_WRITE(WM1_LP_ILK,
  1682. WM1_LP_SR_EN |
  1683. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1684. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1685. (plane_wm << WM1_LP_SR_SHIFT) |
  1686. cursor_wm);
  1687. /* WM2 */
  1688. if (!ironlake_compute_srwm(dev, 2, enabled,
  1689. dev_priv->wm.pri_latency[2] * 500,
  1690. &sandybridge_display_srwm_info,
  1691. &sandybridge_cursor_srwm_info,
  1692. &fbc_wm, &plane_wm, &cursor_wm))
  1693. return;
  1694. I915_WRITE(WM2_LP_ILK,
  1695. WM2_LP_EN |
  1696. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1697. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1698. (plane_wm << WM1_LP_SR_SHIFT) |
  1699. cursor_wm);
  1700. /* WM3 */
  1701. if (!ironlake_compute_srwm(dev, 3, enabled,
  1702. dev_priv->wm.pri_latency[3] * 500,
  1703. &sandybridge_display_srwm_info,
  1704. &sandybridge_cursor_srwm_info,
  1705. &fbc_wm, &plane_wm, &cursor_wm))
  1706. return;
  1707. I915_WRITE(WM3_LP_ILK,
  1708. WM3_LP_EN |
  1709. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1710. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1711. (plane_wm << WM1_LP_SR_SHIFT) |
  1712. cursor_wm);
  1713. }
  1714. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1715. {
  1716. struct drm_device *dev = crtc->dev;
  1717. struct drm_i915_private *dev_priv = dev->dev_private;
  1718. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1719. u32 val;
  1720. int fbc_wm, plane_wm, cursor_wm;
  1721. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1722. unsigned int enabled;
  1723. enabled = 0;
  1724. if (g4x_compute_wm0(dev, PIPE_A,
  1725. &sandybridge_display_wm_info, latency,
  1726. &sandybridge_cursor_wm_info, latency,
  1727. &plane_wm, &cursor_wm)) {
  1728. val = I915_READ(WM0_PIPEA_ILK);
  1729. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1730. I915_WRITE(WM0_PIPEA_ILK, val |
  1731. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1732. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1733. " plane %d, " "cursor: %d\n",
  1734. plane_wm, cursor_wm);
  1735. enabled |= 1 << PIPE_A;
  1736. }
  1737. if (g4x_compute_wm0(dev, PIPE_B,
  1738. &sandybridge_display_wm_info, latency,
  1739. &sandybridge_cursor_wm_info, latency,
  1740. &plane_wm, &cursor_wm)) {
  1741. val = I915_READ(WM0_PIPEB_ILK);
  1742. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1743. I915_WRITE(WM0_PIPEB_ILK, val |
  1744. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1745. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1746. " plane %d, cursor: %d\n",
  1747. plane_wm, cursor_wm);
  1748. enabled |= 1 << PIPE_B;
  1749. }
  1750. if (g4x_compute_wm0(dev, PIPE_C,
  1751. &sandybridge_display_wm_info, latency,
  1752. &sandybridge_cursor_wm_info, latency,
  1753. &plane_wm, &cursor_wm)) {
  1754. val = I915_READ(WM0_PIPEC_IVB);
  1755. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1756. I915_WRITE(WM0_PIPEC_IVB, val |
  1757. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1758. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1759. " plane %d, cursor: %d\n",
  1760. plane_wm, cursor_wm);
  1761. enabled |= 1 << PIPE_C;
  1762. }
  1763. /*
  1764. * Calculate and update the self-refresh watermark only when one
  1765. * display plane is used.
  1766. *
  1767. * SNB support 3 levels of watermark.
  1768. *
  1769. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1770. * and disabled in the descending order
  1771. *
  1772. */
  1773. I915_WRITE(WM3_LP_ILK, 0);
  1774. I915_WRITE(WM2_LP_ILK, 0);
  1775. I915_WRITE(WM1_LP_ILK, 0);
  1776. if (!single_plane_enabled(enabled) ||
  1777. dev_priv->sprite_scaling_enabled)
  1778. return;
  1779. enabled = ffs(enabled) - 1;
  1780. /* WM1 */
  1781. if (!ironlake_compute_srwm(dev, 1, enabled,
  1782. dev_priv->wm.pri_latency[1] * 500,
  1783. &sandybridge_display_srwm_info,
  1784. &sandybridge_cursor_srwm_info,
  1785. &fbc_wm, &plane_wm, &cursor_wm))
  1786. return;
  1787. I915_WRITE(WM1_LP_ILK,
  1788. WM1_LP_SR_EN |
  1789. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1790. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1791. (plane_wm << WM1_LP_SR_SHIFT) |
  1792. cursor_wm);
  1793. /* WM2 */
  1794. if (!ironlake_compute_srwm(dev, 2, enabled,
  1795. dev_priv->wm.pri_latency[2] * 500,
  1796. &sandybridge_display_srwm_info,
  1797. &sandybridge_cursor_srwm_info,
  1798. &fbc_wm, &plane_wm, &cursor_wm))
  1799. return;
  1800. I915_WRITE(WM2_LP_ILK,
  1801. WM2_LP_EN |
  1802. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1803. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1804. (plane_wm << WM1_LP_SR_SHIFT) |
  1805. cursor_wm);
  1806. /* WM3, note we have to correct the cursor latency */
  1807. if (!ironlake_compute_srwm(dev, 3, enabled,
  1808. dev_priv->wm.pri_latency[3] * 500,
  1809. &sandybridge_display_srwm_info,
  1810. &sandybridge_cursor_srwm_info,
  1811. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1812. !ironlake_compute_srwm(dev, 3, enabled,
  1813. dev_priv->wm.cur_latency[3] * 500,
  1814. &sandybridge_display_srwm_info,
  1815. &sandybridge_cursor_srwm_info,
  1816. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1817. return;
  1818. I915_WRITE(WM3_LP_ILK,
  1819. WM3_LP_EN |
  1820. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1821. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1822. (plane_wm << WM1_LP_SR_SHIFT) |
  1823. cursor_wm);
  1824. }
  1825. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1826. struct drm_crtc *crtc)
  1827. {
  1828. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1829. uint32_t pixel_rate, pfit_size;
  1830. pixel_rate = intel_crtc->config.adjusted_mode.clock;
  1831. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1832. * adjust the pixel_rate here. */
  1833. pfit_size = intel_crtc->config.pch_pfit.size;
  1834. if (pfit_size) {
  1835. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1836. pipe_w = intel_crtc->config.requested_mode.hdisplay;
  1837. pipe_h = intel_crtc->config.requested_mode.vdisplay;
  1838. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1839. pfit_h = pfit_size & 0xFFFF;
  1840. if (pipe_w < pfit_w)
  1841. pipe_w = pfit_w;
  1842. if (pipe_h < pfit_h)
  1843. pipe_h = pfit_h;
  1844. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1845. pfit_w * pfit_h);
  1846. }
  1847. return pixel_rate;
  1848. }
  1849. /* latency must be in 0.1us units. */
  1850. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1851. uint32_t latency)
  1852. {
  1853. uint64_t ret;
  1854. if (WARN(latency == 0, "Latency value missing\n"))
  1855. return UINT_MAX;
  1856. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1857. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1858. return ret;
  1859. }
  1860. /* latency must be in 0.1us units. */
  1861. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1862. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1863. uint32_t latency)
  1864. {
  1865. uint32_t ret;
  1866. if (WARN(latency == 0, "Latency value missing\n"))
  1867. return UINT_MAX;
  1868. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1869. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1870. ret = DIV_ROUND_UP(ret, 64) + 2;
  1871. return ret;
  1872. }
  1873. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1874. uint8_t bytes_per_pixel)
  1875. {
  1876. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1877. }
  1878. struct hsw_pipe_wm_parameters {
  1879. bool active;
  1880. uint32_t pipe_htotal;
  1881. uint32_t pixel_rate;
  1882. struct intel_plane_wm_parameters pri;
  1883. struct intel_plane_wm_parameters spr;
  1884. struct intel_plane_wm_parameters cur;
  1885. };
  1886. struct hsw_wm_maximums {
  1887. uint16_t pri;
  1888. uint16_t spr;
  1889. uint16_t cur;
  1890. uint16_t fbc;
  1891. };
  1892. struct hsw_wm_values {
  1893. uint32_t wm_pipe[3];
  1894. uint32_t wm_lp[3];
  1895. uint32_t wm_lp_spr[3];
  1896. uint32_t wm_linetime[3];
  1897. bool enable_fbc_wm;
  1898. };
  1899. /* used in computing the new watermarks state */
  1900. struct intel_wm_config {
  1901. unsigned int num_pipes_active;
  1902. bool sprites_enabled;
  1903. bool sprites_scaled;
  1904. bool fbc_wm_enabled;
  1905. };
  1906. /*
  1907. * For both WM_PIPE and WM_LP.
  1908. * mem_value must be in 0.1us units.
  1909. */
  1910. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1911. uint32_t mem_value,
  1912. bool is_lp)
  1913. {
  1914. uint32_t method1, method2;
  1915. if (!params->active || !params->pri.enabled)
  1916. return 0;
  1917. method1 = ilk_wm_method1(params->pixel_rate,
  1918. params->pri.bytes_per_pixel,
  1919. mem_value);
  1920. if (!is_lp)
  1921. return method1;
  1922. method2 = ilk_wm_method2(params->pixel_rate,
  1923. params->pipe_htotal,
  1924. params->pri.horiz_pixels,
  1925. params->pri.bytes_per_pixel,
  1926. mem_value);
  1927. return min(method1, method2);
  1928. }
  1929. /*
  1930. * For both WM_PIPE and WM_LP.
  1931. * mem_value must be in 0.1us units.
  1932. */
  1933. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1934. uint32_t mem_value)
  1935. {
  1936. uint32_t method1, method2;
  1937. if (!params->active || !params->spr.enabled)
  1938. return 0;
  1939. method1 = ilk_wm_method1(params->pixel_rate,
  1940. params->spr.bytes_per_pixel,
  1941. mem_value);
  1942. method2 = ilk_wm_method2(params->pixel_rate,
  1943. params->pipe_htotal,
  1944. params->spr.horiz_pixels,
  1945. params->spr.bytes_per_pixel,
  1946. mem_value);
  1947. return min(method1, method2);
  1948. }
  1949. /*
  1950. * For both WM_PIPE and WM_LP.
  1951. * mem_value must be in 0.1us units.
  1952. */
  1953. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1954. uint32_t mem_value)
  1955. {
  1956. if (!params->active || !params->cur.enabled)
  1957. return 0;
  1958. return ilk_wm_method2(params->pixel_rate,
  1959. params->pipe_htotal,
  1960. params->cur.horiz_pixels,
  1961. params->cur.bytes_per_pixel,
  1962. mem_value);
  1963. }
  1964. /* Only for WM_LP. */
  1965. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1966. uint32_t pri_val)
  1967. {
  1968. if (!params->active || !params->pri.enabled)
  1969. return 0;
  1970. return ilk_wm_fbc(pri_val,
  1971. params->pri.horiz_pixels,
  1972. params->pri.bytes_per_pixel);
  1973. }
  1974. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1975. {
  1976. if (INTEL_INFO(dev)->gen >= 7)
  1977. return 768;
  1978. else
  1979. return 512;
  1980. }
  1981. /* Calculate the maximum primary/sprite plane watermark */
  1982. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1983. int level,
  1984. const struct intel_wm_config *config,
  1985. enum intel_ddb_partitioning ddb_partitioning,
  1986. bool is_sprite)
  1987. {
  1988. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1989. unsigned int max;
  1990. /* if sprites aren't enabled, sprites get nothing */
  1991. if (is_sprite && !config->sprites_enabled)
  1992. return 0;
  1993. /* HSW allows LP1+ watermarks even with multiple pipes */
  1994. if (level == 0 || config->num_pipes_active > 1) {
  1995. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1996. /*
  1997. * For some reason the non self refresh
  1998. * FIFO size is only half of the self
  1999. * refresh FIFO size on ILK/SNB.
  2000. */
  2001. if (INTEL_INFO(dev)->gen <= 6)
  2002. fifo_size /= 2;
  2003. }
  2004. if (config->sprites_enabled) {
  2005. /* level 0 is always calculated with 1:1 split */
  2006. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2007. if (is_sprite)
  2008. fifo_size *= 5;
  2009. fifo_size /= 6;
  2010. } else {
  2011. fifo_size /= 2;
  2012. }
  2013. }
  2014. /* clamp to max that the registers can hold */
  2015. if (INTEL_INFO(dev)->gen >= 7)
  2016. /* IVB/HSW primary/sprite plane watermarks */
  2017. max = level == 0 ? 127 : 1023;
  2018. else if (!is_sprite)
  2019. /* ILK/SNB primary plane watermarks */
  2020. max = level == 0 ? 127 : 511;
  2021. else
  2022. /* ILK/SNB sprite plane watermarks */
  2023. max = level == 0 ? 63 : 255;
  2024. return min(fifo_size, max);
  2025. }
  2026. /* Calculate the maximum cursor plane watermark */
  2027. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2028. int level,
  2029. const struct intel_wm_config *config)
  2030. {
  2031. /* HSW LP1+ watermarks w/ multiple pipes */
  2032. if (level > 0 && config->num_pipes_active > 1)
  2033. return 64;
  2034. /* otherwise just report max that registers can hold */
  2035. if (INTEL_INFO(dev)->gen >= 7)
  2036. return level == 0 ? 63 : 255;
  2037. else
  2038. return level == 0 ? 31 : 63;
  2039. }
  2040. /* Calculate the maximum FBC watermark */
  2041. static unsigned int ilk_fbc_wm_max(void)
  2042. {
  2043. /* max that registers can hold */
  2044. return 15;
  2045. }
  2046. static void ilk_wm_max(struct drm_device *dev,
  2047. int level,
  2048. const struct intel_wm_config *config,
  2049. enum intel_ddb_partitioning ddb_partitioning,
  2050. struct hsw_wm_maximums *max)
  2051. {
  2052. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2053. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2054. max->cur = ilk_cursor_wm_max(dev, level, config);
  2055. max->fbc = ilk_fbc_wm_max();
  2056. }
  2057. static bool ilk_check_wm(int level,
  2058. const struct hsw_wm_maximums *max,
  2059. struct intel_wm_level *result)
  2060. {
  2061. bool ret;
  2062. /* already determined to be invalid? */
  2063. if (!result->enable)
  2064. return false;
  2065. result->enable = result->pri_val <= max->pri &&
  2066. result->spr_val <= max->spr &&
  2067. result->cur_val <= max->cur;
  2068. ret = result->enable;
  2069. /*
  2070. * HACK until we can pre-compute everything,
  2071. * and thus fail gracefully if LP0 watermarks
  2072. * are exceeded...
  2073. */
  2074. if (level == 0 && !result->enable) {
  2075. if (result->pri_val > max->pri)
  2076. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2077. level, result->pri_val, max->pri);
  2078. if (result->spr_val > max->spr)
  2079. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2080. level, result->spr_val, max->spr);
  2081. if (result->cur_val > max->cur)
  2082. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2083. level, result->cur_val, max->cur);
  2084. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2085. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2086. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2087. result->enable = true;
  2088. }
  2089. DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
  2090. return ret;
  2091. }
  2092. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2093. int level,
  2094. const struct hsw_pipe_wm_parameters *p,
  2095. struct intel_wm_level *result)
  2096. {
  2097. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2098. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2099. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2100. /* WM1+ latency values stored in 0.5us units */
  2101. if (level > 0) {
  2102. pri_latency *= 5;
  2103. spr_latency *= 5;
  2104. cur_latency *= 5;
  2105. }
  2106. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2107. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2108. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2109. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2110. result->enable = true;
  2111. }
  2112. static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
  2113. int level, const struct hsw_wm_maximums *max,
  2114. const struct hsw_pipe_wm_parameters *params,
  2115. struct intel_wm_level *result)
  2116. {
  2117. enum pipe pipe;
  2118. struct intel_wm_level res[3];
  2119. for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
  2120. ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
  2121. result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
  2122. result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
  2123. result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
  2124. result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
  2125. result->enable = true;
  2126. return ilk_check_wm(level, max, result);
  2127. }
  2128. static uint32_t hsw_compute_wm_pipe(struct drm_device *dev,
  2129. const struct hsw_pipe_wm_parameters *params)
  2130. {
  2131. struct drm_i915_private *dev_priv = dev->dev_private;
  2132. struct intel_wm_config config = {
  2133. .num_pipes_active = 1,
  2134. .sprites_enabled = params->spr.enabled,
  2135. .sprites_scaled = params->spr.scaled,
  2136. };
  2137. struct hsw_wm_maximums max;
  2138. struct intel_wm_level res;
  2139. if (!params->active)
  2140. return 0;
  2141. ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2142. ilk_compute_wm_level(dev_priv, 0, params, &res);
  2143. ilk_check_wm(0, &max, &res);
  2144. return (res.pri_val << WM0_PIPE_PLANE_SHIFT) |
  2145. (res.spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2146. res.cur_val;
  2147. }
  2148. static uint32_t
  2149. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2150. {
  2151. struct drm_i915_private *dev_priv = dev->dev_private;
  2152. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2153. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2154. u32 linetime, ips_linetime;
  2155. if (!intel_crtc_active(crtc))
  2156. return 0;
  2157. /* The WM are computed with base on how long it takes to fill a single
  2158. * row at the given clock rate, multiplied by 8.
  2159. * */
  2160. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2161. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2162. intel_ddi_get_cdclk_freq(dev_priv));
  2163. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2164. PIPE_WM_LINETIME_TIME(linetime);
  2165. }
  2166. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2167. {
  2168. struct drm_i915_private *dev_priv = dev->dev_private;
  2169. if (IS_HASWELL(dev)) {
  2170. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2171. wm[0] = (sskpd >> 56) & 0xFF;
  2172. if (wm[0] == 0)
  2173. wm[0] = sskpd & 0xF;
  2174. wm[1] = (sskpd >> 4) & 0xFF;
  2175. wm[2] = (sskpd >> 12) & 0xFF;
  2176. wm[3] = (sskpd >> 20) & 0x1FF;
  2177. wm[4] = (sskpd >> 32) & 0x1FF;
  2178. } else if (INTEL_INFO(dev)->gen >= 6) {
  2179. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2180. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2181. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2182. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2183. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2184. } else if (INTEL_INFO(dev)->gen >= 5) {
  2185. uint32_t mltr = I915_READ(MLTR_ILK);
  2186. /* ILK primary LP0 latency is 700 ns */
  2187. wm[0] = 7;
  2188. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2189. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2190. }
  2191. }
  2192. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2193. {
  2194. /* ILK sprite LP0 latency is 1300 ns */
  2195. if (INTEL_INFO(dev)->gen == 5)
  2196. wm[0] = 13;
  2197. }
  2198. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2199. {
  2200. /* ILK cursor LP0 latency is 1300 ns */
  2201. if (INTEL_INFO(dev)->gen == 5)
  2202. wm[0] = 13;
  2203. /* WaDoubleCursorLP3Latency:ivb */
  2204. if (IS_IVYBRIDGE(dev))
  2205. wm[3] *= 2;
  2206. }
  2207. static int ilk_wm_max_level(const struct drm_device *dev)
  2208. {
  2209. /* how many WM levels are we expecting */
  2210. if (IS_HASWELL(dev))
  2211. return 4;
  2212. else if (INTEL_INFO(dev)->gen >= 6)
  2213. return 3;
  2214. else
  2215. return 2;
  2216. }
  2217. static void intel_print_wm_latency(struct drm_device *dev,
  2218. const char *name,
  2219. const uint16_t wm[5])
  2220. {
  2221. int level, max_level = ilk_wm_max_level(dev);
  2222. for (level = 0; level <= max_level; level++) {
  2223. unsigned int latency = wm[level];
  2224. if (latency == 0) {
  2225. DRM_ERROR("%s WM%d latency not provided\n",
  2226. name, level);
  2227. continue;
  2228. }
  2229. /* WM1+ latency values in 0.5us units */
  2230. if (level > 0)
  2231. latency *= 5;
  2232. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2233. name, level, wm[level],
  2234. latency / 10, latency % 10);
  2235. }
  2236. }
  2237. static void intel_setup_wm_latency(struct drm_device *dev)
  2238. {
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2241. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2242. sizeof(dev_priv->wm.pri_latency));
  2243. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2244. sizeof(dev_priv->wm.pri_latency));
  2245. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2246. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2247. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2248. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2249. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2250. }
  2251. static void hsw_compute_wm_parameters(struct drm_device *dev,
  2252. struct hsw_pipe_wm_parameters *params,
  2253. struct hsw_wm_maximums *lp_max_1_2,
  2254. struct hsw_wm_maximums *lp_max_5_6)
  2255. {
  2256. struct drm_crtc *crtc;
  2257. struct drm_plane *plane;
  2258. enum pipe pipe;
  2259. struct intel_wm_config config = {};
  2260. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2262. struct hsw_pipe_wm_parameters *p;
  2263. pipe = intel_crtc->pipe;
  2264. p = &params[pipe];
  2265. p->active = intel_crtc_active(crtc);
  2266. if (!p->active)
  2267. continue;
  2268. config.num_pipes_active++;
  2269. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2270. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2271. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2272. p->cur.bytes_per_pixel = 4;
  2273. p->pri.horiz_pixels =
  2274. intel_crtc->config.requested_mode.hdisplay;
  2275. p->cur.horiz_pixels = 64;
  2276. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2277. p->pri.enabled = true;
  2278. p->cur.enabled = true;
  2279. }
  2280. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2281. struct intel_plane *intel_plane = to_intel_plane(plane);
  2282. struct hsw_pipe_wm_parameters *p;
  2283. pipe = intel_plane->pipe;
  2284. p = &params[pipe];
  2285. p->spr = intel_plane->wm;
  2286. config.sprites_enabled |= p->spr.enabled;
  2287. config.sprites_scaled |= p->spr.scaled;
  2288. }
  2289. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
  2290. /* 5/6 split only in single pipe config on IVB+ */
  2291. if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
  2292. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
  2293. else
  2294. *lp_max_5_6 = *lp_max_1_2;
  2295. }
  2296. static void hsw_compute_wm_results(struct drm_device *dev,
  2297. const struct hsw_pipe_wm_parameters *params,
  2298. const struct hsw_wm_maximums *lp_maximums,
  2299. struct hsw_wm_values *results)
  2300. {
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. struct drm_crtc *crtc;
  2303. struct intel_wm_level lp_results[4] = {};
  2304. enum pipe pipe;
  2305. int level, max_level, wm_lp;
  2306. for (level = 1; level <= 4; level++)
  2307. if (!hsw_compute_lp_wm(dev_priv, level,
  2308. lp_maximums, params,
  2309. &lp_results[level - 1]))
  2310. break;
  2311. max_level = level - 1;
  2312. memset(results, 0, sizeof(*results));
  2313. /* The spec says it is preferred to disable FBC WMs instead of disabling
  2314. * a WM level. */
  2315. results->enable_fbc_wm = true;
  2316. for (level = 1; level <= max_level; level++) {
  2317. if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
  2318. results->enable_fbc_wm = false;
  2319. lp_results[level - 1].fbc_val = 0;
  2320. }
  2321. }
  2322. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2323. const struct intel_wm_level *r;
  2324. level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
  2325. if (level > max_level)
  2326. break;
  2327. r = &lp_results[level - 1];
  2328. results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
  2329. r->fbc_val,
  2330. r->pri_val,
  2331. r->cur_val);
  2332. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2333. }
  2334. for_each_pipe(pipe)
  2335. results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev,
  2336. &params[pipe]);
  2337. for_each_pipe(pipe) {
  2338. crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  2339. results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
  2340. }
  2341. }
  2342. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2343. * case both are at the same level. Prefer r1 in case they're the same. */
  2344. static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
  2345. struct hsw_wm_values *r2)
  2346. {
  2347. int i, val_r1 = 0, val_r2 = 0;
  2348. for (i = 0; i < 3; i++) {
  2349. if (r1->wm_lp[i] & WM3_LP_EN)
  2350. val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2351. if (r2->wm_lp[i] & WM3_LP_EN)
  2352. val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2353. }
  2354. if (val_r1 == val_r2) {
  2355. if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
  2356. return r2;
  2357. else
  2358. return r1;
  2359. } else if (val_r1 > val_r2) {
  2360. return r1;
  2361. } else {
  2362. return r2;
  2363. }
  2364. }
  2365. /*
  2366. * The spec says we shouldn't write when we don't need, because every write
  2367. * causes WMs to be re-evaluated, expending some power.
  2368. */
  2369. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2370. struct hsw_wm_values *results,
  2371. enum intel_ddb_partitioning partitioning)
  2372. {
  2373. struct hsw_wm_values previous;
  2374. uint32_t val;
  2375. enum intel_ddb_partitioning prev_partitioning;
  2376. bool prev_enable_fbc_wm;
  2377. previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
  2378. previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
  2379. previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
  2380. previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
  2381. previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
  2382. previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
  2383. previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2384. previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2385. previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2386. previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
  2387. previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
  2388. previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
  2389. prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2390. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2391. prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2392. if (memcmp(results->wm_pipe, previous.wm_pipe,
  2393. sizeof(results->wm_pipe)) == 0 &&
  2394. memcmp(results->wm_lp, previous.wm_lp,
  2395. sizeof(results->wm_lp)) == 0 &&
  2396. memcmp(results->wm_lp_spr, previous.wm_lp_spr,
  2397. sizeof(results->wm_lp_spr)) == 0 &&
  2398. memcmp(results->wm_linetime, previous.wm_linetime,
  2399. sizeof(results->wm_linetime)) == 0 &&
  2400. partitioning == prev_partitioning &&
  2401. results->enable_fbc_wm == prev_enable_fbc_wm)
  2402. return;
  2403. if (previous.wm_lp[2] != 0)
  2404. I915_WRITE(WM3_LP_ILK, 0);
  2405. if (previous.wm_lp[1] != 0)
  2406. I915_WRITE(WM2_LP_ILK, 0);
  2407. if (previous.wm_lp[0] != 0)
  2408. I915_WRITE(WM1_LP_ILK, 0);
  2409. if (previous.wm_pipe[0] != results->wm_pipe[0])
  2410. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2411. if (previous.wm_pipe[1] != results->wm_pipe[1])
  2412. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2413. if (previous.wm_pipe[2] != results->wm_pipe[2])
  2414. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2415. if (previous.wm_linetime[0] != results->wm_linetime[0])
  2416. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2417. if (previous.wm_linetime[1] != results->wm_linetime[1])
  2418. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2419. if (previous.wm_linetime[2] != results->wm_linetime[2])
  2420. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2421. if (prev_partitioning != partitioning) {
  2422. val = I915_READ(WM_MISC);
  2423. if (partitioning == INTEL_DDB_PART_1_2)
  2424. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2425. else
  2426. val |= WM_MISC_DATA_PARTITION_5_6;
  2427. I915_WRITE(WM_MISC, val);
  2428. }
  2429. if (prev_enable_fbc_wm != results->enable_fbc_wm) {
  2430. val = I915_READ(DISP_ARB_CTL);
  2431. if (results->enable_fbc_wm)
  2432. val &= ~DISP_FBC_WM_DIS;
  2433. else
  2434. val |= DISP_FBC_WM_DIS;
  2435. I915_WRITE(DISP_ARB_CTL, val);
  2436. }
  2437. if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
  2438. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2439. if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
  2440. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2441. if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
  2442. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2443. if (results->wm_lp[0] != 0)
  2444. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2445. if (results->wm_lp[1] != 0)
  2446. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2447. if (results->wm_lp[2] != 0)
  2448. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2449. }
  2450. static void haswell_update_wm(struct drm_crtc *crtc)
  2451. {
  2452. struct drm_device *dev = crtc->dev;
  2453. struct drm_i915_private *dev_priv = dev->dev_private;
  2454. struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
  2455. struct hsw_pipe_wm_parameters params[3];
  2456. struct hsw_wm_values results_1_2, results_5_6, *best_results;
  2457. enum intel_ddb_partitioning partitioning;
  2458. hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
  2459. hsw_compute_wm_results(dev, params,
  2460. &lp_max_1_2, &results_1_2);
  2461. if (lp_max_1_2.pri != lp_max_5_6.pri) {
  2462. hsw_compute_wm_results(dev, params,
  2463. &lp_max_5_6, &results_5_6);
  2464. best_results = hsw_find_best_result(&results_1_2, &results_5_6);
  2465. } else {
  2466. best_results = &results_1_2;
  2467. }
  2468. partitioning = (best_results == &results_1_2) ?
  2469. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2470. hsw_write_wm_values(dev_priv, best_results, partitioning);
  2471. }
  2472. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2473. struct drm_crtc *crtc,
  2474. uint32_t sprite_width, int pixel_size,
  2475. bool enabled, bool scaled)
  2476. {
  2477. struct intel_plane *intel_plane = to_intel_plane(plane);
  2478. intel_plane->wm.enabled = enabled;
  2479. intel_plane->wm.scaled = scaled;
  2480. intel_plane->wm.horiz_pixels = sprite_width;
  2481. intel_plane->wm.bytes_per_pixel = pixel_size;
  2482. haswell_update_wm(crtc);
  2483. }
  2484. static bool
  2485. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2486. uint32_t sprite_width, int pixel_size,
  2487. const struct intel_watermark_params *display,
  2488. int display_latency_ns, int *sprite_wm)
  2489. {
  2490. struct drm_crtc *crtc;
  2491. int clock;
  2492. int entries, tlb_miss;
  2493. crtc = intel_get_crtc_for_plane(dev, plane);
  2494. if (!intel_crtc_active(crtc)) {
  2495. *sprite_wm = display->guard_size;
  2496. return false;
  2497. }
  2498. clock = crtc->mode.clock;
  2499. /* Use the small buffer method to calculate the sprite watermark */
  2500. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2501. tlb_miss = display->fifo_size*display->cacheline_size -
  2502. sprite_width * 8;
  2503. if (tlb_miss > 0)
  2504. entries += tlb_miss;
  2505. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2506. *sprite_wm = entries + display->guard_size;
  2507. if (*sprite_wm > (int)display->max_wm)
  2508. *sprite_wm = display->max_wm;
  2509. return true;
  2510. }
  2511. static bool
  2512. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2513. uint32_t sprite_width, int pixel_size,
  2514. const struct intel_watermark_params *display,
  2515. int latency_ns, int *sprite_wm)
  2516. {
  2517. struct drm_crtc *crtc;
  2518. unsigned long line_time_us;
  2519. int clock;
  2520. int line_count, line_size;
  2521. int small, large;
  2522. int entries;
  2523. if (!latency_ns) {
  2524. *sprite_wm = 0;
  2525. return false;
  2526. }
  2527. crtc = intel_get_crtc_for_plane(dev, plane);
  2528. clock = crtc->mode.clock;
  2529. if (!clock) {
  2530. *sprite_wm = 0;
  2531. return false;
  2532. }
  2533. line_time_us = (sprite_width * 1000) / clock;
  2534. if (!line_time_us) {
  2535. *sprite_wm = 0;
  2536. return false;
  2537. }
  2538. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2539. line_size = sprite_width * pixel_size;
  2540. /* Use the minimum of the small and large buffer method for primary */
  2541. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2542. large = line_count * line_size;
  2543. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2544. *sprite_wm = entries + display->guard_size;
  2545. return *sprite_wm > 0x3ff ? false : true;
  2546. }
  2547. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2548. struct drm_crtc *crtc,
  2549. uint32_t sprite_width, int pixel_size,
  2550. bool enabled, bool scaled)
  2551. {
  2552. struct drm_device *dev = plane->dev;
  2553. struct drm_i915_private *dev_priv = dev->dev_private;
  2554. int pipe = to_intel_plane(plane)->pipe;
  2555. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2556. u32 val;
  2557. int sprite_wm, reg;
  2558. int ret;
  2559. if (!enabled)
  2560. return;
  2561. switch (pipe) {
  2562. case 0:
  2563. reg = WM0_PIPEA_ILK;
  2564. break;
  2565. case 1:
  2566. reg = WM0_PIPEB_ILK;
  2567. break;
  2568. case 2:
  2569. reg = WM0_PIPEC_IVB;
  2570. break;
  2571. default:
  2572. return; /* bad pipe */
  2573. }
  2574. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2575. &sandybridge_display_wm_info,
  2576. latency, &sprite_wm);
  2577. if (!ret) {
  2578. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2579. pipe_name(pipe));
  2580. return;
  2581. }
  2582. val = I915_READ(reg);
  2583. val &= ~WM0_PIPE_SPRITE_MASK;
  2584. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2585. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2586. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2587. pixel_size,
  2588. &sandybridge_display_srwm_info,
  2589. dev_priv->wm.spr_latency[1] * 500,
  2590. &sprite_wm);
  2591. if (!ret) {
  2592. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2593. pipe_name(pipe));
  2594. return;
  2595. }
  2596. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2597. /* Only IVB has two more LP watermarks for sprite */
  2598. if (!IS_IVYBRIDGE(dev))
  2599. return;
  2600. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2601. pixel_size,
  2602. &sandybridge_display_srwm_info,
  2603. dev_priv->wm.spr_latency[2] * 500,
  2604. &sprite_wm);
  2605. if (!ret) {
  2606. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2607. pipe_name(pipe));
  2608. return;
  2609. }
  2610. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2611. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2612. pixel_size,
  2613. &sandybridge_display_srwm_info,
  2614. dev_priv->wm.spr_latency[3] * 500,
  2615. &sprite_wm);
  2616. if (!ret) {
  2617. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2618. pipe_name(pipe));
  2619. return;
  2620. }
  2621. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2622. }
  2623. /**
  2624. * intel_update_watermarks - update FIFO watermark values based on current modes
  2625. *
  2626. * Calculate watermark values for the various WM regs based on current mode
  2627. * and plane configuration.
  2628. *
  2629. * There are several cases to deal with here:
  2630. * - normal (i.e. non-self-refresh)
  2631. * - self-refresh (SR) mode
  2632. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2633. * - lines are small relative to FIFO size (buffer can hold more than 2
  2634. * lines), so need to account for TLB latency
  2635. *
  2636. * The normal calculation is:
  2637. * watermark = dotclock * bytes per pixel * latency
  2638. * where latency is platform & configuration dependent (we assume pessimal
  2639. * values here).
  2640. *
  2641. * The SR calculation is:
  2642. * watermark = (trunc(latency/line time)+1) * surface width *
  2643. * bytes per pixel
  2644. * where
  2645. * line time = htotal / dotclock
  2646. * surface width = hdisplay for normal plane and 64 for cursor
  2647. * and latency is assumed to be high, as above.
  2648. *
  2649. * The final value programmed to the register should always be rounded up,
  2650. * and include an extra 2 entries to account for clock crossings.
  2651. *
  2652. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2653. * to set the non-SR watermarks to 8.
  2654. */
  2655. void intel_update_watermarks(struct drm_crtc *crtc)
  2656. {
  2657. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2658. if (dev_priv->display.update_wm)
  2659. dev_priv->display.update_wm(crtc);
  2660. }
  2661. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2662. struct drm_crtc *crtc,
  2663. uint32_t sprite_width, int pixel_size,
  2664. bool enabled, bool scaled)
  2665. {
  2666. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2667. if (dev_priv->display.update_sprite_wm)
  2668. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2669. pixel_size, enabled, scaled);
  2670. }
  2671. static struct drm_i915_gem_object *
  2672. intel_alloc_context_page(struct drm_device *dev)
  2673. {
  2674. struct drm_i915_gem_object *ctx;
  2675. int ret;
  2676. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2677. ctx = i915_gem_alloc_object(dev, 4096);
  2678. if (!ctx) {
  2679. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2680. return NULL;
  2681. }
  2682. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2683. if (ret) {
  2684. DRM_ERROR("failed to pin power context: %d\n", ret);
  2685. goto err_unref;
  2686. }
  2687. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2688. if (ret) {
  2689. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2690. goto err_unpin;
  2691. }
  2692. return ctx;
  2693. err_unpin:
  2694. i915_gem_object_unpin(ctx);
  2695. err_unref:
  2696. drm_gem_object_unreference(&ctx->base);
  2697. return NULL;
  2698. }
  2699. /**
  2700. * Lock protecting IPS related data structures
  2701. */
  2702. DEFINE_SPINLOCK(mchdev_lock);
  2703. /* Global for IPS driver to get at the current i915 device. Protected by
  2704. * mchdev_lock. */
  2705. static struct drm_i915_private *i915_mch_dev;
  2706. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2707. {
  2708. struct drm_i915_private *dev_priv = dev->dev_private;
  2709. u16 rgvswctl;
  2710. assert_spin_locked(&mchdev_lock);
  2711. rgvswctl = I915_READ16(MEMSWCTL);
  2712. if (rgvswctl & MEMCTL_CMD_STS) {
  2713. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2714. return false; /* still busy with another command */
  2715. }
  2716. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2717. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2718. I915_WRITE16(MEMSWCTL, rgvswctl);
  2719. POSTING_READ16(MEMSWCTL);
  2720. rgvswctl |= MEMCTL_CMD_STS;
  2721. I915_WRITE16(MEMSWCTL, rgvswctl);
  2722. return true;
  2723. }
  2724. static void ironlake_enable_drps(struct drm_device *dev)
  2725. {
  2726. struct drm_i915_private *dev_priv = dev->dev_private;
  2727. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2728. u8 fmax, fmin, fstart, vstart;
  2729. spin_lock_irq(&mchdev_lock);
  2730. /* Enable temp reporting */
  2731. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2732. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2733. /* 100ms RC evaluation intervals */
  2734. I915_WRITE(RCUPEI, 100000);
  2735. I915_WRITE(RCDNEI, 100000);
  2736. /* Set max/min thresholds to 90ms and 80ms respectively */
  2737. I915_WRITE(RCBMAXAVG, 90000);
  2738. I915_WRITE(RCBMINAVG, 80000);
  2739. I915_WRITE(MEMIHYST, 1);
  2740. /* Set up min, max, and cur for interrupt handling */
  2741. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2742. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2743. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2744. MEMMODE_FSTART_SHIFT;
  2745. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2746. PXVFREQ_PX_SHIFT;
  2747. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2748. dev_priv->ips.fstart = fstart;
  2749. dev_priv->ips.max_delay = fstart;
  2750. dev_priv->ips.min_delay = fmin;
  2751. dev_priv->ips.cur_delay = fstart;
  2752. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2753. fmax, fmin, fstart);
  2754. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2755. /*
  2756. * Interrupts will be enabled in ironlake_irq_postinstall
  2757. */
  2758. I915_WRITE(VIDSTART, vstart);
  2759. POSTING_READ(VIDSTART);
  2760. rgvmodectl |= MEMMODE_SWMODE_EN;
  2761. I915_WRITE(MEMMODECTL, rgvmodectl);
  2762. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2763. DRM_ERROR("stuck trying to change perf mode\n");
  2764. mdelay(1);
  2765. ironlake_set_drps(dev, fstart);
  2766. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2767. I915_READ(0x112e0);
  2768. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2769. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2770. getrawmonotonic(&dev_priv->ips.last_time2);
  2771. spin_unlock_irq(&mchdev_lock);
  2772. }
  2773. static void ironlake_disable_drps(struct drm_device *dev)
  2774. {
  2775. struct drm_i915_private *dev_priv = dev->dev_private;
  2776. u16 rgvswctl;
  2777. spin_lock_irq(&mchdev_lock);
  2778. rgvswctl = I915_READ16(MEMSWCTL);
  2779. /* Ack interrupts, disable EFC interrupt */
  2780. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2781. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2782. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2783. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2784. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2785. /* Go back to the starting frequency */
  2786. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2787. mdelay(1);
  2788. rgvswctl |= MEMCTL_CMD_STS;
  2789. I915_WRITE(MEMSWCTL, rgvswctl);
  2790. mdelay(1);
  2791. spin_unlock_irq(&mchdev_lock);
  2792. }
  2793. /* There's a funny hw issue where the hw returns all 0 when reading from
  2794. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2795. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2796. * all limits and the gpu stuck at whatever frequency it is at atm).
  2797. */
  2798. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2799. {
  2800. u32 limits;
  2801. limits = 0;
  2802. if (*val >= dev_priv->rps.max_delay)
  2803. *val = dev_priv->rps.max_delay;
  2804. limits |= dev_priv->rps.max_delay << 24;
  2805. /* Only set the down limit when we've reached the lowest level to avoid
  2806. * getting more interrupts, otherwise leave this clear. This prevents a
  2807. * race in the hw when coming out of rc6: There's a tiny window where
  2808. * the hw runs at the minimal clock before selecting the desired
  2809. * frequency, if the down threshold expires in that window we will not
  2810. * receive a down interrupt. */
  2811. if (*val <= dev_priv->rps.min_delay) {
  2812. *val = dev_priv->rps.min_delay;
  2813. limits |= dev_priv->rps.min_delay << 16;
  2814. }
  2815. return limits;
  2816. }
  2817. void gen6_set_rps(struct drm_device *dev, u8 val)
  2818. {
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. u32 limits = gen6_rps_limits(dev_priv, &val);
  2821. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2822. WARN_ON(val > dev_priv->rps.max_delay);
  2823. WARN_ON(val < dev_priv->rps.min_delay);
  2824. if (val == dev_priv->rps.cur_delay)
  2825. return;
  2826. if (IS_HASWELL(dev))
  2827. I915_WRITE(GEN6_RPNSWREQ,
  2828. HSW_FREQUENCY(val));
  2829. else
  2830. I915_WRITE(GEN6_RPNSWREQ,
  2831. GEN6_FREQUENCY(val) |
  2832. GEN6_OFFSET(0) |
  2833. GEN6_AGGRESSIVE_TURBO);
  2834. /* Make sure we continue to get interrupts
  2835. * until we hit the minimum or maximum frequencies.
  2836. */
  2837. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2838. POSTING_READ(GEN6_RPNSWREQ);
  2839. dev_priv->rps.cur_delay = val;
  2840. trace_intel_gpu_freq_change(val * 50);
  2841. }
  2842. /*
  2843. * Wait until the previous freq change has completed,
  2844. * or the timeout elapsed, and then update our notion
  2845. * of the current GPU frequency.
  2846. */
  2847. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  2848. {
  2849. u32 pval;
  2850. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2851. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  2852. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  2853. pval >>= 8;
  2854. if (pval != dev_priv->rps.cur_delay)
  2855. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  2856. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  2857. dev_priv->rps.cur_delay,
  2858. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  2859. dev_priv->rps.cur_delay = pval;
  2860. }
  2861. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2862. {
  2863. struct drm_i915_private *dev_priv = dev->dev_private;
  2864. gen6_rps_limits(dev_priv, &val);
  2865. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2866. WARN_ON(val > dev_priv->rps.max_delay);
  2867. WARN_ON(val < dev_priv->rps.min_delay);
  2868. vlv_update_rps_cur_delay(dev_priv);
  2869. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2870. vlv_gpu_freq(dev_priv->mem_freq,
  2871. dev_priv->rps.cur_delay),
  2872. dev_priv->rps.cur_delay,
  2873. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  2874. if (val == dev_priv->rps.cur_delay)
  2875. return;
  2876. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2877. dev_priv->rps.cur_delay = val;
  2878. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  2879. }
  2880. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2881. {
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2884. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  2885. /* Complete PM interrupt masking here doesn't race with the rps work
  2886. * item again unmasking PM interrupts because that is using a different
  2887. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2888. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2889. spin_lock_irq(&dev_priv->irq_lock);
  2890. dev_priv->rps.pm_iir = 0;
  2891. spin_unlock_irq(&dev_priv->irq_lock);
  2892. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  2893. }
  2894. static void gen6_disable_rps(struct drm_device *dev)
  2895. {
  2896. struct drm_i915_private *dev_priv = dev->dev_private;
  2897. I915_WRITE(GEN6_RC_CONTROL, 0);
  2898. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2899. gen6_disable_rps_interrupts(dev);
  2900. }
  2901. static void valleyview_disable_rps(struct drm_device *dev)
  2902. {
  2903. struct drm_i915_private *dev_priv = dev->dev_private;
  2904. I915_WRITE(GEN6_RC_CONTROL, 0);
  2905. gen6_disable_rps_interrupts(dev);
  2906. if (dev_priv->vlv_pctx) {
  2907. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  2908. dev_priv->vlv_pctx = NULL;
  2909. }
  2910. }
  2911. int intel_enable_rc6(const struct drm_device *dev)
  2912. {
  2913. /* No RC6 before Ironlake */
  2914. if (INTEL_INFO(dev)->gen < 5)
  2915. return 0;
  2916. /* Respect the kernel parameter if it is set */
  2917. if (i915_enable_rc6 >= 0)
  2918. return i915_enable_rc6;
  2919. /* Disable RC6 on Ironlake */
  2920. if (INTEL_INFO(dev)->gen == 5)
  2921. return 0;
  2922. if (IS_HASWELL(dev)) {
  2923. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2924. return INTEL_RC6_ENABLE;
  2925. }
  2926. /* snb/ivb have more than one rc6 state. */
  2927. if (INTEL_INFO(dev)->gen == 6) {
  2928. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2929. return INTEL_RC6_ENABLE;
  2930. }
  2931. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2932. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2933. }
  2934. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2935. {
  2936. struct drm_i915_private *dev_priv = dev->dev_private;
  2937. u32 enabled_intrs;
  2938. spin_lock_irq(&dev_priv->irq_lock);
  2939. WARN_ON(dev_priv->rps.pm_iir);
  2940. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  2941. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  2942. spin_unlock_irq(&dev_priv->irq_lock);
  2943. /* only unmask PM interrupts we need. Mask all others. */
  2944. enabled_intrs = GEN6_PM_RPS_EVENTS;
  2945. /* IVB and SNB hard hangs on looping batchbuffer
  2946. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2947. */
  2948. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  2949. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  2950. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  2951. }
  2952. static void gen6_enable_rps(struct drm_device *dev)
  2953. {
  2954. struct drm_i915_private *dev_priv = dev->dev_private;
  2955. struct intel_ring_buffer *ring;
  2956. u32 rp_state_cap;
  2957. u32 gt_perf_status;
  2958. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2959. u32 gtfifodbg;
  2960. int rc6_mode;
  2961. int i, ret;
  2962. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2963. /* Here begins a magic sequence of register writes to enable
  2964. * auto-downclocking.
  2965. *
  2966. * Perhaps there might be some value in exposing these to
  2967. * userspace...
  2968. */
  2969. I915_WRITE(GEN6_RC_STATE, 0);
  2970. /* Clear the DBG now so we don't confuse earlier errors */
  2971. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2972. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2973. I915_WRITE(GTFIFODBG, gtfifodbg);
  2974. }
  2975. gen6_gt_force_wake_get(dev_priv);
  2976. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2977. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2978. /* In units of 50MHz */
  2979. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2980. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2981. dev_priv->rps.cur_delay = 0;
  2982. /* disable the counters and set deterministic thresholds */
  2983. I915_WRITE(GEN6_RC_CONTROL, 0);
  2984. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2985. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2986. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2987. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2988. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2989. for_each_ring(ring, dev_priv, i)
  2990. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2991. I915_WRITE(GEN6_RC_SLEEP, 0);
  2992. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2993. if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
  2994. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  2995. else
  2996. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2997. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  2998. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2999. /* Check if we are enabling RC6 */
  3000. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3001. if (rc6_mode & INTEL_RC6_ENABLE)
  3002. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3003. /* We don't use those on Haswell */
  3004. if (!IS_HASWELL(dev)) {
  3005. if (rc6_mode & INTEL_RC6p_ENABLE)
  3006. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3007. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3008. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3009. }
  3010. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3011. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3012. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3013. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3014. I915_WRITE(GEN6_RC_CONTROL,
  3015. rc6_mask |
  3016. GEN6_RC_CTL_EI_MODE(1) |
  3017. GEN6_RC_CTL_HW_ENABLE);
  3018. if (IS_HASWELL(dev)) {
  3019. I915_WRITE(GEN6_RPNSWREQ,
  3020. HSW_FREQUENCY(10));
  3021. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3022. HSW_FREQUENCY(12));
  3023. } else {
  3024. I915_WRITE(GEN6_RPNSWREQ,
  3025. GEN6_FREQUENCY(10) |
  3026. GEN6_OFFSET(0) |
  3027. GEN6_AGGRESSIVE_TURBO);
  3028. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3029. GEN6_FREQUENCY(12));
  3030. }
  3031. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  3032. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3033. dev_priv->rps.max_delay << 24 |
  3034. dev_priv->rps.min_delay << 16);
  3035. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3036. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3037. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3038. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3039. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3040. I915_WRITE(GEN6_RP_CONTROL,
  3041. GEN6_RP_MEDIA_TURBO |
  3042. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3043. GEN6_RP_MEDIA_IS_GFX |
  3044. GEN6_RP_ENABLE |
  3045. GEN6_RP_UP_BUSY_AVG |
  3046. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  3047. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3048. if (!ret) {
  3049. pcu_mbox = 0;
  3050. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3051. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3052. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3053. (dev_priv->rps.max_delay & 0xff) * 50,
  3054. (pcu_mbox & 0xff) * 50);
  3055. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3056. }
  3057. } else {
  3058. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3059. }
  3060. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  3061. gen6_enable_rps_interrupts(dev);
  3062. rc6vids = 0;
  3063. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3064. if (IS_GEN6(dev) && ret) {
  3065. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3066. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3067. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3068. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3069. rc6vids &= 0xffff00;
  3070. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3071. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3072. if (ret)
  3073. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3074. }
  3075. gen6_gt_force_wake_put(dev_priv);
  3076. }
  3077. void gen6_update_ring_freq(struct drm_device *dev)
  3078. {
  3079. struct drm_i915_private *dev_priv = dev->dev_private;
  3080. int min_freq = 15;
  3081. unsigned int gpu_freq;
  3082. unsigned int max_ia_freq, min_ring_freq;
  3083. int scaling_factor = 180;
  3084. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3085. max_ia_freq = cpufreq_quick_get_max(0);
  3086. /*
  3087. * Default to measured freq if none found, PCU will ensure we don't go
  3088. * over
  3089. */
  3090. if (!max_ia_freq)
  3091. max_ia_freq = tsc_khz;
  3092. /* Convert from kHz to MHz */
  3093. max_ia_freq /= 1000;
  3094. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
  3095. /* convert DDR frequency from units of 133.3MHz to bandwidth */
  3096. min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
  3097. /*
  3098. * For each potential GPU frequency, load a ring frequency we'd like
  3099. * to use for memory access. We do this by specifying the IA frequency
  3100. * the PCU should use as a reference to determine the ring frequency.
  3101. */
  3102. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3103. gpu_freq--) {
  3104. int diff = dev_priv->rps.max_delay - gpu_freq;
  3105. unsigned int ia_freq = 0, ring_freq = 0;
  3106. if (IS_HASWELL(dev)) {
  3107. ring_freq = (gpu_freq * 5 + 3) / 4;
  3108. ring_freq = max(min_ring_freq, ring_freq);
  3109. /* leave ia_freq as the default, chosen by cpufreq */
  3110. } else {
  3111. /* On older processors, there is no separate ring
  3112. * clock domain, so in order to boost the bandwidth
  3113. * of the ring, we need to upclock the CPU (ia_freq).
  3114. *
  3115. * For GPU frequencies less than 750MHz,
  3116. * just use the lowest ring freq.
  3117. */
  3118. if (gpu_freq < min_freq)
  3119. ia_freq = 800;
  3120. else
  3121. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3122. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3123. }
  3124. sandybridge_pcode_write(dev_priv,
  3125. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3126. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3127. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3128. gpu_freq);
  3129. }
  3130. }
  3131. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3132. {
  3133. u32 val, rp0;
  3134. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3135. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3136. /* Clamp to max */
  3137. rp0 = min_t(u32, rp0, 0xea);
  3138. return rp0;
  3139. }
  3140. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3141. {
  3142. u32 val, rpe;
  3143. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3144. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3145. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3146. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3147. return rpe;
  3148. }
  3149. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3150. {
  3151. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3152. }
  3153. static void vlv_rps_timer_work(struct work_struct *work)
  3154. {
  3155. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3156. rps.vlv_work.work);
  3157. /*
  3158. * Timer fired, we must be idle. Drop to min voltage state.
  3159. * Note: we use RPe here since it should match the
  3160. * Vmin we were shooting for. That should give us better
  3161. * perf when we come back out of RC6 than if we used the
  3162. * min freq available.
  3163. */
  3164. mutex_lock(&dev_priv->rps.hw_lock);
  3165. if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
  3166. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3167. mutex_unlock(&dev_priv->rps.hw_lock);
  3168. }
  3169. static void valleyview_setup_pctx(struct drm_device *dev)
  3170. {
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. struct drm_i915_gem_object *pctx;
  3173. unsigned long pctx_paddr;
  3174. u32 pcbr;
  3175. int pctx_size = 24*1024;
  3176. pcbr = I915_READ(VLV_PCBR);
  3177. if (pcbr) {
  3178. /* BIOS set it up already, grab the pre-alloc'd space */
  3179. int pcbr_offset;
  3180. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3181. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3182. pcbr_offset,
  3183. I915_GTT_OFFSET_NONE,
  3184. pctx_size);
  3185. goto out;
  3186. }
  3187. /*
  3188. * From the Gunit register HAS:
  3189. * The Gfx driver is expected to program this register and ensure
  3190. * proper allocation within Gfx stolen memory. For example, this
  3191. * register should be programmed such than the PCBR range does not
  3192. * overlap with other ranges, such as the frame buffer, protected
  3193. * memory, or any other relevant ranges.
  3194. */
  3195. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3196. if (!pctx) {
  3197. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3198. return;
  3199. }
  3200. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3201. I915_WRITE(VLV_PCBR, pctx_paddr);
  3202. out:
  3203. dev_priv->vlv_pctx = pctx;
  3204. }
  3205. static void valleyview_enable_rps(struct drm_device *dev)
  3206. {
  3207. struct drm_i915_private *dev_priv = dev->dev_private;
  3208. struct intel_ring_buffer *ring;
  3209. u32 gtfifodbg, val;
  3210. int i;
  3211. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3212. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3213. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3214. I915_WRITE(GTFIFODBG, gtfifodbg);
  3215. }
  3216. valleyview_setup_pctx(dev);
  3217. gen6_gt_force_wake_get(dev_priv);
  3218. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3219. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3220. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3221. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3222. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3223. I915_WRITE(GEN6_RP_CONTROL,
  3224. GEN6_RP_MEDIA_TURBO |
  3225. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3226. GEN6_RP_MEDIA_IS_GFX |
  3227. GEN6_RP_ENABLE |
  3228. GEN6_RP_UP_BUSY_AVG |
  3229. GEN6_RP_DOWN_IDLE_CONT);
  3230. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3231. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3232. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3233. for_each_ring(ring, dev_priv, i)
  3234. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3235. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3236. /* allows RC6 residency counter to work */
  3237. I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
  3238. I915_WRITE(GEN6_RC_CONTROL,
  3239. GEN7_RC_CTL_TO_MODE);
  3240. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3241. switch ((val >> 6) & 3) {
  3242. case 0:
  3243. case 1:
  3244. dev_priv->mem_freq = 800;
  3245. break;
  3246. case 2:
  3247. dev_priv->mem_freq = 1066;
  3248. break;
  3249. case 3:
  3250. dev_priv->mem_freq = 1333;
  3251. break;
  3252. }
  3253. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3254. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3255. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3256. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3257. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3258. vlv_gpu_freq(dev_priv->mem_freq,
  3259. dev_priv->rps.cur_delay),
  3260. dev_priv->rps.cur_delay);
  3261. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3262. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3263. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3264. vlv_gpu_freq(dev_priv->mem_freq,
  3265. dev_priv->rps.max_delay),
  3266. dev_priv->rps.max_delay);
  3267. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3268. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3269. vlv_gpu_freq(dev_priv->mem_freq,
  3270. dev_priv->rps.rpe_delay),
  3271. dev_priv->rps.rpe_delay);
  3272. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3273. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3274. vlv_gpu_freq(dev_priv->mem_freq,
  3275. dev_priv->rps.min_delay),
  3276. dev_priv->rps.min_delay);
  3277. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3278. vlv_gpu_freq(dev_priv->mem_freq,
  3279. dev_priv->rps.rpe_delay),
  3280. dev_priv->rps.rpe_delay);
  3281. INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
  3282. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3283. gen6_enable_rps_interrupts(dev);
  3284. gen6_gt_force_wake_put(dev_priv);
  3285. }
  3286. void ironlake_teardown_rc6(struct drm_device *dev)
  3287. {
  3288. struct drm_i915_private *dev_priv = dev->dev_private;
  3289. if (dev_priv->ips.renderctx) {
  3290. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3291. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3292. dev_priv->ips.renderctx = NULL;
  3293. }
  3294. if (dev_priv->ips.pwrctx) {
  3295. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3296. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3297. dev_priv->ips.pwrctx = NULL;
  3298. }
  3299. }
  3300. static void ironlake_disable_rc6(struct drm_device *dev)
  3301. {
  3302. struct drm_i915_private *dev_priv = dev->dev_private;
  3303. if (I915_READ(PWRCTXA)) {
  3304. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3305. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3306. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3307. 50);
  3308. I915_WRITE(PWRCTXA, 0);
  3309. POSTING_READ(PWRCTXA);
  3310. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3311. POSTING_READ(RSTDBYCTL);
  3312. }
  3313. }
  3314. static int ironlake_setup_rc6(struct drm_device *dev)
  3315. {
  3316. struct drm_i915_private *dev_priv = dev->dev_private;
  3317. if (dev_priv->ips.renderctx == NULL)
  3318. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3319. if (!dev_priv->ips.renderctx)
  3320. return -ENOMEM;
  3321. if (dev_priv->ips.pwrctx == NULL)
  3322. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3323. if (!dev_priv->ips.pwrctx) {
  3324. ironlake_teardown_rc6(dev);
  3325. return -ENOMEM;
  3326. }
  3327. return 0;
  3328. }
  3329. static void ironlake_enable_rc6(struct drm_device *dev)
  3330. {
  3331. struct drm_i915_private *dev_priv = dev->dev_private;
  3332. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3333. bool was_interruptible;
  3334. int ret;
  3335. /* rc6 disabled by default due to repeated reports of hanging during
  3336. * boot and resume.
  3337. */
  3338. if (!intel_enable_rc6(dev))
  3339. return;
  3340. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3341. ret = ironlake_setup_rc6(dev);
  3342. if (ret)
  3343. return;
  3344. was_interruptible = dev_priv->mm.interruptible;
  3345. dev_priv->mm.interruptible = false;
  3346. /*
  3347. * GPU can automatically power down the render unit if given a page
  3348. * to save state.
  3349. */
  3350. ret = intel_ring_begin(ring, 6);
  3351. if (ret) {
  3352. ironlake_teardown_rc6(dev);
  3353. dev_priv->mm.interruptible = was_interruptible;
  3354. return;
  3355. }
  3356. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3357. intel_ring_emit(ring, MI_SET_CONTEXT);
  3358. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3359. MI_MM_SPACE_GTT |
  3360. MI_SAVE_EXT_STATE_EN |
  3361. MI_RESTORE_EXT_STATE_EN |
  3362. MI_RESTORE_INHIBIT);
  3363. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3364. intel_ring_emit(ring, MI_NOOP);
  3365. intel_ring_emit(ring, MI_FLUSH);
  3366. intel_ring_advance(ring);
  3367. /*
  3368. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3369. * does an implicit flush, combined with MI_FLUSH above, it should be
  3370. * safe to assume that renderctx is valid
  3371. */
  3372. ret = intel_ring_idle(ring);
  3373. dev_priv->mm.interruptible = was_interruptible;
  3374. if (ret) {
  3375. DRM_ERROR("failed to enable ironlake power savings\n");
  3376. ironlake_teardown_rc6(dev);
  3377. return;
  3378. }
  3379. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3380. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3381. }
  3382. static unsigned long intel_pxfreq(u32 vidfreq)
  3383. {
  3384. unsigned long freq;
  3385. int div = (vidfreq & 0x3f0000) >> 16;
  3386. int post = (vidfreq & 0x3000) >> 12;
  3387. int pre = (vidfreq & 0x7);
  3388. if (!pre)
  3389. return 0;
  3390. freq = ((div * 133333) / ((1<<post) * pre));
  3391. return freq;
  3392. }
  3393. static const struct cparams {
  3394. u16 i;
  3395. u16 t;
  3396. u16 m;
  3397. u16 c;
  3398. } cparams[] = {
  3399. { 1, 1333, 301, 28664 },
  3400. { 1, 1066, 294, 24460 },
  3401. { 1, 800, 294, 25192 },
  3402. { 0, 1333, 276, 27605 },
  3403. { 0, 1066, 276, 27605 },
  3404. { 0, 800, 231, 23784 },
  3405. };
  3406. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3407. {
  3408. u64 total_count, diff, ret;
  3409. u32 count1, count2, count3, m = 0, c = 0;
  3410. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3411. int i;
  3412. assert_spin_locked(&mchdev_lock);
  3413. diff1 = now - dev_priv->ips.last_time1;
  3414. /* Prevent division-by-zero if we are asking too fast.
  3415. * Also, we don't get interesting results if we are polling
  3416. * faster than once in 10ms, so just return the saved value
  3417. * in such cases.
  3418. */
  3419. if (diff1 <= 10)
  3420. return dev_priv->ips.chipset_power;
  3421. count1 = I915_READ(DMIEC);
  3422. count2 = I915_READ(DDREC);
  3423. count3 = I915_READ(CSIEC);
  3424. total_count = count1 + count2 + count3;
  3425. /* FIXME: handle per-counter overflow */
  3426. if (total_count < dev_priv->ips.last_count1) {
  3427. diff = ~0UL - dev_priv->ips.last_count1;
  3428. diff += total_count;
  3429. } else {
  3430. diff = total_count - dev_priv->ips.last_count1;
  3431. }
  3432. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3433. if (cparams[i].i == dev_priv->ips.c_m &&
  3434. cparams[i].t == dev_priv->ips.r_t) {
  3435. m = cparams[i].m;
  3436. c = cparams[i].c;
  3437. break;
  3438. }
  3439. }
  3440. diff = div_u64(diff, diff1);
  3441. ret = ((m * diff) + c);
  3442. ret = div_u64(ret, 10);
  3443. dev_priv->ips.last_count1 = total_count;
  3444. dev_priv->ips.last_time1 = now;
  3445. dev_priv->ips.chipset_power = ret;
  3446. return ret;
  3447. }
  3448. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3449. {
  3450. unsigned long val;
  3451. if (dev_priv->info->gen != 5)
  3452. return 0;
  3453. spin_lock_irq(&mchdev_lock);
  3454. val = __i915_chipset_val(dev_priv);
  3455. spin_unlock_irq(&mchdev_lock);
  3456. return val;
  3457. }
  3458. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3459. {
  3460. unsigned long m, x, b;
  3461. u32 tsfs;
  3462. tsfs = I915_READ(TSFS);
  3463. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3464. x = I915_READ8(TR1);
  3465. b = tsfs & TSFS_INTR_MASK;
  3466. return ((m * x) / 127) - b;
  3467. }
  3468. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3469. {
  3470. static const struct v_table {
  3471. u16 vd; /* in .1 mil */
  3472. u16 vm; /* in .1 mil */
  3473. } v_table[] = {
  3474. { 0, 0, },
  3475. { 375, 0, },
  3476. { 500, 0, },
  3477. { 625, 0, },
  3478. { 750, 0, },
  3479. { 875, 0, },
  3480. { 1000, 0, },
  3481. { 1125, 0, },
  3482. { 4125, 3000, },
  3483. { 4125, 3000, },
  3484. { 4125, 3000, },
  3485. { 4125, 3000, },
  3486. { 4125, 3000, },
  3487. { 4125, 3000, },
  3488. { 4125, 3000, },
  3489. { 4125, 3000, },
  3490. { 4125, 3000, },
  3491. { 4125, 3000, },
  3492. { 4125, 3000, },
  3493. { 4125, 3000, },
  3494. { 4125, 3000, },
  3495. { 4125, 3000, },
  3496. { 4125, 3000, },
  3497. { 4125, 3000, },
  3498. { 4125, 3000, },
  3499. { 4125, 3000, },
  3500. { 4125, 3000, },
  3501. { 4125, 3000, },
  3502. { 4125, 3000, },
  3503. { 4125, 3000, },
  3504. { 4125, 3000, },
  3505. { 4125, 3000, },
  3506. { 4250, 3125, },
  3507. { 4375, 3250, },
  3508. { 4500, 3375, },
  3509. { 4625, 3500, },
  3510. { 4750, 3625, },
  3511. { 4875, 3750, },
  3512. { 5000, 3875, },
  3513. { 5125, 4000, },
  3514. { 5250, 4125, },
  3515. { 5375, 4250, },
  3516. { 5500, 4375, },
  3517. { 5625, 4500, },
  3518. { 5750, 4625, },
  3519. { 5875, 4750, },
  3520. { 6000, 4875, },
  3521. { 6125, 5000, },
  3522. { 6250, 5125, },
  3523. { 6375, 5250, },
  3524. { 6500, 5375, },
  3525. { 6625, 5500, },
  3526. { 6750, 5625, },
  3527. { 6875, 5750, },
  3528. { 7000, 5875, },
  3529. { 7125, 6000, },
  3530. { 7250, 6125, },
  3531. { 7375, 6250, },
  3532. { 7500, 6375, },
  3533. { 7625, 6500, },
  3534. { 7750, 6625, },
  3535. { 7875, 6750, },
  3536. { 8000, 6875, },
  3537. { 8125, 7000, },
  3538. { 8250, 7125, },
  3539. { 8375, 7250, },
  3540. { 8500, 7375, },
  3541. { 8625, 7500, },
  3542. { 8750, 7625, },
  3543. { 8875, 7750, },
  3544. { 9000, 7875, },
  3545. { 9125, 8000, },
  3546. { 9250, 8125, },
  3547. { 9375, 8250, },
  3548. { 9500, 8375, },
  3549. { 9625, 8500, },
  3550. { 9750, 8625, },
  3551. { 9875, 8750, },
  3552. { 10000, 8875, },
  3553. { 10125, 9000, },
  3554. { 10250, 9125, },
  3555. { 10375, 9250, },
  3556. { 10500, 9375, },
  3557. { 10625, 9500, },
  3558. { 10750, 9625, },
  3559. { 10875, 9750, },
  3560. { 11000, 9875, },
  3561. { 11125, 10000, },
  3562. { 11250, 10125, },
  3563. { 11375, 10250, },
  3564. { 11500, 10375, },
  3565. { 11625, 10500, },
  3566. { 11750, 10625, },
  3567. { 11875, 10750, },
  3568. { 12000, 10875, },
  3569. { 12125, 11000, },
  3570. { 12250, 11125, },
  3571. { 12375, 11250, },
  3572. { 12500, 11375, },
  3573. { 12625, 11500, },
  3574. { 12750, 11625, },
  3575. { 12875, 11750, },
  3576. { 13000, 11875, },
  3577. { 13125, 12000, },
  3578. { 13250, 12125, },
  3579. { 13375, 12250, },
  3580. { 13500, 12375, },
  3581. { 13625, 12500, },
  3582. { 13750, 12625, },
  3583. { 13875, 12750, },
  3584. { 14000, 12875, },
  3585. { 14125, 13000, },
  3586. { 14250, 13125, },
  3587. { 14375, 13250, },
  3588. { 14500, 13375, },
  3589. { 14625, 13500, },
  3590. { 14750, 13625, },
  3591. { 14875, 13750, },
  3592. { 15000, 13875, },
  3593. { 15125, 14000, },
  3594. { 15250, 14125, },
  3595. { 15375, 14250, },
  3596. { 15500, 14375, },
  3597. { 15625, 14500, },
  3598. { 15750, 14625, },
  3599. { 15875, 14750, },
  3600. { 16000, 14875, },
  3601. { 16125, 15000, },
  3602. };
  3603. if (dev_priv->info->is_mobile)
  3604. return v_table[pxvid].vm;
  3605. else
  3606. return v_table[pxvid].vd;
  3607. }
  3608. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3609. {
  3610. struct timespec now, diff1;
  3611. u64 diff;
  3612. unsigned long diffms;
  3613. u32 count;
  3614. assert_spin_locked(&mchdev_lock);
  3615. getrawmonotonic(&now);
  3616. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3617. /* Don't divide by 0 */
  3618. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3619. if (!diffms)
  3620. return;
  3621. count = I915_READ(GFXEC);
  3622. if (count < dev_priv->ips.last_count2) {
  3623. diff = ~0UL - dev_priv->ips.last_count2;
  3624. diff += count;
  3625. } else {
  3626. diff = count - dev_priv->ips.last_count2;
  3627. }
  3628. dev_priv->ips.last_count2 = count;
  3629. dev_priv->ips.last_time2 = now;
  3630. /* More magic constants... */
  3631. diff = diff * 1181;
  3632. diff = div_u64(diff, diffms * 10);
  3633. dev_priv->ips.gfx_power = diff;
  3634. }
  3635. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3636. {
  3637. if (dev_priv->info->gen != 5)
  3638. return;
  3639. spin_lock_irq(&mchdev_lock);
  3640. __i915_update_gfx_val(dev_priv);
  3641. spin_unlock_irq(&mchdev_lock);
  3642. }
  3643. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3644. {
  3645. unsigned long t, corr, state1, corr2, state2;
  3646. u32 pxvid, ext_v;
  3647. assert_spin_locked(&mchdev_lock);
  3648. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3649. pxvid = (pxvid >> 24) & 0x7f;
  3650. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3651. state1 = ext_v;
  3652. t = i915_mch_val(dev_priv);
  3653. /* Revel in the empirically derived constants */
  3654. /* Correction factor in 1/100000 units */
  3655. if (t > 80)
  3656. corr = ((t * 2349) + 135940);
  3657. else if (t >= 50)
  3658. corr = ((t * 964) + 29317);
  3659. else /* < 50 */
  3660. corr = ((t * 301) + 1004);
  3661. corr = corr * ((150142 * state1) / 10000 - 78642);
  3662. corr /= 100000;
  3663. corr2 = (corr * dev_priv->ips.corr);
  3664. state2 = (corr2 * state1) / 10000;
  3665. state2 /= 100; /* convert to mW */
  3666. __i915_update_gfx_val(dev_priv);
  3667. return dev_priv->ips.gfx_power + state2;
  3668. }
  3669. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3670. {
  3671. unsigned long val;
  3672. if (dev_priv->info->gen != 5)
  3673. return 0;
  3674. spin_lock_irq(&mchdev_lock);
  3675. val = __i915_gfx_val(dev_priv);
  3676. spin_unlock_irq(&mchdev_lock);
  3677. return val;
  3678. }
  3679. /**
  3680. * i915_read_mch_val - return value for IPS use
  3681. *
  3682. * Calculate and return a value for the IPS driver to use when deciding whether
  3683. * we have thermal and power headroom to increase CPU or GPU power budget.
  3684. */
  3685. unsigned long i915_read_mch_val(void)
  3686. {
  3687. struct drm_i915_private *dev_priv;
  3688. unsigned long chipset_val, graphics_val, ret = 0;
  3689. spin_lock_irq(&mchdev_lock);
  3690. if (!i915_mch_dev)
  3691. goto out_unlock;
  3692. dev_priv = i915_mch_dev;
  3693. chipset_val = __i915_chipset_val(dev_priv);
  3694. graphics_val = __i915_gfx_val(dev_priv);
  3695. ret = chipset_val + graphics_val;
  3696. out_unlock:
  3697. spin_unlock_irq(&mchdev_lock);
  3698. return ret;
  3699. }
  3700. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3701. /**
  3702. * i915_gpu_raise - raise GPU frequency limit
  3703. *
  3704. * Raise the limit; IPS indicates we have thermal headroom.
  3705. */
  3706. bool i915_gpu_raise(void)
  3707. {
  3708. struct drm_i915_private *dev_priv;
  3709. bool ret = true;
  3710. spin_lock_irq(&mchdev_lock);
  3711. if (!i915_mch_dev) {
  3712. ret = false;
  3713. goto out_unlock;
  3714. }
  3715. dev_priv = i915_mch_dev;
  3716. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3717. dev_priv->ips.max_delay--;
  3718. out_unlock:
  3719. spin_unlock_irq(&mchdev_lock);
  3720. return ret;
  3721. }
  3722. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3723. /**
  3724. * i915_gpu_lower - lower GPU frequency limit
  3725. *
  3726. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3727. * frequency maximum.
  3728. */
  3729. bool i915_gpu_lower(void)
  3730. {
  3731. struct drm_i915_private *dev_priv;
  3732. bool ret = true;
  3733. spin_lock_irq(&mchdev_lock);
  3734. if (!i915_mch_dev) {
  3735. ret = false;
  3736. goto out_unlock;
  3737. }
  3738. dev_priv = i915_mch_dev;
  3739. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3740. dev_priv->ips.max_delay++;
  3741. out_unlock:
  3742. spin_unlock_irq(&mchdev_lock);
  3743. return ret;
  3744. }
  3745. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3746. /**
  3747. * i915_gpu_busy - indicate GPU business to IPS
  3748. *
  3749. * Tell the IPS driver whether or not the GPU is busy.
  3750. */
  3751. bool i915_gpu_busy(void)
  3752. {
  3753. struct drm_i915_private *dev_priv;
  3754. struct intel_ring_buffer *ring;
  3755. bool ret = false;
  3756. int i;
  3757. spin_lock_irq(&mchdev_lock);
  3758. if (!i915_mch_dev)
  3759. goto out_unlock;
  3760. dev_priv = i915_mch_dev;
  3761. for_each_ring(ring, dev_priv, i)
  3762. ret |= !list_empty(&ring->request_list);
  3763. out_unlock:
  3764. spin_unlock_irq(&mchdev_lock);
  3765. return ret;
  3766. }
  3767. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3768. /**
  3769. * i915_gpu_turbo_disable - disable graphics turbo
  3770. *
  3771. * Disable graphics turbo by resetting the max frequency and setting the
  3772. * current frequency to the default.
  3773. */
  3774. bool i915_gpu_turbo_disable(void)
  3775. {
  3776. struct drm_i915_private *dev_priv;
  3777. bool ret = true;
  3778. spin_lock_irq(&mchdev_lock);
  3779. if (!i915_mch_dev) {
  3780. ret = false;
  3781. goto out_unlock;
  3782. }
  3783. dev_priv = i915_mch_dev;
  3784. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3785. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3786. ret = false;
  3787. out_unlock:
  3788. spin_unlock_irq(&mchdev_lock);
  3789. return ret;
  3790. }
  3791. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3792. /**
  3793. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3794. * IPS got loaded first.
  3795. *
  3796. * This awkward dance is so that neither module has to depend on the
  3797. * other in order for IPS to do the appropriate communication of
  3798. * GPU turbo limits to i915.
  3799. */
  3800. static void
  3801. ips_ping_for_i915_load(void)
  3802. {
  3803. void (*link)(void);
  3804. link = symbol_get(ips_link_to_i915_driver);
  3805. if (link) {
  3806. link();
  3807. symbol_put(ips_link_to_i915_driver);
  3808. }
  3809. }
  3810. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3811. {
  3812. /* We only register the i915 ips part with intel-ips once everything is
  3813. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3814. spin_lock_irq(&mchdev_lock);
  3815. i915_mch_dev = dev_priv;
  3816. spin_unlock_irq(&mchdev_lock);
  3817. ips_ping_for_i915_load();
  3818. }
  3819. void intel_gpu_ips_teardown(void)
  3820. {
  3821. spin_lock_irq(&mchdev_lock);
  3822. i915_mch_dev = NULL;
  3823. spin_unlock_irq(&mchdev_lock);
  3824. }
  3825. static void intel_init_emon(struct drm_device *dev)
  3826. {
  3827. struct drm_i915_private *dev_priv = dev->dev_private;
  3828. u32 lcfuse;
  3829. u8 pxw[16];
  3830. int i;
  3831. /* Disable to program */
  3832. I915_WRITE(ECR, 0);
  3833. POSTING_READ(ECR);
  3834. /* Program energy weights for various events */
  3835. I915_WRITE(SDEW, 0x15040d00);
  3836. I915_WRITE(CSIEW0, 0x007f0000);
  3837. I915_WRITE(CSIEW1, 0x1e220004);
  3838. I915_WRITE(CSIEW2, 0x04000004);
  3839. for (i = 0; i < 5; i++)
  3840. I915_WRITE(PEW + (i * 4), 0);
  3841. for (i = 0; i < 3; i++)
  3842. I915_WRITE(DEW + (i * 4), 0);
  3843. /* Program P-state weights to account for frequency power adjustment */
  3844. for (i = 0; i < 16; i++) {
  3845. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3846. unsigned long freq = intel_pxfreq(pxvidfreq);
  3847. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3848. PXVFREQ_PX_SHIFT;
  3849. unsigned long val;
  3850. val = vid * vid;
  3851. val *= (freq / 1000);
  3852. val *= 255;
  3853. val /= (127*127*900);
  3854. if (val > 0xff)
  3855. DRM_ERROR("bad pxval: %ld\n", val);
  3856. pxw[i] = val;
  3857. }
  3858. /* Render standby states get 0 weight */
  3859. pxw[14] = 0;
  3860. pxw[15] = 0;
  3861. for (i = 0; i < 4; i++) {
  3862. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3863. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3864. I915_WRITE(PXW + (i * 4), val);
  3865. }
  3866. /* Adjust magic regs to magic values (more experimental results) */
  3867. I915_WRITE(OGW0, 0);
  3868. I915_WRITE(OGW1, 0);
  3869. I915_WRITE(EG0, 0x00007f00);
  3870. I915_WRITE(EG1, 0x0000000e);
  3871. I915_WRITE(EG2, 0x000e0000);
  3872. I915_WRITE(EG3, 0x68000300);
  3873. I915_WRITE(EG4, 0x42000000);
  3874. I915_WRITE(EG5, 0x00140031);
  3875. I915_WRITE(EG6, 0);
  3876. I915_WRITE(EG7, 0);
  3877. for (i = 0; i < 8; i++)
  3878. I915_WRITE(PXWL + (i * 4), 0);
  3879. /* Enable PMON + select events */
  3880. I915_WRITE(ECR, 0x80000019);
  3881. lcfuse = I915_READ(LCFUSE02);
  3882. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3883. }
  3884. void intel_disable_gt_powersave(struct drm_device *dev)
  3885. {
  3886. struct drm_i915_private *dev_priv = dev->dev_private;
  3887. /* Interrupts should be disabled already to avoid re-arming. */
  3888. WARN_ON(dev->irq_enabled);
  3889. if (IS_IRONLAKE_M(dev)) {
  3890. ironlake_disable_drps(dev);
  3891. ironlake_disable_rc6(dev);
  3892. } else if (INTEL_INFO(dev)->gen >= 6) {
  3893. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3894. cancel_work_sync(&dev_priv->rps.work);
  3895. if (IS_VALLEYVIEW(dev))
  3896. cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
  3897. mutex_lock(&dev_priv->rps.hw_lock);
  3898. if (IS_VALLEYVIEW(dev))
  3899. valleyview_disable_rps(dev);
  3900. else
  3901. gen6_disable_rps(dev);
  3902. mutex_unlock(&dev_priv->rps.hw_lock);
  3903. }
  3904. }
  3905. static void intel_gen6_powersave_work(struct work_struct *work)
  3906. {
  3907. struct drm_i915_private *dev_priv =
  3908. container_of(work, struct drm_i915_private,
  3909. rps.delayed_resume_work.work);
  3910. struct drm_device *dev = dev_priv->dev;
  3911. mutex_lock(&dev_priv->rps.hw_lock);
  3912. if (IS_VALLEYVIEW(dev)) {
  3913. valleyview_enable_rps(dev);
  3914. } else {
  3915. gen6_enable_rps(dev);
  3916. gen6_update_ring_freq(dev);
  3917. }
  3918. mutex_unlock(&dev_priv->rps.hw_lock);
  3919. }
  3920. void intel_enable_gt_powersave(struct drm_device *dev)
  3921. {
  3922. struct drm_i915_private *dev_priv = dev->dev_private;
  3923. if (IS_IRONLAKE_M(dev)) {
  3924. ironlake_enable_drps(dev);
  3925. ironlake_enable_rc6(dev);
  3926. intel_init_emon(dev);
  3927. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3928. /*
  3929. * PCU communication is slow and this doesn't need to be
  3930. * done at any specific time, so do this out of our fast path
  3931. * to make resume and init faster.
  3932. */
  3933. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3934. round_jiffies_up_relative(HZ));
  3935. }
  3936. }
  3937. static void ibx_init_clock_gating(struct drm_device *dev)
  3938. {
  3939. struct drm_i915_private *dev_priv = dev->dev_private;
  3940. /*
  3941. * On Ibex Peak and Cougar Point, we need to disable clock
  3942. * gating for the panel power sequencer or it will fail to
  3943. * start up when no ports are active.
  3944. */
  3945. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3946. }
  3947. static void g4x_disable_trickle_feed(struct drm_device *dev)
  3948. {
  3949. struct drm_i915_private *dev_priv = dev->dev_private;
  3950. int pipe;
  3951. for_each_pipe(pipe) {
  3952. I915_WRITE(DSPCNTR(pipe),
  3953. I915_READ(DSPCNTR(pipe)) |
  3954. DISPPLANE_TRICKLE_FEED_DISABLE);
  3955. intel_flush_display_plane(dev_priv, pipe);
  3956. }
  3957. }
  3958. static void ironlake_init_clock_gating(struct drm_device *dev)
  3959. {
  3960. struct drm_i915_private *dev_priv = dev->dev_private;
  3961. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3962. /*
  3963. * Required for FBC
  3964. * WaFbcDisableDpfcClockGating:ilk
  3965. */
  3966. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  3967. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  3968. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  3969. I915_WRITE(PCH_3DCGDIS0,
  3970. MARIUNIT_CLOCK_GATE_DISABLE |
  3971. SVSMUNIT_CLOCK_GATE_DISABLE);
  3972. I915_WRITE(PCH_3DCGDIS1,
  3973. VFMUNIT_CLOCK_GATE_DISABLE);
  3974. /*
  3975. * According to the spec the following bits should be set in
  3976. * order to enable memory self-refresh
  3977. * The bit 22/21 of 0x42004
  3978. * The bit 5 of 0x42020
  3979. * The bit 15 of 0x45000
  3980. */
  3981. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3982. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  3983. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  3984. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  3985. I915_WRITE(DISP_ARB_CTL,
  3986. (I915_READ(DISP_ARB_CTL) |
  3987. DISP_FBC_WM_DIS));
  3988. I915_WRITE(WM3_LP_ILK, 0);
  3989. I915_WRITE(WM2_LP_ILK, 0);
  3990. I915_WRITE(WM1_LP_ILK, 0);
  3991. /*
  3992. * Based on the document from hardware guys the following bits
  3993. * should be set unconditionally in order to enable FBC.
  3994. * The bit 22 of 0x42000
  3995. * The bit 22 of 0x42004
  3996. * The bit 7,8,9 of 0x42020.
  3997. */
  3998. if (IS_IRONLAKE_M(dev)) {
  3999. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4000. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4001. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4002. ILK_FBCQ_DIS);
  4003. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4004. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4005. ILK_DPARB_GATE);
  4006. }
  4007. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4008. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4009. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4010. ILK_ELPIN_409_SELECT);
  4011. I915_WRITE(_3D_CHICKEN2,
  4012. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4013. _3D_CHICKEN2_WM_READ_PIPELINED);
  4014. /* WaDisableRenderCachePipelinedFlush:ilk */
  4015. I915_WRITE(CACHE_MODE_0,
  4016. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4017. g4x_disable_trickle_feed(dev);
  4018. ibx_init_clock_gating(dev);
  4019. }
  4020. static void cpt_init_clock_gating(struct drm_device *dev)
  4021. {
  4022. struct drm_i915_private *dev_priv = dev->dev_private;
  4023. int pipe;
  4024. uint32_t val;
  4025. /*
  4026. * On Ibex Peak and Cougar Point, we need to disable clock
  4027. * gating for the panel power sequencer or it will fail to
  4028. * start up when no ports are active.
  4029. */
  4030. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4031. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4032. DPLS_EDP_PPS_FIX_DIS);
  4033. /* The below fixes the weird display corruption, a few pixels shifted
  4034. * downward, on (only) LVDS of some HP laptops with IVY.
  4035. */
  4036. for_each_pipe(pipe) {
  4037. val = I915_READ(TRANS_CHICKEN2(pipe));
  4038. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4039. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4040. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4041. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4042. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4043. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4044. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4045. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4046. }
  4047. /* WADP0ClockGatingDisable */
  4048. for_each_pipe(pipe) {
  4049. I915_WRITE(TRANS_CHICKEN1(pipe),
  4050. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4051. }
  4052. }
  4053. static void gen6_check_mch_setup(struct drm_device *dev)
  4054. {
  4055. struct drm_i915_private *dev_priv = dev->dev_private;
  4056. uint32_t tmp;
  4057. tmp = I915_READ(MCH_SSKPD);
  4058. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4059. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4060. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4061. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4062. }
  4063. }
  4064. static void gen6_init_clock_gating(struct drm_device *dev)
  4065. {
  4066. struct drm_i915_private *dev_priv = dev->dev_private;
  4067. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4068. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4069. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4070. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4071. ILK_ELPIN_409_SELECT);
  4072. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4073. I915_WRITE(_3D_CHICKEN,
  4074. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4075. /* WaSetupGtModeTdRowDispatch:snb */
  4076. if (IS_SNB_GT1(dev))
  4077. I915_WRITE(GEN6_GT_MODE,
  4078. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4079. I915_WRITE(WM3_LP_ILK, 0);
  4080. I915_WRITE(WM2_LP_ILK, 0);
  4081. I915_WRITE(WM1_LP_ILK, 0);
  4082. I915_WRITE(CACHE_MODE_0,
  4083. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4084. I915_WRITE(GEN6_UCGCTL1,
  4085. I915_READ(GEN6_UCGCTL1) |
  4086. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4087. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4088. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4089. * gating disable must be set. Failure to set it results in
  4090. * flickering pixels due to Z write ordering failures after
  4091. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4092. * Sanctuary and Tropics, and apparently anything else with
  4093. * alpha test or pixel discard.
  4094. *
  4095. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4096. * but we didn't debug actual testcases to find it out.
  4097. *
  4098. * Also apply WaDisableVDSUnitClockGating:snb and
  4099. * WaDisableRCPBUnitClockGating:snb.
  4100. */
  4101. I915_WRITE(GEN6_UCGCTL2,
  4102. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4103. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4104. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4105. /* Bspec says we need to always set all mask bits. */
  4106. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4107. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4108. /*
  4109. * According to the spec the following bits should be
  4110. * set in order to enable memory self-refresh and fbc:
  4111. * The bit21 and bit22 of 0x42000
  4112. * The bit21 and bit22 of 0x42004
  4113. * The bit5 and bit7 of 0x42020
  4114. * The bit14 of 0x70180
  4115. * The bit14 of 0x71180
  4116. *
  4117. * WaFbcAsynchFlipDisableFbcQueue:snb
  4118. */
  4119. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4120. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4121. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4122. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4123. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4124. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4125. I915_WRITE(ILK_DSPCLK_GATE_D,
  4126. I915_READ(ILK_DSPCLK_GATE_D) |
  4127. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4128. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4129. g4x_disable_trickle_feed(dev);
  4130. /* The default value should be 0x200 according to docs, but the two
  4131. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4132. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4133. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4134. cpt_init_clock_gating(dev);
  4135. gen6_check_mch_setup(dev);
  4136. }
  4137. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4138. {
  4139. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4140. reg &= ~GEN7_FF_SCHED_MASK;
  4141. reg |= GEN7_FF_TS_SCHED_HW;
  4142. reg |= GEN7_FF_VS_SCHED_HW;
  4143. reg |= GEN7_FF_DS_SCHED_HW;
  4144. if (IS_HASWELL(dev_priv->dev))
  4145. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4146. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4147. }
  4148. static void lpt_init_clock_gating(struct drm_device *dev)
  4149. {
  4150. struct drm_i915_private *dev_priv = dev->dev_private;
  4151. /*
  4152. * TODO: this bit should only be enabled when really needed, then
  4153. * disabled when not needed anymore in order to save power.
  4154. */
  4155. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4156. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4157. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4158. PCH_LP_PARTITION_LEVEL_DISABLE);
  4159. /* WADPOClockGatingDisable:hsw */
  4160. I915_WRITE(_TRANSA_CHICKEN1,
  4161. I915_READ(_TRANSA_CHICKEN1) |
  4162. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4163. }
  4164. static void lpt_suspend_hw(struct drm_device *dev)
  4165. {
  4166. struct drm_i915_private *dev_priv = dev->dev_private;
  4167. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4168. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4169. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4170. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4171. }
  4172. }
  4173. static void haswell_init_clock_gating(struct drm_device *dev)
  4174. {
  4175. struct drm_i915_private *dev_priv = dev->dev_private;
  4176. I915_WRITE(WM3_LP_ILK, 0);
  4177. I915_WRITE(WM2_LP_ILK, 0);
  4178. I915_WRITE(WM1_LP_ILK, 0);
  4179. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4180. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4181. */
  4182. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4183. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4184. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4185. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4186. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4187. I915_WRITE(GEN7_L3CNTLREG1,
  4188. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4189. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4190. GEN7_WA_L3_CHICKEN_MODE);
  4191. /* This is required by WaCatErrorRejectionIssue:hsw */
  4192. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4193. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4194. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4195. /* WaVSRefCountFullforceMissDisable:hsw */
  4196. gen7_setup_fixed_func_scheduler(dev_priv);
  4197. /* WaDisable4x2SubspanOptimization:hsw */
  4198. I915_WRITE(CACHE_MODE_1,
  4199. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4200. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4201. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4202. /* WaRsPkgCStateDisplayPMReq:hsw */
  4203. I915_WRITE(CHICKEN_PAR1_1,
  4204. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4205. lpt_init_clock_gating(dev);
  4206. }
  4207. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4208. {
  4209. struct drm_i915_private *dev_priv = dev->dev_private;
  4210. uint32_t snpcr;
  4211. I915_WRITE(WM3_LP_ILK, 0);
  4212. I915_WRITE(WM2_LP_ILK, 0);
  4213. I915_WRITE(WM1_LP_ILK, 0);
  4214. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4215. /* WaDisableEarlyCull:ivb */
  4216. I915_WRITE(_3D_CHICKEN3,
  4217. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4218. /* WaDisableBackToBackFlipFix:ivb */
  4219. I915_WRITE(IVB_CHICKEN3,
  4220. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4221. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4222. /* WaDisablePSDDualDispatchEnable:ivb */
  4223. if (IS_IVB_GT1(dev))
  4224. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4225. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4226. else
  4227. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4228. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4229. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4230. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4231. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4232. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4233. I915_WRITE(GEN7_L3CNTLREG1,
  4234. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4235. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4236. GEN7_WA_L3_CHICKEN_MODE);
  4237. if (IS_IVB_GT1(dev))
  4238. I915_WRITE(GEN7_ROW_CHICKEN2,
  4239. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4240. else
  4241. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4242. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4243. /* WaForceL3Serialization:ivb */
  4244. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4245. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4246. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4247. * gating disable must be set. Failure to set it results in
  4248. * flickering pixels due to Z write ordering failures after
  4249. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4250. * Sanctuary and Tropics, and apparently anything else with
  4251. * alpha test or pixel discard.
  4252. *
  4253. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4254. * but we didn't debug actual testcases to find it out.
  4255. *
  4256. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4257. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4258. */
  4259. I915_WRITE(GEN6_UCGCTL2,
  4260. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4261. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4262. /* This is required by WaCatErrorRejectionIssue:ivb */
  4263. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4264. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4265. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4266. g4x_disable_trickle_feed(dev);
  4267. /* WaVSRefCountFullforceMissDisable:ivb */
  4268. gen7_setup_fixed_func_scheduler(dev_priv);
  4269. /* WaDisable4x2SubspanOptimization:ivb */
  4270. I915_WRITE(CACHE_MODE_1,
  4271. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4272. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4273. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4274. snpcr |= GEN6_MBC_SNPCR_MED;
  4275. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4276. if (!HAS_PCH_NOP(dev))
  4277. cpt_init_clock_gating(dev);
  4278. gen6_check_mch_setup(dev);
  4279. }
  4280. static void valleyview_init_clock_gating(struct drm_device *dev)
  4281. {
  4282. struct drm_i915_private *dev_priv = dev->dev_private;
  4283. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4284. /* WaDisableEarlyCull:vlv */
  4285. I915_WRITE(_3D_CHICKEN3,
  4286. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4287. /* WaDisableBackToBackFlipFix:vlv */
  4288. I915_WRITE(IVB_CHICKEN3,
  4289. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4290. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4291. /* WaDisablePSDDualDispatchEnable:vlv */
  4292. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4293. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4294. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4295. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4296. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4297. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4298. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4299. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4300. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4301. /* WaForceL3Serialization:vlv */
  4302. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4303. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4304. /* WaDisableDopClockGating:vlv */
  4305. I915_WRITE(GEN7_ROW_CHICKEN2,
  4306. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4307. /* This is required by WaCatErrorRejectionIssue:vlv */
  4308. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4309. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4310. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4311. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4312. * gating disable must be set. Failure to set it results in
  4313. * flickering pixels due to Z write ordering failures after
  4314. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4315. * Sanctuary and Tropics, and apparently anything else with
  4316. * alpha test or pixel discard.
  4317. *
  4318. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4319. * but we didn't debug actual testcases to find it out.
  4320. *
  4321. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4322. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4323. *
  4324. * Also apply WaDisableVDSUnitClockGating:vlv and
  4325. * WaDisableRCPBUnitClockGating:vlv.
  4326. */
  4327. I915_WRITE(GEN6_UCGCTL2,
  4328. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4329. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4330. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4331. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4332. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4333. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4334. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4335. I915_WRITE(CACHE_MODE_1,
  4336. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4337. /*
  4338. * WaDisableVLVClockGating_VBIIssue:vlv
  4339. * Disable clock gating on th GCFG unit to prevent a delay
  4340. * in the reporting of vblank events.
  4341. */
  4342. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4343. /* Conservative clock gating settings for now */
  4344. I915_WRITE(0x9400, 0xffffffff);
  4345. I915_WRITE(0x9404, 0xffffffff);
  4346. I915_WRITE(0x9408, 0xffffffff);
  4347. I915_WRITE(0x940c, 0xffffffff);
  4348. I915_WRITE(0x9410, 0xffffffff);
  4349. I915_WRITE(0x9414, 0xffffffff);
  4350. I915_WRITE(0x9418, 0xffffffff);
  4351. }
  4352. static void g4x_init_clock_gating(struct drm_device *dev)
  4353. {
  4354. struct drm_i915_private *dev_priv = dev->dev_private;
  4355. uint32_t dspclk_gate;
  4356. I915_WRITE(RENCLK_GATE_D1, 0);
  4357. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4358. GS_UNIT_CLOCK_GATE_DISABLE |
  4359. CL_UNIT_CLOCK_GATE_DISABLE);
  4360. I915_WRITE(RAMCLK_GATE_D, 0);
  4361. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4362. OVRUNIT_CLOCK_GATE_DISABLE |
  4363. OVCUNIT_CLOCK_GATE_DISABLE;
  4364. if (IS_GM45(dev))
  4365. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4366. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4367. /* WaDisableRenderCachePipelinedFlush */
  4368. I915_WRITE(CACHE_MODE_0,
  4369. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4370. g4x_disable_trickle_feed(dev);
  4371. }
  4372. static void crestline_init_clock_gating(struct drm_device *dev)
  4373. {
  4374. struct drm_i915_private *dev_priv = dev->dev_private;
  4375. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4376. I915_WRITE(RENCLK_GATE_D2, 0);
  4377. I915_WRITE(DSPCLK_GATE_D, 0);
  4378. I915_WRITE(RAMCLK_GATE_D, 0);
  4379. I915_WRITE16(DEUC, 0);
  4380. I915_WRITE(MI_ARB_STATE,
  4381. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4382. }
  4383. static void broadwater_init_clock_gating(struct drm_device *dev)
  4384. {
  4385. struct drm_i915_private *dev_priv = dev->dev_private;
  4386. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4387. I965_RCC_CLOCK_GATE_DISABLE |
  4388. I965_RCPB_CLOCK_GATE_DISABLE |
  4389. I965_ISC_CLOCK_GATE_DISABLE |
  4390. I965_FBC_CLOCK_GATE_DISABLE);
  4391. I915_WRITE(RENCLK_GATE_D2, 0);
  4392. I915_WRITE(MI_ARB_STATE,
  4393. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4394. }
  4395. static void gen3_init_clock_gating(struct drm_device *dev)
  4396. {
  4397. struct drm_i915_private *dev_priv = dev->dev_private;
  4398. u32 dstate = I915_READ(D_STATE);
  4399. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4400. DSTATE_DOT_CLOCK_GATING;
  4401. I915_WRITE(D_STATE, dstate);
  4402. if (IS_PINEVIEW(dev))
  4403. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4404. /* IIR "flip pending" means done if this bit is set */
  4405. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4406. }
  4407. static void i85x_init_clock_gating(struct drm_device *dev)
  4408. {
  4409. struct drm_i915_private *dev_priv = dev->dev_private;
  4410. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4411. }
  4412. static void i830_init_clock_gating(struct drm_device *dev)
  4413. {
  4414. struct drm_i915_private *dev_priv = dev->dev_private;
  4415. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4416. }
  4417. void intel_init_clock_gating(struct drm_device *dev)
  4418. {
  4419. struct drm_i915_private *dev_priv = dev->dev_private;
  4420. dev_priv->display.init_clock_gating(dev);
  4421. }
  4422. void intel_suspend_hw(struct drm_device *dev)
  4423. {
  4424. if (HAS_PCH_LPT(dev))
  4425. lpt_suspend_hw(dev);
  4426. }
  4427. /**
  4428. * We should only use the power well if we explicitly asked the hardware to
  4429. * enable it, so check if it's enabled and also check if we've requested it to
  4430. * be enabled.
  4431. */
  4432. bool intel_display_power_enabled(struct drm_device *dev,
  4433. enum intel_display_power_domain domain)
  4434. {
  4435. struct drm_i915_private *dev_priv = dev->dev_private;
  4436. if (!HAS_POWER_WELL(dev))
  4437. return true;
  4438. switch (domain) {
  4439. case POWER_DOMAIN_PIPE_A:
  4440. case POWER_DOMAIN_TRANSCODER_EDP:
  4441. return true;
  4442. case POWER_DOMAIN_PIPE_B:
  4443. case POWER_DOMAIN_PIPE_C:
  4444. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4445. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4446. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4447. case POWER_DOMAIN_TRANSCODER_A:
  4448. case POWER_DOMAIN_TRANSCODER_B:
  4449. case POWER_DOMAIN_TRANSCODER_C:
  4450. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4451. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4452. default:
  4453. BUG();
  4454. }
  4455. }
  4456. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4457. {
  4458. struct drm_i915_private *dev_priv = dev->dev_private;
  4459. bool is_enabled, enable_requested;
  4460. uint32_t tmp;
  4461. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4462. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4463. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4464. if (enable) {
  4465. if (!enable_requested)
  4466. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4467. HSW_PWR_WELL_ENABLE_REQUEST);
  4468. if (!is_enabled) {
  4469. DRM_DEBUG_KMS("Enabling power well\n");
  4470. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4471. HSW_PWR_WELL_STATE_ENABLED), 20))
  4472. DRM_ERROR("Timeout enabling power well\n");
  4473. }
  4474. } else {
  4475. if (enable_requested) {
  4476. unsigned long irqflags;
  4477. enum pipe p;
  4478. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4479. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4480. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4481. /*
  4482. * After this, the registers on the pipes that are part
  4483. * of the power well will become zero, so we have to
  4484. * adjust our counters according to that.
  4485. *
  4486. * FIXME: Should we do this in general in
  4487. * drm_vblank_post_modeset?
  4488. */
  4489. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4490. for_each_pipe(p)
  4491. if (p != PIPE_A)
  4492. dev->last_vblank[p] = 0;
  4493. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4494. }
  4495. }
  4496. }
  4497. static struct i915_power_well *hsw_pwr;
  4498. /* Display audio driver power well request */
  4499. void i915_request_power_well(void)
  4500. {
  4501. if (WARN_ON(!hsw_pwr))
  4502. return;
  4503. spin_lock_irq(&hsw_pwr->lock);
  4504. if (!hsw_pwr->count++ &&
  4505. !hsw_pwr->i915_request)
  4506. __intel_set_power_well(hsw_pwr->device, true);
  4507. spin_unlock_irq(&hsw_pwr->lock);
  4508. }
  4509. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4510. /* Display audio driver power well release */
  4511. void i915_release_power_well(void)
  4512. {
  4513. if (WARN_ON(!hsw_pwr))
  4514. return;
  4515. spin_lock_irq(&hsw_pwr->lock);
  4516. WARN_ON(!hsw_pwr->count);
  4517. if (!--hsw_pwr->count &&
  4518. !hsw_pwr->i915_request)
  4519. __intel_set_power_well(hsw_pwr->device, false);
  4520. spin_unlock_irq(&hsw_pwr->lock);
  4521. }
  4522. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4523. int i915_init_power_well(struct drm_device *dev)
  4524. {
  4525. struct drm_i915_private *dev_priv = dev->dev_private;
  4526. hsw_pwr = &dev_priv->power_well;
  4527. hsw_pwr->device = dev;
  4528. spin_lock_init(&hsw_pwr->lock);
  4529. hsw_pwr->count = 0;
  4530. return 0;
  4531. }
  4532. void i915_remove_power_well(struct drm_device *dev)
  4533. {
  4534. hsw_pwr = NULL;
  4535. }
  4536. void intel_set_power_well(struct drm_device *dev, bool enable)
  4537. {
  4538. struct drm_i915_private *dev_priv = dev->dev_private;
  4539. struct i915_power_well *power_well = &dev_priv->power_well;
  4540. if (!HAS_POWER_WELL(dev))
  4541. return;
  4542. if (!i915_disable_power_well && !enable)
  4543. return;
  4544. spin_lock_irq(&power_well->lock);
  4545. power_well->i915_request = enable;
  4546. /* only reject "disable" power well request */
  4547. if (power_well->count && !enable) {
  4548. spin_unlock_irq(&power_well->lock);
  4549. return;
  4550. }
  4551. __intel_set_power_well(dev, enable);
  4552. spin_unlock_irq(&power_well->lock);
  4553. }
  4554. /*
  4555. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4556. * when not needed anymore. We have 4 registers that can request the power well
  4557. * to be enabled, and it will only be disabled if none of the registers is
  4558. * requesting it to be enabled.
  4559. */
  4560. void intel_init_power_well(struct drm_device *dev)
  4561. {
  4562. struct drm_i915_private *dev_priv = dev->dev_private;
  4563. if (!HAS_POWER_WELL(dev))
  4564. return;
  4565. /* For now, we need the power well to be always enabled. */
  4566. intel_set_power_well(dev, true);
  4567. /* We're taking over the BIOS, so clear any requests made by it since
  4568. * the driver is in charge now. */
  4569. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4570. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4571. }
  4572. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4573. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4574. {
  4575. hsw_disable_package_c8(dev_priv);
  4576. }
  4577. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4578. {
  4579. hsw_enable_package_c8(dev_priv);
  4580. }
  4581. /* Set up chip specific power management-related functions */
  4582. void intel_init_pm(struct drm_device *dev)
  4583. {
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. if (I915_HAS_FBC(dev)) {
  4586. if (HAS_PCH_SPLIT(dev)) {
  4587. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4588. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4589. dev_priv->display.enable_fbc =
  4590. gen7_enable_fbc;
  4591. else
  4592. dev_priv->display.enable_fbc =
  4593. ironlake_enable_fbc;
  4594. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4595. } else if (IS_GM45(dev)) {
  4596. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4597. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4598. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4599. } else if (IS_CRESTLINE(dev)) {
  4600. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4601. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4602. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4603. }
  4604. /* 855GM needs testing */
  4605. }
  4606. /* For cxsr */
  4607. if (IS_PINEVIEW(dev))
  4608. i915_pineview_get_mem_freq(dev);
  4609. else if (IS_GEN5(dev))
  4610. i915_ironlake_get_mem_freq(dev);
  4611. /* For FIFO watermark updates */
  4612. if (HAS_PCH_SPLIT(dev)) {
  4613. intel_setup_wm_latency(dev);
  4614. if (IS_GEN5(dev)) {
  4615. if (dev_priv->wm.pri_latency[1] &&
  4616. dev_priv->wm.spr_latency[1] &&
  4617. dev_priv->wm.cur_latency[1])
  4618. dev_priv->display.update_wm = ironlake_update_wm;
  4619. else {
  4620. DRM_DEBUG_KMS("Failed to get proper latency. "
  4621. "Disable CxSR\n");
  4622. dev_priv->display.update_wm = NULL;
  4623. }
  4624. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4625. } else if (IS_GEN6(dev)) {
  4626. if (dev_priv->wm.pri_latency[0] &&
  4627. dev_priv->wm.spr_latency[0] &&
  4628. dev_priv->wm.cur_latency[0]) {
  4629. dev_priv->display.update_wm = sandybridge_update_wm;
  4630. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4631. } else {
  4632. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4633. "Disable CxSR\n");
  4634. dev_priv->display.update_wm = NULL;
  4635. }
  4636. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4637. } else if (IS_IVYBRIDGE(dev)) {
  4638. if (dev_priv->wm.pri_latency[0] &&
  4639. dev_priv->wm.spr_latency[0] &&
  4640. dev_priv->wm.cur_latency[0]) {
  4641. dev_priv->display.update_wm = ivybridge_update_wm;
  4642. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4643. } else {
  4644. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4645. "Disable CxSR\n");
  4646. dev_priv->display.update_wm = NULL;
  4647. }
  4648. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4649. } else if (IS_HASWELL(dev)) {
  4650. if (dev_priv->wm.pri_latency[0] &&
  4651. dev_priv->wm.spr_latency[0] &&
  4652. dev_priv->wm.cur_latency[0]) {
  4653. dev_priv->display.update_wm = haswell_update_wm;
  4654. dev_priv->display.update_sprite_wm =
  4655. haswell_update_sprite_wm;
  4656. } else {
  4657. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4658. "Disable CxSR\n");
  4659. dev_priv->display.update_wm = NULL;
  4660. }
  4661. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4662. } else
  4663. dev_priv->display.update_wm = NULL;
  4664. } else if (IS_VALLEYVIEW(dev)) {
  4665. dev_priv->display.update_wm = valleyview_update_wm;
  4666. dev_priv->display.init_clock_gating =
  4667. valleyview_init_clock_gating;
  4668. } else if (IS_PINEVIEW(dev)) {
  4669. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4670. dev_priv->is_ddr3,
  4671. dev_priv->fsb_freq,
  4672. dev_priv->mem_freq)) {
  4673. DRM_INFO("failed to find known CxSR latency "
  4674. "(found ddr%s fsb freq %d, mem freq %d), "
  4675. "disabling CxSR\n",
  4676. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4677. dev_priv->fsb_freq, dev_priv->mem_freq);
  4678. /* Disable CxSR and never update its watermark again */
  4679. pineview_disable_cxsr(dev);
  4680. dev_priv->display.update_wm = NULL;
  4681. } else
  4682. dev_priv->display.update_wm = pineview_update_wm;
  4683. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4684. } else if (IS_G4X(dev)) {
  4685. dev_priv->display.update_wm = g4x_update_wm;
  4686. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4687. } else if (IS_GEN4(dev)) {
  4688. dev_priv->display.update_wm = i965_update_wm;
  4689. if (IS_CRESTLINE(dev))
  4690. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4691. else if (IS_BROADWATER(dev))
  4692. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4693. } else if (IS_GEN3(dev)) {
  4694. dev_priv->display.update_wm = i9xx_update_wm;
  4695. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4696. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4697. } else if (IS_I865G(dev)) {
  4698. dev_priv->display.update_wm = i830_update_wm;
  4699. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4700. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4701. } else if (IS_I85X(dev)) {
  4702. dev_priv->display.update_wm = i9xx_update_wm;
  4703. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4704. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4705. } else {
  4706. dev_priv->display.update_wm = i830_update_wm;
  4707. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4708. if (IS_845G(dev))
  4709. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4710. else
  4711. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4712. }
  4713. }
  4714. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4715. {
  4716. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4717. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4718. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4719. return -EAGAIN;
  4720. }
  4721. I915_WRITE(GEN6_PCODE_DATA, *val);
  4722. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4723. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4724. 500)) {
  4725. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4726. return -ETIMEDOUT;
  4727. }
  4728. *val = I915_READ(GEN6_PCODE_DATA);
  4729. I915_WRITE(GEN6_PCODE_DATA, 0);
  4730. return 0;
  4731. }
  4732. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4733. {
  4734. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4735. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4736. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4737. return -EAGAIN;
  4738. }
  4739. I915_WRITE(GEN6_PCODE_DATA, val);
  4740. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4741. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4742. 500)) {
  4743. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4744. return -ETIMEDOUT;
  4745. }
  4746. I915_WRITE(GEN6_PCODE_DATA, 0);
  4747. return 0;
  4748. }
  4749. int vlv_gpu_freq(int ddr_freq, int val)
  4750. {
  4751. int mult, base;
  4752. switch (ddr_freq) {
  4753. case 800:
  4754. mult = 20;
  4755. base = 120;
  4756. break;
  4757. case 1066:
  4758. mult = 22;
  4759. base = 133;
  4760. break;
  4761. case 1333:
  4762. mult = 21;
  4763. base = 125;
  4764. break;
  4765. default:
  4766. return -1;
  4767. }
  4768. return ((val - 0xbd) * mult) + base;
  4769. }
  4770. int vlv_freq_opcode(int ddr_freq, int val)
  4771. {
  4772. int mult, base;
  4773. switch (ddr_freq) {
  4774. case 800:
  4775. mult = 20;
  4776. base = 120;
  4777. break;
  4778. case 1066:
  4779. mult = 22;
  4780. base = 133;
  4781. break;
  4782. case 1333:
  4783. mult = 21;
  4784. base = 125;
  4785. break;
  4786. default:
  4787. return -1;
  4788. }
  4789. val /= mult;
  4790. val -= base / mult;
  4791. val += 0xbd;
  4792. if (val > 0xea)
  4793. val = 0xea;
  4794. return val;
  4795. }
  4796. void intel_pm_init(struct drm_device *dev)
  4797. {
  4798. struct drm_i915_private *dev_priv = dev->dev_private;
  4799. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4800. intel_gen6_powersave_work);
  4801. }