ieee80211_sta.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <net/iw_handler.h>
  27. #include <asm/types.h>
  28. #include <net/mac80211.h>
  29. #include "ieee80211_i.h"
  30. #include "ieee80211_rate.h"
  31. #include "ieee80211_led.h"
  32. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  33. #define IEEE80211_AUTH_MAX_TRIES 3
  34. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  35. #define IEEE80211_ASSOC_MAX_TRIES 3
  36. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  37. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  38. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  39. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  40. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  41. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  42. #define IEEE80211_PROBE_DELAY (HZ / 33)
  43. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  44. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  45. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  46. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  47. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  48. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  49. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  50. #define ERP_INFO_USE_PROTECTION BIT(1)
  51. /* mgmt header + 1 byte action code */
  52. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  53. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  54. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  55. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  56. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  57. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  58. /* next values represent the buffer size for A-MPDU frame.
  59. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  60. #define IEEE80211_MIN_AMPDU_BUF 0x8
  61. #define IEEE80211_MAX_AMPDU_BUF 0x40
  62. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  63. u8 *ssid, size_t ssid_len);
  64. static struct ieee80211_sta_bss *
  65. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  66. u8 *ssid, u8 ssid_len);
  67. static void ieee80211_rx_bss_put(struct net_device *dev,
  68. struct ieee80211_sta_bss *bss);
  69. static int ieee80211_sta_find_ibss(struct net_device *dev,
  70. struct ieee80211_if_sta *ifsta);
  71. static int ieee80211_sta_wep_configured(struct net_device *dev);
  72. static int ieee80211_sta_start_scan(struct net_device *dev,
  73. u8 *ssid, size_t ssid_len);
  74. static int ieee80211_sta_config_auth(struct net_device *dev,
  75. struct ieee80211_if_sta *ifsta);
  76. /* Parsed Information Elements */
  77. struct ieee802_11_elems {
  78. /* pointers to IEs */
  79. u8 *ssid;
  80. u8 *supp_rates;
  81. u8 *fh_params;
  82. u8 *ds_params;
  83. u8 *cf_params;
  84. u8 *tim;
  85. u8 *ibss_params;
  86. u8 *challenge;
  87. u8 *wpa;
  88. u8 *rsn;
  89. u8 *erp_info;
  90. u8 *ext_supp_rates;
  91. u8 *wmm_info;
  92. u8 *wmm_param;
  93. u8 *ht_cap_elem;
  94. u8 *ht_info_elem;
  95. /* length of them, respectively */
  96. u8 ssid_len;
  97. u8 supp_rates_len;
  98. u8 fh_params_len;
  99. u8 ds_params_len;
  100. u8 cf_params_len;
  101. u8 tim_len;
  102. u8 ibss_params_len;
  103. u8 challenge_len;
  104. u8 wpa_len;
  105. u8 rsn_len;
  106. u8 erp_info_len;
  107. u8 ext_supp_rates_len;
  108. u8 wmm_info_len;
  109. u8 wmm_param_len;
  110. u8 ht_cap_elem_len;
  111. u8 ht_info_elem_len;
  112. };
  113. static void ieee802_11_parse_elems(u8 *start, size_t len,
  114. struct ieee802_11_elems *elems)
  115. {
  116. size_t left = len;
  117. u8 *pos = start;
  118. memset(elems, 0, sizeof(*elems));
  119. while (left >= 2) {
  120. u8 id, elen;
  121. id = *pos++;
  122. elen = *pos++;
  123. left -= 2;
  124. if (elen > left)
  125. return;
  126. switch (id) {
  127. case WLAN_EID_SSID:
  128. elems->ssid = pos;
  129. elems->ssid_len = elen;
  130. break;
  131. case WLAN_EID_SUPP_RATES:
  132. elems->supp_rates = pos;
  133. elems->supp_rates_len = elen;
  134. break;
  135. case WLAN_EID_FH_PARAMS:
  136. elems->fh_params = pos;
  137. elems->fh_params_len = elen;
  138. break;
  139. case WLAN_EID_DS_PARAMS:
  140. elems->ds_params = pos;
  141. elems->ds_params_len = elen;
  142. break;
  143. case WLAN_EID_CF_PARAMS:
  144. elems->cf_params = pos;
  145. elems->cf_params_len = elen;
  146. break;
  147. case WLAN_EID_TIM:
  148. elems->tim = pos;
  149. elems->tim_len = elen;
  150. break;
  151. case WLAN_EID_IBSS_PARAMS:
  152. elems->ibss_params = pos;
  153. elems->ibss_params_len = elen;
  154. break;
  155. case WLAN_EID_CHALLENGE:
  156. elems->challenge = pos;
  157. elems->challenge_len = elen;
  158. break;
  159. case WLAN_EID_WPA:
  160. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  161. pos[2] == 0xf2) {
  162. /* Microsoft OUI (00:50:F2) */
  163. if (pos[3] == 1) {
  164. /* OUI Type 1 - WPA IE */
  165. elems->wpa = pos;
  166. elems->wpa_len = elen;
  167. } else if (elen >= 5 && pos[3] == 2) {
  168. if (pos[4] == 0) {
  169. elems->wmm_info = pos;
  170. elems->wmm_info_len = elen;
  171. } else if (pos[4] == 1) {
  172. elems->wmm_param = pos;
  173. elems->wmm_param_len = elen;
  174. }
  175. }
  176. }
  177. break;
  178. case WLAN_EID_RSN:
  179. elems->rsn = pos;
  180. elems->rsn_len = elen;
  181. break;
  182. case WLAN_EID_ERP_INFO:
  183. elems->erp_info = pos;
  184. elems->erp_info_len = elen;
  185. break;
  186. case WLAN_EID_EXT_SUPP_RATES:
  187. elems->ext_supp_rates = pos;
  188. elems->ext_supp_rates_len = elen;
  189. break;
  190. case WLAN_EID_HT_CAPABILITY:
  191. elems->ht_cap_elem = pos;
  192. elems->ht_cap_elem_len = elen;
  193. break;
  194. case WLAN_EID_HT_EXTRA_INFO:
  195. elems->ht_info_elem = pos;
  196. elems->ht_info_elem_len = elen;
  197. break;
  198. default:
  199. break;
  200. }
  201. left -= elen;
  202. pos += elen;
  203. }
  204. }
  205. static int ecw2cw(int ecw)
  206. {
  207. int cw = 1;
  208. while (ecw > 0) {
  209. cw <<= 1;
  210. ecw--;
  211. }
  212. return cw - 1;
  213. }
  214. static void ieee80211_sta_wmm_params(struct net_device *dev,
  215. struct ieee80211_if_sta *ifsta,
  216. u8 *wmm_param, size_t wmm_param_len)
  217. {
  218. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  219. struct ieee80211_tx_queue_params params;
  220. size_t left;
  221. int count;
  222. u8 *pos;
  223. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  224. return;
  225. count = wmm_param[6] & 0x0f;
  226. if (count == ifsta->wmm_last_param_set)
  227. return;
  228. ifsta->wmm_last_param_set = count;
  229. pos = wmm_param + 8;
  230. left = wmm_param_len - 8;
  231. memset(&params, 0, sizeof(params));
  232. if (!local->ops->conf_tx)
  233. return;
  234. local->wmm_acm = 0;
  235. for (; left >= 4; left -= 4, pos += 4) {
  236. int aci = (pos[0] >> 5) & 0x03;
  237. int acm = (pos[0] >> 4) & 0x01;
  238. int queue;
  239. switch (aci) {
  240. case 1:
  241. queue = IEEE80211_TX_QUEUE_DATA3;
  242. if (acm) {
  243. local->wmm_acm |= BIT(0) | BIT(3);
  244. }
  245. break;
  246. case 2:
  247. queue = IEEE80211_TX_QUEUE_DATA1;
  248. if (acm) {
  249. local->wmm_acm |= BIT(4) | BIT(5);
  250. }
  251. break;
  252. case 3:
  253. queue = IEEE80211_TX_QUEUE_DATA0;
  254. if (acm) {
  255. local->wmm_acm |= BIT(6) | BIT(7);
  256. }
  257. break;
  258. case 0:
  259. default:
  260. queue = IEEE80211_TX_QUEUE_DATA2;
  261. if (acm) {
  262. local->wmm_acm |= BIT(1) | BIT(2);
  263. }
  264. break;
  265. }
  266. params.aifs = pos[0] & 0x0f;
  267. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  268. params.cw_min = ecw2cw(pos[1] & 0x0f);
  269. /* TXOP is in units of 32 usec; burst_time in 0.1 ms */
  270. params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100;
  271. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  272. "cWmin=%d cWmax=%d burst=%d\n",
  273. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  274. params.cw_max, params.burst_time);
  275. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  276. * AC for now) */
  277. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  278. printk(KERN_DEBUG "%s: failed to set TX queue "
  279. "parameters for queue %d\n", dev->name, queue);
  280. }
  281. }
  282. }
  283. static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
  284. bool use_protection,
  285. bool use_short_preamble)
  286. {
  287. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  288. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  289. DECLARE_MAC_BUF(mac);
  290. u32 changed = 0;
  291. if (use_protection != bss_conf->use_cts_prot) {
  292. if (net_ratelimit()) {
  293. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  294. "%s)\n",
  295. sdata->dev->name,
  296. use_protection ? "enabled" : "disabled",
  297. print_mac(mac, ifsta->bssid));
  298. }
  299. bss_conf->use_cts_prot = use_protection;
  300. changed |= BSS_CHANGED_ERP_CTS_PROT;
  301. }
  302. if (use_short_preamble != bss_conf->use_short_preamble) {
  303. if (net_ratelimit()) {
  304. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  305. " (BSSID=%s)\n",
  306. sdata->dev->name,
  307. use_short_preamble ? "short" : "long",
  308. print_mac(mac, ifsta->bssid));
  309. }
  310. bss_conf->use_short_preamble = use_short_preamble;
  311. changed |= BSS_CHANGED_ERP_PREAMBLE;
  312. }
  313. return changed;
  314. }
  315. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  316. u8 erp_value)
  317. {
  318. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  319. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  320. return ieee80211_handle_protect_preamb(sdata,
  321. use_protection, use_short_preamble);
  322. }
  323. static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
  324. struct ieee80211_sta_bss *bss)
  325. {
  326. u32 changed = 0;
  327. if (bss->has_erp_value)
  328. changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
  329. else {
  330. u16 capab = bss->capability;
  331. changed |= ieee80211_handle_protect_preamb(sdata, false,
  332. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  333. }
  334. return changed;
  335. }
  336. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  337. struct ieee80211_ht_info *ht_info)
  338. {
  339. if (ht_info == NULL)
  340. return -EINVAL;
  341. memset(ht_info, 0, sizeof(*ht_info));
  342. if (ht_cap_ie) {
  343. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  344. ht_info->ht_supported = 1;
  345. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  346. ht_info->ampdu_factor =
  347. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  348. ht_info->ampdu_density =
  349. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  350. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  351. } else
  352. ht_info->ht_supported = 0;
  353. return 0;
  354. }
  355. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  356. struct ieee80211_ht_addt_info *ht_add_info_ie,
  357. struct ieee80211_ht_bss_info *bss_info)
  358. {
  359. if (bss_info == NULL)
  360. return -EINVAL;
  361. memset(bss_info, 0, sizeof(*bss_info));
  362. if (ht_add_info_ie) {
  363. u16 op_mode;
  364. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  365. bss_info->primary_channel = ht_add_info_ie->control_chan;
  366. bss_info->bss_cap = ht_add_info_ie->ht_param;
  367. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  368. }
  369. return 0;
  370. }
  371. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  372. struct ieee80211_if_sta *ifsta)
  373. {
  374. char *buf;
  375. size_t len;
  376. int i;
  377. union iwreq_data wrqu;
  378. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  379. return;
  380. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  381. ifsta->assocresp_ies_len), GFP_KERNEL);
  382. if (!buf)
  383. return;
  384. len = sprintf(buf, "ASSOCINFO(");
  385. if (ifsta->assocreq_ies) {
  386. len += sprintf(buf + len, "ReqIEs=");
  387. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  388. len += sprintf(buf + len, "%02x",
  389. ifsta->assocreq_ies[i]);
  390. }
  391. }
  392. if (ifsta->assocresp_ies) {
  393. if (ifsta->assocreq_ies)
  394. len += sprintf(buf + len, " ");
  395. len += sprintf(buf + len, "RespIEs=");
  396. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  397. len += sprintf(buf + len, "%02x",
  398. ifsta->assocresp_ies[i]);
  399. }
  400. }
  401. len += sprintf(buf + len, ")");
  402. if (len > IW_CUSTOM_MAX) {
  403. len = sprintf(buf, "ASSOCRESPIE=");
  404. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  405. len += sprintf(buf + len, "%02x",
  406. ifsta->assocresp_ies[i]);
  407. }
  408. }
  409. memset(&wrqu, 0, sizeof(wrqu));
  410. wrqu.data.length = len;
  411. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  412. kfree(buf);
  413. }
  414. static void ieee80211_set_associated(struct net_device *dev,
  415. struct ieee80211_if_sta *ifsta,
  416. bool assoc)
  417. {
  418. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  419. struct ieee80211_local *local = sdata->local;
  420. union iwreq_data wrqu;
  421. u32 changed = BSS_CHANGED_ASSOC;
  422. if (assoc) {
  423. struct ieee80211_sta_bss *bss;
  424. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  425. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  426. return;
  427. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  428. local->hw.conf.channel,
  429. ifsta->ssid, ifsta->ssid_len);
  430. if (bss) {
  431. changed |= ieee80211_handle_bss_capability(sdata, bss);
  432. ieee80211_rx_bss_put(dev, bss);
  433. }
  434. netif_carrier_on(dev);
  435. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  436. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  437. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  438. ieee80211_sta_send_associnfo(dev, ifsta);
  439. } else {
  440. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  441. netif_carrier_off(dev);
  442. ieee80211_reset_erp_info(dev);
  443. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  444. }
  445. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  446. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  447. ifsta->last_probe = jiffies;
  448. ieee80211_led_assoc(local, assoc);
  449. ieee80211_bss_info_change_notify(sdata, changed);
  450. }
  451. static void ieee80211_set_disassoc(struct net_device *dev,
  452. struct ieee80211_if_sta *ifsta, int deauth)
  453. {
  454. if (deauth)
  455. ifsta->auth_tries = 0;
  456. ifsta->assoc_tries = 0;
  457. ieee80211_set_associated(dev, ifsta, 0);
  458. }
  459. static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  460. int encrypt)
  461. {
  462. struct ieee80211_sub_if_data *sdata;
  463. struct ieee80211_tx_packet_data *pkt_data;
  464. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  465. skb->dev = sdata->local->mdev;
  466. skb_set_mac_header(skb, 0);
  467. skb_set_network_header(skb, 0);
  468. skb_set_transport_header(skb, 0);
  469. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  470. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  471. pkt_data->ifindex = sdata->dev->ifindex;
  472. if (!encrypt)
  473. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  474. dev_queue_xmit(skb);
  475. }
  476. static void ieee80211_send_auth(struct net_device *dev,
  477. struct ieee80211_if_sta *ifsta,
  478. int transaction, u8 *extra, size_t extra_len,
  479. int encrypt)
  480. {
  481. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  482. struct sk_buff *skb;
  483. struct ieee80211_mgmt *mgmt;
  484. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  485. sizeof(*mgmt) + 6 + extra_len);
  486. if (!skb) {
  487. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  488. "frame\n", dev->name);
  489. return;
  490. }
  491. skb_reserve(skb, local->hw.extra_tx_headroom);
  492. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  493. memset(mgmt, 0, 24 + 6);
  494. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  495. IEEE80211_STYPE_AUTH);
  496. if (encrypt)
  497. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  498. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  499. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  500. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  501. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  502. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  503. ifsta->auth_transaction = transaction + 1;
  504. mgmt->u.auth.status_code = cpu_to_le16(0);
  505. if (extra)
  506. memcpy(skb_put(skb, extra_len), extra, extra_len);
  507. ieee80211_sta_tx(dev, skb, encrypt);
  508. }
  509. static void ieee80211_authenticate(struct net_device *dev,
  510. struct ieee80211_if_sta *ifsta)
  511. {
  512. DECLARE_MAC_BUF(mac);
  513. ifsta->auth_tries++;
  514. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  515. printk(KERN_DEBUG "%s: authentication with AP %s"
  516. " timed out\n",
  517. dev->name, print_mac(mac, ifsta->bssid));
  518. ifsta->state = IEEE80211_DISABLED;
  519. return;
  520. }
  521. ifsta->state = IEEE80211_AUTHENTICATE;
  522. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  523. dev->name, print_mac(mac, ifsta->bssid));
  524. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  525. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  526. }
  527. static void ieee80211_send_assoc(struct net_device *dev,
  528. struct ieee80211_if_sta *ifsta)
  529. {
  530. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  531. struct ieee80211_hw_mode *mode;
  532. struct sk_buff *skb;
  533. struct ieee80211_mgmt *mgmt;
  534. u8 *pos, *ies;
  535. int i, len;
  536. u16 capab;
  537. struct ieee80211_sta_bss *bss;
  538. int wmm = 0;
  539. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  540. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  541. ifsta->ssid_len);
  542. if (!skb) {
  543. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  544. "frame\n", dev->name);
  545. return;
  546. }
  547. skb_reserve(skb, local->hw.extra_tx_headroom);
  548. mode = local->oper_hw_mode;
  549. capab = ifsta->capab;
  550. if (mode->mode == MODE_IEEE80211G) {
  551. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME |
  552. WLAN_CAPABILITY_SHORT_PREAMBLE;
  553. }
  554. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  555. ifsta->ssid, ifsta->ssid_len);
  556. if (bss) {
  557. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  558. capab |= WLAN_CAPABILITY_PRIVACY;
  559. if (bss->wmm_ie) {
  560. wmm = 1;
  561. }
  562. ieee80211_rx_bss_put(dev, bss);
  563. }
  564. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  565. memset(mgmt, 0, 24);
  566. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  567. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  568. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  569. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  570. skb_put(skb, 10);
  571. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  572. IEEE80211_STYPE_REASSOC_REQ);
  573. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  574. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  575. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  576. ETH_ALEN);
  577. } else {
  578. skb_put(skb, 4);
  579. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  580. IEEE80211_STYPE_ASSOC_REQ);
  581. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  582. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  583. }
  584. /* SSID */
  585. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  586. *pos++ = WLAN_EID_SSID;
  587. *pos++ = ifsta->ssid_len;
  588. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  589. len = mode->num_rates;
  590. if (len > 8)
  591. len = 8;
  592. pos = skb_put(skb, len + 2);
  593. *pos++ = WLAN_EID_SUPP_RATES;
  594. *pos++ = len;
  595. for (i = 0; i < len; i++) {
  596. int rate = mode->rates[i].rate;
  597. *pos++ = (u8) (rate / 5);
  598. }
  599. if (mode->num_rates > len) {
  600. pos = skb_put(skb, mode->num_rates - len + 2);
  601. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  602. *pos++ = mode->num_rates - len;
  603. for (i = len; i < mode->num_rates; i++) {
  604. int rate = mode->rates[i].rate;
  605. *pos++ = (u8) (rate / 5);
  606. }
  607. }
  608. if (ifsta->extra_ie) {
  609. pos = skb_put(skb, ifsta->extra_ie_len);
  610. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  611. }
  612. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  613. pos = skb_put(skb, 9);
  614. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  615. *pos++ = 7; /* len */
  616. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  617. *pos++ = 0x50;
  618. *pos++ = 0xf2;
  619. *pos++ = 2; /* WME */
  620. *pos++ = 0; /* WME info */
  621. *pos++ = 1; /* WME ver */
  622. *pos++ = 0;
  623. }
  624. /* wmm support is a must to HT */
  625. if (wmm && mode->ht_info.ht_supported) {
  626. __le16 tmp = cpu_to_le16(mode->ht_info.cap);
  627. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  628. *pos++ = WLAN_EID_HT_CAPABILITY;
  629. *pos++ = sizeof(struct ieee80211_ht_cap);
  630. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  631. memcpy(pos, &tmp, sizeof(u16));
  632. pos += sizeof(u16);
  633. *pos++ = (mode->ht_info.ampdu_factor |
  634. (mode->ht_info.ampdu_density << 2));
  635. memcpy(pos, mode->ht_info.supp_mcs_set, 16);
  636. }
  637. kfree(ifsta->assocreq_ies);
  638. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  639. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  640. if (ifsta->assocreq_ies)
  641. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  642. ieee80211_sta_tx(dev, skb, 0);
  643. }
  644. static void ieee80211_send_deauth(struct net_device *dev,
  645. struct ieee80211_if_sta *ifsta, u16 reason)
  646. {
  647. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  648. struct sk_buff *skb;
  649. struct ieee80211_mgmt *mgmt;
  650. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  651. if (!skb) {
  652. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  653. "frame\n", dev->name);
  654. return;
  655. }
  656. skb_reserve(skb, local->hw.extra_tx_headroom);
  657. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  658. memset(mgmt, 0, 24);
  659. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  660. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  661. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  662. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  663. IEEE80211_STYPE_DEAUTH);
  664. skb_put(skb, 2);
  665. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  666. ieee80211_sta_tx(dev, skb, 0);
  667. }
  668. static void ieee80211_send_disassoc(struct net_device *dev,
  669. struct ieee80211_if_sta *ifsta, u16 reason)
  670. {
  671. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  672. struct sk_buff *skb;
  673. struct ieee80211_mgmt *mgmt;
  674. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  675. if (!skb) {
  676. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  677. "frame\n", dev->name);
  678. return;
  679. }
  680. skb_reserve(skb, local->hw.extra_tx_headroom);
  681. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  682. memset(mgmt, 0, 24);
  683. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  684. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  685. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  686. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  687. IEEE80211_STYPE_DISASSOC);
  688. skb_put(skb, 2);
  689. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  690. ieee80211_sta_tx(dev, skb, 0);
  691. }
  692. static int ieee80211_privacy_mismatch(struct net_device *dev,
  693. struct ieee80211_if_sta *ifsta)
  694. {
  695. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  696. struct ieee80211_sta_bss *bss;
  697. int bss_privacy;
  698. int wep_privacy;
  699. int privacy_invoked;
  700. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  701. return 0;
  702. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  703. ifsta->ssid, ifsta->ssid_len);
  704. if (!bss)
  705. return 0;
  706. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  707. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  708. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  709. ieee80211_rx_bss_put(dev, bss);
  710. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  711. return 0;
  712. return 1;
  713. }
  714. static void ieee80211_associate(struct net_device *dev,
  715. struct ieee80211_if_sta *ifsta)
  716. {
  717. DECLARE_MAC_BUF(mac);
  718. ifsta->assoc_tries++;
  719. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  720. printk(KERN_DEBUG "%s: association with AP %s"
  721. " timed out\n",
  722. dev->name, print_mac(mac, ifsta->bssid));
  723. ifsta->state = IEEE80211_DISABLED;
  724. return;
  725. }
  726. ifsta->state = IEEE80211_ASSOCIATE;
  727. printk(KERN_DEBUG "%s: associate with AP %s\n",
  728. dev->name, print_mac(mac, ifsta->bssid));
  729. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  730. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  731. "mixed-cell disabled - abort association\n", dev->name);
  732. ifsta->state = IEEE80211_DISABLED;
  733. return;
  734. }
  735. ieee80211_send_assoc(dev, ifsta);
  736. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  737. }
  738. static void ieee80211_associated(struct net_device *dev,
  739. struct ieee80211_if_sta *ifsta)
  740. {
  741. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  742. struct sta_info *sta;
  743. int disassoc;
  744. DECLARE_MAC_BUF(mac);
  745. /* TODO: start monitoring current AP signal quality and number of
  746. * missed beacons. Scan other channels every now and then and search
  747. * for better APs. */
  748. /* TODO: remove expired BSSes */
  749. ifsta->state = IEEE80211_ASSOCIATED;
  750. sta = sta_info_get(local, ifsta->bssid);
  751. if (!sta) {
  752. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  753. dev->name, print_mac(mac, ifsta->bssid));
  754. disassoc = 1;
  755. } else {
  756. disassoc = 0;
  757. if (time_after(jiffies,
  758. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  759. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  760. printk(KERN_DEBUG "%s: No ProbeResp from "
  761. "current AP %s - assume out of "
  762. "range\n",
  763. dev->name, print_mac(mac, ifsta->bssid));
  764. disassoc = 1;
  765. sta_info_free(sta);
  766. } else
  767. ieee80211_send_probe_req(dev, ifsta->bssid,
  768. local->scan_ssid,
  769. local->scan_ssid_len);
  770. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  771. } else {
  772. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  773. if (time_after(jiffies, ifsta->last_probe +
  774. IEEE80211_PROBE_INTERVAL)) {
  775. ifsta->last_probe = jiffies;
  776. ieee80211_send_probe_req(dev, ifsta->bssid,
  777. ifsta->ssid,
  778. ifsta->ssid_len);
  779. }
  780. }
  781. sta_info_put(sta);
  782. }
  783. if (disassoc) {
  784. ifsta->state = IEEE80211_DISABLED;
  785. ieee80211_set_associated(dev, ifsta, 0);
  786. } else {
  787. mod_timer(&ifsta->timer, jiffies +
  788. IEEE80211_MONITORING_INTERVAL);
  789. }
  790. }
  791. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  792. u8 *ssid, size_t ssid_len)
  793. {
  794. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  795. struct ieee80211_hw_mode *mode;
  796. struct sk_buff *skb;
  797. struct ieee80211_mgmt *mgmt;
  798. u8 *pos, *supp_rates, *esupp_rates = NULL;
  799. int i;
  800. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  801. if (!skb) {
  802. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  803. "request\n", dev->name);
  804. return;
  805. }
  806. skb_reserve(skb, local->hw.extra_tx_headroom);
  807. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  808. memset(mgmt, 0, 24);
  809. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  810. IEEE80211_STYPE_PROBE_REQ);
  811. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  812. if (dst) {
  813. memcpy(mgmt->da, dst, ETH_ALEN);
  814. memcpy(mgmt->bssid, dst, ETH_ALEN);
  815. } else {
  816. memset(mgmt->da, 0xff, ETH_ALEN);
  817. memset(mgmt->bssid, 0xff, ETH_ALEN);
  818. }
  819. pos = skb_put(skb, 2 + ssid_len);
  820. *pos++ = WLAN_EID_SSID;
  821. *pos++ = ssid_len;
  822. memcpy(pos, ssid, ssid_len);
  823. supp_rates = skb_put(skb, 2);
  824. supp_rates[0] = WLAN_EID_SUPP_RATES;
  825. supp_rates[1] = 0;
  826. mode = local->oper_hw_mode;
  827. for (i = 0; i < mode->num_rates; i++) {
  828. struct ieee80211_rate *rate = &mode->rates[i];
  829. if (!(rate->flags & IEEE80211_RATE_SUPPORTED))
  830. continue;
  831. if (esupp_rates) {
  832. pos = skb_put(skb, 1);
  833. esupp_rates[1]++;
  834. } else if (supp_rates[1] == 8) {
  835. esupp_rates = skb_put(skb, 3);
  836. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  837. esupp_rates[1] = 1;
  838. pos = &esupp_rates[2];
  839. } else {
  840. pos = skb_put(skb, 1);
  841. supp_rates[1]++;
  842. }
  843. *pos = rate->rate / 5;
  844. }
  845. ieee80211_sta_tx(dev, skb, 0);
  846. }
  847. static int ieee80211_sta_wep_configured(struct net_device *dev)
  848. {
  849. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  850. if (!sdata || !sdata->default_key ||
  851. sdata->default_key->conf.alg != ALG_WEP)
  852. return 0;
  853. return 1;
  854. }
  855. static void ieee80211_auth_completed(struct net_device *dev,
  856. struct ieee80211_if_sta *ifsta)
  857. {
  858. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  859. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  860. ieee80211_associate(dev, ifsta);
  861. }
  862. static void ieee80211_auth_challenge(struct net_device *dev,
  863. struct ieee80211_if_sta *ifsta,
  864. struct ieee80211_mgmt *mgmt,
  865. size_t len)
  866. {
  867. u8 *pos;
  868. struct ieee802_11_elems elems;
  869. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  870. pos = mgmt->u.auth.variable;
  871. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  872. if (!elems.challenge) {
  873. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  874. "frame\n", dev->name);
  875. return;
  876. }
  877. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  878. elems.challenge_len + 2, 1);
  879. }
  880. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  881. u8 dialog_token, u16 status, u16 policy,
  882. u16 buf_size, u16 timeout)
  883. {
  884. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  885. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  886. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  887. struct sk_buff *skb;
  888. struct ieee80211_mgmt *mgmt;
  889. u16 capab;
  890. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  891. sizeof(mgmt->u.action.u.addba_resp));
  892. if (!skb) {
  893. printk(KERN_DEBUG "%s: failed to allocate buffer "
  894. "for addba resp frame\n", dev->name);
  895. return;
  896. }
  897. skb_reserve(skb, local->hw.extra_tx_headroom);
  898. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  899. memset(mgmt, 0, 24);
  900. memcpy(mgmt->da, da, ETH_ALEN);
  901. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  902. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  903. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  904. else
  905. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  906. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  907. IEEE80211_STYPE_ACTION);
  908. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  909. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  910. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  911. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  912. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  913. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  914. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  915. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  916. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  917. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  918. ieee80211_sta_tx(dev, skb, 0);
  919. return;
  920. }
  921. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  922. struct ieee80211_mgmt *mgmt,
  923. size_t len)
  924. {
  925. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  926. struct ieee80211_hw *hw = &local->hw;
  927. struct ieee80211_conf *conf = &hw->conf;
  928. struct sta_info *sta;
  929. struct tid_ampdu_rx *tid_agg_rx;
  930. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  931. u8 dialog_token;
  932. int ret = -EOPNOTSUPP;
  933. DECLARE_MAC_BUF(mac);
  934. sta = sta_info_get(local, mgmt->sa);
  935. if (!sta)
  936. return;
  937. /* extract session parameters from addba request frame */
  938. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  939. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  940. start_seq_num =
  941. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  942. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  943. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  944. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  945. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  946. status = WLAN_STATUS_REQUEST_DECLINED;
  947. /* sanity check for incoming parameters:
  948. * check if configuration can support the BA policy
  949. * and if buffer size does not exceeds max value */
  950. if (((ba_policy != 1)
  951. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  952. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  953. status = WLAN_STATUS_INVALID_QOS_PARAM;
  954. #ifdef CONFIG_MAC80211_HT_DEBUG
  955. if (net_ratelimit())
  956. printk(KERN_DEBUG "Block Ack Req with bad params from "
  957. "%s on tid %u. policy %d, buffer size %d\n",
  958. print_mac(mac, mgmt->sa), tid, ba_policy,
  959. buf_size);
  960. #endif /* CONFIG_MAC80211_HT_DEBUG */
  961. goto end_no_lock;
  962. }
  963. /* determine default buffer size */
  964. if (buf_size == 0) {
  965. struct ieee80211_hw_mode *mode = conf->mode;
  966. buf_size = IEEE80211_MIN_AMPDU_BUF;
  967. buf_size = buf_size << mode->ht_info.ampdu_factor;
  968. }
  969. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  970. /* examine state machine */
  971. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  972. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  973. #ifdef CONFIG_MAC80211_HT_DEBUG
  974. if (net_ratelimit())
  975. printk(KERN_DEBUG "unexpected Block Ack Req from "
  976. "%s on tid %u\n",
  977. print_mac(mac, mgmt->sa), tid);
  978. #endif /* CONFIG_MAC80211_HT_DEBUG */
  979. goto end;
  980. }
  981. /* prepare reordering buffer */
  982. tid_agg_rx->reorder_buf =
  983. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  984. if (!tid_agg_rx->reorder_buf) {
  985. if (net_ratelimit())
  986. printk(KERN_ERR "can not allocate reordering buffer "
  987. "to tid %d\n", tid);
  988. goto end;
  989. }
  990. memset(tid_agg_rx->reorder_buf, 0,
  991. buf_size * sizeof(struct sk_buf *));
  992. if (local->ops->ampdu_action)
  993. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  994. sta->addr, tid, start_seq_num);
  995. #ifdef CONFIG_MAC80211_HT_DEBUG
  996. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  997. #endif /* CONFIG_MAC80211_HT_DEBUG */
  998. if (ret) {
  999. kfree(tid_agg_rx->reorder_buf);
  1000. goto end;
  1001. }
  1002. /* change state and send addba resp */
  1003. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  1004. tid_agg_rx->dialog_token = dialog_token;
  1005. tid_agg_rx->ssn = start_seq_num;
  1006. tid_agg_rx->head_seq_num = start_seq_num;
  1007. tid_agg_rx->buf_size = buf_size;
  1008. tid_agg_rx->timeout = timeout;
  1009. tid_agg_rx->stored_mpdu_num = 0;
  1010. status = WLAN_STATUS_SUCCESS;
  1011. end:
  1012. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1013. end_no_lock:
  1014. ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token,
  1015. status, 1, buf_size, timeout);
  1016. sta_info_put(sta);
  1017. }
  1018. static void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1019. u16 initiator, u16 reason_code)
  1020. {
  1021. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1022. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1023. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1024. struct sk_buff *skb;
  1025. struct ieee80211_mgmt *mgmt;
  1026. u16 params;
  1027. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1028. sizeof(mgmt->u.action.u.delba));
  1029. if (!skb) {
  1030. printk(KERN_ERR "%s: failed to allocate buffer "
  1031. "for delba frame\n", dev->name);
  1032. return;
  1033. }
  1034. skb_reserve(skb, local->hw.extra_tx_headroom);
  1035. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1036. memset(mgmt, 0, 24);
  1037. memcpy(mgmt->da, da, ETH_ALEN);
  1038. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1039. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1040. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1041. else
  1042. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1043. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1044. IEEE80211_STYPE_ACTION);
  1045. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1046. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1047. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1048. params = (u16)(initiator << 11); /* bit 11 initiator */
  1049. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1050. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1051. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1052. ieee80211_sta_tx(dev, skb, 0);
  1053. }
  1054. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1055. u16 initiator, u16 reason)
  1056. {
  1057. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1058. struct ieee80211_hw *hw = &local->hw;
  1059. struct sta_info *sta;
  1060. int ret, i;
  1061. sta = sta_info_get(local, ra);
  1062. if (!sta)
  1063. return;
  1064. /* check if TID is in operational state */
  1065. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1066. if (sta->ampdu_mlme.tid_rx[tid].state
  1067. != HT_AGG_STATE_OPERATIONAL) {
  1068. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1069. sta_info_put(sta);
  1070. return;
  1071. }
  1072. sta->ampdu_mlme.tid_rx[tid].state =
  1073. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1074. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1075. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1076. /* stop HW Rx aggregation. ampdu_action existence
  1077. * already verified in session init so we add the BUG_ON */
  1078. BUG_ON(!local->ops->ampdu_action);
  1079. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1080. ra, tid, EINVAL);
  1081. if (ret)
  1082. printk(KERN_DEBUG "HW problem - can not stop rx "
  1083. "aggergation for tid %d\n", tid);
  1084. /* shutdown timer has not expired */
  1085. if (initiator != WLAN_BACK_TIMER)
  1086. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1087. session_timer);
  1088. /* check if this is a self generated aggregation halt */
  1089. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1090. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1091. /* free the reordering buffer */
  1092. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1093. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1094. /* release the reordered frames */
  1095. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1096. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1097. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1098. }
  1099. }
  1100. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1101. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1102. sta_info_put(sta);
  1103. }
  1104. static void ieee80211_sta_process_delba(struct net_device *dev,
  1105. struct ieee80211_mgmt *mgmt, size_t len)
  1106. {
  1107. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1108. struct sta_info *sta;
  1109. u16 tid, params;
  1110. u16 initiator;
  1111. DECLARE_MAC_BUF(mac);
  1112. sta = sta_info_get(local, mgmt->sa);
  1113. if (!sta)
  1114. return;
  1115. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1116. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1117. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1118. #ifdef CONFIG_MAC80211_HT_DEBUG
  1119. if (net_ratelimit())
  1120. printk(KERN_DEBUG "delba from %s on tid %d reason code %d\n",
  1121. print_mac(mac, mgmt->sa), tid,
  1122. mgmt->u.action.u.delba.reason_code);
  1123. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1124. if (initiator == WLAN_BACK_INITIATOR)
  1125. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1126. WLAN_BACK_INITIATOR, 0);
  1127. sta_info_put(sta);
  1128. }
  1129. /*
  1130. * After receiving Block Ack Request (BAR) we activated a
  1131. * timer after each frame arrives from the originator.
  1132. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1133. */
  1134. void sta_rx_agg_session_timer_expired(unsigned long data)
  1135. {
  1136. /* not an elegant detour, but there is no choice as the timer passes
  1137. * only one argument, and verious sta_info are needed here, so init
  1138. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1139. * array gives the sta through container_of */
  1140. u8 *ptid = (u8 *)data;
  1141. u8 *timer_to_id = ptid - *ptid;
  1142. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1143. timer_to_tid[0]);
  1144. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1145. ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid,
  1146. WLAN_BACK_TIMER,
  1147. WLAN_REASON_QSTA_TIMEOUT);
  1148. }
  1149. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1150. struct ieee80211_if_sta *ifsta,
  1151. struct ieee80211_mgmt *mgmt,
  1152. size_t len)
  1153. {
  1154. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1155. u16 auth_alg, auth_transaction, status_code;
  1156. DECLARE_MAC_BUF(mac);
  1157. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1158. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1159. printk(KERN_DEBUG "%s: authentication frame received from "
  1160. "%s, but not in authenticate state - ignored\n",
  1161. dev->name, print_mac(mac, mgmt->sa));
  1162. return;
  1163. }
  1164. if (len < 24 + 6) {
  1165. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1166. "received from %s - ignored\n",
  1167. dev->name, len, print_mac(mac, mgmt->sa));
  1168. return;
  1169. }
  1170. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1171. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1172. printk(KERN_DEBUG "%s: authentication frame received from "
  1173. "unknown AP (SA=%s BSSID=%s) - "
  1174. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1175. print_mac(mac, mgmt->bssid));
  1176. return;
  1177. }
  1178. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1179. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1180. printk(KERN_DEBUG "%s: authentication frame received from "
  1181. "unknown BSSID (SA=%s BSSID=%s) - "
  1182. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1183. print_mac(mac, mgmt->bssid));
  1184. return;
  1185. }
  1186. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1187. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1188. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1189. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1190. "transaction=%d status=%d)\n",
  1191. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1192. auth_transaction, status_code);
  1193. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1194. /* IEEE 802.11 standard does not require authentication in IBSS
  1195. * networks and most implementations do not seem to use it.
  1196. * However, try to reply to authentication attempts if someone
  1197. * has actually implemented this.
  1198. * TODO: Could implement shared key authentication. */
  1199. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1200. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1201. "frame (alg=%d transaction=%d)\n",
  1202. dev->name, auth_alg, auth_transaction);
  1203. return;
  1204. }
  1205. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1206. }
  1207. if (auth_alg != ifsta->auth_alg ||
  1208. auth_transaction != ifsta->auth_transaction) {
  1209. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1210. "(alg=%d transaction=%d)\n",
  1211. dev->name, auth_alg, auth_transaction);
  1212. return;
  1213. }
  1214. if (status_code != WLAN_STATUS_SUCCESS) {
  1215. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1216. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1217. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1218. u8 algs[3];
  1219. const int num_algs = ARRAY_SIZE(algs);
  1220. int i, pos;
  1221. algs[0] = algs[1] = algs[2] = 0xff;
  1222. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1223. algs[0] = WLAN_AUTH_OPEN;
  1224. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1225. algs[1] = WLAN_AUTH_SHARED_KEY;
  1226. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1227. algs[2] = WLAN_AUTH_LEAP;
  1228. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1229. pos = 0;
  1230. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1231. pos = 1;
  1232. else
  1233. pos = 2;
  1234. for (i = 0; i < num_algs; i++) {
  1235. pos++;
  1236. if (pos >= num_algs)
  1237. pos = 0;
  1238. if (algs[pos] == ifsta->auth_alg ||
  1239. algs[pos] == 0xff)
  1240. continue;
  1241. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1242. !ieee80211_sta_wep_configured(dev))
  1243. continue;
  1244. ifsta->auth_alg = algs[pos];
  1245. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1246. "next try\n",
  1247. dev->name, ifsta->auth_alg);
  1248. break;
  1249. }
  1250. }
  1251. return;
  1252. }
  1253. switch (ifsta->auth_alg) {
  1254. case WLAN_AUTH_OPEN:
  1255. case WLAN_AUTH_LEAP:
  1256. ieee80211_auth_completed(dev, ifsta);
  1257. break;
  1258. case WLAN_AUTH_SHARED_KEY:
  1259. if (ifsta->auth_transaction == 4)
  1260. ieee80211_auth_completed(dev, ifsta);
  1261. else
  1262. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1263. break;
  1264. }
  1265. }
  1266. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1267. struct ieee80211_if_sta *ifsta,
  1268. struct ieee80211_mgmt *mgmt,
  1269. size_t len)
  1270. {
  1271. u16 reason_code;
  1272. DECLARE_MAC_BUF(mac);
  1273. if (len < 24 + 2) {
  1274. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1275. "received from %s - ignored\n",
  1276. dev->name, len, print_mac(mac, mgmt->sa));
  1277. return;
  1278. }
  1279. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1280. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1281. "unknown AP (SA=%s BSSID=%s) - "
  1282. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1283. print_mac(mac, mgmt->bssid));
  1284. return;
  1285. }
  1286. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1287. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1288. " (reason=%d)\n",
  1289. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1290. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1291. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1292. }
  1293. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1294. ifsta->state == IEEE80211_ASSOCIATE ||
  1295. ifsta->state == IEEE80211_ASSOCIATED) {
  1296. ifsta->state = IEEE80211_AUTHENTICATE;
  1297. mod_timer(&ifsta->timer, jiffies +
  1298. IEEE80211_RETRY_AUTH_INTERVAL);
  1299. }
  1300. ieee80211_set_disassoc(dev, ifsta, 1);
  1301. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1302. }
  1303. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1304. struct ieee80211_if_sta *ifsta,
  1305. struct ieee80211_mgmt *mgmt,
  1306. size_t len)
  1307. {
  1308. u16 reason_code;
  1309. DECLARE_MAC_BUF(mac);
  1310. if (len < 24 + 2) {
  1311. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1312. "received from %s - ignored\n",
  1313. dev->name, len, print_mac(mac, mgmt->sa));
  1314. return;
  1315. }
  1316. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1317. printk(KERN_DEBUG "%s: disassociation frame received from "
  1318. "unknown AP (SA=%s BSSID=%s) - "
  1319. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1320. print_mac(mac, mgmt->bssid));
  1321. return;
  1322. }
  1323. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1324. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1325. " (reason=%d)\n",
  1326. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1327. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1328. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1329. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1330. ifsta->state = IEEE80211_ASSOCIATE;
  1331. mod_timer(&ifsta->timer, jiffies +
  1332. IEEE80211_RETRY_AUTH_INTERVAL);
  1333. }
  1334. ieee80211_set_disassoc(dev, ifsta, 0);
  1335. }
  1336. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1337. struct ieee80211_if_sta *ifsta,
  1338. struct ieee80211_mgmt *mgmt,
  1339. size_t len,
  1340. int reassoc)
  1341. {
  1342. struct ieee80211_local *local = sdata->local;
  1343. struct net_device *dev = sdata->dev;
  1344. struct ieee80211_hw_mode *mode;
  1345. struct sta_info *sta;
  1346. u32 rates;
  1347. u16 capab_info, status_code, aid;
  1348. struct ieee802_11_elems elems;
  1349. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1350. u8 *pos;
  1351. int i, j;
  1352. DECLARE_MAC_BUF(mac);
  1353. /* AssocResp and ReassocResp have identical structure, so process both
  1354. * of them in this function. */
  1355. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1356. printk(KERN_DEBUG "%s: association frame received from "
  1357. "%s, but not in associate state - ignored\n",
  1358. dev->name, print_mac(mac, mgmt->sa));
  1359. return;
  1360. }
  1361. if (len < 24 + 6) {
  1362. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1363. "received from %s - ignored\n",
  1364. dev->name, len, print_mac(mac, mgmt->sa));
  1365. return;
  1366. }
  1367. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1368. printk(KERN_DEBUG "%s: association frame received from "
  1369. "unknown AP (SA=%s BSSID=%s) - "
  1370. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1371. print_mac(mac, mgmt->bssid));
  1372. return;
  1373. }
  1374. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1375. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1376. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1377. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1378. "status=%d aid=%d)\n",
  1379. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1380. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1381. if (status_code != WLAN_STATUS_SUCCESS) {
  1382. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1383. dev->name, status_code);
  1384. /* if this was a reassociation, ensure we try a "full"
  1385. * association next time. This works around some broken APs
  1386. * which do not correctly reject reassociation requests. */
  1387. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1388. return;
  1389. }
  1390. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1391. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1392. "set\n", dev->name, aid);
  1393. aid &= ~(BIT(15) | BIT(14));
  1394. pos = mgmt->u.assoc_resp.variable;
  1395. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1396. if (!elems.supp_rates) {
  1397. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1398. dev->name);
  1399. return;
  1400. }
  1401. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1402. ifsta->aid = aid;
  1403. ifsta->ap_capab = capab_info;
  1404. kfree(ifsta->assocresp_ies);
  1405. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1406. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1407. if (ifsta->assocresp_ies)
  1408. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1409. /* set AID, ieee80211_set_associated() will tell the driver */
  1410. bss_conf->aid = aid;
  1411. ieee80211_set_associated(dev, ifsta, 1);
  1412. /* Add STA entry for the AP */
  1413. sta = sta_info_get(local, ifsta->bssid);
  1414. if (!sta) {
  1415. struct ieee80211_sta_bss *bss;
  1416. sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
  1417. if (!sta) {
  1418. printk(KERN_DEBUG "%s: failed to add STA entry for the"
  1419. " AP\n", dev->name);
  1420. return;
  1421. }
  1422. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1423. local->hw.conf.channel,
  1424. ifsta->ssid, ifsta->ssid_len);
  1425. if (bss) {
  1426. sta->last_rssi = bss->rssi;
  1427. sta->last_signal = bss->signal;
  1428. sta->last_noise = bss->noise;
  1429. ieee80211_rx_bss_put(dev, bss);
  1430. }
  1431. }
  1432. sta->dev = dev;
  1433. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP;
  1434. rates = 0;
  1435. mode = local->oper_hw_mode;
  1436. for (i = 0; i < elems.supp_rates_len; i++) {
  1437. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1438. for (j = 0; j < mode->num_rates; j++)
  1439. if (mode->rates[j].rate == rate)
  1440. rates |= BIT(j);
  1441. }
  1442. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1443. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1444. for (j = 0; j < mode->num_rates; j++)
  1445. if (mode->rates[j].rate == rate)
  1446. rates |= BIT(j);
  1447. }
  1448. sta->supp_rates = rates;
  1449. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1450. local->ops->conf_ht) {
  1451. struct ieee80211_ht_bss_info bss_info;
  1452. ieee80211_ht_cap_ie_to_ht_info(
  1453. (struct ieee80211_ht_cap *)
  1454. elems.ht_cap_elem, &sta->ht_info);
  1455. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1456. (struct ieee80211_ht_addt_info *)
  1457. elems.ht_info_elem, &bss_info);
  1458. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1459. }
  1460. rate_control_rate_init(sta, local);
  1461. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1462. sta->flags |= WLAN_STA_WME;
  1463. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1464. elems.wmm_param_len);
  1465. }
  1466. sta_info_put(sta);
  1467. ieee80211_associated(dev, ifsta);
  1468. }
  1469. /* Caller must hold local->sta_bss_lock */
  1470. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1471. struct ieee80211_sta_bss *bss)
  1472. {
  1473. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1474. bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1475. local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
  1476. }
  1477. /* Caller must hold local->sta_bss_lock */
  1478. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1479. struct ieee80211_sta_bss *bss)
  1480. {
  1481. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1482. struct ieee80211_sta_bss *b, *prev = NULL;
  1483. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1484. while (b) {
  1485. if (b == bss) {
  1486. if (!prev)
  1487. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1488. bss->hnext;
  1489. else
  1490. prev->hnext = bss->hnext;
  1491. break;
  1492. }
  1493. prev = b;
  1494. b = b->hnext;
  1495. }
  1496. }
  1497. static struct ieee80211_sta_bss *
  1498. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int channel,
  1499. u8 *ssid, u8 ssid_len)
  1500. {
  1501. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1502. struct ieee80211_sta_bss *bss;
  1503. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1504. if (!bss)
  1505. return NULL;
  1506. atomic_inc(&bss->users);
  1507. atomic_inc(&bss->users);
  1508. memcpy(bss->bssid, bssid, ETH_ALEN);
  1509. bss->channel = channel;
  1510. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1511. memcpy(bss->ssid, ssid, ssid_len);
  1512. bss->ssid_len = ssid_len;
  1513. }
  1514. spin_lock_bh(&local->sta_bss_lock);
  1515. /* TODO: order by RSSI? */
  1516. list_add_tail(&bss->list, &local->sta_bss_list);
  1517. __ieee80211_rx_bss_hash_add(dev, bss);
  1518. spin_unlock_bh(&local->sta_bss_lock);
  1519. return bss;
  1520. }
  1521. static struct ieee80211_sta_bss *
  1522. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  1523. u8 *ssid, u8 ssid_len)
  1524. {
  1525. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1526. struct ieee80211_sta_bss *bss;
  1527. spin_lock_bh(&local->sta_bss_lock);
  1528. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1529. while (bss) {
  1530. if (!memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1531. bss->channel == channel &&
  1532. bss->ssid_len == ssid_len &&
  1533. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1534. atomic_inc(&bss->users);
  1535. break;
  1536. }
  1537. bss = bss->hnext;
  1538. }
  1539. spin_unlock_bh(&local->sta_bss_lock);
  1540. return bss;
  1541. }
  1542. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1543. {
  1544. kfree(bss->wpa_ie);
  1545. kfree(bss->rsn_ie);
  1546. kfree(bss->wmm_ie);
  1547. kfree(bss->ht_ie);
  1548. kfree(bss);
  1549. }
  1550. static void ieee80211_rx_bss_put(struct net_device *dev,
  1551. struct ieee80211_sta_bss *bss)
  1552. {
  1553. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1554. if (!atomic_dec_and_test(&bss->users))
  1555. return;
  1556. spin_lock_bh(&local->sta_bss_lock);
  1557. __ieee80211_rx_bss_hash_del(dev, bss);
  1558. list_del(&bss->list);
  1559. spin_unlock_bh(&local->sta_bss_lock);
  1560. ieee80211_rx_bss_free(bss);
  1561. }
  1562. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1563. {
  1564. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1565. spin_lock_init(&local->sta_bss_lock);
  1566. INIT_LIST_HEAD(&local->sta_bss_list);
  1567. }
  1568. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1569. {
  1570. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1571. struct ieee80211_sta_bss *bss, *tmp;
  1572. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1573. ieee80211_rx_bss_put(dev, bss);
  1574. }
  1575. static void ieee80211_rx_bss_info(struct net_device *dev,
  1576. struct ieee80211_mgmt *mgmt,
  1577. size_t len,
  1578. struct ieee80211_rx_status *rx_status,
  1579. int beacon)
  1580. {
  1581. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1582. struct ieee802_11_elems elems;
  1583. size_t baselen;
  1584. int channel, clen;
  1585. struct ieee80211_sta_bss *bss;
  1586. struct sta_info *sta;
  1587. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1588. u64 timestamp;
  1589. DECLARE_MAC_BUF(mac);
  1590. DECLARE_MAC_BUF(mac2);
  1591. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  1592. return; /* ignore ProbeResp to foreign address */
  1593. #if 0
  1594. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  1595. dev->name, beacon ? "Beacon" : "Probe Response",
  1596. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  1597. #endif
  1598. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1599. if (baselen > len)
  1600. return;
  1601. timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1602. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  1603. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) {
  1604. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1605. static unsigned long last_tsf_debug = 0;
  1606. u64 tsf;
  1607. if (local->ops->get_tsf)
  1608. tsf = local->ops->get_tsf(local_to_hw(local));
  1609. else
  1610. tsf = -1LLU;
  1611. if (time_after(jiffies, last_tsf_debug + 5 * HZ)) {
  1612. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  1613. "%s TSF=0x%llx BCN=0x%llx diff=%lld "
  1614. "@%lu\n",
  1615. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid),
  1616. (unsigned long long)tsf,
  1617. (unsigned long long)timestamp,
  1618. (unsigned long long)(tsf - timestamp),
  1619. jiffies);
  1620. last_tsf_debug = jiffies;
  1621. }
  1622. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1623. }
  1624. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1625. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  1626. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  1627. (sta = sta_info_get(local, mgmt->sa))) {
  1628. struct ieee80211_hw_mode *mode;
  1629. struct ieee80211_rate *rates;
  1630. size_t num_rates;
  1631. u32 supp_rates, prev_rates;
  1632. int i, j;
  1633. mode = local->sta_sw_scanning ?
  1634. local->scan_hw_mode : local->oper_hw_mode;
  1635. if (local->sta_hw_scanning) {
  1636. /* search for the correct mode matches the beacon */
  1637. list_for_each_entry(mode, &local->modes_list, list)
  1638. if (mode->mode == rx_status->phymode)
  1639. break;
  1640. if (mode == NULL)
  1641. mode = local->oper_hw_mode;
  1642. }
  1643. rates = mode->rates;
  1644. num_rates = mode->num_rates;
  1645. supp_rates = 0;
  1646. for (i = 0; i < elems.supp_rates_len +
  1647. elems.ext_supp_rates_len; i++) {
  1648. u8 rate = 0;
  1649. int own_rate;
  1650. if (i < elems.supp_rates_len)
  1651. rate = elems.supp_rates[i];
  1652. else if (elems.ext_supp_rates)
  1653. rate = elems.ext_supp_rates
  1654. [i - elems.supp_rates_len];
  1655. own_rate = 5 * (rate & 0x7f);
  1656. for (j = 0; j < num_rates; j++)
  1657. if (rates[j].rate == own_rate)
  1658. supp_rates |= BIT(j);
  1659. }
  1660. prev_rates = sta->supp_rates;
  1661. sta->supp_rates &= supp_rates;
  1662. if (sta->supp_rates == 0) {
  1663. /* No matching rates - this should not really happen.
  1664. * Make sure that at least one rate is marked
  1665. * supported to avoid issues with TX rate ctrl. */
  1666. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  1667. }
  1668. if (sta->supp_rates != prev_rates) {
  1669. printk(KERN_DEBUG "%s: updated supp_rates set for "
  1670. "%s based on beacon info (0x%x & 0x%x -> "
  1671. "0x%x)\n",
  1672. dev->name, print_mac(mac, sta->addr), prev_rates,
  1673. supp_rates, sta->supp_rates);
  1674. }
  1675. sta_info_put(sta);
  1676. }
  1677. if (!elems.ssid)
  1678. return;
  1679. if (elems.ds_params && elems.ds_params_len == 1)
  1680. channel = elems.ds_params[0];
  1681. else
  1682. channel = rx_status->channel;
  1683. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, channel,
  1684. elems.ssid, elems.ssid_len);
  1685. if (!bss) {
  1686. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, channel,
  1687. elems.ssid, elems.ssid_len);
  1688. if (!bss)
  1689. return;
  1690. } else {
  1691. #if 0
  1692. /* TODO: order by RSSI? */
  1693. spin_lock_bh(&local->sta_bss_lock);
  1694. list_move_tail(&bss->list, &local->sta_bss_list);
  1695. spin_unlock_bh(&local->sta_bss_lock);
  1696. #endif
  1697. }
  1698. if (bss->probe_resp && beacon) {
  1699. /* Do not allow beacon to override data from Probe Response. */
  1700. ieee80211_rx_bss_put(dev, bss);
  1701. return;
  1702. }
  1703. /* save the ERP value so that it is available at association time */
  1704. if (elems.erp_info && elems.erp_info_len >= 1) {
  1705. bss->erp_value = elems.erp_info[0];
  1706. bss->has_erp_value = 1;
  1707. }
  1708. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  1709. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  1710. bss->supp_rates_len = 0;
  1711. if (elems.supp_rates) {
  1712. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1713. if (clen > elems.supp_rates_len)
  1714. clen = elems.supp_rates_len;
  1715. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  1716. clen);
  1717. bss->supp_rates_len += clen;
  1718. }
  1719. if (elems.ext_supp_rates) {
  1720. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1721. if (clen > elems.ext_supp_rates_len)
  1722. clen = elems.ext_supp_rates_len;
  1723. memcpy(&bss->supp_rates[bss->supp_rates_len],
  1724. elems.ext_supp_rates, clen);
  1725. bss->supp_rates_len += clen;
  1726. }
  1727. if (elems.wpa &&
  1728. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  1729. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  1730. kfree(bss->wpa_ie);
  1731. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  1732. if (bss->wpa_ie) {
  1733. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  1734. bss->wpa_ie_len = elems.wpa_len + 2;
  1735. } else
  1736. bss->wpa_ie_len = 0;
  1737. } else if (!elems.wpa && bss->wpa_ie) {
  1738. kfree(bss->wpa_ie);
  1739. bss->wpa_ie = NULL;
  1740. bss->wpa_ie_len = 0;
  1741. }
  1742. if (elems.rsn &&
  1743. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  1744. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  1745. kfree(bss->rsn_ie);
  1746. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  1747. if (bss->rsn_ie) {
  1748. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  1749. bss->rsn_ie_len = elems.rsn_len + 2;
  1750. } else
  1751. bss->rsn_ie_len = 0;
  1752. } else if (!elems.rsn && bss->rsn_ie) {
  1753. kfree(bss->rsn_ie);
  1754. bss->rsn_ie = NULL;
  1755. bss->rsn_ie_len = 0;
  1756. }
  1757. if (elems.wmm_param &&
  1758. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  1759. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  1760. kfree(bss->wmm_ie);
  1761. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  1762. if (bss->wmm_ie) {
  1763. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  1764. elems.wmm_param_len + 2);
  1765. bss->wmm_ie_len = elems.wmm_param_len + 2;
  1766. } else
  1767. bss->wmm_ie_len = 0;
  1768. } else if (!elems.wmm_param && bss->wmm_ie) {
  1769. kfree(bss->wmm_ie);
  1770. bss->wmm_ie = NULL;
  1771. bss->wmm_ie_len = 0;
  1772. }
  1773. if (elems.ht_cap_elem &&
  1774. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  1775. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  1776. kfree(bss->ht_ie);
  1777. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  1778. if (bss->ht_ie) {
  1779. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  1780. elems.ht_cap_elem_len + 2);
  1781. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  1782. } else
  1783. bss->ht_ie_len = 0;
  1784. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  1785. kfree(bss->ht_ie);
  1786. bss->ht_ie = NULL;
  1787. bss->ht_ie_len = 0;
  1788. }
  1789. bss->hw_mode = rx_status->phymode;
  1790. bss->freq = rx_status->freq;
  1791. if (channel != rx_status->channel &&
  1792. (bss->hw_mode == MODE_IEEE80211G ||
  1793. bss->hw_mode == MODE_IEEE80211B) &&
  1794. channel >= 1 && channel <= 14) {
  1795. static const int freq_list[] = {
  1796. 2412, 2417, 2422, 2427, 2432, 2437, 2442,
  1797. 2447, 2452, 2457, 2462, 2467, 2472, 2484
  1798. };
  1799. /* IEEE 802.11g/b mode can receive packets from neighboring
  1800. * channels, so map the channel into frequency. */
  1801. bss->freq = freq_list[channel - 1];
  1802. }
  1803. bss->timestamp = timestamp;
  1804. bss->last_update = jiffies;
  1805. bss->rssi = rx_status->ssi;
  1806. bss->signal = rx_status->signal;
  1807. bss->noise = rx_status->noise;
  1808. if (!beacon)
  1809. bss->probe_resp++;
  1810. ieee80211_rx_bss_put(dev, bss);
  1811. }
  1812. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  1813. struct ieee80211_mgmt *mgmt,
  1814. size_t len,
  1815. struct ieee80211_rx_status *rx_status)
  1816. {
  1817. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  1818. }
  1819. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  1820. struct ieee80211_mgmt *mgmt,
  1821. size_t len,
  1822. struct ieee80211_rx_status *rx_status)
  1823. {
  1824. struct ieee80211_sub_if_data *sdata;
  1825. struct ieee80211_if_sta *ifsta;
  1826. size_t baselen;
  1827. struct ieee802_11_elems elems;
  1828. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1829. struct ieee80211_conf *conf = &local->hw.conf;
  1830. u32 changed = 0;
  1831. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  1832. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1833. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  1834. return;
  1835. ifsta = &sdata->u.sta;
  1836. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  1837. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  1838. return;
  1839. /* Process beacon from the current BSS */
  1840. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1841. if (baselen > len)
  1842. return;
  1843. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1844. if (elems.erp_info && elems.erp_info_len >= 1)
  1845. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  1846. else {
  1847. u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
  1848. changed |= ieee80211_handle_protect_preamb(sdata, false,
  1849. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  1850. }
  1851. if (elems.ht_cap_elem && elems.ht_info_elem &&
  1852. elems.wmm_param && local->ops->conf_ht &&
  1853. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  1854. struct ieee80211_ht_bss_info bss_info;
  1855. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1856. (struct ieee80211_ht_addt_info *)
  1857. elems.ht_info_elem, &bss_info);
  1858. /* check if AP changed bss inforamation */
  1859. if ((conf->ht_bss_conf.primary_channel !=
  1860. bss_info.primary_channel) ||
  1861. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  1862. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  1863. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  1864. &bss_info);
  1865. }
  1866. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1867. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1868. elems.wmm_param_len);
  1869. }
  1870. ieee80211_bss_info_change_notify(sdata, changed);
  1871. }
  1872. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  1873. struct ieee80211_if_sta *ifsta,
  1874. struct ieee80211_mgmt *mgmt,
  1875. size_t len,
  1876. struct ieee80211_rx_status *rx_status)
  1877. {
  1878. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1879. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1880. int tx_last_beacon;
  1881. struct sk_buff *skb;
  1882. struct ieee80211_mgmt *resp;
  1883. u8 *pos, *end;
  1884. DECLARE_MAC_BUF(mac);
  1885. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1886. DECLARE_MAC_BUF(mac2);
  1887. DECLARE_MAC_BUF(mac3);
  1888. #endif
  1889. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  1890. ifsta->state != IEEE80211_IBSS_JOINED ||
  1891. len < 24 + 2 || !ifsta->probe_resp)
  1892. return;
  1893. if (local->ops->tx_last_beacon)
  1894. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  1895. else
  1896. tx_last_beacon = 1;
  1897. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1898. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  1899. "%s (tx_last_beacon=%d)\n",
  1900. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  1901. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  1902. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1903. if (!tx_last_beacon)
  1904. return;
  1905. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  1906. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  1907. return;
  1908. end = ((u8 *) mgmt) + len;
  1909. pos = mgmt->u.probe_req.variable;
  1910. if (pos[0] != WLAN_EID_SSID ||
  1911. pos + 2 + pos[1] > end) {
  1912. if (net_ratelimit()) {
  1913. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  1914. "from %s\n",
  1915. dev->name, print_mac(mac, mgmt->sa));
  1916. }
  1917. return;
  1918. }
  1919. if (pos[1] != 0 &&
  1920. (pos[1] != ifsta->ssid_len ||
  1921. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  1922. /* Ignore ProbeReq for foreign SSID */
  1923. return;
  1924. }
  1925. /* Reply with ProbeResp */
  1926. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  1927. if (!skb)
  1928. return;
  1929. resp = (struct ieee80211_mgmt *) skb->data;
  1930. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  1931. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1932. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  1933. dev->name, print_mac(mac, resp->da));
  1934. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1935. ieee80211_sta_tx(dev, skb, 0);
  1936. }
  1937. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  1938. struct ieee80211_if_sta *ifsta,
  1939. struct ieee80211_mgmt *mgmt,
  1940. size_t len)
  1941. {
  1942. if (len < IEEE80211_MIN_ACTION_SIZE)
  1943. return;
  1944. switch (mgmt->u.action.category) {
  1945. case WLAN_CATEGORY_BACK:
  1946. switch (mgmt->u.action.u.addba_req.action_code) {
  1947. case WLAN_ACTION_ADDBA_REQ:
  1948. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1949. sizeof(mgmt->u.action.u.addba_req)))
  1950. break;
  1951. ieee80211_sta_process_addba_request(dev, mgmt, len);
  1952. break;
  1953. case WLAN_ACTION_DELBA:
  1954. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1955. sizeof(mgmt->u.action.u.delba)))
  1956. break;
  1957. ieee80211_sta_process_delba(dev, mgmt, len);
  1958. break;
  1959. default:
  1960. if (net_ratelimit())
  1961. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  1962. dev->name);
  1963. break;
  1964. }
  1965. break;
  1966. default:
  1967. break;
  1968. }
  1969. }
  1970. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  1971. struct ieee80211_rx_status *rx_status)
  1972. {
  1973. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1974. struct ieee80211_sub_if_data *sdata;
  1975. struct ieee80211_if_sta *ifsta;
  1976. struct ieee80211_mgmt *mgmt;
  1977. u16 fc;
  1978. if (skb->len < 24)
  1979. goto fail;
  1980. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1981. ifsta = &sdata->u.sta;
  1982. mgmt = (struct ieee80211_mgmt *) skb->data;
  1983. fc = le16_to_cpu(mgmt->frame_control);
  1984. switch (fc & IEEE80211_FCTL_STYPE) {
  1985. case IEEE80211_STYPE_PROBE_REQ:
  1986. case IEEE80211_STYPE_PROBE_RESP:
  1987. case IEEE80211_STYPE_BEACON:
  1988. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  1989. case IEEE80211_STYPE_AUTH:
  1990. case IEEE80211_STYPE_ASSOC_RESP:
  1991. case IEEE80211_STYPE_REASSOC_RESP:
  1992. case IEEE80211_STYPE_DEAUTH:
  1993. case IEEE80211_STYPE_DISASSOC:
  1994. case IEEE80211_STYPE_ACTION:
  1995. skb_queue_tail(&ifsta->skb_queue, skb);
  1996. queue_work(local->hw.workqueue, &ifsta->work);
  1997. return;
  1998. default:
  1999. printk(KERN_DEBUG "%s: received unknown management frame - "
  2000. "stype=%d\n", dev->name,
  2001. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2002. break;
  2003. }
  2004. fail:
  2005. kfree_skb(skb);
  2006. }
  2007. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2008. struct sk_buff *skb)
  2009. {
  2010. struct ieee80211_rx_status *rx_status;
  2011. struct ieee80211_sub_if_data *sdata;
  2012. struct ieee80211_if_sta *ifsta;
  2013. struct ieee80211_mgmt *mgmt;
  2014. u16 fc;
  2015. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2016. ifsta = &sdata->u.sta;
  2017. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2018. mgmt = (struct ieee80211_mgmt *) skb->data;
  2019. fc = le16_to_cpu(mgmt->frame_control);
  2020. switch (fc & IEEE80211_FCTL_STYPE) {
  2021. case IEEE80211_STYPE_PROBE_REQ:
  2022. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2023. rx_status);
  2024. break;
  2025. case IEEE80211_STYPE_PROBE_RESP:
  2026. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2027. break;
  2028. case IEEE80211_STYPE_BEACON:
  2029. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2030. break;
  2031. case IEEE80211_STYPE_AUTH:
  2032. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2033. break;
  2034. case IEEE80211_STYPE_ASSOC_RESP:
  2035. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2036. break;
  2037. case IEEE80211_STYPE_REASSOC_RESP:
  2038. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2039. break;
  2040. case IEEE80211_STYPE_DEAUTH:
  2041. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2042. break;
  2043. case IEEE80211_STYPE_DISASSOC:
  2044. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2045. break;
  2046. case IEEE80211_STYPE_ACTION:
  2047. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len);
  2048. break;
  2049. }
  2050. kfree_skb(skb);
  2051. }
  2052. ieee80211_txrx_result
  2053. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2054. struct ieee80211_rx_status *rx_status)
  2055. {
  2056. struct ieee80211_mgmt *mgmt;
  2057. u16 fc;
  2058. if (skb->len < 2)
  2059. return TXRX_DROP;
  2060. mgmt = (struct ieee80211_mgmt *) skb->data;
  2061. fc = le16_to_cpu(mgmt->frame_control);
  2062. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2063. return TXRX_CONTINUE;
  2064. if (skb->len < 24)
  2065. return TXRX_DROP;
  2066. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2067. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2068. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2069. skb->len, rx_status);
  2070. dev_kfree_skb(skb);
  2071. return TXRX_QUEUED;
  2072. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2073. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2074. rx_status);
  2075. dev_kfree_skb(skb);
  2076. return TXRX_QUEUED;
  2077. }
  2078. }
  2079. return TXRX_CONTINUE;
  2080. }
  2081. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2082. {
  2083. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2084. int active = 0;
  2085. struct sta_info *sta;
  2086. read_lock_bh(&local->sta_lock);
  2087. list_for_each_entry(sta, &local->sta_list, list) {
  2088. if (sta->dev == dev &&
  2089. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2090. jiffies)) {
  2091. active++;
  2092. break;
  2093. }
  2094. }
  2095. read_unlock_bh(&local->sta_lock);
  2096. return active;
  2097. }
  2098. static void ieee80211_sta_expire(struct net_device *dev)
  2099. {
  2100. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2101. struct sta_info *sta, *tmp;
  2102. LIST_HEAD(tmp_list);
  2103. DECLARE_MAC_BUF(mac);
  2104. write_lock_bh(&local->sta_lock);
  2105. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2106. if (time_after(jiffies, sta->last_rx +
  2107. IEEE80211_IBSS_INACTIVITY_LIMIT)) {
  2108. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2109. dev->name, print_mac(mac, sta->addr));
  2110. __sta_info_get(sta);
  2111. sta_info_remove(sta);
  2112. list_add(&sta->list, &tmp_list);
  2113. }
  2114. write_unlock_bh(&local->sta_lock);
  2115. list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
  2116. sta_info_free(sta);
  2117. sta_info_put(sta);
  2118. }
  2119. }
  2120. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2121. struct ieee80211_if_sta *ifsta)
  2122. {
  2123. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2124. ieee80211_sta_expire(dev);
  2125. if (ieee80211_sta_active_ibss(dev))
  2126. return;
  2127. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2128. "IBSS networks with same SSID (merge)\n", dev->name);
  2129. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2130. }
  2131. void ieee80211_sta_timer(unsigned long data)
  2132. {
  2133. struct ieee80211_sub_if_data *sdata =
  2134. (struct ieee80211_sub_if_data *) data;
  2135. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2136. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2137. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2138. queue_work(local->hw.workqueue, &ifsta->work);
  2139. }
  2140. void ieee80211_sta_work(struct work_struct *work)
  2141. {
  2142. struct ieee80211_sub_if_data *sdata =
  2143. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2144. struct net_device *dev = sdata->dev;
  2145. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2146. struct ieee80211_if_sta *ifsta;
  2147. struct sk_buff *skb;
  2148. if (!netif_running(dev))
  2149. return;
  2150. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2151. return;
  2152. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2153. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  2154. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2155. "(type=%d)\n", dev->name, sdata->vif.type);
  2156. return;
  2157. }
  2158. ifsta = &sdata->u.sta;
  2159. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2160. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2161. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2162. ifsta->state != IEEE80211_ASSOCIATE &&
  2163. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2164. if (ifsta->scan_ssid_len)
  2165. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2166. else
  2167. ieee80211_sta_start_scan(dev, NULL, 0);
  2168. return;
  2169. }
  2170. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2171. if (ieee80211_sta_config_auth(dev, ifsta))
  2172. return;
  2173. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2174. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2175. return;
  2176. switch (ifsta->state) {
  2177. case IEEE80211_DISABLED:
  2178. break;
  2179. case IEEE80211_AUTHENTICATE:
  2180. ieee80211_authenticate(dev, ifsta);
  2181. break;
  2182. case IEEE80211_ASSOCIATE:
  2183. ieee80211_associate(dev, ifsta);
  2184. break;
  2185. case IEEE80211_ASSOCIATED:
  2186. ieee80211_associated(dev, ifsta);
  2187. break;
  2188. case IEEE80211_IBSS_SEARCH:
  2189. ieee80211_sta_find_ibss(dev, ifsta);
  2190. break;
  2191. case IEEE80211_IBSS_JOINED:
  2192. ieee80211_sta_merge_ibss(dev, ifsta);
  2193. break;
  2194. default:
  2195. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2196. ifsta->state);
  2197. break;
  2198. }
  2199. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2200. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2201. "mixed-cell disabled - disassociate\n", dev->name);
  2202. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2203. ieee80211_set_disassoc(dev, ifsta, 0);
  2204. }
  2205. }
  2206. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2207. struct ieee80211_if_sta *ifsta)
  2208. {
  2209. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2210. if (local->ops->reset_tsf) {
  2211. /* Reset own TSF to allow time synchronization work. */
  2212. local->ops->reset_tsf(local_to_hw(local));
  2213. }
  2214. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2215. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2216. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2217. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2218. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2219. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2220. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2221. else
  2222. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2223. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2224. ifsta->auth_alg);
  2225. ifsta->auth_transaction = -1;
  2226. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2227. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2228. netif_carrier_off(dev);
  2229. }
  2230. void ieee80211_sta_req_auth(struct net_device *dev,
  2231. struct ieee80211_if_sta *ifsta)
  2232. {
  2233. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2234. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2235. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2236. return;
  2237. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2238. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2239. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2240. IEEE80211_STA_AUTO_SSID_SEL))) {
  2241. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2242. queue_work(local->hw.workqueue, &ifsta->work);
  2243. }
  2244. }
  2245. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2246. const char *ssid, int ssid_len)
  2247. {
  2248. int tmp, hidden_ssid;
  2249. if (ssid_len == ifsta->ssid_len &&
  2250. !memcmp(ifsta->ssid, ssid, ssid_len))
  2251. return 1;
  2252. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2253. return 0;
  2254. hidden_ssid = 1;
  2255. tmp = ssid_len;
  2256. while (tmp--) {
  2257. if (ssid[tmp] != '\0') {
  2258. hidden_ssid = 0;
  2259. break;
  2260. }
  2261. }
  2262. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2263. return 1;
  2264. if (ssid_len == 1 && ssid[0] == ' ')
  2265. return 1;
  2266. return 0;
  2267. }
  2268. static int ieee80211_sta_config_auth(struct net_device *dev,
  2269. struct ieee80211_if_sta *ifsta)
  2270. {
  2271. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2272. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2273. struct ieee80211_sta_bss *bss, *selected = NULL;
  2274. int top_rssi = 0, freq;
  2275. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2276. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2277. ifsta->state = IEEE80211_AUTHENTICATE;
  2278. ieee80211_sta_reset_auth(dev, ifsta);
  2279. return 0;
  2280. }
  2281. spin_lock_bh(&local->sta_bss_lock);
  2282. freq = local->oper_channel->freq;
  2283. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2284. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2285. continue;
  2286. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2287. !!sdata->default_key)
  2288. continue;
  2289. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2290. bss->freq != freq)
  2291. continue;
  2292. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2293. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2294. continue;
  2295. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2296. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2297. continue;
  2298. if (!selected || top_rssi < bss->rssi) {
  2299. selected = bss;
  2300. top_rssi = bss->rssi;
  2301. }
  2302. }
  2303. if (selected)
  2304. atomic_inc(&selected->users);
  2305. spin_unlock_bh(&local->sta_bss_lock);
  2306. if (selected) {
  2307. ieee80211_set_channel(local, -1, selected->freq);
  2308. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2309. ieee80211_sta_set_ssid(dev, selected->ssid,
  2310. selected->ssid_len);
  2311. ieee80211_sta_set_bssid(dev, selected->bssid);
  2312. ieee80211_rx_bss_put(dev, selected);
  2313. ifsta->state = IEEE80211_AUTHENTICATE;
  2314. ieee80211_sta_reset_auth(dev, ifsta);
  2315. return 0;
  2316. } else {
  2317. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2318. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2319. ieee80211_sta_start_scan(dev, NULL, 0);
  2320. else
  2321. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2322. ifsta->ssid_len);
  2323. ifsta->state = IEEE80211_AUTHENTICATE;
  2324. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2325. } else
  2326. ifsta->state = IEEE80211_DISABLED;
  2327. }
  2328. return -1;
  2329. }
  2330. static int ieee80211_sta_join_ibss(struct net_device *dev,
  2331. struct ieee80211_if_sta *ifsta,
  2332. struct ieee80211_sta_bss *bss)
  2333. {
  2334. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2335. int res, rates, i, j;
  2336. struct sk_buff *skb;
  2337. struct ieee80211_mgmt *mgmt;
  2338. struct ieee80211_tx_control control;
  2339. struct ieee80211_hw_mode *mode;
  2340. struct rate_selection ratesel;
  2341. u8 *pos;
  2342. struct ieee80211_sub_if_data *sdata;
  2343. /* Remove possible STA entries from other IBSS networks. */
  2344. sta_info_flush(local, NULL);
  2345. if (local->ops->reset_tsf) {
  2346. /* Reset own TSF to allow time synchronization work. */
  2347. local->ops->reset_tsf(local_to_hw(local));
  2348. }
  2349. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  2350. res = ieee80211_if_config(dev);
  2351. if (res)
  2352. return res;
  2353. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2354. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2355. sdata->drop_unencrypted = bss->capability &
  2356. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2357. res = ieee80211_set_channel(local, -1, bss->freq);
  2358. if (!(local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)) {
  2359. printk(KERN_DEBUG "%s: IBSS not allowed on channel %d "
  2360. "(%d MHz)\n", dev->name, local->hw.conf.channel,
  2361. local->hw.conf.freq);
  2362. return -1;
  2363. }
  2364. /* Set beacon template based on scan results */
  2365. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2366. do {
  2367. if (!skb)
  2368. break;
  2369. skb_reserve(skb, local->hw.extra_tx_headroom);
  2370. mgmt = (struct ieee80211_mgmt *)
  2371. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2372. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2373. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2374. IEEE80211_STYPE_BEACON);
  2375. memset(mgmt->da, 0xff, ETH_ALEN);
  2376. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2377. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2378. mgmt->u.beacon.beacon_int =
  2379. cpu_to_le16(local->hw.conf.beacon_int);
  2380. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2381. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2382. *pos++ = WLAN_EID_SSID;
  2383. *pos++ = ifsta->ssid_len;
  2384. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2385. rates = bss->supp_rates_len;
  2386. if (rates > 8)
  2387. rates = 8;
  2388. pos = skb_put(skb, 2 + rates);
  2389. *pos++ = WLAN_EID_SUPP_RATES;
  2390. *pos++ = rates;
  2391. memcpy(pos, bss->supp_rates, rates);
  2392. pos = skb_put(skb, 2 + 1);
  2393. *pos++ = WLAN_EID_DS_PARAMS;
  2394. *pos++ = 1;
  2395. *pos++ = bss->channel;
  2396. pos = skb_put(skb, 2 + 2);
  2397. *pos++ = WLAN_EID_IBSS_PARAMS;
  2398. *pos++ = 2;
  2399. /* FIX: set ATIM window based on scan results */
  2400. *pos++ = 0;
  2401. *pos++ = 0;
  2402. if (bss->supp_rates_len > 8) {
  2403. rates = bss->supp_rates_len - 8;
  2404. pos = skb_put(skb, 2 + rates);
  2405. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2406. *pos++ = rates;
  2407. memcpy(pos, &bss->supp_rates[8], rates);
  2408. }
  2409. memset(&control, 0, sizeof(control));
  2410. rate_control_get_rate(dev, local->oper_hw_mode, skb, &ratesel);
  2411. if (!ratesel.rate) {
  2412. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2413. "for IBSS beacon\n", dev->name);
  2414. break;
  2415. }
  2416. control.vif = &sdata->vif;
  2417. control.tx_rate =
  2418. (sdata->bss_conf.use_short_preamble &&
  2419. (ratesel.rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
  2420. ratesel.rate->val2 : ratesel.rate->val;
  2421. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2422. control.power_level = local->hw.conf.power_level;
  2423. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2424. control.retry_limit = 1;
  2425. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2426. if (ifsta->probe_resp) {
  2427. mgmt = (struct ieee80211_mgmt *)
  2428. ifsta->probe_resp->data;
  2429. mgmt->frame_control =
  2430. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2431. IEEE80211_STYPE_PROBE_RESP);
  2432. } else {
  2433. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2434. "template for IBSS\n", dev->name);
  2435. }
  2436. if (local->ops->beacon_update &&
  2437. local->ops->beacon_update(local_to_hw(local),
  2438. skb, &control) == 0) {
  2439. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2440. "template based on scan results\n", dev->name);
  2441. skb = NULL;
  2442. }
  2443. rates = 0;
  2444. mode = local->oper_hw_mode;
  2445. for (i = 0; i < bss->supp_rates_len; i++) {
  2446. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2447. for (j = 0; j < mode->num_rates; j++)
  2448. if (mode->rates[j].rate == bitrate)
  2449. rates |= BIT(j);
  2450. }
  2451. ifsta->supp_rates_bits = rates;
  2452. } while (0);
  2453. if (skb) {
  2454. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2455. "template\n", dev->name);
  2456. dev_kfree_skb(skb);
  2457. }
  2458. ifsta->state = IEEE80211_IBSS_JOINED;
  2459. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2460. ieee80211_rx_bss_put(dev, bss);
  2461. return res;
  2462. }
  2463. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2464. struct ieee80211_if_sta *ifsta)
  2465. {
  2466. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2467. struct ieee80211_sta_bss *bss;
  2468. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2469. struct ieee80211_hw_mode *mode;
  2470. u8 bssid[ETH_ALEN], *pos;
  2471. int i;
  2472. DECLARE_MAC_BUF(mac);
  2473. #if 0
  2474. /* Easier testing, use fixed BSSID. */
  2475. memset(bssid, 0xfe, ETH_ALEN);
  2476. #else
  2477. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2478. * own MAC address to make sure that devices that do not have proper
  2479. * random number generator get different BSSID. */
  2480. get_random_bytes(bssid, ETH_ALEN);
  2481. for (i = 0; i < ETH_ALEN; i++)
  2482. bssid[i] ^= dev->dev_addr[i];
  2483. bssid[0] &= ~0x01;
  2484. bssid[0] |= 0x02;
  2485. #endif
  2486. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2487. dev->name, print_mac(mac, bssid));
  2488. bss = ieee80211_rx_bss_add(dev, bssid, local->hw.conf.channel,
  2489. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2490. if (!bss)
  2491. return -ENOMEM;
  2492. mode = local->oper_hw_mode;
  2493. if (local->hw.conf.beacon_int == 0)
  2494. local->hw.conf.beacon_int = 100;
  2495. bss->beacon_int = local->hw.conf.beacon_int;
  2496. bss->hw_mode = local->hw.conf.phymode;
  2497. bss->freq = local->hw.conf.freq;
  2498. bss->last_update = jiffies;
  2499. bss->capability = WLAN_CAPABILITY_IBSS;
  2500. if (sdata->default_key) {
  2501. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2502. } else
  2503. sdata->drop_unencrypted = 0;
  2504. bss->supp_rates_len = mode->num_rates;
  2505. pos = bss->supp_rates;
  2506. for (i = 0; i < mode->num_rates; i++) {
  2507. int rate = mode->rates[i].rate;
  2508. *pos++ = (u8) (rate / 5);
  2509. }
  2510. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2511. }
  2512. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2513. struct ieee80211_if_sta *ifsta)
  2514. {
  2515. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2516. struct ieee80211_sta_bss *bss;
  2517. int found = 0;
  2518. u8 bssid[ETH_ALEN];
  2519. int active_ibss;
  2520. DECLARE_MAC_BUF(mac);
  2521. DECLARE_MAC_BUF(mac2);
  2522. if (ifsta->ssid_len == 0)
  2523. return -EINVAL;
  2524. active_ibss = ieee80211_sta_active_ibss(dev);
  2525. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2526. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2527. dev->name, active_ibss);
  2528. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2529. spin_lock_bh(&local->sta_bss_lock);
  2530. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2531. if (ifsta->ssid_len != bss->ssid_len ||
  2532. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2533. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2534. continue;
  2535. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2536. printk(KERN_DEBUG " bssid=%s found\n",
  2537. print_mac(mac, bss->bssid));
  2538. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2539. memcpy(bssid, bss->bssid, ETH_ALEN);
  2540. found = 1;
  2541. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2542. break;
  2543. }
  2544. spin_unlock_bh(&local->sta_bss_lock);
  2545. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2546. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2547. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2548. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2549. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2550. (bss = ieee80211_rx_bss_get(dev, bssid, local->hw.conf.channel,
  2551. ifsta->ssid, ifsta->ssid_len))) {
  2552. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2553. " based on configured SSID\n",
  2554. dev->name, print_mac(mac, bssid));
  2555. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2556. }
  2557. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2558. printk(KERN_DEBUG " did not try to join ibss\n");
  2559. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2560. /* Selected IBSS not found in current scan results - try to scan */
  2561. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2562. !ieee80211_sta_active_ibss(dev)) {
  2563. mod_timer(&ifsta->timer, jiffies +
  2564. IEEE80211_IBSS_MERGE_INTERVAL);
  2565. } else if (time_after(jiffies, local->last_scan_completed +
  2566. IEEE80211_SCAN_INTERVAL)) {
  2567. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2568. "join\n", dev->name);
  2569. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2570. ifsta->ssid_len);
  2571. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2572. int interval = IEEE80211_SCAN_INTERVAL;
  2573. if (time_after(jiffies, ifsta->ibss_join_req +
  2574. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2575. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2576. local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)
  2577. return ieee80211_sta_create_ibss(dev, ifsta);
  2578. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2579. printk(KERN_DEBUG "%s: IBSS not allowed on the"
  2580. " configured channel %d (%d MHz)\n",
  2581. dev->name, local->hw.conf.channel,
  2582. local->hw.conf.freq);
  2583. }
  2584. /* No IBSS found - decrease scan interval and continue
  2585. * scanning. */
  2586. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2587. }
  2588. ifsta->state = IEEE80211_IBSS_SEARCH;
  2589. mod_timer(&ifsta->timer, jiffies + interval);
  2590. return 0;
  2591. }
  2592. return 0;
  2593. }
  2594. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2595. {
  2596. struct ieee80211_sub_if_data *sdata;
  2597. struct ieee80211_if_sta *ifsta;
  2598. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2599. if (len > IEEE80211_MAX_SSID_LEN)
  2600. return -EINVAL;
  2601. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2602. * not defined. */
  2603. if (local->ops->conf_tx) {
  2604. struct ieee80211_tx_queue_params qparam;
  2605. int i;
  2606. memset(&qparam, 0, sizeof(qparam));
  2607. /* TODO: are these ok defaults for all hw_modes? */
  2608. qparam.aifs = 2;
  2609. qparam.cw_min =
  2610. local->hw.conf.phymode == MODE_IEEE80211B ? 31 : 15;
  2611. qparam.cw_max = 1023;
  2612. qparam.burst_time = 0;
  2613. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2614. {
  2615. local->ops->conf_tx(local_to_hw(local),
  2616. i + IEEE80211_TX_QUEUE_DATA0,
  2617. &qparam);
  2618. }
  2619. /* IBSS uses different parameters for Beacon sending */
  2620. qparam.cw_min++;
  2621. qparam.cw_min *= 2;
  2622. qparam.cw_min--;
  2623. local->ops->conf_tx(local_to_hw(local),
  2624. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2625. }
  2626. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2627. ifsta = &sdata->u.sta;
  2628. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2629. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2630. memcpy(ifsta->ssid, ssid, len);
  2631. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2632. ifsta->ssid_len = len;
  2633. if (len)
  2634. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2635. else
  2636. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2637. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2638. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2639. ifsta->ibss_join_req = jiffies;
  2640. ifsta->state = IEEE80211_IBSS_SEARCH;
  2641. return ieee80211_sta_find_ibss(dev, ifsta);
  2642. }
  2643. return 0;
  2644. }
  2645. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  2646. {
  2647. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2648. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2649. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  2650. *len = ifsta->ssid_len;
  2651. return 0;
  2652. }
  2653. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  2654. {
  2655. struct ieee80211_sub_if_data *sdata;
  2656. struct ieee80211_if_sta *ifsta;
  2657. int res;
  2658. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2659. ifsta = &sdata->u.sta;
  2660. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  2661. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  2662. res = ieee80211_if_config(dev);
  2663. if (res) {
  2664. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  2665. "the low-level driver\n", dev->name);
  2666. return res;
  2667. }
  2668. }
  2669. if (is_valid_ether_addr(bssid))
  2670. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  2671. else
  2672. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  2673. return 0;
  2674. }
  2675. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  2676. struct ieee80211_sub_if_data *sdata,
  2677. int powersave)
  2678. {
  2679. struct sk_buff *skb;
  2680. struct ieee80211_hdr *nullfunc;
  2681. u16 fc;
  2682. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  2683. if (!skb) {
  2684. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  2685. "frame\n", sdata->dev->name);
  2686. return;
  2687. }
  2688. skb_reserve(skb, local->hw.extra_tx_headroom);
  2689. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  2690. memset(nullfunc, 0, 24);
  2691. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  2692. IEEE80211_FCTL_TODS;
  2693. if (powersave)
  2694. fc |= IEEE80211_FCTL_PM;
  2695. nullfunc->frame_control = cpu_to_le16(fc);
  2696. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  2697. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  2698. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  2699. ieee80211_sta_tx(sdata->dev, skb, 0);
  2700. }
  2701. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  2702. {
  2703. struct ieee80211_local *local = hw_to_local(hw);
  2704. struct net_device *dev = local->scan_dev;
  2705. struct ieee80211_sub_if_data *sdata;
  2706. union iwreq_data wrqu;
  2707. local->last_scan_completed = jiffies;
  2708. memset(&wrqu, 0, sizeof(wrqu));
  2709. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  2710. if (local->sta_hw_scanning) {
  2711. local->sta_hw_scanning = 0;
  2712. goto done;
  2713. }
  2714. local->sta_sw_scanning = 0;
  2715. if (ieee80211_hw_config(local))
  2716. printk(KERN_DEBUG "%s: failed to restore operational "
  2717. "channel after scan\n", dev->name);
  2718. netif_tx_lock_bh(local->mdev);
  2719. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  2720. local->ops->configure_filter(local_to_hw(local),
  2721. FIF_BCN_PRBRESP_PROMISC,
  2722. &local->filter_flags,
  2723. local->mdev->mc_count,
  2724. local->mdev->mc_list);
  2725. netif_tx_unlock_bh(local->mdev);
  2726. rcu_read_lock();
  2727. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2728. /* No need to wake the master device. */
  2729. if (sdata->dev == local->mdev)
  2730. continue;
  2731. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  2732. if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  2733. ieee80211_send_nullfunc(local, sdata, 0);
  2734. ieee80211_sta_timer((unsigned long)sdata);
  2735. }
  2736. netif_wake_queue(sdata->dev);
  2737. }
  2738. rcu_read_unlock();
  2739. done:
  2740. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2741. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  2742. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2743. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  2744. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  2745. !ieee80211_sta_active_ibss(dev)))
  2746. ieee80211_sta_find_ibss(dev, ifsta);
  2747. }
  2748. }
  2749. EXPORT_SYMBOL(ieee80211_scan_completed);
  2750. void ieee80211_sta_scan_work(struct work_struct *work)
  2751. {
  2752. struct ieee80211_local *local =
  2753. container_of(work, struct ieee80211_local, scan_work.work);
  2754. struct net_device *dev = local->scan_dev;
  2755. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2756. struct ieee80211_hw_mode *mode;
  2757. struct ieee80211_channel *chan;
  2758. int skip;
  2759. unsigned long next_delay = 0;
  2760. if (!local->sta_sw_scanning)
  2761. return;
  2762. switch (local->scan_state) {
  2763. case SCAN_SET_CHANNEL:
  2764. mode = local->scan_hw_mode;
  2765. if (local->scan_hw_mode->list.next == &local->modes_list &&
  2766. local->scan_channel_idx >= mode->num_channels) {
  2767. ieee80211_scan_completed(local_to_hw(local));
  2768. return;
  2769. }
  2770. skip = !(local->enabled_modes & (1 << mode->mode));
  2771. chan = &mode->channels[local->scan_channel_idx];
  2772. if (!(chan->flag & IEEE80211_CHAN_W_SCAN) ||
  2773. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2774. !(chan->flag & IEEE80211_CHAN_W_IBSS)) ||
  2775. (local->hw_modes & local->enabled_modes &
  2776. (1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B))
  2777. skip = 1;
  2778. if (!skip) {
  2779. #if 0
  2780. printk(KERN_DEBUG "%s: scan channel %d (%d MHz)\n",
  2781. dev->name, chan->chan, chan->freq);
  2782. #endif
  2783. local->scan_channel = chan;
  2784. if (ieee80211_hw_config(local)) {
  2785. printk(KERN_DEBUG "%s: failed to set channel "
  2786. "%d (%d MHz) for scan\n", dev->name,
  2787. chan->chan, chan->freq);
  2788. skip = 1;
  2789. }
  2790. }
  2791. local->scan_channel_idx++;
  2792. if (local->scan_channel_idx >= local->scan_hw_mode->num_channels) {
  2793. if (local->scan_hw_mode->list.next != &local->modes_list) {
  2794. local->scan_hw_mode = list_entry(local->scan_hw_mode->list.next,
  2795. struct ieee80211_hw_mode,
  2796. list);
  2797. local->scan_channel_idx = 0;
  2798. }
  2799. }
  2800. if (skip)
  2801. break;
  2802. next_delay = IEEE80211_PROBE_DELAY +
  2803. usecs_to_jiffies(local->hw.channel_change_time);
  2804. local->scan_state = SCAN_SEND_PROBE;
  2805. break;
  2806. case SCAN_SEND_PROBE:
  2807. if (local->scan_channel->flag & IEEE80211_CHAN_W_ACTIVE_SCAN) {
  2808. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  2809. local->scan_ssid_len);
  2810. next_delay = IEEE80211_CHANNEL_TIME;
  2811. } else
  2812. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  2813. local->scan_state = SCAN_SET_CHANNEL;
  2814. break;
  2815. }
  2816. if (local->sta_sw_scanning)
  2817. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2818. next_delay);
  2819. }
  2820. static int ieee80211_sta_start_scan(struct net_device *dev,
  2821. u8 *ssid, size_t ssid_len)
  2822. {
  2823. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2824. struct ieee80211_sub_if_data *sdata;
  2825. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  2826. return -EINVAL;
  2827. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  2828. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  2829. * BSSID: MACAddress
  2830. * SSID
  2831. * ScanType: ACTIVE, PASSIVE
  2832. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  2833. * a Probe frame during active scanning
  2834. * ChannelList
  2835. * MinChannelTime (>= ProbeDelay), in TU
  2836. * MaxChannelTime: (>= MinChannelTime), in TU
  2837. */
  2838. /* MLME-SCAN.confirm
  2839. * BSSDescriptionSet
  2840. * ResultCode: SUCCESS, INVALID_PARAMETERS
  2841. */
  2842. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2843. if (local->scan_dev == dev)
  2844. return 0;
  2845. return -EBUSY;
  2846. }
  2847. if (local->ops->hw_scan) {
  2848. int rc = local->ops->hw_scan(local_to_hw(local),
  2849. ssid, ssid_len);
  2850. if (!rc) {
  2851. local->sta_hw_scanning = 1;
  2852. local->scan_dev = dev;
  2853. }
  2854. return rc;
  2855. }
  2856. local->sta_sw_scanning = 1;
  2857. rcu_read_lock();
  2858. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2859. /* Don't stop the master interface, otherwise we can't transmit
  2860. * probes! */
  2861. if (sdata->dev == local->mdev)
  2862. continue;
  2863. netif_stop_queue(sdata->dev);
  2864. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  2865. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  2866. ieee80211_send_nullfunc(local, sdata, 1);
  2867. }
  2868. rcu_read_unlock();
  2869. if (ssid) {
  2870. local->scan_ssid_len = ssid_len;
  2871. memcpy(local->scan_ssid, ssid, ssid_len);
  2872. } else
  2873. local->scan_ssid_len = 0;
  2874. local->scan_state = SCAN_SET_CHANNEL;
  2875. local->scan_hw_mode = list_entry(local->modes_list.next,
  2876. struct ieee80211_hw_mode,
  2877. list);
  2878. local->scan_channel_idx = 0;
  2879. local->scan_dev = dev;
  2880. netif_tx_lock_bh(local->mdev);
  2881. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  2882. local->ops->configure_filter(local_to_hw(local),
  2883. FIF_BCN_PRBRESP_PROMISC,
  2884. &local->filter_flags,
  2885. local->mdev->mc_count,
  2886. local->mdev->mc_list);
  2887. netif_tx_unlock_bh(local->mdev);
  2888. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  2889. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2890. IEEE80211_CHANNEL_TIME);
  2891. return 0;
  2892. }
  2893. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  2894. {
  2895. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2896. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2897. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2898. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2899. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  2900. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2901. if (local->scan_dev == dev)
  2902. return 0;
  2903. return -EBUSY;
  2904. }
  2905. ifsta->scan_ssid_len = ssid_len;
  2906. if (ssid_len)
  2907. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  2908. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  2909. queue_work(local->hw.workqueue, &ifsta->work);
  2910. return 0;
  2911. }
  2912. static char *
  2913. ieee80211_sta_scan_result(struct net_device *dev,
  2914. struct ieee80211_sta_bss *bss,
  2915. char *current_ev, char *end_buf)
  2916. {
  2917. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2918. struct iw_event iwe;
  2919. if (time_after(jiffies,
  2920. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  2921. return current_ev;
  2922. if (!(local->enabled_modes & (1 << bss->hw_mode)))
  2923. return current_ev;
  2924. memset(&iwe, 0, sizeof(iwe));
  2925. iwe.cmd = SIOCGIWAP;
  2926. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  2927. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  2928. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2929. IW_EV_ADDR_LEN);
  2930. memset(&iwe, 0, sizeof(iwe));
  2931. iwe.cmd = SIOCGIWESSID;
  2932. iwe.u.data.length = bss->ssid_len;
  2933. iwe.u.data.flags = 1;
  2934. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2935. bss->ssid);
  2936. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
  2937. memset(&iwe, 0, sizeof(iwe));
  2938. iwe.cmd = SIOCGIWMODE;
  2939. if (bss->capability & WLAN_CAPABILITY_ESS)
  2940. iwe.u.mode = IW_MODE_MASTER;
  2941. else
  2942. iwe.u.mode = IW_MODE_ADHOC;
  2943. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2944. IW_EV_UINT_LEN);
  2945. }
  2946. memset(&iwe, 0, sizeof(iwe));
  2947. iwe.cmd = SIOCGIWFREQ;
  2948. iwe.u.freq.m = bss->channel;
  2949. iwe.u.freq.e = 0;
  2950. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2951. IW_EV_FREQ_LEN);
  2952. iwe.u.freq.m = bss->freq * 100000;
  2953. iwe.u.freq.e = 1;
  2954. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2955. IW_EV_FREQ_LEN);
  2956. memset(&iwe, 0, sizeof(iwe));
  2957. iwe.cmd = IWEVQUAL;
  2958. iwe.u.qual.qual = bss->signal;
  2959. iwe.u.qual.level = bss->rssi;
  2960. iwe.u.qual.noise = bss->noise;
  2961. iwe.u.qual.updated = local->wstats_flags;
  2962. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2963. IW_EV_QUAL_LEN);
  2964. memset(&iwe, 0, sizeof(iwe));
  2965. iwe.cmd = SIOCGIWENCODE;
  2966. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  2967. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  2968. else
  2969. iwe.u.data.flags = IW_ENCODE_DISABLED;
  2970. iwe.u.data.length = 0;
  2971. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  2972. if (bss && bss->wpa_ie) {
  2973. memset(&iwe, 0, sizeof(iwe));
  2974. iwe.cmd = IWEVGENIE;
  2975. iwe.u.data.length = bss->wpa_ie_len;
  2976. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2977. bss->wpa_ie);
  2978. }
  2979. if (bss && bss->rsn_ie) {
  2980. memset(&iwe, 0, sizeof(iwe));
  2981. iwe.cmd = IWEVGENIE;
  2982. iwe.u.data.length = bss->rsn_ie_len;
  2983. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2984. bss->rsn_ie);
  2985. }
  2986. if (bss && bss->supp_rates_len > 0) {
  2987. /* display all supported rates in readable format */
  2988. char *p = current_ev + IW_EV_LCP_LEN;
  2989. int i;
  2990. memset(&iwe, 0, sizeof(iwe));
  2991. iwe.cmd = SIOCGIWRATE;
  2992. /* Those two flags are ignored... */
  2993. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  2994. for (i = 0; i < bss->supp_rates_len; i++) {
  2995. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  2996. 0x7f) * 500000);
  2997. p = iwe_stream_add_value(current_ev, p,
  2998. end_buf, &iwe, IW_EV_PARAM_LEN);
  2999. }
  3000. current_ev = p;
  3001. }
  3002. if (bss) {
  3003. char *buf;
  3004. buf = kmalloc(30, GFP_ATOMIC);
  3005. if (buf) {
  3006. memset(&iwe, 0, sizeof(iwe));
  3007. iwe.cmd = IWEVCUSTOM;
  3008. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3009. iwe.u.data.length = strlen(buf);
  3010. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3011. &iwe, buf);
  3012. kfree(buf);
  3013. }
  3014. }
  3015. return current_ev;
  3016. }
  3017. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3018. {
  3019. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3020. char *current_ev = buf;
  3021. char *end_buf = buf + len;
  3022. struct ieee80211_sta_bss *bss;
  3023. spin_lock_bh(&local->sta_bss_lock);
  3024. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3025. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3026. spin_unlock_bh(&local->sta_bss_lock);
  3027. return -E2BIG;
  3028. }
  3029. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3030. end_buf);
  3031. }
  3032. spin_unlock_bh(&local->sta_bss_lock);
  3033. return current_ev - buf;
  3034. }
  3035. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3036. {
  3037. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3038. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3039. kfree(ifsta->extra_ie);
  3040. if (len == 0) {
  3041. ifsta->extra_ie = NULL;
  3042. ifsta->extra_ie_len = 0;
  3043. return 0;
  3044. }
  3045. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3046. if (!ifsta->extra_ie) {
  3047. ifsta->extra_ie_len = 0;
  3048. return -ENOMEM;
  3049. }
  3050. memcpy(ifsta->extra_ie, ie, len);
  3051. ifsta->extra_ie_len = len;
  3052. return 0;
  3053. }
  3054. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3055. struct sk_buff *skb, u8 *bssid,
  3056. u8 *addr)
  3057. {
  3058. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3059. struct sta_info *sta;
  3060. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3061. DECLARE_MAC_BUF(mac);
  3062. /* TODO: Could consider removing the least recently used entry and
  3063. * allow new one to be added. */
  3064. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3065. if (net_ratelimit()) {
  3066. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3067. "entry %s\n", dev->name, print_mac(mac, addr));
  3068. }
  3069. return NULL;
  3070. }
  3071. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3072. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3073. sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
  3074. if (!sta)
  3075. return NULL;
  3076. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  3077. rate_control_rate_init(sta, local);
  3078. return sta; /* caller will call sta_info_put() */
  3079. }
  3080. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3081. {
  3082. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3083. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3084. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3085. dev->name, reason);
  3086. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3087. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3088. return -EINVAL;
  3089. ieee80211_send_deauth(dev, ifsta, reason);
  3090. ieee80211_set_disassoc(dev, ifsta, 1);
  3091. return 0;
  3092. }
  3093. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3094. {
  3095. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3096. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3097. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3098. dev->name, reason);
  3099. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3100. return -EINVAL;
  3101. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3102. return -1;
  3103. ieee80211_send_disassoc(dev, ifsta, reason);
  3104. ieee80211_set_disassoc(dev, ifsta, 0);
  3105. return 0;
  3106. }