sched_fair.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_BATCH wake-up granularity.
  59. * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
  66. /*
  67. * SCHED_OTHER wake-up granularity.
  68. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  69. *
  70. * This option delays the preemption effects of decoupled workloads
  71. * and reduces their over-scheduling. Synchronous workloads will still
  72. * have immediate wakeup/sleep latencies.
  73. */
  74. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /**************************************************************
  77. * CFS operations on generic schedulable entities:
  78. */
  79. #ifdef CONFIG_FAIR_GROUP_SCHED
  80. /* cpu runqueue to which this cfs_rq is attached */
  81. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  82. {
  83. return cfs_rq->rq;
  84. }
  85. /* An entity is a task if it doesn't "own" a runqueue */
  86. #define entity_is_task(se) (!se->my_q)
  87. #else /* CONFIG_FAIR_GROUP_SCHED */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return container_of(cfs_rq, struct rq, cfs);
  91. }
  92. #define entity_is_task(se) 1
  93. #endif /* CONFIG_FAIR_GROUP_SCHED */
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. return container_of(se, struct task_struct, se);
  97. }
  98. /**************************************************************
  99. * Scheduling class tree data structure manipulation methods:
  100. */
  101. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  102. {
  103. s64 delta = (s64)(vruntime - min_vruntime);
  104. if (delta > 0)
  105. min_vruntime = vruntime;
  106. return min_vruntime;
  107. }
  108. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  109. {
  110. s64 delta = (s64)(vruntime - min_vruntime);
  111. if (delta < 0)
  112. min_vruntime = vruntime;
  113. return min_vruntime;
  114. }
  115. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  116. {
  117. return se->vruntime - cfs_rq->min_vruntime;
  118. }
  119. /*
  120. * Enqueue an entity into the rb-tree:
  121. */
  122. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  123. {
  124. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  125. struct rb_node *parent = NULL;
  126. struct sched_entity *entry;
  127. s64 key = entity_key(cfs_rq, se);
  128. int leftmost = 1;
  129. /*
  130. * Find the right place in the rbtree:
  131. */
  132. while (*link) {
  133. parent = *link;
  134. entry = rb_entry(parent, struct sched_entity, run_node);
  135. /*
  136. * We dont care about collisions. Nodes with
  137. * the same key stay together.
  138. */
  139. if (key < entity_key(cfs_rq, entry)) {
  140. link = &parent->rb_left;
  141. } else {
  142. link = &parent->rb_right;
  143. leftmost = 0;
  144. }
  145. }
  146. /*
  147. * Maintain a cache of leftmost tree entries (it is frequently
  148. * used):
  149. */
  150. if (leftmost) {
  151. cfs_rq->rb_leftmost = &se->run_node;
  152. /*
  153. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  154. * value tracking the leftmost vruntime in the tree.
  155. */
  156. cfs_rq->min_vruntime =
  157. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  158. }
  159. rb_link_node(&se->run_node, parent, link);
  160. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  161. }
  162. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  163. {
  164. if (cfs_rq->rb_leftmost == &se->run_node) {
  165. struct rb_node *next_node;
  166. struct sched_entity *next;
  167. next_node = rb_next(&se->run_node);
  168. cfs_rq->rb_leftmost = next_node;
  169. if (next_node) {
  170. next = rb_entry(next_node,
  171. struct sched_entity, run_node);
  172. cfs_rq->min_vruntime =
  173. max_vruntime(cfs_rq->min_vruntime,
  174. next->vruntime);
  175. }
  176. }
  177. if (cfs_rq->next == se)
  178. cfs_rq->next = NULL;
  179. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  180. }
  181. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  182. {
  183. return cfs_rq->rb_leftmost;
  184. }
  185. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  186. {
  187. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  188. }
  189. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  190. {
  191. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  192. if (!last)
  193. return NULL;
  194. return rb_entry(last, struct sched_entity, run_node);
  195. }
  196. /**************************************************************
  197. * Scheduling class statistics methods:
  198. */
  199. #ifdef CONFIG_SCHED_DEBUG
  200. int sched_nr_latency_handler(struct ctl_table *table, int write,
  201. struct file *filp, void __user *buffer, size_t *lenp,
  202. loff_t *ppos)
  203. {
  204. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  205. if (ret || !write)
  206. return ret;
  207. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  208. sysctl_sched_min_granularity);
  209. return 0;
  210. }
  211. #endif
  212. /*
  213. * The idea is to set a period in which each task runs once.
  214. *
  215. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  216. * this period because otherwise the slices get too small.
  217. *
  218. * p = (nr <= nl) ? l : l*nr/nl
  219. */
  220. static u64 __sched_period(unsigned long nr_running)
  221. {
  222. u64 period = sysctl_sched_latency;
  223. unsigned long nr_latency = sched_nr_latency;
  224. if (unlikely(nr_running > nr_latency)) {
  225. period = sysctl_sched_min_granularity;
  226. period *= nr_running;
  227. }
  228. return period;
  229. }
  230. /*
  231. * We calculate the wall-time slice from the period by taking a part
  232. * proportional to the weight.
  233. *
  234. * s = p*w/rw
  235. */
  236. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  237. {
  238. return calc_delta_mine(__sched_period(cfs_rq->nr_running),
  239. se->load.weight, &cfs_rq->load);
  240. }
  241. /*
  242. * We calculate the vruntime slice.
  243. *
  244. * vs = s/w = p/rw
  245. */
  246. static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
  247. {
  248. u64 vslice = __sched_period(nr_running);
  249. vslice *= NICE_0_LOAD;
  250. do_div(vslice, rq_weight);
  251. return vslice;
  252. }
  253. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  254. {
  255. return __sched_vslice(cfs_rq->load.weight + se->load.weight,
  256. cfs_rq->nr_running + 1);
  257. }
  258. /*
  259. * Update the current task's runtime statistics. Skip current tasks that
  260. * are not in our scheduling class.
  261. */
  262. static inline void
  263. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  264. unsigned long delta_exec)
  265. {
  266. unsigned long delta_exec_weighted;
  267. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  268. curr->sum_exec_runtime += delta_exec;
  269. schedstat_add(cfs_rq, exec_clock, delta_exec);
  270. delta_exec_weighted = delta_exec;
  271. if (unlikely(curr->load.weight != NICE_0_LOAD)) {
  272. delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
  273. &curr->load);
  274. }
  275. curr->vruntime += delta_exec_weighted;
  276. }
  277. static void update_curr(struct cfs_rq *cfs_rq)
  278. {
  279. struct sched_entity *curr = cfs_rq->curr;
  280. u64 now = rq_of(cfs_rq)->clock;
  281. unsigned long delta_exec;
  282. if (unlikely(!curr))
  283. return;
  284. /*
  285. * Get the amount of time the current task was running
  286. * since the last time we changed load (this cannot
  287. * overflow on 32 bits):
  288. */
  289. delta_exec = (unsigned long)(now - curr->exec_start);
  290. __update_curr(cfs_rq, curr, delta_exec);
  291. curr->exec_start = now;
  292. if (entity_is_task(curr)) {
  293. struct task_struct *curtask = task_of(curr);
  294. cpuacct_charge(curtask, delta_exec);
  295. }
  296. }
  297. static inline void
  298. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  299. {
  300. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  301. }
  302. /*
  303. * Task is being enqueued - update stats:
  304. */
  305. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  306. {
  307. /*
  308. * Are we enqueueing a waiting task? (for current tasks
  309. * a dequeue/enqueue event is a NOP)
  310. */
  311. if (se != cfs_rq->curr)
  312. update_stats_wait_start(cfs_rq, se);
  313. }
  314. static void
  315. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  316. {
  317. schedstat_set(se->wait_max, max(se->wait_max,
  318. rq_of(cfs_rq)->clock - se->wait_start));
  319. schedstat_set(se->wait_count, se->wait_count + 1);
  320. schedstat_set(se->wait_sum, se->wait_sum +
  321. rq_of(cfs_rq)->clock - se->wait_start);
  322. schedstat_set(se->wait_start, 0);
  323. }
  324. static inline void
  325. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  326. {
  327. /*
  328. * Mark the end of the wait period if dequeueing a
  329. * waiting task:
  330. */
  331. if (se != cfs_rq->curr)
  332. update_stats_wait_end(cfs_rq, se);
  333. }
  334. /*
  335. * We are picking a new current task - update its stats:
  336. */
  337. static inline void
  338. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  339. {
  340. /*
  341. * We are starting a new run period:
  342. */
  343. se->exec_start = rq_of(cfs_rq)->clock;
  344. }
  345. /**************************************************
  346. * Scheduling class queueing methods:
  347. */
  348. static void
  349. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  350. {
  351. update_load_add(&cfs_rq->load, se->load.weight);
  352. cfs_rq->nr_running++;
  353. se->on_rq = 1;
  354. }
  355. static void
  356. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  357. {
  358. update_load_sub(&cfs_rq->load, se->load.weight);
  359. cfs_rq->nr_running--;
  360. se->on_rq = 0;
  361. }
  362. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  363. {
  364. #ifdef CONFIG_SCHEDSTATS
  365. if (se->sleep_start) {
  366. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  367. struct task_struct *tsk = task_of(se);
  368. if ((s64)delta < 0)
  369. delta = 0;
  370. if (unlikely(delta > se->sleep_max))
  371. se->sleep_max = delta;
  372. se->sleep_start = 0;
  373. se->sum_sleep_runtime += delta;
  374. account_scheduler_latency(tsk, delta >> 10, 1);
  375. }
  376. if (se->block_start) {
  377. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  378. struct task_struct *tsk = task_of(se);
  379. if ((s64)delta < 0)
  380. delta = 0;
  381. if (unlikely(delta > se->block_max))
  382. se->block_max = delta;
  383. se->block_start = 0;
  384. se->sum_sleep_runtime += delta;
  385. /*
  386. * Blocking time is in units of nanosecs, so shift by 20 to
  387. * get a milliseconds-range estimation of the amount of
  388. * time that the task spent sleeping:
  389. */
  390. if (unlikely(prof_on == SLEEP_PROFILING)) {
  391. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  392. delta >> 20);
  393. }
  394. account_scheduler_latency(tsk, delta >> 10, 0);
  395. }
  396. #endif
  397. }
  398. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  399. {
  400. #ifdef CONFIG_SCHED_DEBUG
  401. s64 d = se->vruntime - cfs_rq->min_vruntime;
  402. if (d < 0)
  403. d = -d;
  404. if (d > 3*sysctl_sched_latency)
  405. schedstat_inc(cfs_rq, nr_spread_over);
  406. #endif
  407. }
  408. static void
  409. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  410. {
  411. u64 vruntime;
  412. if (first_fair(cfs_rq)) {
  413. vruntime = min_vruntime(cfs_rq->min_vruntime,
  414. __pick_next_entity(cfs_rq)->vruntime);
  415. } else
  416. vruntime = cfs_rq->min_vruntime;
  417. /*
  418. * The 'current' period is already promised to the current tasks,
  419. * however the extra weight of the new task will slow them down a
  420. * little, place the new task so that it fits in the slot that
  421. * stays open at the end.
  422. */
  423. if (initial && sched_feat(START_DEBIT))
  424. vruntime += sched_vslice_add(cfs_rq, se);
  425. if (!initial) {
  426. /* sleeps upto a single latency don't count. */
  427. if (sched_feat(NEW_FAIR_SLEEPERS))
  428. vruntime -= sysctl_sched_latency;
  429. /* ensure we never gain time by being placed backwards. */
  430. vruntime = max_vruntime(se->vruntime, vruntime);
  431. }
  432. se->vruntime = vruntime;
  433. }
  434. static void
  435. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  436. {
  437. /*
  438. * Update run-time statistics of the 'current'.
  439. */
  440. update_curr(cfs_rq);
  441. if (wakeup) {
  442. place_entity(cfs_rq, se, 0);
  443. enqueue_sleeper(cfs_rq, se);
  444. }
  445. update_stats_enqueue(cfs_rq, se);
  446. check_spread(cfs_rq, se);
  447. if (se != cfs_rq->curr)
  448. __enqueue_entity(cfs_rq, se);
  449. account_entity_enqueue(cfs_rq, se);
  450. }
  451. static void update_avg(u64 *avg, u64 sample)
  452. {
  453. s64 diff = sample - *avg;
  454. *avg += diff >> 3;
  455. }
  456. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  457. {
  458. if (!se->last_wakeup)
  459. return;
  460. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  461. se->last_wakeup = 0;
  462. }
  463. static void
  464. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  465. {
  466. /*
  467. * Update run-time statistics of the 'current'.
  468. */
  469. update_curr(cfs_rq);
  470. update_stats_dequeue(cfs_rq, se);
  471. if (sleep) {
  472. update_avg_stats(cfs_rq, se);
  473. #ifdef CONFIG_SCHEDSTATS
  474. if (entity_is_task(se)) {
  475. struct task_struct *tsk = task_of(se);
  476. if (tsk->state & TASK_INTERRUPTIBLE)
  477. se->sleep_start = rq_of(cfs_rq)->clock;
  478. if (tsk->state & TASK_UNINTERRUPTIBLE)
  479. se->block_start = rq_of(cfs_rq)->clock;
  480. }
  481. #endif
  482. }
  483. if (se != cfs_rq->curr)
  484. __dequeue_entity(cfs_rq, se);
  485. account_entity_dequeue(cfs_rq, se);
  486. }
  487. /*
  488. * Preempt the current task with a newly woken task if needed:
  489. */
  490. static void
  491. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  492. {
  493. unsigned long ideal_runtime, delta_exec;
  494. ideal_runtime = sched_slice(cfs_rq, curr);
  495. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  496. if (delta_exec > ideal_runtime)
  497. resched_task(rq_of(cfs_rq)->curr);
  498. }
  499. static void
  500. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  501. {
  502. /* 'current' is not kept within the tree. */
  503. if (se->on_rq) {
  504. /*
  505. * Any task has to be enqueued before it get to execute on
  506. * a CPU. So account for the time it spent waiting on the
  507. * runqueue.
  508. */
  509. update_stats_wait_end(cfs_rq, se);
  510. __dequeue_entity(cfs_rq, se);
  511. }
  512. update_stats_curr_start(cfs_rq, se);
  513. cfs_rq->curr = se;
  514. #ifdef CONFIG_SCHEDSTATS
  515. /*
  516. * Track our maximum slice length, if the CPU's load is at
  517. * least twice that of our own weight (i.e. dont track it
  518. * when there are only lesser-weight tasks around):
  519. */
  520. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  521. se->slice_max = max(se->slice_max,
  522. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  523. }
  524. #endif
  525. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  526. }
  527. static struct sched_entity *
  528. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  529. {
  530. s64 diff, gran;
  531. if (!cfs_rq->next)
  532. return se;
  533. diff = cfs_rq->next->vruntime - se->vruntime;
  534. if (diff < 0)
  535. return se;
  536. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
  537. if (diff > gran)
  538. return se;
  539. return cfs_rq->next;
  540. }
  541. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  542. {
  543. struct sched_entity *se = NULL;
  544. if (first_fair(cfs_rq)) {
  545. se = __pick_next_entity(cfs_rq);
  546. se = pick_next(cfs_rq, se);
  547. set_next_entity(cfs_rq, se);
  548. }
  549. return se;
  550. }
  551. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  552. {
  553. /*
  554. * If still on the runqueue then deactivate_task()
  555. * was not called and update_curr() has to be done:
  556. */
  557. if (prev->on_rq)
  558. update_curr(cfs_rq);
  559. check_spread(cfs_rq, prev);
  560. if (prev->on_rq) {
  561. update_stats_wait_start(cfs_rq, prev);
  562. /* Put 'current' back into the tree. */
  563. __enqueue_entity(cfs_rq, prev);
  564. }
  565. cfs_rq->curr = NULL;
  566. }
  567. static void
  568. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  569. {
  570. /*
  571. * Update run-time statistics of the 'current'.
  572. */
  573. update_curr(cfs_rq);
  574. #ifdef CONFIG_SCHED_HRTICK
  575. /*
  576. * queued ticks are scheduled to match the slice, so don't bother
  577. * validating it and just reschedule.
  578. */
  579. if (queued)
  580. return resched_task(rq_of(cfs_rq)->curr);
  581. /*
  582. * don't let the period tick interfere with the hrtick preemption
  583. */
  584. if (!sched_feat(DOUBLE_TICK) &&
  585. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  586. return;
  587. #endif
  588. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  589. check_preempt_tick(cfs_rq, curr);
  590. }
  591. /**************************************************
  592. * CFS operations on tasks:
  593. */
  594. #ifdef CONFIG_FAIR_GROUP_SCHED
  595. /* Walk up scheduling entities hierarchy */
  596. #define for_each_sched_entity(se) \
  597. for (; se; se = se->parent)
  598. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  599. {
  600. return p->se.cfs_rq;
  601. }
  602. /* runqueue on which this entity is (to be) queued */
  603. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  604. {
  605. return se->cfs_rq;
  606. }
  607. /* runqueue "owned" by this group */
  608. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  609. {
  610. return grp->my_q;
  611. }
  612. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  613. * another cpu ('this_cpu')
  614. */
  615. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  616. {
  617. return cfs_rq->tg->cfs_rq[this_cpu];
  618. }
  619. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  620. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  621. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  622. /* Do the two (enqueued) entities belong to the same group ? */
  623. static inline int
  624. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  625. {
  626. if (se->cfs_rq == pse->cfs_rq)
  627. return 1;
  628. return 0;
  629. }
  630. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  631. {
  632. return se->parent;
  633. }
  634. #else /* CONFIG_FAIR_GROUP_SCHED */
  635. #define for_each_sched_entity(se) \
  636. for (; se; se = NULL)
  637. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  638. {
  639. return &task_rq(p)->cfs;
  640. }
  641. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  642. {
  643. struct task_struct *p = task_of(se);
  644. struct rq *rq = task_rq(p);
  645. return &rq->cfs;
  646. }
  647. /* runqueue "owned" by this group */
  648. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  649. {
  650. return NULL;
  651. }
  652. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  653. {
  654. return &cpu_rq(this_cpu)->cfs;
  655. }
  656. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  657. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  658. static inline int
  659. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  660. {
  661. return 1;
  662. }
  663. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  664. {
  665. return NULL;
  666. }
  667. #endif /* CONFIG_FAIR_GROUP_SCHED */
  668. #ifdef CONFIG_SCHED_HRTICK
  669. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  670. {
  671. int requeue = rq->curr == p;
  672. struct sched_entity *se = &p->se;
  673. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  674. WARN_ON(task_rq(p) != rq);
  675. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  676. u64 slice = sched_slice(cfs_rq, se);
  677. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  678. s64 delta = slice - ran;
  679. if (delta < 0) {
  680. if (rq->curr == p)
  681. resched_task(p);
  682. return;
  683. }
  684. /*
  685. * Don't schedule slices shorter than 10000ns, that just
  686. * doesn't make sense. Rely on vruntime for fairness.
  687. */
  688. if (!requeue)
  689. delta = max(10000LL, delta);
  690. hrtick_start(rq, delta, requeue);
  691. }
  692. }
  693. #else
  694. static inline void
  695. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  696. {
  697. }
  698. #endif
  699. /*
  700. * The enqueue_task method is called before nr_running is
  701. * increased. Here we update the fair scheduling stats and
  702. * then put the task into the rbtree:
  703. */
  704. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  705. {
  706. struct cfs_rq *cfs_rq;
  707. struct sched_entity *se = &p->se;
  708. for_each_sched_entity(se) {
  709. if (se->on_rq)
  710. break;
  711. cfs_rq = cfs_rq_of(se);
  712. enqueue_entity(cfs_rq, se, wakeup);
  713. wakeup = 1;
  714. }
  715. hrtick_start_fair(rq, rq->curr);
  716. }
  717. /*
  718. * The dequeue_task method is called before nr_running is
  719. * decreased. We remove the task from the rbtree and
  720. * update the fair scheduling stats:
  721. */
  722. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  723. {
  724. struct cfs_rq *cfs_rq;
  725. struct sched_entity *se = &p->se;
  726. for_each_sched_entity(se) {
  727. cfs_rq = cfs_rq_of(se);
  728. dequeue_entity(cfs_rq, se, sleep);
  729. /* Don't dequeue parent if it has other entities besides us */
  730. if (cfs_rq->load.weight)
  731. break;
  732. sleep = 1;
  733. }
  734. hrtick_start_fair(rq, rq->curr);
  735. }
  736. /*
  737. * sched_yield() support is very simple - we dequeue and enqueue.
  738. *
  739. * If compat_yield is turned on then we requeue to the end of the tree.
  740. */
  741. static void yield_task_fair(struct rq *rq)
  742. {
  743. struct task_struct *curr = rq->curr;
  744. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  745. struct sched_entity *rightmost, *se = &curr->se;
  746. /*
  747. * Are we the only task in the tree?
  748. */
  749. if (unlikely(cfs_rq->nr_running == 1))
  750. return;
  751. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  752. __update_rq_clock(rq);
  753. /*
  754. * Update run-time statistics of the 'current'.
  755. */
  756. update_curr(cfs_rq);
  757. return;
  758. }
  759. /*
  760. * Find the rightmost entry in the rbtree:
  761. */
  762. rightmost = __pick_last_entity(cfs_rq);
  763. /*
  764. * Already in the rightmost position?
  765. */
  766. if (unlikely(rightmost->vruntime < se->vruntime))
  767. return;
  768. /*
  769. * Minimally necessary key value to be last in the tree:
  770. * Upon rescheduling, sched_class::put_prev_task() will place
  771. * 'current' within the tree based on its new key value.
  772. */
  773. se->vruntime = rightmost->vruntime + 1;
  774. }
  775. /*
  776. * wake_idle() will wake a task on an idle cpu if task->cpu is
  777. * not idle and an idle cpu is available. The span of cpus to
  778. * search starts with cpus closest then further out as needed,
  779. * so we always favor a closer, idle cpu.
  780. *
  781. * Returns the CPU we should wake onto.
  782. */
  783. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  784. static int wake_idle(int cpu, struct task_struct *p)
  785. {
  786. cpumask_t tmp;
  787. struct sched_domain *sd;
  788. int i;
  789. /*
  790. * If it is idle, then it is the best cpu to run this task.
  791. *
  792. * This cpu is also the best, if it has more than one task already.
  793. * Siblings must be also busy(in most cases) as they didn't already
  794. * pickup the extra load from this cpu and hence we need not check
  795. * sibling runqueue info. This will avoid the checks and cache miss
  796. * penalities associated with that.
  797. */
  798. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  799. return cpu;
  800. for_each_domain(cpu, sd) {
  801. if (sd->flags & SD_WAKE_IDLE) {
  802. cpus_and(tmp, sd->span, p->cpus_allowed);
  803. for_each_cpu_mask(i, tmp) {
  804. if (idle_cpu(i)) {
  805. if (i != task_cpu(p)) {
  806. schedstat_inc(p,
  807. se.nr_wakeups_idle);
  808. }
  809. return i;
  810. }
  811. }
  812. } else {
  813. break;
  814. }
  815. }
  816. return cpu;
  817. }
  818. #else
  819. static inline int wake_idle(int cpu, struct task_struct *p)
  820. {
  821. return cpu;
  822. }
  823. #endif
  824. #ifdef CONFIG_SMP
  825. static const struct sched_class fair_sched_class;
  826. static int
  827. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  828. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  829. int idx, unsigned long load, unsigned long this_load,
  830. unsigned int imbalance)
  831. {
  832. struct task_struct *curr = this_rq->curr;
  833. unsigned long tl = this_load;
  834. unsigned long tl_per_task;
  835. if (!(this_sd->flags & SD_WAKE_AFFINE))
  836. return 0;
  837. /*
  838. * If the currently running task will sleep within
  839. * a reasonable amount of time then attract this newly
  840. * woken task:
  841. */
  842. if (sync && curr->sched_class == &fair_sched_class) {
  843. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  844. p->se.avg_overlap < sysctl_sched_migration_cost)
  845. return 1;
  846. }
  847. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  848. tl_per_task = cpu_avg_load_per_task(this_cpu);
  849. /*
  850. * If sync wakeup then subtract the (maximum possible)
  851. * effect of the currently running task from the load
  852. * of the current CPU:
  853. */
  854. if (sync)
  855. tl -= current->se.load.weight;
  856. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  857. 100*(tl + p->se.load.weight) <= imbalance*load) {
  858. /*
  859. * This domain has SD_WAKE_AFFINE and
  860. * p is cache cold in this domain, and
  861. * there is no bad imbalance.
  862. */
  863. schedstat_inc(this_sd, ttwu_move_affine);
  864. schedstat_inc(p, se.nr_wakeups_affine);
  865. return 1;
  866. }
  867. return 0;
  868. }
  869. static int select_task_rq_fair(struct task_struct *p, int sync)
  870. {
  871. struct sched_domain *sd, *this_sd = NULL;
  872. int prev_cpu, this_cpu, new_cpu;
  873. unsigned long load, this_load;
  874. struct rq *rq, *this_rq;
  875. unsigned int imbalance;
  876. int idx;
  877. prev_cpu = task_cpu(p);
  878. rq = task_rq(p);
  879. this_cpu = smp_processor_id();
  880. this_rq = cpu_rq(this_cpu);
  881. new_cpu = prev_cpu;
  882. /*
  883. * 'this_sd' is the first domain that both
  884. * this_cpu and prev_cpu are present in:
  885. */
  886. for_each_domain(this_cpu, sd) {
  887. if (cpu_isset(prev_cpu, sd->span)) {
  888. this_sd = sd;
  889. break;
  890. }
  891. }
  892. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  893. goto out;
  894. /*
  895. * Check for affine wakeup and passive balancing possibilities.
  896. */
  897. if (!this_sd)
  898. goto out;
  899. idx = this_sd->wake_idx;
  900. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  901. load = source_load(prev_cpu, idx);
  902. this_load = target_load(this_cpu, idx);
  903. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  904. load, this_load, imbalance))
  905. return this_cpu;
  906. if (prev_cpu == this_cpu)
  907. goto out;
  908. /*
  909. * Start passive balancing when half the imbalance_pct
  910. * limit is reached.
  911. */
  912. if (this_sd->flags & SD_WAKE_BALANCE) {
  913. if (imbalance*this_load <= 100*load) {
  914. schedstat_inc(this_sd, ttwu_move_balance);
  915. schedstat_inc(p, se.nr_wakeups_passive);
  916. return this_cpu;
  917. }
  918. }
  919. out:
  920. return wake_idle(new_cpu, p);
  921. }
  922. #endif /* CONFIG_SMP */
  923. /*
  924. * Preempt the current task with a newly woken task if needed:
  925. */
  926. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  927. {
  928. struct task_struct *curr = rq->curr;
  929. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  930. struct sched_entity *se = &curr->se, *pse = &p->se;
  931. unsigned long gran;
  932. if (unlikely(rt_prio(p->prio))) {
  933. update_rq_clock(rq);
  934. update_curr(cfs_rq);
  935. resched_task(curr);
  936. return;
  937. }
  938. se->last_wakeup = se->sum_exec_runtime;
  939. if (unlikely(se == pse))
  940. return;
  941. cfs_rq_of(pse)->next = pse;
  942. /*
  943. * Batch tasks do not preempt (their preemption is driven by
  944. * the tick):
  945. */
  946. if (unlikely(p->policy == SCHED_BATCH))
  947. return;
  948. if (!sched_feat(WAKEUP_PREEMPT))
  949. return;
  950. while (!is_same_group(se, pse)) {
  951. se = parent_entity(se);
  952. pse = parent_entity(pse);
  953. }
  954. gran = sysctl_sched_wakeup_granularity;
  955. /*
  956. * More easily preempt - nice tasks, while not making
  957. * it harder for + nice tasks.
  958. */
  959. if (unlikely(se->load.weight > NICE_0_LOAD))
  960. gran = calc_delta_fair(gran, &se->load);
  961. if (pse->vruntime + gran < se->vruntime)
  962. resched_task(curr);
  963. }
  964. static struct task_struct *pick_next_task_fair(struct rq *rq)
  965. {
  966. struct task_struct *p;
  967. struct cfs_rq *cfs_rq = &rq->cfs;
  968. struct sched_entity *se;
  969. if (unlikely(!cfs_rq->nr_running))
  970. return NULL;
  971. do {
  972. se = pick_next_entity(cfs_rq);
  973. cfs_rq = group_cfs_rq(se);
  974. } while (cfs_rq);
  975. p = task_of(se);
  976. hrtick_start_fair(rq, p);
  977. return p;
  978. }
  979. /*
  980. * Account for a descheduled task:
  981. */
  982. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  983. {
  984. struct sched_entity *se = &prev->se;
  985. struct cfs_rq *cfs_rq;
  986. for_each_sched_entity(se) {
  987. cfs_rq = cfs_rq_of(se);
  988. put_prev_entity(cfs_rq, se);
  989. }
  990. }
  991. #ifdef CONFIG_SMP
  992. /**************************************************
  993. * Fair scheduling class load-balancing methods:
  994. */
  995. /*
  996. * Load-balancing iterator. Note: while the runqueue stays locked
  997. * during the whole iteration, the current task might be
  998. * dequeued so the iterator has to be dequeue-safe. Here we
  999. * achieve that by always pre-iterating before returning
  1000. * the current task:
  1001. */
  1002. static struct task_struct *
  1003. __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
  1004. {
  1005. struct task_struct *p;
  1006. if (!curr)
  1007. return NULL;
  1008. p = rb_entry(curr, struct task_struct, se.run_node);
  1009. cfs_rq->rb_load_balance_curr = rb_next(curr);
  1010. return p;
  1011. }
  1012. static struct task_struct *load_balance_start_fair(void *arg)
  1013. {
  1014. struct cfs_rq *cfs_rq = arg;
  1015. return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
  1016. }
  1017. static struct task_struct *load_balance_next_fair(void *arg)
  1018. {
  1019. struct cfs_rq *cfs_rq = arg;
  1020. return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
  1021. }
  1022. #ifdef CONFIG_FAIR_GROUP_SCHED
  1023. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  1024. {
  1025. struct sched_entity *curr;
  1026. struct task_struct *p;
  1027. if (!cfs_rq->nr_running || !first_fair(cfs_rq))
  1028. return MAX_PRIO;
  1029. curr = cfs_rq->curr;
  1030. if (!curr)
  1031. curr = __pick_next_entity(cfs_rq);
  1032. p = task_of(curr);
  1033. return p->prio;
  1034. }
  1035. #endif
  1036. static unsigned long
  1037. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1038. unsigned long max_load_move,
  1039. struct sched_domain *sd, enum cpu_idle_type idle,
  1040. int *all_pinned, int *this_best_prio)
  1041. {
  1042. struct cfs_rq *busy_cfs_rq;
  1043. long rem_load_move = max_load_move;
  1044. struct rq_iterator cfs_rq_iterator;
  1045. cfs_rq_iterator.start = load_balance_start_fair;
  1046. cfs_rq_iterator.next = load_balance_next_fair;
  1047. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1048. #ifdef CONFIG_FAIR_GROUP_SCHED
  1049. struct cfs_rq *this_cfs_rq;
  1050. long imbalance;
  1051. unsigned long maxload;
  1052. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  1053. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  1054. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  1055. if (imbalance <= 0)
  1056. continue;
  1057. /* Don't pull more than imbalance/2 */
  1058. imbalance /= 2;
  1059. maxload = min(rem_load_move, imbalance);
  1060. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  1061. #else
  1062. # define maxload rem_load_move
  1063. #endif
  1064. /*
  1065. * pass busy_cfs_rq argument into
  1066. * load_balance_[start|next]_fair iterators
  1067. */
  1068. cfs_rq_iterator.arg = busy_cfs_rq;
  1069. rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
  1070. maxload, sd, idle, all_pinned,
  1071. this_best_prio,
  1072. &cfs_rq_iterator);
  1073. if (rem_load_move <= 0)
  1074. break;
  1075. }
  1076. return max_load_move - rem_load_move;
  1077. }
  1078. static int
  1079. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1080. struct sched_domain *sd, enum cpu_idle_type idle)
  1081. {
  1082. struct cfs_rq *busy_cfs_rq;
  1083. struct rq_iterator cfs_rq_iterator;
  1084. cfs_rq_iterator.start = load_balance_start_fair;
  1085. cfs_rq_iterator.next = load_balance_next_fair;
  1086. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1087. /*
  1088. * pass busy_cfs_rq argument into
  1089. * load_balance_[start|next]_fair iterators
  1090. */
  1091. cfs_rq_iterator.arg = busy_cfs_rq;
  1092. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1093. &cfs_rq_iterator))
  1094. return 1;
  1095. }
  1096. return 0;
  1097. }
  1098. #endif
  1099. /*
  1100. * scheduler tick hitting a task of our scheduling class:
  1101. */
  1102. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1103. {
  1104. struct cfs_rq *cfs_rq;
  1105. struct sched_entity *se = &curr->se;
  1106. for_each_sched_entity(se) {
  1107. cfs_rq = cfs_rq_of(se);
  1108. entity_tick(cfs_rq, se, queued);
  1109. }
  1110. }
  1111. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1112. /*
  1113. * Share the fairness runtime between parent and child, thus the
  1114. * total amount of pressure for CPU stays equal - new tasks
  1115. * get a chance to run but frequent forkers are not allowed to
  1116. * monopolize the CPU. Note: the parent runqueue is locked,
  1117. * the child is not running yet.
  1118. */
  1119. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1120. {
  1121. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1122. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1123. int this_cpu = smp_processor_id();
  1124. sched_info_queued(p);
  1125. update_curr(cfs_rq);
  1126. place_entity(cfs_rq, se, 1);
  1127. /* 'curr' will be NULL if the child belongs to a different group */
  1128. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1129. curr && curr->vruntime < se->vruntime) {
  1130. /*
  1131. * Upon rescheduling, sched_class::put_prev_task() will place
  1132. * 'current' within the tree based on its new key value.
  1133. */
  1134. swap(curr->vruntime, se->vruntime);
  1135. }
  1136. enqueue_task_fair(rq, p, 0);
  1137. resched_task(rq->curr);
  1138. }
  1139. /*
  1140. * Priority of the task has changed. Check to see if we preempt
  1141. * the current task.
  1142. */
  1143. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1144. int oldprio, int running)
  1145. {
  1146. /*
  1147. * Reschedule if we are currently running on this runqueue and
  1148. * our priority decreased, or if we are not currently running on
  1149. * this runqueue and our priority is higher than the current's
  1150. */
  1151. if (running) {
  1152. if (p->prio > oldprio)
  1153. resched_task(rq->curr);
  1154. } else
  1155. check_preempt_curr(rq, p);
  1156. }
  1157. /*
  1158. * We switched to the sched_fair class.
  1159. */
  1160. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1161. int running)
  1162. {
  1163. /*
  1164. * We were most likely switched from sched_rt, so
  1165. * kick off the schedule if running, otherwise just see
  1166. * if we can still preempt the current task.
  1167. */
  1168. if (running)
  1169. resched_task(rq->curr);
  1170. else
  1171. check_preempt_curr(rq, p);
  1172. }
  1173. /* Account for a task changing its policy or group.
  1174. *
  1175. * This routine is mostly called to set cfs_rq->curr field when a task
  1176. * migrates between groups/classes.
  1177. */
  1178. static void set_curr_task_fair(struct rq *rq)
  1179. {
  1180. struct sched_entity *se = &rq->curr->se;
  1181. for_each_sched_entity(se)
  1182. set_next_entity(cfs_rq_of(se), se);
  1183. }
  1184. #ifdef CONFIG_FAIR_GROUP_SCHED
  1185. static void moved_group_fair(struct task_struct *p)
  1186. {
  1187. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1188. update_curr(cfs_rq);
  1189. place_entity(cfs_rq, &p->se, 1);
  1190. }
  1191. #endif
  1192. /*
  1193. * All the scheduling class methods:
  1194. */
  1195. static const struct sched_class fair_sched_class = {
  1196. .next = &idle_sched_class,
  1197. .enqueue_task = enqueue_task_fair,
  1198. .dequeue_task = dequeue_task_fair,
  1199. .yield_task = yield_task_fair,
  1200. #ifdef CONFIG_SMP
  1201. .select_task_rq = select_task_rq_fair,
  1202. #endif /* CONFIG_SMP */
  1203. .check_preempt_curr = check_preempt_wakeup,
  1204. .pick_next_task = pick_next_task_fair,
  1205. .put_prev_task = put_prev_task_fair,
  1206. #ifdef CONFIG_SMP
  1207. .load_balance = load_balance_fair,
  1208. .move_one_task = move_one_task_fair,
  1209. #endif
  1210. .set_curr_task = set_curr_task_fair,
  1211. .task_tick = task_tick_fair,
  1212. .task_new = task_new_fair,
  1213. .prio_changed = prio_changed_fair,
  1214. .switched_to = switched_to_fair,
  1215. #ifdef CONFIG_FAIR_GROUP_SCHED
  1216. .moved_group = moved_group_fair,
  1217. #endif
  1218. };
  1219. #ifdef CONFIG_SCHED_DEBUG
  1220. static void print_cfs_stats(struct seq_file *m, int cpu)
  1221. {
  1222. struct cfs_rq *cfs_rq;
  1223. #ifdef CONFIG_FAIR_GROUP_SCHED
  1224. print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
  1225. #endif
  1226. rcu_read_lock();
  1227. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1228. print_cfs_rq(m, cpu, cfs_rq);
  1229. rcu_read_unlock();
  1230. }
  1231. #endif