fork.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cgroup.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/memcontrol.h>
  42. #include <linux/profile.h>
  43. #include <linux/rmap.h>
  44. #include <linux/acct.h>
  45. #include <linux/tsacct_kern.h>
  46. #include <linux/cn_proc.h>
  47. #include <linux/freezer.h>
  48. #include <linux/delayacct.h>
  49. #include <linux/taskstats_kern.h>
  50. #include <linux/random.h>
  51. #include <linux/tty.h>
  52. #include <linux/proc_fs.h>
  53. #include <linux/blkdev.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/cacheflush.h>
  59. #include <asm/tlbflush.h>
  60. /*
  61. * Protected counters by write_lock_irq(&tasklist_lock)
  62. */
  63. unsigned long total_forks; /* Handle normal Linux uptimes. */
  64. int nr_threads; /* The idle threads do not count.. */
  65. int max_threads; /* tunable limit on nr_threads */
  66. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  67. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  68. int nr_processes(void)
  69. {
  70. int cpu;
  71. int total = 0;
  72. for_each_online_cpu(cpu)
  73. total += per_cpu(process_counts, cpu);
  74. return total;
  75. }
  76. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  77. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  78. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  79. static struct kmem_cache *task_struct_cachep;
  80. #endif
  81. /* SLAB cache for signal_struct structures (tsk->signal) */
  82. static struct kmem_cache *signal_cachep;
  83. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  84. struct kmem_cache *sighand_cachep;
  85. /* SLAB cache for files_struct structures (tsk->files) */
  86. struct kmem_cache *files_cachep;
  87. /* SLAB cache for fs_struct structures (tsk->fs) */
  88. struct kmem_cache *fs_cachep;
  89. /* SLAB cache for vm_area_struct structures */
  90. struct kmem_cache *vm_area_cachep;
  91. /* SLAB cache for mm_struct structures (tsk->mm) */
  92. static struct kmem_cache *mm_cachep;
  93. void free_task(struct task_struct *tsk)
  94. {
  95. prop_local_destroy_single(&tsk->dirties);
  96. free_thread_info(tsk->stack);
  97. rt_mutex_debug_task_free(tsk);
  98. free_task_struct(tsk);
  99. }
  100. EXPORT_SYMBOL(free_task);
  101. void __put_task_struct(struct task_struct *tsk)
  102. {
  103. WARN_ON(!tsk->exit_state);
  104. WARN_ON(atomic_read(&tsk->usage));
  105. WARN_ON(tsk == current);
  106. security_task_free(tsk);
  107. free_uid(tsk->user);
  108. put_group_info(tsk->group_info);
  109. delayacct_tsk_free(tsk);
  110. if (!profile_handoff_task(tsk))
  111. free_task(tsk);
  112. }
  113. void __init fork_init(unsigned long mempages)
  114. {
  115. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  116. #ifndef ARCH_MIN_TASKALIGN
  117. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  118. #endif
  119. /* create a slab on which task_structs can be allocated */
  120. task_struct_cachep =
  121. kmem_cache_create("task_struct", sizeof(struct task_struct),
  122. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  123. #endif
  124. /*
  125. * The default maximum number of threads is set to a safe
  126. * value: the thread structures can take up at most half
  127. * of memory.
  128. */
  129. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  130. /*
  131. * we need to allow at least 20 threads to boot a system
  132. */
  133. if(max_threads < 20)
  134. max_threads = 20;
  135. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  136. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  137. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  138. init_task.signal->rlim[RLIMIT_NPROC];
  139. }
  140. static struct task_struct *dup_task_struct(struct task_struct *orig)
  141. {
  142. struct task_struct *tsk;
  143. struct thread_info *ti;
  144. int err;
  145. prepare_to_copy(orig);
  146. tsk = alloc_task_struct();
  147. if (!tsk)
  148. return NULL;
  149. ti = alloc_thread_info(tsk);
  150. if (!ti) {
  151. free_task_struct(tsk);
  152. return NULL;
  153. }
  154. *tsk = *orig;
  155. tsk->stack = ti;
  156. err = prop_local_init_single(&tsk->dirties);
  157. if (err) {
  158. free_thread_info(ti);
  159. free_task_struct(tsk);
  160. return NULL;
  161. }
  162. setup_thread_stack(tsk, orig);
  163. #ifdef CONFIG_CC_STACKPROTECTOR
  164. tsk->stack_canary = get_random_int();
  165. #endif
  166. /* One for us, one for whoever does the "release_task()" (usually parent) */
  167. atomic_set(&tsk->usage,2);
  168. atomic_set(&tsk->fs_excl, 0);
  169. #ifdef CONFIG_BLK_DEV_IO_TRACE
  170. tsk->btrace_seq = 0;
  171. #endif
  172. tsk->splice_pipe = NULL;
  173. return tsk;
  174. }
  175. #ifdef CONFIG_MMU
  176. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  177. {
  178. struct vm_area_struct *mpnt, *tmp, **pprev;
  179. struct rb_node **rb_link, *rb_parent;
  180. int retval;
  181. unsigned long charge;
  182. struct mempolicy *pol;
  183. down_write(&oldmm->mmap_sem);
  184. flush_cache_dup_mm(oldmm);
  185. /*
  186. * Not linked in yet - no deadlock potential:
  187. */
  188. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  189. mm->locked_vm = 0;
  190. mm->mmap = NULL;
  191. mm->mmap_cache = NULL;
  192. mm->free_area_cache = oldmm->mmap_base;
  193. mm->cached_hole_size = ~0UL;
  194. mm->map_count = 0;
  195. cpus_clear(mm->cpu_vm_mask);
  196. mm->mm_rb = RB_ROOT;
  197. rb_link = &mm->mm_rb.rb_node;
  198. rb_parent = NULL;
  199. pprev = &mm->mmap;
  200. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  201. struct file *file;
  202. if (mpnt->vm_flags & VM_DONTCOPY) {
  203. long pages = vma_pages(mpnt);
  204. mm->total_vm -= pages;
  205. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  206. -pages);
  207. continue;
  208. }
  209. charge = 0;
  210. if (mpnt->vm_flags & VM_ACCOUNT) {
  211. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  212. if (security_vm_enough_memory(len))
  213. goto fail_nomem;
  214. charge = len;
  215. }
  216. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  217. if (!tmp)
  218. goto fail_nomem;
  219. *tmp = *mpnt;
  220. pol = mpol_copy(vma_policy(mpnt));
  221. retval = PTR_ERR(pol);
  222. if (IS_ERR(pol))
  223. goto fail_nomem_policy;
  224. vma_set_policy(tmp, pol);
  225. tmp->vm_flags &= ~VM_LOCKED;
  226. tmp->vm_mm = mm;
  227. tmp->vm_next = NULL;
  228. anon_vma_link(tmp);
  229. file = tmp->vm_file;
  230. if (file) {
  231. struct inode *inode = file->f_path.dentry->d_inode;
  232. get_file(file);
  233. if (tmp->vm_flags & VM_DENYWRITE)
  234. atomic_dec(&inode->i_writecount);
  235. /* insert tmp into the share list, just after mpnt */
  236. spin_lock(&file->f_mapping->i_mmap_lock);
  237. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  238. flush_dcache_mmap_lock(file->f_mapping);
  239. vma_prio_tree_add(tmp, mpnt);
  240. flush_dcache_mmap_unlock(file->f_mapping);
  241. spin_unlock(&file->f_mapping->i_mmap_lock);
  242. }
  243. /*
  244. * Link in the new vma and copy the page table entries.
  245. */
  246. *pprev = tmp;
  247. pprev = &tmp->vm_next;
  248. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  249. rb_link = &tmp->vm_rb.rb_right;
  250. rb_parent = &tmp->vm_rb;
  251. mm->map_count++;
  252. retval = copy_page_range(mm, oldmm, mpnt);
  253. if (tmp->vm_ops && tmp->vm_ops->open)
  254. tmp->vm_ops->open(tmp);
  255. if (retval)
  256. goto out;
  257. }
  258. /* a new mm has just been created */
  259. arch_dup_mmap(oldmm, mm);
  260. retval = 0;
  261. out:
  262. up_write(&mm->mmap_sem);
  263. flush_tlb_mm(oldmm);
  264. up_write(&oldmm->mmap_sem);
  265. return retval;
  266. fail_nomem_policy:
  267. kmem_cache_free(vm_area_cachep, tmp);
  268. fail_nomem:
  269. retval = -ENOMEM;
  270. vm_unacct_memory(charge);
  271. goto out;
  272. }
  273. static inline int mm_alloc_pgd(struct mm_struct * mm)
  274. {
  275. mm->pgd = pgd_alloc(mm);
  276. if (unlikely(!mm->pgd))
  277. return -ENOMEM;
  278. return 0;
  279. }
  280. static inline void mm_free_pgd(struct mm_struct * mm)
  281. {
  282. pgd_free(mm, mm->pgd);
  283. }
  284. #else
  285. #define dup_mmap(mm, oldmm) (0)
  286. #define mm_alloc_pgd(mm) (0)
  287. #define mm_free_pgd(mm)
  288. #endif /* CONFIG_MMU */
  289. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  290. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  291. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  292. #include <linux/init_task.h>
  293. static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
  294. {
  295. atomic_set(&mm->mm_users, 1);
  296. atomic_set(&mm->mm_count, 1);
  297. init_rwsem(&mm->mmap_sem);
  298. INIT_LIST_HEAD(&mm->mmlist);
  299. mm->flags = (current->mm) ? current->mm->flags
  300. : MMF_DUMP_FILTER_DEFAULT;
  301. mm->core_waiters = 0;
  302. mm->nr_ptes = 0;
  303. set_mm_counter(mm, file_rss, 0);
  304. set_mm_counter(mm, anon_rss, 0);
  305. spin_lock_init(&mm->page_table_lock);
  306. rwlock_init(&mm->ioctx_list_lock);
  307. mm->ioctx_list = NULL;
  308. mm->free_area_cache = TASK_UNMAPPED_BASE;
  309. mm->cached_hole_size = ~0UL;
  310. mm_init_cgroup(mm, p);
  311. if (likely(!mm_alloc_pgd(mm))) {
  312. mm->def_flags = 0;
  313. return mm;
  314. }
  315. mm_free_cgroup(mm);
  316. free_mm(mm);
  317. return NULL;
  318. }
  319. /*
  320. * Allocate and initialize an mm_struct.
  321. */
  322. struct mm_struct * mm_alloc(void)
  323. {
  324. struct mm_struct * mm;
  325. mm = allocate_mm();
  326. if (mm) {
  327. memset(mm, 0, sizeof(*mm));
  328. mm = mm_init(mm, current);
  329. }
  330. return mm;
  331. }
  332. /*
  333. * Called when the last reference to the mm
  334. * is dropped: either by a lazy thread or by
  335. * mmput. Free the page directory and the mm.
  336. */
  337. void __mmdrop(struct mm_struct *mm)
  338. {
  339. BUG_ON(mm == &init_mm);
  340. mm_free_pgd(mm);
  341. destroy_context(mm);
  342. free_mm(mm);
  343. }
  344. EXPORT_SYMBOL_GPL(__mmdrop);
  345. /*
  346. * Decrement the use count and release all resources for an mm.
  347. */
  348. void mmput(struct mm_struct *mm)
  349. {
  350. might_sleep();
  351. if (atomic_dec_and_test(&mm->mm_users)) {
  352. exit_aio(mm);
  353. exit_mmap(mm);
  354. if (!list_empty(&mm->mmlist)) {
  355. spin_lock(&mmlist_lock);
  356. list_del(&mm->mmlist);
  357. spin_unlock(&mmlist_lock);
  358. }
  359. put_swap_token(mm);
  360. mm_free_cgroup(mm);
  361. mmdrop(mm);
  362. }
  363. }
  364. EXPORT_SYMBOL_GPL(mmput);
  365. /**
  366. * get_task_mm - acquire a reference to the task's mm
  367. *
  368. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  369. * this kernel workthread has transiently adopted a user mm with use_mm,
  370. * to do its AIO) is not set and if so returns a reference to it, after
  371. * bumping up the use count. User must release the mm via mmput()
  372. * after use. Typically used by /proc and ptrace.
  373. */
  374. struct mm_struct *get_task_mm(struct task_struct *task)
  375. {
  376. struct mm_struct *mm;
  377. task_lock(task);
  378. mm = task->mm;
  379. if (mm) {
  380. if (task->flags & PF_BORROWED_MM)
  381. mm = NULL;
  382. else
  383. atomic_inc(&mm->mm_users);
  384. }
  385. task_unlock(task);
  386. return mm;
  387. }
  388. EXPORT_SYMBOL_GPL(get_task_mm);
  389. /* Please note the differences between mmput and mm_release.
  390. * mmput is called whenever we stop holding onto a mm_struct,
  391. * error success whatever.
  392. *
  393. * mm_release is called after a mm_struct has been removed
  394. * from the current process.
  395. *
  396. * This difference is important for error handling, when we
  397. * only half set up a mm_struct for a new process and need to restore
  398. * the old one. Because we mmput the new mm_struct before
  399. * restoring the old one. . .
  400. * Eric Biederman 10 January 1998
  401. */
  402. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  403. {
  404. struct completion *vfork_done = tsk->vfork_done;
  405. /* Get rid of any cached register state */
  406. deactivate_mm(tsk, mm);
  407. /* notify parent sleeping on vfork() */
  408. if (vfork_done) {
  409. tsk->vfork_done = NULL;
  410. complete(vfork_done);
  411. }
  412. /*
  413. * If we're exiting normally, clear a user-space tid field if
  414. * requested. We leave this alone when dying by signal, to leave
  415. * the value intact in a core dump, and to save the unnecessary
  416. * trouble otherwise. Userland only wants this done for a sys_exit.
  417. */
  418. if (tsk->clear_child_tid
  419. && !(tsk->flags & PF_SIGNALED)
  420. && atomic_read(&mm->mm_users) > 1) {
  421. u32 __user * tidptr = tsk->clear_child_tid;
  422. tsk->clear_child_tid = NULL;
  423. /*
  424. * We don't check the error code - if userspace has
  425. * not set up a proper pointer then tough luck.
  426. */
  427. put_user(0, tidptr);
  428. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  429. }
  430. }
  431. /*
  432. * Allocate a new mm structure and copy contents from the
  433. * mm structure of the passed in task structure.
  434. */
  435. static struct mm_struct *dup_mm(struct task_struct *tsk)
  436. {
  437. struct mm_struct *mm, *oldmm = current->mm;
  438. int err;
  439. if (!oldmm)
  440. return NULL;
  441. mm = allocate_mm();
  442. if (!mm)
  443. goto fail_nomem;
  444. memcpy(mm, oldmm, sizeof(*mm));
  445. /* Initializing for Swap token stuff */
  446. mm->token_priority = 0;
  447. mm->last_interval = 0;
  448. if (!mm_init(mm, tsk))
  449. goto fail_nomem;
  450. if (init_new_context(tsk, mm))
  451. goto fail_nocontext;
  452. err = dup_mmap(mm, oldmm);
  453. if (err)
  454. goto free_pt;
  455. mm->hiwater_rss = get_mm_rss(mm);
  456. mm->hiwater_vm = mm->total_vm;
  457. return mm;
  458. free_pt:
  459. mmput(mm);
  460. fail_nomem:
  461. return NULL;
  462. fail_nocontext:
  463. /*
  464. * If init_new_context() failed, we cannot use mmput() to free the mm
  465. * because it calls destroy_context()
  466. */
  467. mm_free_pgd(mm);
  468. free_mm(mm);
  469. return NULL;
  470. }
  471. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  472. {
  473. struct mm_struct * mm, *oldmm;
  474. int retval;
  475. tsk->min_flt = tsk->maj_flt = 0;
  476. tsk->nvcsw = tsk->nivcsw = 0;
  477. tsk->mm = NULL;
  478. tsk->active_mm = NULL;
  479. /*
  480. * Are we cloning a kernel thread?
  481. *
  482. * We need to steal a active VM for that..
  483. */
  484. oldmm = current->mm;
  485. if (!oldmm)
  486. return 0;
  487. if (clone_flags & CLONE_VM) {
  488. atomic_inc(&oldmm->mm_users);
  489. mm = oldmm;
  490. goto good_mm;
  491. }
  492. retval = -ENOMEM;
  493. mm = dup_mm(tsk);
  494. if (!mm)
  495. goto fail_nomem;
  496. good_mm:
  497. /* Initializing for Swap token stuff */
  498. mm->token_priority = 0;
  499. mm->last_interval = 0;
  500. tsk->mm = mm;
  501. tsk->active_mm = mm;
  502. return 0;
  503. fail_nomem:
  504. return retval;
  505. }
  506. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  507. {
  508. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  509. /* We don't need to lock fs - think why ;-) */
  510. if (fs) {
  511. atomic_set(&fs->count, 1);
  512. rwlock_init(&fs->lock);
  513. fs->umask = old->umask;
  514. read_lock(&old->lock);
  515. fs->root = old->root;
  516. path_get(&old->root);
  517. fs->pwd = old->pwd;
  518. path_get(&old->pwd);
  519. if (old->altroot.dentry) {
  520. fs->altroot = old->altroot;
  521. path_get(&old->altroot);
  522. } else {
  523. fs->altroot.mnt = NULL;
  524. fs->altroot.dentry = NULL;
  525. }
  526. read_unlock(&old->lock);
  527. }
  528. return fs;
  529. }
  530. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  531. {
  532. return __copy_fs_struct(old);
  533. }
  534. EXPORT_SYMBOL_GPL(copy_fs_struct);
  535. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  536. {
  537. if (clone_flags & CLONE_FS) {
  538. atomic_inc(&current->fs->count);
  539. return 0;
  540. }
  541. tsk->fs = __copy_fs_struct(current->fs);
  542. if (!tsk->fs)
  543. return -ENOMEM;
  544. return 0;
  545. }
  546. static int count_open_files(struct fdtable *fdt)
  547. {
  548. int size = fdt->max_fds;
  549. int i;
  550. /* Find the last open fd */
  551. for (i = size/(8*sizeof(long)); i > 0; ) {
  552. if (fdt->open_fds->fds_bits[--i])
  553. break;
  554. }
  555. i = (i+1) * 8 * sizeof(long);
  556. return i;
  557. }
  558. static struct files_struct *alloc_files(void)
  559. {
  560. struct files_struct *newf;
  561. struct fdtable *fdt;
  562. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  563. if (!newf)
  564. goto out;
  565. atomic_set(&newf->count, 1);
  566. spin_lock_init(&newf->file_lock);
  567. newf->next_fd = 0;
  568. fdt = &newf->fdtab;
  569. fdt->max_fds = NR_OPEN_DEFAULT;
  570. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  571. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  572. fdt->fd = &newf->fd_array[0];
  573. INIT_RCU_HEAD(&fdt->rcu);
  574. fdt->next = NULL;
  575. rcu_assign_pointer(newf->fdt, fdt);
  576. out:
  577. return newf;
  578. }
  579. /*
  580. * Allocate a new files structure and copy contents from the
  581. * passed in files structure.
  582. * errorp will be valid only when the returned files_struct is NULL.
  583. */
  584. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  585. {
  586. struct files_struct *newf;
  587. struct file **old_fds, **new_fds;
  588. int open_files, size, i;
  589. struct fdtable *old_fdt, *new_fdt;
  590. *errorp = -ENOMEM;
  591. newf = alloc_files();
  592. if (!newf)
  593. goto out;
  594. spin_lock(&oldf->file_lock);
  595. old_fdt = files_fdtable(oldf);
  596. new_fdt = files_fdtable(newf);
  597. open_files = count_open_files(old_fdt);
  598. /*
  599. * Check whether we need to allocate a larger fd array and fd set.
  600. * Note: we're not a clone task, so the open count won't change.
  601. */
  602. if (open_files > new_fdt->max_fds) {
  603. new_fdt->max_fds = 0;
  604. spin_unlock(&oldf->file_lock);
  605. spin_lock(&newf->file_lock);
  606. *errorp = expand_files(newf, open_files-1);
  607. spin_unlock(&newf->file_lock);
  608. if (*errorp < 0)
  609. goto out_release;
  610. new_fdt = files_fdtable(newf);
  611. /*
  612. * Reacquire the oldf lock and a pointer to its fd table
  613. * who knows it may have a new bigger fd table. We need
  614. * the latest pointer.
  615. */
  616. spin_lock(&oldf->file_lock);
  617. old_fdt = files_fdtable(oldf);
  618. }
  619. old_fds = old_fdt->fd;
  620. new_fds = new_fdt->fd;
  621. memcpy(new_fdt->open_fds->fds_bits,
  622. old_fdt->open_fds->fds_bits, open_files/8);
  623. memcpy(new_fdt->close_on_exec->fds_bits,
  624. old_fdt->close_on_exec->fds_bits, open_files/8);
  625. for (i = open_files; i != 0; i--) {
  626. struct file *f = *old_fds++;
  627. if (f) {
  628. get_file(f);
  629. } else {
  630. /*
  631. * The fd may be claimed in the fd bitmap but not yet
  632. * instantiated in the files array if a sibling thread
  633. * is partway through open(). So make sure that this
  634. * fd is available to the new process.
  635. */
  636. FD_CLR(open_files - i, new_fdt->open_fds);
  637. }
  638. rcu_assign_pointer(*new_fds++, f);
  639. }
  640. spin_unlock(&oldf->file_lock);
  641. /* compute the remainder to be cleared */
  642. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  643. /* This is long word aligned thus could use a optimized version */
  644. memset(new_fds, 0, size);
  645. if (new_fdt->max_fds > open_files) {
  646. int left = (new_fdt->max_fds-open_files)/8;
  647. int start = open_files / (8 * sizeof(unsigned long));
  648. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  649. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  650. }
  651. return newf;
  652. out_release:
  653. kmem_cache_free(files_cachep, newf);
  654. out:
  655. return NULL;
  656. }
  657. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  658. {
  659. struct files_struct *oldf, *newf;
  660. int error = 0;
  661. /*
  662. * A background process may not have any files ...
  663. */
  664. oldf = current->files;
  665. if (!oldf)
  666. goto out;
  667. if (clone_flags & CLONE_FILES) {
  668. atomic_inc(&oldf->count);
  669. goto out;
  670. }
  671. /*
  672. * Note: we may be using current for both targets (See exec.c)
  673. * This works because we cache current->files (old) as oldf. Don't
  674. * break this.
  675. */
  676. tsk->files = NULL;
  677. newf = dup_fd(oldf, &error);
  678. if (!newf)
  679. goto out;
  680. tsk->files = newf;
  681. error = 0;
  682. out:
  683. return error;
  684. }
  685. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  686. {
  687. #ifdef CONFIG_BLOCK
  688. struct io_context *ioc = current->io_context;
  689. if (!ioc)
  690. return 0;
  691. /*
  692. * Share io context with parent, if CLONE_IO is set
  693. */
  694. if (clone_flags & CLONE_IO) {
  695. tsk->io_context = ioc_task_link(ioc);
  696. if (unlikely(!tsk->io_context))
  697. return -ENOMEM;
  698. } else if (ioprio_valid(ioc->ioprio)) {
  699. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  700. if (unlikely(!tsk->io_context))
  701. return -ENOMEM;
  702. tsk->io_context->ioprio = ioc->ioprio;
  703. }
  704. #endif
  705. return 0;
  706. }
  707. /*
  708. * Helper to unshare the files of the current task.
  709. * We don't want to expose copy_files internals to
  710. * the exec layer of the kernel.
  711. */
  712. int unshare_files(void)
  713. {
  714. struct files_struct *files = current->files;
  715. int rc;
  716. BUG_ON(!files);
  717. /* This can race but the race causes us to copy when we don't
  718. need to and drop the copy */
  719. if(atomic_read(&files->count) == 1)
  720. {
  721. atomic_inc(&files->count);
  722. return 0;
  723. }
  724. rc = copy_files(0, current);
  725. if(rc)
  726. current->files = files;
  727. return rc;
  728. }
  729. EXPORT_SYMBOL(unshare_files);
  730. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  731. {
  732. struct sighand_struct *sig;
  733. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  734. atomic_inc(&current->sighand->count);
  735. return 0;
  736. }
  737. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  738. rcu_assign_pointer(tsk->sighand, sig);
  739. if (!sig)
  740. return -ENOMEM;
  741. atomic_set(&sig->count, 1);
  742. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  743. return 0;
  744. }
  745. void __cleanup_sighand(struct sighand_struct *sighand)
  746. {
  747. if (atomic_dec_and_test(&sighand->count))
  748. kmem_cache_free(sighand_cachep, sighand);
  749. }
  750. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  751. {
  752. struct signal_struct *sig;
  753. int ret;
  754. if (clone_flags & CLONE_THREAD) {
  755. atomic_inc(&current->signal->count);
  756. atomic_inc(&current->signal->live);
  757. return 0;
  758. }
  759. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  760. tsk->signal = sig;
  761. if (!sig)
  762. return -ENOMEM;
  763. ret = copy_thread_group_keys(tsk);
  764. if (ret < 0) {
  765. kmem_cache_free(signal_cachep, sig);
  766. return ret;
  767. }
  768. atomic_set(&sig->count, 1);
  769. atomic_set(&sig->live, 1);
  770. init_waitqueue_head(&sig->wait_chldexit);
  771. sig->flags = 0;
  772. sig->group_exit_code = 0;
  773. sig->group_exit_task = NULL;
  774. sig->group_stop_count = 0;
  775. sig->curr_target = NULL;
  776. init_sigpending(&sig->shared_pending);
  777. INIT_LIST_HEAD(&sig->posix_timers);
  778. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  779. sig->it_real_incr.tv64 = 0;
  780. sig->real_timer.function = it_real_fn;
  781. sig->it_virt_expires = cputime_zero;
  782. sig->it_virt_incr = cputime_zero;
  783. sig->it_prof_expires = cputime_zero;
  784. sig->it_prof_incr = cputime_zero;
  785. sig->leader = 0; /* session leadership doesn't inherit */
  786. sig->tty_old_pgrp = NULL;
  787. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  788. sig->gtime = cputime_zero;
  789. sig->cgtime = cputime_zero;
  790. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  791. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  792. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  793. sig->sum_sched_runtime = 0;
  794. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  795. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  796. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  797. taskstats_tgid_init(sig);
  798. task_lock(current->group_leader);
  799. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  800. task_unlock(current->group_leader);
  801. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  802. /*
  803. * New sole thread in the process gets an expiry time
  804. * of the whole CPU time limit.
  805. */
  806. tsk->it_prof_expires =
  807. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  808. }
  809. acct_init_pacct(&sig->pacct);
  810. tty_audit_fork(sig);
  811. return 0;
  812. }
  813. void __cleanup_signal(struct signal_struct *sig)
  814. {
  815. exit_thread_group_keys(sig);
  816. kmem_cache_free(signal_cachep, sig);
  817. }
  818. static void cleanup_signal(struct task_struct *tsk)
  819. {
  820. struct signal_struct *sig = tsk->signal;
  821. atomic_dec(&sig->live);
  822. if (atomic_dec_and_test(&sig->count))
  823. __cleanup_signal(sig);
  824. }
  825. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  826. {
  827. unsigned long new_flags = p->flags;
  828. new_flags &= ~PF_SUPERPRIV;
  829. new_flags |= PF_FORKNOEXEC;
  830. if (!(clone_flags & CLONE_PTRACE))
  831. p->ptrace = 0;
  832. p->flags = new_flags;
  833. clear_freeze_flag(p);
  834. }
  835. asmlinkage long sys_set_tid_address(int __user *tidptr)
  836. {
  837. current->clear_child_tid = tidptr;
  838. return task_pid_vnr(current);
  839. }
  840. static void rt_mutex_init_task(struct task_struct *p)
  841. {
  842. spin_lock_init(&p->pi_lock);
  843. #ifdef CONFIG_RT_MUTEXES
  844. plist_head_init(&p->pi_waiters, &p->pi_lock);
  845. p->pi_blocked_on = NULL;
  846. #endif
  847. }
  848. /*
  849. * This creates a new process as a copy of the old one,
  850. * but does not actually start it yet.
  851. *
  852. * It copies the registers, and all the appropriate
  853. * parts of the process environment (as per the clone
  854. * flags). The actual kick-off is left to the caller.
  855. */
  856. static struct task_struct *copy_process(unsigned long clone_flags,
  857. unsigned long stack_start,
  858. struct pt_regs *regs,
  859. unsigned long stack_size,
  860. int __user *child_tidptr,
  861. struct pid *pid)
  862. {
  863. int retval;
  864. struct task_struct *p;
  865. int cgroup_callbacks_done = 0;
  866. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  867. return ERR_PTR(-EINVAL);
  868. /*
  869. * Thread groups must share signals as well, and detached threads
  870. * can only be started up within the thread group.
  871. */
  872. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  873. return ERR_PTR(-EINVAL);
  874. /*
  875. * Shared signal handlers imply shared VM. By way of the above,
  876. * thread groups also imply shared VM. Blocking this case allows
  877. * for various simplifications in other code.
  878. */
  879. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  880. return ERR_PTR(-EINVAL);
  881. retval = security_task_create(clone_flags);
  882. if (retval)
  883. goto fork_out;
  884. retval = -ENOMEM;
  885. p = dup_task_struct(current);
  886. if (!p)
  887. goto fork_out;
  888. rt_mutex_init_task(p);
  889. #ifdef CONFIG_TRACE_IRQFLAGS
  890. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  891. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  892. #endif
  893. retval = -EAGAIN;
  894. if (atomic_read(&p->user->processes) >=
  895. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  896. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  897. p->user != current->nsproxy->user_ns->root_user)
  898. goto bad_fork_free;
  899. }
  900. atomic_inc(&p->user->__count);
  901. atomic_inc(&p->user->processes);
  902. get_group_info(p->group_info);
  903. /*
  904. * If multiple threads are within copy_process(), then this check
  905. * triggers too late. This doesn't hurt, the check is only there
  906. * to stop root fork bombs.
  907. */
  908. if (nr_threads >= max_threads)
  909. goto bad_fork_cleanup_count;
  910. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  911. goto bad_fork_cleanup_count;
  912. if (p->binfmt && !try_module_get(p->binfmt->module))
  913. goto bad_fork_cleanup_put_domain;
  914. p->did_exec = 0;
  915. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  916. copy_flags(clone_flags, p);
  917. INIT_LIST_HEAD(&p->children);
  918. INIT_LIST_HEAD(&p->sibling);
  919. #ifdef CONFIG_PREEMPT_RCU
  920. p->rcu_read_lock_nesting = 0;
  921. p->rcu_flipctr_idx = 0;
  922. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  923. p->vfork_done = NULL;
  924. spin_lock_init(&p->alloc_lock);
  925. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  926. init_sigpending(&p->pending);
  927. p->utime = cputime_zero;
  928. p->stime = cputime_zero;
  929. p->gtime = cputime_zero;
  930. p->utimescaled = cputime_zero;
  931. p->stimescaled = cputime_zero;
  932. p->prev_utime = cputime_zero;
  933. p->prev_stime = cputime_zero;
  934. #ifdef CONFIG_DETECT_SOFTLOCKUP
  935. p->last_switch_count = 0;
  936. p->last_switch_timestamp = 0;
  937. #endif
  938. #ifdef CONFIG_TASK_XACCT
  939. p->rchar = 0; /* I/O counter: bytes read */
  940. p->wchar = 0; /* I/O counter: bytes written */
  941. p->syscr = 0; /* I/O counter: read syscalls */
  942. p->syscw = 0; /* I/O counter: write syscalls */
  943. #endif
  944. task_io_accounting_init(p);
  945. acct_clear_integrals(p);
  946. p->it_virt_expires = cputime_zero;
  947. p->it_prof_expires = cputime_zero;
  948. p->it_sched_expires = 0;
  949. INIT_LIST_HEAD(&p->cpu_timers[0]);
  950. INIT_LIST_HEAD(&p->cpu_timers[1]);
  951. INIT_LIST_HEAD(&p->cpu_timers[2]);
  952. p->lock_depth = -1; /* -1 = no lock */
  953. do_posix_clock_monotonic_gettime(&p->start_time);
  954. p->real_start_time = p->start_time;
  955. monotonic_to_bootbased(&p->real_start_time);
  956. #ifdef CONFIG_SECURITY
  957. p->security = NULL;
  958. #endif
  959. p->cap_bset = current->cap_bset;
  960. p->io_context = NULL;
  961. p->audit_context = NULL;
  962. cgroup_fork(p);
  963. #ifdef CONFIG_NUMA
  964. p->mempolicy = mpol_copy(p->mempolicy);
  965. if (IS_ERR(p->mempolicy)) {
  966. retval = PTR_ERR(p->mempolicy);
  967. p->mempolicy = NULL;
  968. goto bad_fork_cleanup_cgroup;
  969. }
  970. mpol_fix_fork_child_flag(p);
  971. #endif
  972. #ifdef CONFIG_TRACE_IRQFLAGS
  973. p->irq_events = 0;
  974. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  975. p->hardirqs_enabled = 1;
  976. #else
  977. p->hardirqs_enabled = 0;
  978. #endif
  979. p->hardirq_enable_ip = 0;
  980. p->hardirq_enable_event = 0;
  981. p->hardirq_disable_ip = _THIS_IP_;
  982. p->hardirq_disable_event = 0;
  983. p->softirqs_enabled = 1;
  984. p->softirq_enable_ip = _THIS_IP_;
  985. p->softirq_enable_event = 0;
  986. p->softirq_disable_ip = 0;
  987. p->softirq_disable_event = 0;
  988. p->hardirq_context = 0;
  989. p->softirq_context = 0;
  990. #endif
  991. #ifdef CONFIG_LOCKDEP
  992. p->lockdep_depth = 0; /* no locks held yet */
  993. p->curr_chain_key = 0;
  994. p->lockdep_recursion = 0;
  995. #endif
  996. #ifdef CONFIG_DEBUG_MUTEXES
  997. p->blocked_on = NULL; /* not blocked yet */
  998. #endif
  999. /* Perform scheduler related setup. Assign this task to a CPU. */
  1000. sched_fork(p, clone_flags);
  1001. if ((retval = security_task_alloc(p)))
  1002. goto bad_fork_cleanup_policy;
  1003. if ((retval = audit_alloc(p)))
  1004. goto bad_fork_cleanup_security;
  1005. /* copy all the process information */
  1006. if ((retval = copy_semundo(clone_flags, p)))
  1007. goto bad_fork_cleanup_audit;
  1008. if ((retval = copy_files(clone_flags, p)))
  1009. goto bad_fork_cleanup_semundo;
  1010. if ((retval = copy_fs(clone_flags, p)))
  1011. goto bad_fork_cleanup_files;
  1012. if ((retval = copy_sighand(clone_flags, p)))
  1013. goto bad_fork_cleanup_fs;
  1014. if ((retval = copy_signal(clone_flags, p)))
  1015. goto bad_fork_cleanup_sighand;
  1016. if ((retval = copy_mm(clone_flags, p)))
  1017. goto bad_fork_cleanup_signal;
  1018. if ((retval = copy_keys(clone_flags, p)))
  1019. goto bad_fork_cleanup_mm;
  1020. if ((retval = copy_namespaces(clone_flags, p)))
  1021. goto bad_fork_cleanup_keys;
  1022. if ((retval = copy_io(clone_flags, p)))
  1023. goto bad_fork_cleanup_namespaces;
  1024. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  1025. if (retval)
  1026. goto bad_fork_cleanup_io;
  1027. if (pid != &init_struct_pid) {
  1028. retval = -ENOMEM;
  1029. pid = alloc_pid(task_active_pid_ns(p));
  1030. if (!pid)
  1031. goto bad_fork_cleanup_io;
  1032. if (clone_flags & CLONE_NEWPID) {
  1033. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  1034. if (retval < 0)
  1035. goto bad_fork_free_pid;
  1036. }
  1037. }
  1038. p->pid = pid_nr(pid);
  1039. p->tgid = p->pid;
  1040. if (clone_flags & CLONE_THREAD)
  1041. p->tgid = current->tgid;
  1042. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1043. /*
  1044. * Clear TID on mm_release()?
  1045. */
  1046. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1047. #ifdef CONFIG_FUTEX
  1048. p->robust_list = NULL;
  1049. #ifdef CONFIG_COMPAT
  1050. p->compat_robust_list = NULL;
  1051. #endif
  1052. INIT_LIST_HEAD(&p->pi_state_list);
  1053. p->pi_state_cache = NULL;
  1054. #endif
  1055. /*
  1056. * sigaltstack should be cleared when sharing the same VM
  1057. */
  1058. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1059. p->sas_ss_sp = p->sas_ss_size = 0;
  1060. /*
  1061. * Syscall tracing should be turned off in the child regardless
  1062. * of CLONE_PTRACE.
  1063. */
  1064. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1065. #ifdef TIF_SYSCALL_EMU
  1066. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1067. #endif
  1068. clear_all_latency_tracing(p);
  1069. /* Our parent execution domain becomes current domain
  1070. These must match for thread signalling to apply */
  1071. p->parent_exec_id = p->self_exec_id;
  1072. /* ok, now we should be set up.. */
  1073. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1074. p->pdeath_signal = 0;
  1075. p->exit_state = 0;
  1076. /*
  1077. * Ok, make it visible to the rest of the system.
  1078. * We dont wake it up yet.
  1079. */
  1080. p->group_leader = p;
  1081. INIT_LIST_HEAD(&p->thread_group);
  1082. INIT_LIST_HEAD(&p->ptrace_children);
  1083. INIT_LIST_HEAD(&p->ptrace_list);
  1084. /* Now that the task is set up, run cgroup callbacks if
  1085. * necessary. We need to run them before the task is visible
  1086. * on the tasklist. */
  1087. cgroup_fork_callbacks(p);
  1088. cgroup_callbacks_done = 1;
  1089. /* Need tasklist lock for parent etc handling! */
  1090. write_lock_irq(&tasklist_lock);
  1091. /*
  1092. * The task hasn't been attached yet, so its cpus_allowed mask will
  1093. * not be changed, nor will its assigned CPU.
  1094. *
  1095. * The cpus_allowed mask of the parent may have changed after it was
  1096. * copied first time - so re-copy it here, then check the child's CPU
  1097. * to ensure it is on a valid CPU (and if not, just force it back to
  1098. * parent's CPU). This avoids alot of nasty races.
  1099. */
  1100. p->cpus_allowed = current->cpus_allowed;
  1101. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1102. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1103. !cpu_online(task_cpu(p))))
  1104. set_task_cpu(p, smp_processor_id());
  1105. /* CLONE_PARENT re-uses the old parent */
  1106. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1107. p->real_parent = current->real_parent;
  1108. else
  1109. p->real_parent = current;
  1110. p->parent = p->real_parent;
  1111. spin_lock(&current->sighand->siglock);
  1112. /*
  1113. * Process group and session signals need to be delivered to just the
  1114. * parent before the fork or both the parent and the child after the
  1115. * fork. Restart if a signal comes in before we add the new process to
  1116. * it's process group.
  1117. * A fatal signal pending means that current will exit, so the new
  1118. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1119. */
  1120. recalc_sigpending();
  1121. if (signal_pending(current)) {
  1122. spin_unlock(&current->sighand->siglock);
  1123. write_unlock_irq(&tasklist_lock);
  1124. retval = -ERESTARTNOINTR;
  1125. goto bad_fork_free_pid;
  1126. }
  1127. if (clone_flags & CLONE_THREAD) {
  1128. p->group_leader = current->group_leader;
  1129. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1130. if (!cputime_eq(current->signal->it_virt_expires,
  1131. cputime_zero) ||
  1132. !cputime_eq(current->signal->it_prof_expires,
  1133. cputime_zero) ||
  1134. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1135. !list_empty(&current->signal->cpu_timers[0]) ||
  1136. !list_empty(&current->signal->cpu_timers[1]) ||
  1137. !list_empty(&current->signal->cpu_timers[2])) {
  1138. /*
  1139. * Have child wake up on its first tick to check
  1140. * for process CPU timers.
  1141. */
  1142. p->it_prof_expires = jiffies_to_cputime(1);
  1143. }
  1144. }
  1145. if (likely(p->pid)) {
  1146. add_parent(p);
  1147. if (unlikely(p->ptrace & PT_PTRACED))
  1148. __ptrace_link(p, current->parent);
  1149. if (thread_group_leader(p)) {
  1150. if (clone_flags & CLONE_NEWPID)
  1151. p->nsproxy->pid_ns->child_reaper = p;
  1152. p->signal->leader_pid = pid;
  1153. p->signal->tty = current->signal->tty;
  1154. set_task_pgrp(p, task_pgrp_nr(current));
  1155. set_task_session(p, task_session_nr(current));
  1156. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1157. attach_pid(p, PIDTYPE_SID, task_session(current));
  1158. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1159. __get_cpu_var(process_counts)++;
  1160. }
  1161. attach_pid(p, PIDTYPE_PID, pid);
  1162. nr_threads++;
  1163. }
  1164. total_forks++;
  1165. spin_unlock(&current->sighand->siglock);
  1166. write_unlock_irq(&tasklist_lock);
  1167. proc_fork_connector(p);
  1168. cgroup_post_fork(p);
  1169. return p;
  1170. bad_fork_free_pid:
  1171. if (pid != &init_struct_pid)
  1172. free_pid(pid);
  1173. bad_fork_cleanup_io:
  1174. put_io_context(p->io_context);
  1175. bad_fork_cleanup_namespaces:
  1176. exit_task_namespaces(p);
  1177. bad_fork_cleanup_keys:
  1178. exit_keys(p);
  1179. bad_fork_cleanup_mm:
  1180. if (p->mm)
  1181. mmput(p->mm);
  1182. bad_fork_cleanup_signal:
  1183. cleanup_signal(p);
  1184. bad_fork_cleanup_sighand:
  1185. __cleanup_sighand(p->sighand);
  1186. bad_fork_cleanup_fs:
  1187. exit_fs(p); /* blocking */
  1188. bad_fork_cleanup_files:
  1189. exit_files(p); /* blocking */
  1190. bad_fork_cleanup_semundo:
  1191. exit_sem(p);
  1192. bad_fork_cleanup_audit:
  1193. audit_free(p);
  1194. bad_fork_cleanup_security:
  1195. security_task_free(p);
  1196. bad_fork_cleanup_policy:
  1197. #ifdef CONFIG_NUMA
  1198. mpol_free(p->mempolicy);
  1199. bad_fork_cleanup_cgroup:
  1200. #endif
  1201. cgroup_exit(p, cgroup_callbacks_done);
  1202. delayacct_tsk_free(p);
  1203. if (p->binfmt)
  1204. module_put(p->binfmt->module);
  1205. bad_fork_cleanup_put_domain:
  1206. module_put(task_thread_info(p)->exec_domain->module);
  1207. bad_fork_cleanup_count:
  1208. put_group_info(p->group_info);
  1209. atomic_dec(&p->user->processes);
  1210. free_uid(p->user);
  1211. bad_fork_free:
  1212. free_task(p);
  1213. fork_out:
  1214. return ERR_PTR(retval);
  1215. }
  1216. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1217. {
  1218. memset(regs, 0, sizeof(struct pt_regs));
  1219. return regs;
  1220. }
  1221. struct task_struct * __cpuinit fork_idle(int cpu)
  1222. {
  1223. struct task_struct *task;
  1224. struct pt_regs regs;
  1225. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1226. &init_struct_pid);
  1227. if (!IS_ERR(task))
  1228. init_idle(task, cpu);
  1229. return task;
  1230. }
  1231. static int fork_traceflag(unsigned clone_flags)
  1232. {
  1233. if (clone_flags & CLONE_UNTRACED)
  1234. return 0;
  1235. else if (clone_flags & CLONE_VFORK) {
  1236. if (current->ptrace & PT_TRACE_VFORK)
  1237. return PTRACE_EVENT_VFORK;
  1238. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1239. if (current->ptrace & PT_TRACE_CLONE)
  1240. return PTRACE_EVENT_CLONE;
  1241. } else if (current->ptrace & PT_TRACE_FORK)
  1242. return PTRACE_EVENT_FORK;
  1243. return 0;
  1244. }
  1245. /*
  1246. * Ok, this is the main fork-routine.
  1247. *
  1248. * It copies the process, and if successful kick-starts
  1249. * it and waits for it to finish using the VM if required.
  1250. */
  1251. long do_fork(unsigned long clone_flags,
  1252. unsigned long stack_start,
  1253. struct pt_regs *regs,
  1254. unsigned long stack_size,
  1255. int __user *parent_tidptr,
  1256. int __user *child_tidptr)
  1257. {
  1258. struct task_struct *p;
  1259. int trace = 0;
  1260. long nr;
  1261. /*
  1262. * We hope to recycle these flags after 2.6.26
  1263. */
  1264. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1265. static int __read_mostly count = 100;
  1266. if (count > 0 && printk_ratelimit()) {
  1267. char comm[TASK_COMM_LEN];
  1268. count--;
  1269. printk(KERN_INFO "fork(): process `%s' used deprecated "
  1270. "clone flags 0x%lx\n",
  1271. get_task_comm(comm, current),
  1272. clone_flags & CLONE_STOPPED);
  1273. }
  1274. }
  1275. if (unlikely(current->ptrace)) {
  1276. trace = fork_traceflag (clone_flags);
  1277. if (trace)
  1278. clone_flags |= CLONE_PTRACE;
  1279. }
  1280. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1281. child_tidptr, NULL);
  1282. /*
  1283. * Do this prior waking up the new thread - the thread pointer
  1284. * might get invalid after that point, if the thread exits quickly.
  1285. */
  1286. if (!IS_ERR(p)) {
  1287. struct completion vfork;
  1288. nr = task_pid_vnr(p);
  1289. if (clone_flags & CLONE_PARENT_SETTID)
  1290. put_user(nr, parent_tidptr);
  1291. if (clone_flags & CLONE_VFORK) {
  1292. p->vfork_done = &vfork;
  1293. init_completion(&vfork);
  1294. }
  1295. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1296. /*
  1297. * We'll start up with an immediate SIGSTOP.
  1298. */
  1299. sigaddset(&p->pending.signal, SIGSTOP);
  1300. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1301. }
  1302. if (!(clone_flags & CLONE_STOPPED))
  1303. wake_up_new_task(p, clone_flags);
  1304. else
  1305. __set_task_state(p, TASK_STOPPED);
  1306. if (unlikely (trace)) {
  1307. current->ptrace_message = nr;
  1308. ptrace_notify ((trace << 8) | SIGTRAP);
  1309. }
  1310. if (clone_flags & CLONE_VFORK) {
  1311. freezer_do_not_count();
  1312. wait_for_completion(&vfork);
  1313. freezer_count();
  1314. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1315. current->ptrace_message = nr;
  1316. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1317. }
  1318. }
  1319. } else {
  1320. nr = PTR_ERR(p);
  1321. }
  1322. return nr;
  1323. }
  1324. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1325. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1326. #endif
  1327. static void sighand_ctor(struct kmem_cache *cachep, void *data)
  1328. {
  1329. struct sighand_struct *sighand = data;
  1330. spin_lock_init(&sighand->siglock);
  1331. init_waitqueue_head(&sighand->signalfd_wqh);
  1332. }
  1333. void __init proc_caches_init(void)
  1334. {
  1335. sighand_cachep = kmem_cache_create("sighand_cache",
  1336. sizeof(struct sighand_struct), 0,
  1337. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1338. sighand_ctor);
  1339. signal_cachep = kmem_cache_create("signal_cache",
  1340. sizeof(struct signal_struct), 0,
  1341. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1342. files_cachep = kmem_cache_create("files_cache",
  1343. sizeof(struct files_struct), 0,
  1344. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1345. fs_cachep = kmem_cache_create("fs_cache",
  1346. sizeof(struct fs_struct), 0,
  1347. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1348. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1349. sizeof(struct vm_area_struct), 0,
  1350. SLAB_PANIC, NULL);
  1351. mm_cachep = kmem_cache_create("mm_struct",
  1352. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1353. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1354. }
  1355. /*
  1356. * Check constraints on flags passed to the unshare system call and
  1357. * force unsharing of additional process context as appropriate.
  1358. */
  1359. static void check_unshare_flags(unsigned long *flags_ptr)
  1360. {
  1361. /*
  1362. * If unsharing a thread from a thread group, must also
  1363. * unshare vm.
  1364. */
  1365. if (*flags_ptr & CLONE_THREAD)
  1366. *flags_ptr |= CLONE_VM;
  1367. /*
  1368. * If unsharing vm, must also unshare signal handlers.
  1369. */
  1370. if (*flags_ptr & CLONE_VM)
  1371. *flags_ptr |= CLONE_SIGHAND;
  1372. /*
  1373. * If unsharing signal handlers and the task was created
  1374. * using CLONE_THREAD, then must unshare the thread
  1375. */
  1376. if ((*flags_ptr & CLONE_SIGHAND) &&
  1377. (atomic_read(&current->signal->count) > 1))
  1378. *flags_ptr |= CLONE_THREAD;
  1379. /*
  1380. * If unsharing namespace, must also unshare filesystem information.
  1381. */
  1382. if (*flags_ptr & CLONE_NEWNS)
  1383. *flags_ptr |= CLONE_FS;
  1384. }
  1385. /*
  1386. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1387. */
  1388. static int unshare_thread(unsigned long unshare_flags)
  1389. {
  1390. if (unshare_flags & CLONE_THREAD)
  1391. return -EINVAL;
  1392. return 0;
  1393. }
  1394. /*
  1395. * Unshare the filesystem structure if it is being shared
  1396. */
  1397. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1398. {
  1399. struct fs_struct *fs = current->fs;
  1400. if ((unshare_flags & CLONE_FS) &&
  1401. (fs && atomic_read(&fs->count) > 1)) {
  1402. *new_fsp = __copy_fs_struct(current->fs);
  1403. if (!*new_fsp)
  1404. return -ENOMEM;
  1405. }
  1406. return 0;
  1407. }
  1408. /*
  1409. * Unsharing of sighand is not supported yet
  1410. */
  1411. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1412. {
  1413. struct sighand_struct *sigh = current->sighand;
  1414. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1415. return -EINVAL;
  1416. else
  1417. return 0;
  1418. }
  1419. /*
  1420. * Unshare vm if it is being shared
  1421. */
  1422. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1423. {
  1424. struct mm_struct *mm = current->mm;
  1425. if ((unshare_flags & CLONE_VM) &&
  1426. (mm && atomic_read(&mm->mm_users) > 1)) {
  1427. return -EINVAL;
  1428. }
  1429. return 0;
  1430. }
  1431. /*
  1432. * Unshare file descriptor table if it is being shared
  1433. */
  1434. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1435. {
  1436. struct files_struct *fd = current->files;
  1437. int error = 0;
  1438. if ((unshare_flags & CLONE_FILES) &&
  1439. (fd && atomic_read(&fd->count) > 1)) {
  1440. *new_fdp = dup_fd(fd, &error);
  1441. if (!*new_fdp)
  1442. return error;
  1443. }
  1444. return 0;
  1445. }
  1446. /*
  1447. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1448. * supported yet
  1449. */
  1450. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1451. {
  1452. if (unshare_flags & CLONE_SYSVSEM)
  1453. return -EINVAL;
  1454. return 0;
  1455. }
  1456. /*
  1457. * unshare allows a process to 'unshare' part of the process
  1458. * context which was originally shared using clone. copy_*
  1459. * functions used by do_fork() cannot be used here directly
  1460. * because they modify an inactive task_struct that is being
  1461. * constructed. Here we are modifying the current, active,
  1462. * task_struct.
  1463. */
  1464. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1465. {
  1466. int err = 0;
  1467. struct fs_struct *fs, *new_fs = NULL;
  1468. struct sighand_struct *new_sigh = NULL;
  1469. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1470. struct files_struct *fd, *new_fd = NULL;
  1471. struct sem_undo_list *new_ulist = NULL;
  1472. struct nsproxy *new_nsproxy = NULL;
  1473. check_unshare_flags(&unshare_flags);
  1474. /* Return -EINVAL for all unsupported flags */
  1475. err = -EINVAL;
  1476. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1477. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1478. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1479. CLONE_NEWNET))
  1480. goto bad_unshare_out;
  1481. if ((err = unshare_thread(unshare_flags)))
  1482. goto bad_unshare_out;
  1483. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1484. goto bad_unshare_cleanup_thread;
  1485. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1486. goto bad_unshare_cleanup_fs;
  1487. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1488. goto bad_unshare_cleanup_sigh;
  1489. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1490. goto bad_unshare_cleanup_vm;
  1491. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1492. goto bad_unshare_cleanup_fd;
  1493. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1494. new_fs)))
  1495. goto bad_unshare_cleanup_semundo;
  1496. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1497. if (new_nsproxy) {
  1498. switch_task_namespaces(current, new_nsproxy);
  1499. new_nsproxy = NULL;
  1500. }
  1501. task_lock(current);
  1502. if (new_fs) {
  1503. fs = current->fs;
  1504. current->fs = new_fs;
  1505. new_fs = fs;
  1506. }
  1507. if (new_mm) {
  1508. mm = current->mm;
  1509. active_mm = current->active_mm;
  1510. current->mm = new_mm;
  1511. current->active_mm = new_mm;
  1512. activate_mm(active_mm, new_mm);
  1513. new_mm = mm;
  1514. }
  1515. if (new_fd) {
  1516. fd = current->files;
  1517. current->files = new_fd;
  1518. new_fd = fd;
  1519. }
  1520. task_unlock(current);
  1521. }
  1522. if (new_nsproxy)
  1523. put_nsproxy(new_nsproxy);
  1524. bad_unshare_cleanup_semundo:
  1525. bad_unshare_cleanup_fd:
  1526. if (new_fd)
  1527. put_files_struct(new_fd);
  1528. bad_unshare_cleanup_vm:
  1529. if (new_mm)
  1530. mmput(new_mm);
  1531. bad_unshare_cleanup_sigh:
  1532. if (new_sigh)
  1533. if (atomic_dec_and_test(&new_sigh->count))
  1534. kmem_cache_free(sighand_cachep, new_sigh);
  1535. bad_unshare_cleanup_fs:
  1536. if (new_fs)
  1537. put_fs_struct(new_fs);
  1538. bad_unshare_cleanup_thread:
  1539. bad_unshare_out:
  1540. return err;
  1541. }