cgroup.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Copyright notices from the original cpuset code:
  8. * --------------------------------------------------
  9. * Copyright (C) 2003 BULL SA.
  10. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  11. *
  12. * Portions derived from Patrick Mochel's sysfs code.
  13. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  14. *
  15. * 2003-10-10 Written by Simon Derr.
  16. * 2003-10-22 Updates by Stephen Hemminger.
  17. * 2004 May-July Rework by Paul Jackson.
  18. * ---------------------------------------------------
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cgroup.h>
  25. #include <linux/errno.h>
  26. #include <linux/fs.h>
  27. #include <linux/kernel.h>
  28. #include <linux/list.h>
  29. #include <linux/mm.h>
  30. #include <linux/mutex.h>
  31. #include <linux/mount.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/rcupdate.h>
  35. #include <linux/sched.h>
  36. #include <linux/backing-dev.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/slab.h>
  39. #include <linux/magic.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/string.h>
  42. #include <linux/sort.h>
  43. #include <linux/kmod.h>
  44. #include <linux/delayacct.h>
  45. #include <linux/cgroupstats.h>
  46. #include <asm/atomic.h>
  47. static DEFINE_MUTEX(cgroup_mutex);
  48. /* Generate an array of cgroup subsystem pointers */
  49. #define SUBSYS(_x) &_x ## _subsys,
  50. static struct cgroup_subsys *subsys[] = {
  51. #include <linux/cgroup_subsys.h>
  52. };
  53. /*
  54. * A cgroupfs_root represents the root of a cgroup hierarchy,
  55. * and may be associated with a superblock to form an active
  56. * hierarchy
  57. */
  58. struct cgroupfs_root {
  59. struct super_block *sb;
  60. /*
  61. * The bitmask of subsystems intended to be attached to this
  62. * hierarchy
  63. */
  64. unsigned long subsys_bits;
  65. /* The bitmask of subsystems currently attached to this hierarchy */
  66. unsigned long actual_subsys_bits;
  67. /* A list running through the attached subsystems */
  68. struct list_head subsys_list;
  69. /* The root cgroup for this hierarchy */
  70. struct cgroup top_cgroup;
  71. /* Tracks how many cgroups are currently defined in hierarchy.*/
  72. int number_of_cgroups;
  73. /* A list running through the mounted hierarchies */
  74. struct list_head root_list;
  75. /* Hierarchy-specific flags */
  76. unsigned long flags;
  77. /* The path to use for release notifications. No locking
  78. * between setting and use - so if userspace updates this
  79. * while child cgroups exist, you could miss a
  80. * notification. We ensure that it's always a valid
  81. * NUL-terminated string */
  82. char release_agent_path[PATH_MAX];
  83. };
  84. /*
  85. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  86. * subsystems that are otherwise unattached - it never has more than a
  87. * single cgroup, and all tasks are part of that cgroup.
  88. */
  89. static struct cgroupfs_root rootnode;
  90. /* The list of hierarchy roots */
  91. static LIST_HEAD(roots);
  92. static int root_count;
  93. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  94. #define dummytop (&rootnode.top_cgroup)
  95. /* This flag indicates whether tasks in the fork and exit paths should
  96. * check for fork/exit handlers to call. This avoids us having to do
  97. * extra work in the fork/exit path if none of the subsystems need to
  98. * be called.
  99. */
  100. static int need_forkexit_callback;
  101. /* bits in struct cgroup flags field */
  102. enum {
  103. /* Control Group is dead */
  104. CGRP_REMOVED,
  105. /* Control Group has previously had a child cgroup or a task,
  106. * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
  107. CGRP_RELEASABLE,
  108. /* Control Group requires release notifications to userspace */
  109. CGRP_NOTIFY_ON_RELEASE,
  110. };
  111. /* convenient tests for these bits */
  112. inline int cgroup_is_removed(const struct cgroup *cgrp)
  113. {
  114. return test_bit(CGRP_REMOVED, &cgrp->flags);
  115. }
  116. /* bits in struct cgroupfs_root flags field */
  117. enum {
  118. ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
  119. };
  120. static int cgroup_is_releasable(const struct cgroup *cgrp)
  121. {
  122. const int bits =
  123. (1 << CGRP_RELEASABLE) |
  124. (1 << CGRP_NOTIFY_ON_RELEASE);
  125. return (cgrp->flags & bits) == bits;
  126. }
  127. static int notify_on_release(const struct cgroup *cgrp)
  128. {
  129. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  130. }
  131. /*
  132. * for_each_subsys() allows you to iterate on each subsystem attached to
  133. * an active hierarchy
  134. */
  135. #define for_each_subsys(_root, _ss) \
  136. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  137. /* for_each_root() allows you to iterate across the active hierarchies */
  138. #define for_each_root(_root) \
  139. list_for_each_entry(_root, &roots, root_list)
  140. /* the list of cgroups eligible for automatic release. Protected by
  141. * release_list_lock */
  142. static LIST_HEAD(release_list);
  143. static DEFINE_SPINLOCK(release_list_lock);
  144. static void cgroup_release_agent(struct work_struct *work);
  145. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  146. static void check_for_release(struct cgroup *cgrp);
  147. /* Link structure for associating css_set objects with cgroups */
  148. struct cg_cgroup_link {
  149. /*
  150. * List running through cg_cgroup_links associated with a
  151. * cgroup, anchored on cgroup->css_sets
  152. */
  153. struct list_head cgrp_link_list;
  154. /*
  155. * List running through cg_cgroup_links pointing at a
  156. * single css_set object, anchored on css_set->cg_links
  157. */
  158. struct list_head cg_link_list;
  159. struct css_set *cg;
  160. };
  161. /* The default css_set - used by init and its children prior to any
  162. * hierarchies being mounted. It contains a pointer to the root state
  163. * for each subsystem. Also used to anchor the list of css_sets. Not
  164. * reference-counted, to improve performance when child cgroups
  165. * haven't been created.
  166. */
  167. static struct css_set init_css_set;
  168. static struct cg_cgroup_link init_css_set_link;
  169. /* css_set_lock protects the list of css_set objects, and the
  170. * chain of tasks off each css_set. Nests outside task->alloc_lock
  171. * due to cgroup_iter_start() */
  172. static DEFINE_RWLOCK(css_set_lock);
  173. static int css_set_count;
  174. /* We don't maintain the lists running through each css_set to its
  175. * task until after the first call to cgroup_iter_start(). This
  176. * reduces the fork()/exit() overhead for people who have cgroups
  177. * compiled into their kernel but not actually in use */
  178. static int use_task_css_set_links;
  179. /* When we create or destroy a css_set, the operation simply
  180. * takes/releases a reference count on all the cgroups referenced
  181. * by subsystems in this css_set. This can end up multiple-counting
  182. * some cgroups, but that's OK - the ref-count is just a
  183. * busy/not-busy indicator; ensuring that we only count each cgroup
  184. * once would require taking a global lock to ensure that no
  185. * subsystems moved between hierarchies while we were doing so.
  186. *
  187. * Possible TODO: decide at boot time based on the number of
  188. * registered subsystems and the number of CPUs or NUMA nodes whether
  189. * it's better for performance to ref-count every subsystem, or to
  190. * take a global lock and only add one ref count to each hierarchy.
  191. */
  192. /*
  193. * unlink a css_set from the list and free it
  194. */
  195. static void unlink_css_set(struct css_set *cg)
  196. {
  197. write_lock(&css_set_lock);
  198. list_del(&cg->list);
  199. css_set_count--;
  200. while (!list_empty(&cg->cg_links)) {
  201. struct cg_cgroup_link *link;
  202. link = list_entry(cg->cg_links.next,
  203. struct cg_cgroup_link, cg_link_list);
  204. list_del(&link->cg_link_list);
  205. list_del(&link->cgrp_link_list);
  206. kfree(link);
  207. }
  208. write_unlock(&css_set_lock);
  209. }
  210. static void __release_css_set(struct kref *k, int taskexit)
  211. {
  212. int i;
  213. struct css_set *cg = container_of(k, struct css_set, ref);
  214. unlink_css_set(cg);
  215. rcu_read_lock();
  216. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  217. struct cgroup *cgrp = cg->subsys[i]->cgroup;
  218. if (atomic_dec_and_test(&cgrp->count) &&
  219. notify_on_release(cgrp)) {
  220. if (taskexit)
  221. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  222. check_for_release(cgrp);
  223. }
  224. }
  225. rcu_read_unlock();
  226. kfree(cg);
  227. }
  228. static void release_css_set(struct kref *k)
  229. {
  230. __release_css_set(k, 0);
  231. }
  232. static void release_css_set_taskexit(struct kref *k)
  233. {
  234. __release_css_set(k, 1);
  235. }
  236. /*
  237. * refcounted get/put for css_set objects
  238. */
  239. static inline void get_css_set(struct css_set *cg)
  240. {
  241. kref_get(&cg->ref);
  242. }
  243. static inline void put_css_set(struct css_set *cg)
  244. {
  245. kref_put(&cg->ref, release_css_set);
  246. }
  247. static inline void put_css_set_taskexit(struct css_set *cg)
  248. {
  249. kref_put(&cg->ref, release_css_set_taskexit);
  250. }
  251. /*
  252. * find_existing_css_set() is a helper for
  253. * find_css_set(), and checks to see whether an existing
  254. * css_set is suitable. This currently walks a linked-list for
  255. * simplicity; a later patch will use a hash table for better
  256. * performance
  257. *
  258. * oldcg: the cgroup group that we're using before the cgroup
  259. * transition
  260. *
  261. * cgrp: the cgroup that we're moving into
  262. *
  263. * template: location in which to build the desired set of subsystem
  264. * state objects for the new cgroup group
  265. */
  266. static struct css_set *find_existing_css_set(
  267. struct css_set *oldcg,
  268. struct cgroup *cgrp,
  269. struct cgroup_subsys_state *template[])
  270. {
  271. int i;
  272. struct cgroupfs_root *root = cgrp->root;
  273. struct list_head *l = &init_css_set.list;
  274. /* Built the set of subsystem state objects that we want to
  275. * see in the new css_set */
  276. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  277. if (root->subsys_bits & (1UL << i)) {
  278. /* Subsystem is in this hierarchy. So we want
  279. * the subsystem state from the new
  280. * cgroup */
  281. template[i] = cgrp->subsys[i];
  282. } else {
  283. /* Subsystem is not in this hierarchy, so we
  284. * don't want to change the subsystem state */
  285. template[i] = oldcg->subsys[i];
  286. }
  287. }
  288. /* Look through existing cgroup groups to find one to reuse */
  289. do {
  290. struct css_set *cg =
  291. list_entry(l, struct css_set, list);
  292. if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  293. /* All subsystems matched */
  294. return cg;
  295. }
  296. /* Try the next cgroup group */
  297. l = l->next;
  298. } while (l != &init_css_set.list);
  299. /* No existing cgroup group matched */
  300. return NULL;
  301. }
  302. /*
  303. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  304. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  305. * success or a negative error
  306. */
  307. static int allocate_cg_links(int count, struct list_head *tmp)
  308. {
  309. struct cg_cgroup_link *link;
  310. int i;
  311. INIT_LIST_HEAD(tmp);
  312. for (i = 0; i < count; i++) {
  313. link = kmalloc(sizeof(*link), GFP_KERNEL);
  314. if (!link) {
  315. while (!list_empty(tmp)) {
  316. link = list_entry(tmp->next,
  317. struct cg_cgroup_link,
  318. cgrp_link_list);
  319. list_del(&link->cgrp_link_list);
  320. kfree(link);
  321. }
  322. return -ENOMEM;
  323. }
  324. list_add(&link->cgrp_link_list, tmp);
  325. }
  326. return 0;
  327. }
  328. static void free_cg_links(struct list_head *tmp)
  329. {
  330. while (!list_empty(tmp)) {
  331. struct cg_cgroup_link *link;
  332. link = list_entry(tmp->next,
  333. struct cg_cgroup_link,
  334. cgrp_link_list);
  335. list_del(&link->cgrp_link_list);
  336. kfree(link);
  337. }
  338. }
  339. /*
  340. * find_css_set() takes an existing cgroup group and a
  341. * cgroup object, and returns a css_set object that's
  342. * equivalent to the old group, but with the given cgroup
  343. * substituted into the appropriate hierarchy. Must be called with
  344. * cgroup_mutex held
  345. */
  346. static struct css_set *find_css_set(
  347. struct css_set *oldcg, struct cgroup *cgrp)
  348. {
  349. struct css_set *res;
  350. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  351. int i;
  352. struct list_head tmp_cg_links;
  353. struct cg_cgroup_link *link;
  354. /* First see if we already have a cgroup group that matches
  355. * the desired set */
  356. write_lock(&css_set_lock);
  357. res = find_existing_css_set(oldcg, cgrp, template);
  358. if (res)
  359. get_css_set(res);
  360. write_unlock(&css_set_lock);
  361. if (res)
  362. return res;
  363. res = kmalloc(sizeof(*res), GFP_KERNEL);
  364. if (!res)
  365. return NULL;
  366. /* Allocate all the cg_cgroup_link objects that we'll need */
  367. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  368. kfree(res);
  369. return NULL;
  370. }
  371. kref_init(&res->ref);
  372. INIT_LIST_HEAD(&res->cg_links);
  373. INIT_LIST_HEAD(&res->tasks);
  374. /* Copy the set of subsystem state objects generated in
  375. * find_existing_css_set() */
  376. memcpy(res->subsys, template, sizeof(res->subsys));
  377. write_lock(&css_set_lock);
  378. /* Add reference counts and links from the new css_set. */
  379. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  380. struct cgroup *cgrp = res->subsys[i]->cgroup;
  381. struct cgroup_subsys *ss = subsys[i];
  382. atomic_inc(&cgrp->count);
  383. /*
  384. * We want to add a link once per cgroup, so we
  385. * only do it for the first subsystem in each
  386. * hierarchy
  387. */
  388. if (ss->root->subsys_list.next == &ss->sibling) {
  389. BUG_ON(list_empty(&tmp_cg_links));
  390. link = list_entry(tmp_cg_links.next,
  391. struct cg_cgroup_link,
  392. cgrp_link_list);
  393. list_del(&link->cgrp_link_list);
  394. list_add(&link->cgrp_link_list, &cgrp->css_sets);
  395. link->cg = res;
  396. list_add(&link->cg_link_list, &res->cg_links);
  397. }
  398. }
  399. if (list_empty(&rootnode.subsys_list)) {
  400. link = list_entry(tmp_cg_links.next,
  401. struct cg_cgroup_link,
  402. cgrp_link_list);
  403. list_del(&link->cgrp_link_list);
  404. list_add(&link->cgrp_link_list, &dummytop->css_sets);
  405. link->cg = res;
  406. list_add(&link->cg_link_list, &res->cg_links);
  407. }
  408. BUG_ON(!list_empty(&tmp_cg_links));
  409. /* Link this cgroup group into the list */
  410. list_add(&res->list, &init_css_set.list);
  411. css_set_count++;
  412. write_unlock(&css_set_lock);
  413. return res;
  414. }
  415. /*
  416. * There is one global cgroup mutex. We also require taking
  417. * task_lock() when dereferencing a task's cgroup subsys pointers.
  418. * See "The task_lock() exception", at the end of this comment.
  419. *
  420. * A task must hold cgroup_mutex to modify cgroups.
  421. *
  422. * Any task can increment and decrement the count field without lock.
  423. * So in general, code holding cgroup_mutex can't rely on the count
  424. * field not changing. However, if the count goes to zero, then only
  425. * cgroup_attach_task() can increment it again. Because a count of zero
  426. * means that no tasks are currently attached, therefore there is no
  427. * way a task attached to that cgroup can fork (the other way to
  428. * increment the count). So code holding cgroup_mutex can safely
  429. * assume that if the count is zero, it will stay zero. Similarly, if
  430. * a task holds cgroup_mutex on a cgroup with zero count, it
  431. * knows that the cgroup won't be removed, as cgroup_rmdir()
  432. * needs that mutex.
  433. *
  434. * The cgroup_common_file_write handler for operations that modify
  435. * the cgroup hierarchy holds cgroup_mutex across the entire operation,
  436. * single threading all such cgroup modifications across the system.
  437. *
  438. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  439. * (usually) take cgroup_mutex. These are the two most performance
  440. * critical pieces of code here. The exception occurs on cgroup_exit(),
  441. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  442. * is taken, and if the cgroup count is zero, a usermode call made
  443. * to the release agent with the name of the cgroup (path relative to
  444. * the root of cgroup file system) as the argument.
  445. *
  446. * A cgroup can only be deleted if both its 'count' of using tasks
  447. * is zero, and its list of 'children' cgroups is empty. Since all
  448. * tasks in the system use _some_ cgroup, and since there is always at
  449. * least one task in the system (init, pid == 1), therefore, top_cgroup
  450. * always has either children cgroups and/or using tasks. So we don't
  451. * need a special hack to ensure that top_cgroup cannot be deleted.
  452. *
  453. * The task_lock() exception
  454. *
  455. * The need for this exception arises from the action of
  456. * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
  457. * another. It does so using cgroup_mutex, however there are
  458. * several performance critical places that need to reference
  459. * task->cgroup without the expense of grabbing a system global
  460. * mutex. Therefore except as noted below, when dereferencing or, as
  461. * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  462. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  463. * the task_struct routinely used for such matters.
  464. *
  465. * P.S. One more locking exception. RCU is used to guard the
  466. * update of a tasks cgroup pointer by cgroup_attach_task()
  467. */
  468. /**
  469. * cgroup_lock - lock out any changes to cgroup structures
  470. *
  471. */
  472. void cgroup_lock(void)
  473. {
  474. mutex_lock(&cgroup_mutex);
  475. }
  476. /**
  477. * cgroup_unlock - release lock on cgroup changes
  478. *
  479. * Undo the lock taken in a previous cgroup_lock() call.
  480. */
  481. void cgroup_unlock(void)
  482. {
  483. mutex_unlock(&cgroup_mutex);
  484. }
  485. /*
  486. * A couple of forward declarations required, due to cyclic reference loop:
  487. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  488. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  489. * -> cgroup_mkdir.
  490. */
  491. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
  492. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  493. static int cgroup_populate_dir(struct cgroup *cgrp);
  494. static struct inode_operations cgroup_dir_inode_operations;
  495. static struct file_operations proc_cgroupstats_operations;
  496. static struct backing_dev_info cgroup_backing_dev_info = {
  497. .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
  498. };
  499. static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
  500. {
  501. struct inode *inode = new_inode(sb);
  502. if (inode) {
  503. inode->i_mode = mode;
  504. inode->i_uid = current->fsuid;
  505. inode->i_gid = current->fsgid;
  506. inode->i_blocks = 0;
  507. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  508. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  509. }
  510. return inode;
  511. }
  512. /*
  513. * Call subsys's pre_destroy handler.
  514. * This is called before css refcnt check.
  515. */
  516. static void cgroup_call_pre_destroy(struct cgroup *cgrp)
  517. {
  518. struct cgroup_subsys *ss;
  519. for_each_subsys(cgrp->root, ss)
  520. if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
  521. ss->pre_destroy(ss, cgrp);
  522. return;
  523. }
  524. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  525. {
  526. /* is dentry a directory ? if so, kfree() associated cgroup */
  527. if (S_ISDIR(inode->i_mode)) {
  528. struct cgroup *cgrp = dentry->d_fsdata;
  529. struct cgroup_subsys *ss;
  530. BUG_ON(!(cgroup_is_removed(cgrp)));
  531. /* It's possible for external users to be holding css
  532. * reference counts on a cgroup; css_put() needs to
  533. * be able to access the cgroup after decrementing
  534. * the reference count in order to know if it needs to
  535. * queue the cgroup to be handled by the release
  536. * agent */
  537. synchronize_rcu();
  538. mutex_lock(&cgroup_mutex);
  539. /*
  540. * Release the subsystem state objects.
  541. */
  542. for_each_subsys(cgrp->root, ss) {
  543. if (cgrp->subsys[ss->subsys_id])
  544. ss->destroy(ss, cgrp);
  545. }
  546. cgrp->root->number_of_cgroups--;
  547. mutex_unlock(&cgroup_mutex);
  548. /* Drop the active superblock reference that we took when we
  549. * created the cgroup */
  550. deactivate_super(cgrp->root->sb);
  551. kfree(cgrp);
  552. }
  553. iput(inode);
  554. }
  555. static void remove_dir(struct dentry *d)
  556. {
  557. struct dentry *parent = dget(d->d_parent);
  558. d_delete(d);
  559. simple_rmdir(parent->d_inode, d);
  560. dput(parent);
  561. }
  562. static void cgroup_clear_directory(struct dentry *dentry)
  563. {
  564. struct list_head *node;
  565. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  566. spin_lock(&dcache_lock);
  567. node = dentry->d_subdirs.next;
  568. while (node != &dentry->d_subdirs) {
  569. struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
  570. list_del_init(node);
  571. if (d->d_inode) {
  572. /* This should never be called on a cgroup
  573. * directory with child cgroups */
  574. BUG_ON(d->d_inode->i_mode & S_IFDIR);
  575. d = dget_locked(d);
  576. spin_unlock(&dcache_lock);
  577. d_delete(d);
  578. simple_unlink(dentry->d_inode, d);
  579. dput(d);
  580. spin_lock(&dcache_lock);
  581. }
  582. node = dentry->d_subdirs.next;
  583. }
  584. spin_unlock(&dcache_lock);
  585. }
  586. /*
  587. * NOTE : the dentry must have been dget()'ed
  588. */
  589. static void cgroup_d_remove_dir(struct dentry *dentry)
  590. {
  591. cgroup_clear_directory(dentry);
  592. spin_lock(&dcache_lock);
  593. list_del_init(&dentry->d_u.d_child);
  594. spin_unlock(&dcache_lock);
  595. remove_dir(dentry);
  596. }
  597. static int rebind_subsystems(struct cgroupfs_root *root,
  598. unsigned long final_bits)
  599. {
  600. unsigned long added_bits, removed_bits;
  601. struct cgroup *cgrp = &root->top_cgroup;
  602. int i;
  603. removed_bits = root->actual_subsys_bits & ~final_bits;
  604. added_bits = final_bits & ~root->actual_subsys_bits;
  605. /* Check that any added subsystems are currently free */
  606. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  607. unsigned long bit = 1UL << i;
  608. struct cgroup_subsys *ss = subsys[i];
  609. if (!(bit & added_bits))
  610. continue;
  611. if (ss->root != &rootnode) {
  612. /* Subsystem isn't free */
  613. return -EBUSY;
  614. }
  615. }
  616. /* Currently we don't handle adding/removing subsystems when
  617. * any child cgroups exist. This is theoretically supportable
  618. * but involves complex error handling, so it's being left until
  619. * later */
  620. if (!list_empty(&cgrp->children))
  621. return -EBUSY;
  622. /* Process each subsystem */
  623. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  624. struct cgroup_subsys *ss = subsys[i];
  625. unsigned long bit = 1UL << i;
  626. if (bit & added_bits) {
  627. /* We're binding this subsystem to this hierarchy */
  628. BUG_ON(cgrp->subsys[i]);
  629. BUG_ON(!dummytop->subsys[i]);
  630. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  631. cgrp->subsys[i] = dummytop->subsys[i];
  632. cgrp->subsys[i]->cgroup = cgrp;
  633. list_add(&ss->sibling, &root->subsys_list);
  634. rcu_assign_pointer(ss->root, root);
  635. if (ss->bind)
  636. ss->bind(ss, cgrp);
  637. } else if (bit & removed_bits) {
  638. /* We're removing this subsystem */
  639. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  640. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  641. if (ss->bind)
  642. ss->bind(ss, dummytop);
  643. dummytop->subsys[i]->cgroup = dummytop;
  644. cgrp->subsys[i] = NULL;
  645. rcu_assign_pointer(subsys[i]->root, &rootnode);
  646. list_del(&ss->sibling);
  647. } else if (bit & final_bits) {
  648. /* Subsystem state should already exist */
  649. BUG_ON(!cgrp->subsys[i]);
  650. } else {
  651. /* Subsystem state shouldn't exist */
  652. BUG_ON(cgrp->subsys[i]);
  653. }
  654. }
  655. root->subsys_bits = root->actual_subsys_bits = final_bits;
  656. synchronize_rcu();
  657. return 0;
  658. }
  659. static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
  660. {
  661. struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
  662. struct cgroup_subsys *ss;
  663. mutex_lock(&cgroup_mutex);
  664. for_each_subsys(root, ss)
  665. seq_printf(seq, ",%s", ss->name);
  666. if (test_bit(ROOT_NOPREFIX, &root->flags))
  667. seq_puts(seq, ",noprefix");
  668. if (strlen(root->release_agent_path))
  669. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  670. mutex_unlock(&cgroup_mutex);
  671. return 0;
  672. }
  673. struct cgroup_sb_opts {
  674. unsigned long subsys_bits;
  675. unsigned long flags;
  676. char *release_agent;
  677. };
  678. /* Convert a hierarchy specifier into a bitmask of subsystems and
  679. * flags. */
  680. static int parse_cgroupfs_options(char *data,
  681. struct cgroup_sb_opts *opts)
  682. {
  683. char *token, *o = data ?: "all";
  684. opts->subsys_bits = 0;
  685. opts->flags = 0;
  686. opts->release_agent = NULL;
  687. while ((token = strsep(&o, ",")) != NULL) {
  688. if (!*token)
  689. return -EINVAL;
  690. if (!strcmp(token, "all")) {
  691. /* Add all non-disabled subsystems */
  692. int i;
  693. opts->subsys_bits = 0;
  694. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  695. struct cgroup_subsys *ss = subsys[i];
  696. if (!ss->disabled)
  697. opts->subsys_bits |= 1ul << i;
  698. }
  699. } else if (!strcmp(token, "noprefix")) {
  700. set_bit(ROOT_NOPREFIX, &opts->flags);
  701. } else if (!strncmp(token, "release_agent=", 14)) {
  702. /* Specifying two release agents is forbidden */
  703. if (opts->release_agent)
  704. return -EINVAL;
  705. opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
  706. if (!opts->release_agent)
  707. return -ENOMEM;
  708. strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
  709. opts->release_agent[PATH_MAX - 1] = 0;
  710. } else {
  711. struct cgroup_subsys *ss;
  712. int i;
  713. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  714. ss = subsys[i];
  715. if (!strcmp(token, ss->name)) {
  716. if (!ss->disabled)
  717. set_bit(i, &opts->subsys_bits);
  718. break;
  719. }
  720. }
  721. if (i == CGROUP_SUBSYS_COUNT)
  722. return -ENOENT;
  723. }
  724. }
  725. /* We can't have an empty hierarchy */
  726. if (!opts->subsys_bits)
  727. return -EINVAL;
  728. return 0;
  729. }
  730. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  731. {
  732. int ret = 0;
  733. struct cgroupfs_root *root = sb->s_fs_info;
  734. struct cgroup *cgrp = &root->top_cgroup;
  735. struct cgroup_sb_opts opts;
  736. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  737. mutex_lock(&cgroup_mutex);
  738. /* See what subsystems are wanted */
  739. ret = parse_cgroupfs_options(data, &opts);
  740. if (ret)
  741. goto out_unlock;
  742. /* Don't allow flags to change at remount */
  743. if (opts.flags != root->flags) {
  744. ret = -EINVAL;
  745. goto out_unlock;
  746. }
  747. ret = rebind_subsystems(root, opts.subsys_bits);
  748. /* (re)populate subsystem files */
  749. if (!ret)
  750. cgroup_populate_dir(cgrp);
  751. if (opts.release_agent)
  752. strcpy(root->release_agent_path, opts.release_agent);
  753. out_unlock:
  754. if (opts.release_agent)
  755. kfree(opts.release_agent);
  756. mutex_unlock(&cgroup_mutex);
  757. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  758. return ret;
  759. }
  760. static struct super_operations cgroup_ops = {
  761. .statfs = simple_statfs,
  762. .drop_inode = generic_delete_inode,
  763. .show_options = cgroup_show_options,
  764. .remount_fs = cgroup_remount,
  765. };
  766. static void init_cgroup_root(struct cgroupfs_root *root)
  767. {
  768. struct cgroup *cgrp = &root->top_cgroup;
  769. INIT_LIST_HEAD(&root->subsys_list);
  770. INIT_LIST_HEAD(&root->root_list);
  771. root->number_of_cgroups = 1;
  772. cgrp->root = root;
  773. cgrp->top_cgroup = cgrp;
  774. INIT_LIST_HEAD(&cgrp->sibling);
  775. INIT_LIST_HEAD(&cgrp->children);
  776. INIT_LIST_HEAD(&cgrp->css_sets);
  777. INIT_LIST_HEAD(&cgrp->release_list);
  778. }
  779. static int cgroup_test_super(struct super_block *sb, void *data)
  780. {
  781. struct cgroupfs_root *new = data;
  782. struct cgroupfs_root *root = sb->s_fs_info;
  783. /* First check subsystems */
  784. if (new->subsys_bits != root->subsys_bits)
  785. return 0;
  786. /* Next check flags */
  787. if (new->flags != root->flags)
  788. return 0;
  789. return 1;
  790. }
  791. static int cgroup_set_super(struct super_block *sb, void *data)
  792. {
  793. int ret;
  794. struct cgroupfs_root *root = data;
  795. ret = set_anon_super(sb, NULL);
  796. if (ret)
  797. return ret;
  798. sb->s_fs_info = root;
  799. root->sb = sb;
  800. sb->s_blocksize = PAGE_CACHE_SIZE;
  801. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  802. sb->s_magic = CGROUP_SUPER_MAGIC;
  803. sb->s_op = &cgroup_ops;
  804. return 0;
  805. }
  806. static int cgroup_get_rootdir(struct super_block *sb)
  807. {
  808. struct inode *inode =
  809. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  810. struct dentry *dentry;
  811. if (!inode)
  812. return -ENOMEM;
  813. inode->i_fop = &simple_dir_operations;
  814. inode->i_op = &cgroup_dir_inode_operations;
  815. /* directories start off with i_nlink == 2 (for "." entry) */
  816. inc_nlink(inode);
  817. dentry = d_alloc_root(inode);
  818. if (!dentry) {
  819. iput(inode);
  820. return -ENOMEM;
  821. }
  822. sb->s_root = dentry;
  823. return 0;
  824. }
  825. static int cgroup_get_sb(struct file_system_type *fs_type,
  826. int flags, const char *unused_dev_name,
  827. void *data, struct vfsmount *mnt)
  828. {
  829. struct cgroup_sb_opts opts;
  830. int ret = 0;
  831. struct super_block *sb;
  832. struct cgroupfs_root *root;
  833. struct list_head tmp_cg_links, *l;
  834. INIT_LIST_HEAD(&tmp_cg_links);
  835. /* First find the desired set of subsystems */
  836. ret = parse_cgroupfs_options(data, &opts);
  837. if (ret) {
  838. if (opts.release_agent)
  839. kfree(opts.release_agent);
  840. return ret;
  841. }
  842. root = kzalloc(sizeof(*root), GFP_KERNEL);
  843. if (!root) {
  844. if (opts.release_agent)
  845. kfree(opts.release_agent);
  846. return -ENOMEM;
  847. }
  848. init_cgroup_root(root);
  849. root->subsys_bits = opts.subsys_bits;
  850. root->flags = opts.flags;
  851. if (opts.release_agent) {
  852. strcpy(root->release_agent_path, opts.release_agent);
  853. kfree(opts.release_agent);
  854. }
  855. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
  856. if (IS_ERR(sb)) {
  857. kfree(root);
  858. return PTR_ERR(sb);
  859. }
  860. if (sb->s_fs_info != root) {
  861. /* Reusing an existing superblock */
  862. BUG_ON(sb->s_root == NULL);
  863. kfree(root);
  864. root = NULL;
  865. } else {
  866. /* New superblock */
  867. struct cgroup *cgrp = &root->top_cgroup;
  868. struct inode *inode;
  869. BUG_ON(sb->s_root != NULL);
  870. ret = cgroup_get_rootdir(sb);
  871. if (ret)
  872. goto drop_new_super;
  873. inode = sb->s_root->d_inode;
  874. mutex_lock(&inode->i_mutex);
  875. mutex_lock(&cgroup_mutex);
  876. /*
  877. * We're accessing css_set_count without locking
  878. * css_set_lock here, but that's OK - it can only be
  879. * increased by someone holding cgroup_lock, and
  880. * that's us. The worst that can happen is that we
  881. * have some link structures left over
  882. */
  883. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  884. if (ret) {
  885. mutex_unlock(&cgroup_mutex);
  886. mutex_unlock(&inode->i_mutex);
  887. goto drop_new_super;
  888. }
  889. ret = rebind_subsystems(root, root->subsys_bits);
  890. if (ret == -EBUSY) {
  891. mutex_unlock(&cgroup_mutex);
  892. mutex_unlock(&inode->i_mutex);
  893. goto drop_new_super;
  894. }
  895. /* EBUSY should be the only error here */
  896. BUG_ON(ret);
  897. list_add(&root->root_list, &roots);
  898. root_count++;
  899. sb->s_root->d_fsdata = &root->top_cgroup;
  900. root->top_cgroup.dentry = sb->s_root;
  901. /* Link the top cgroup in this hierarchy into all
  902. * the css_set objects */
  903. write_lock(&css_set_lock);
  904. l = &init_css_set.list;
  905. do {
  906. struct css_set *cg;
  907. struct cg_cgroup_link *link;
  908. cg = list_entry(l, struct css_set, list);
  909. BUG_ON(list_empty(&tmp_cg_links));
  910. link = list_entry(tmp_cg_links.next,
  911. struct cg_cgroup_link,
  912. cgrp_link_list);
  913. list_del(&link->cgrp_link_list);
  914. link->cg = cg;
  915. list_add(&link->cgrp_link_list,
  916. &root->top_cgroup.css_sets);
  917. list_add(&link->cg_link_list, &cg->cg_links);
  918. l = l->next;
  919. } while (l != &init_css_set.list);
  920. write_unlock(&css_set_lock);
  921. free_cg_links(&tmp_cg_links);
  922. BUG_ON(!list_empty(&cgrp->sibling));
  923. BUG_ON(!list_empty(&cgrp->children));
  924. BUG_ON(root->number_of_cgroups != 1);
  925. cgroup_populate_dir(cgrp);
  926. mutex_unlock(&inode->i_mutex);
  927. mutex_unlock(&cgroup_mutex);
  928. }
  929. return simple_set_mnt(mnt, sb);
  930. drop_new_super:
  931. up_write(&sb->s_umount);
  932. deactivate_super(sb);
  933. free_cg_links(&tmp_cg_links);
  934. return ret;
  935. }
  936. static void cgroup_kill_sb(struct super_block *sb) {
  937. struct cgroupfs_root *root = sb->s_fs_info;
  938. struct cgroup *cgrp = &root->top_cgroup;
  939. int ret;
  940. BUG_ON(!root);
  941. BUG_ON(root->number_of_cgroups != 1);
  942. BUG_ON(!list_empty(&cgrp->children));
  943. BUG_ON(!list_empty(&cgrp->sibling));
  944. mutex_lock(&cgroup_mutex);
  945. /* Rebind all subsystems back to the default hierarchy */
  946. ret = rebind_subsystems(root, 0);
  947. /* Shouldn't be able to fail ... */
  948. BUG_ON(ret);
  949. /*
  950. * Release all the links from css_sets to this hierarchy's
  951. * root cgroup
  952. */
  953. write_lock(&css_set_lock);
  954. while (!list_empty(&cgrp->css_sets)) {
  955. struct cg_cgroup_link *link;
  956. link = list_entry(cgrp->css_sets.next,
  957. struct cg_cgroup_link, cgrp_link_list);
  958. list_del(&link->cg_link_list);
  959. list_del(&link->cgrp_link_list);
  960. kfree(link);
  961. }
  962. write_unlock(&css_set_lock);
  963. if (!list_empty(&root->root_list)) {
  964. list_del(&root->root_list);
  965. root_count--;
  966. }
  967. mutex_unlock(&cgroup_mutex);
  968. kfree(root);
  969. kill_litter_super(sb);
  970. }
  971. static struct file_system_type cgroup_fs_type = {
  972. .name = "cgroup",
  973. .get_sb = cgroup_get_sb,
  974. .kill_sb = cgroup_kill_sb,
  975. };
  976. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  977. {
  978. return dentry->d_fsdata;
  979. }
  980. static inline struct cftype *__d_cft(struct dentry *dentry)
  981. {
  982. return dentry->d_fsdata;
  983. }
  984. /**
  985. * cgroup_path - generate the path of a cgroup
  986. * @cgrp: the cgroup in question
  987. * @buf: the buffer to write the path into
  988. * @buflen: the length of the buffer
  989. *
  990. * Called with cgroup_mutex held. Writes path of cgroup into buf.
  991. * Returns 0 on success, -errno on error.
  992. */
  993. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  994. {
  995. char *start;
  996. if (cgrp == dummytop) {
  997. /*
  998. * Inactive subsystems have no dentry for their root
  999. * cgroup
  1000. */
  1001. strcpy(buf, "/");
  1002. return 0;
  1003. }
  1004. start = buf + buflen;
  1005. *--start = '\0';
  1006. for (;;) {
  1007. int len = cgrp->dentry->d_name.len;
  1008. if ((start -= len) < buf)
  1009. return -ENAMETOOLONG;
  1010. memcpy(start, cgrp->dentry->d_name.name, len);
  1011. cgrp = cgrp->parent;
  1012. if (!cgrp)
  1013. break;
  1014. if (!cgrp->parent)
  1015. continue;
  1016. if (--start < buf)
  1017. return -ENAMETOOLONG;
  1018. *start = '/';
  1019. }
  1020. memmove(buf, start, buf + buflen - start);
  1021. return 0;
  1022. }
  1023. /*
  1024. * Return the first subsystem attached to a cgroup's hierarchy, and
  1025. * its subsystem id.
  1026. */
  1027. static void get_first_subsys(const struct cgroup *cgrp,
  1028. struct cgroup_subsys_state **css, int *subsys_id)
  1029. {
  1030. const struct cgroupfs_root *root = cgrp->root;
  1031. const struct cgroup_subsys *test_ss;
  1032. BUG_ON(list_empty(&root->subsys_list));
  1033. test_ss = list_entry(root->subsys_list.next,
  1034. struct cgroup_subsys, sibling);
  1035. if (css) {
  1036. *css = cgrp->subsys[test_ss->subsys_id];
  1037. BUG_ON(!*css);
  1038. }
  1039. if (subsys_id)
  1040. *subsys_id = test_ss->subsys_id;
  1041. }
  1042. /**
  1043. * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
  1044. * @cgrp: the cgroup the task is attaching to
  1045. * @tsk: the task to be attached
  1046. *
  1047. * Call holding cgroup_mutex. May take task_lock of
  1048. * the task 'tsk' during call.
  1049. */
  1050. int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  1051. {
  1052. int retval = 0;
  1053. struct cgroup_subsys *ss;
  1054. struct cgroup *oldcgrp;
  1055. struct css_set *cg = tsk->cgroups;
  1056. struct css_set *newcg;
  1057. struct cgroupfs_root *root = cgrp->root;
  1058. int subsys_id;
  1059. get_first_subsys(cgrp, NULL, &subsys_id);
  1060. /* Nothing to do if the task is already in that cgroup */
  1061. oldcgrp = task_cgroup(tsk, subsys_id);
  1062. if (cgrp == oldcgrp)
  1063. return 0;
  1064. for_each_subsys(root, ss) {
  1065. if (ss->can_attach) {
  1066. retval = ss->can_attach(ss, cgrp, tsk);
  1067. if (retval)
  1068. return retval;
  1069. }
  1070. }
  1071. /*
  1072. * Locate or allocate a new css_set for this task,
  1073. * based on its final set of cgroups
  1074. */
  1075. newcg = find_css_set(cg, cgrp);
  1076. if (!newcg)
  1077. return -ENOMEM;
  1078. task_lock(tsk);
  1079. if (tsk->flags & PF_EXITING) {
  1080. task_unlock(tsk);
  1081. put_css_set(newcg);
  1082. return -ESRCH;
  1083. }
  1084. rcu_assign_pointer(tsk->cgroups, newcg);
  1085. task_unlock(tsk);
  1086. /* Update the css_set linked lists if we're using them */
  1087. write_lock(&css_set_lock);
  1088. if (!list_empty(&tsk->cg_list)) {
  1089. list_del(&tsk->cg_list);
  1090. list_add(&tsk->cg_list, &newcg->tasks);
  1091. }
  1092. write_unlock(&css_set_lock);
  1093. for_each_subsys(root, ss) {
  1094. if (ss->attach)
  1095. ss->attach(ss, cgrp, oldcgrp, tsk);
  1096. }
  1097. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1098. synchronize_rcu();
  1099. put_css_set(cg);
  1100. return 0;
  1101. }
  1102. /*
  1103. * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
  1104. * cgroup_mutex, may take task_lock of task
  1105. */
  1106. static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
  1107. {
  1108. pid_t pid;
  1109. struct task_struct *tsk;
  1110. int ret;
  1111. if (sscanf(pidbuf, "%d", &pid) != 1)
  1112. return -EIO;
  1113. if (pid) {
  1114. rcu_read_lock();
  1115. tsk = find_task_by_vpid(pid);
  1116. if (!tsk || tsk->flags & PF_EXITING) {
  1117. rcu_read_unlock();
  1118. return -ESRCH;
  1119. }
  1120. get_task_struct(tsk);
  1121. rcu_read_unlock();
  1122. if ((current->euid) && (current->euid != tsk->uid)
  1123. && (current->euid != tsk->suid)) {
  1124. put_task_struct(tsk);
  1125. return -EACCES;
  1126. }
  1127. } else {
  1128. tsk = current;
  1129. get_task_struct(tsk);
  1130. }
  1131. ret = cgroup_attach_task(cgrp, tsk);
  1132. put_task_struct(tsk);
  1133. return ret;
  1134. }
  1135. /* The various types of files and directories in a cgroup file system */
  1136. enum cgroup_filetype {
  1137. FILE_ROOT,
  1138. FILE_DIR,
  1139. FILE_TASKLIST,
  1140. FILE_NOTIFY_ON_RELEASE,
  1141. FILE_RELEASABLE,
  1142. FILE_RELEASE_AGENT,
  1143. };
  1144. static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
  1145. struct file *file,
  1146. const char __user *userbuf,
  1147. size_t nbytes, loff_t *unused_ppos)
  1148. {
  1149. char buffer[64];
  1150. int retval = 0;
  1151. u64 val;
  1152. char *end;
  1153. if (!nbytes)
  1154. return -EINVAL;
  1155. if (nbytes >= sizeof(buffer))
  1156. return -E2BIG;
  1157. if (copy_from_user(buffer, userbuf, nbytes))
  1158. return -EFAULT;
  1159. buffer[nbytes] = 0; /* nul-terminate */
  1160. /* strip newline if necessary */
  1161. if (nbytes && (buffer[nbytes-1] == '\n'))
  1162. buffer[nbytes-1] = 0;
  1163. val = simple_strtoull(buffer, &end, 0);
  1164. if (*end)
  1165. return -EINVAL;
  1166. /* Pass to subsystem */
  1167. retval = cft->write_uint(cgrp, cft, val);
  1168. if (!retval)
  1169. retval = nbytes;
  1170. return retval;
  1171. }
  1172. static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
  1173. struct cftype *cft,
  1174. struct file *file,
  1175. const char __user *userbuf,
  1176. size_t nbytes, loff_t *unused_ppos)
  1177. {
  1178. enum cgroup_filetype type = cft->private;
  1179. char *buffer;
  1180. int retval = 0;
  1181. if (nbytes >= PATH_MAX)
  1182. return -E2BIG;
  1183. /* +1 for nul-terminator */
  1184. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  1185. if (buffer == NULL)
  1186. return -ENOMEM;
  1187. if (copy_from_user(buffer, userbuf, nbytes)) {
  1188. retval = -EFAULT;
  1189. goto out1;
  1190. }
  1191. buffer[nbytes] = 0; /* nul-terminate */
  1192. strstrip(buffer); /* strip -just- trailing whitespace */
  1193. mutex_lock(&cgroup_mutex);
  1194. /*
  1195. * This was already checked for in cgroup_file_write(), but
  1196. * check again now we're holding cgroup_mutex.
  1197. */
  1198. if (cgroup_is_removed(cgrp)) {
  1199. retval = -ENODEV;
  1200. goto out2;
  1201. }
  1202. switch (type) {
  1203. case FILE_TASKLIST:
  1204. retval = attach_task_by_pid(cgrp, buffer);
  1205. break;
  1206. case FILE_NOTIFY_ON_RELEASE:
  1207. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  1208. if (simple_strtoul(buffer, NULL, 10) != 0)
  1209. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  1210. else
  1211. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  1212. break;
  1213. case FILE_RELEASE_AGENT:
  1214. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  1215. strcpy(cgrp->root->release_agent_path, buffer);
  1216. break;
  1217. default:
  1218. retval = -EINVAL;
  1219. goto out2;
  1220. }
  1221. if (retval == 0)
  1222. retval = nbytes;
  1223. out2:
  1224. mutex_unlock(&cgroup_mutex);
  1225. out1:
  1226. kfree(buffer);
  1227. return retval;
  1228. }
  1229. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  1230. size_t nbytes, loff_t *ppos)
  1231. {
  1232. struct cftype *cft = __d_cft(file->f_dentry);
  1233. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1234. if (!cft || cgroup_is_removed(cgrp))
  1235. return -ENODEV;
  1236. if (cft->write)
  1237. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  1238. if (cft->write_uint)
  1239. return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
  1240. return -EINVAL;
  1241. }
  1242. static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
  1243. struct file *file,
  1244. char __user *buf, size_t nbytes,
  1245. loff_t *ppos)
  1246. {
  1247. char tmp[64];
  1248. u64 val = cft->read_uint(cgrp, cft);
  1249. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  1250. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1251. }
  1252. static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
  1253. struct cftype *cft,
  1254. struct file *file,
  1255. char __user *buf,
  1256. size_t nbytes, loff_t *ppos)
  1257. {
  1258. enum cgroup_filetype type = cft->private;
  1259. char *page;
  1260. ssize_t retval = 0;
  1261. char *s;
  1262. if (!(page = (char *)__get_free_page(GFP_KERNEL)))
  1263. return -ENOMEM;
  1264. s = page;
  1265. switch (type) {
  1266. case FILE_RELEASE_AGENT:
  1267. {
  1268. struct cgroupfs_root *root;
  1269. size_t n;
  1270. mutex_lock(&cgroup_mutex);
  1271. root = cgrp->root;
  1272. n = strnlen(root->release_agent_path,
  1273. sizeof(root->release_agent_path));
  1274. n = min(n, (size_t) PAGE_SIZE);
  1275. strncpy(s, root->release_agent_path, n);
  1276. mutex_unlock(&cgroup_mutex);
  1277. s += n;
  1278. break;
  1279. }
  1280. default:
  1281. retval = -EINVAL;
  1282. goto out;
  1283. }
  1284. *s++ = '\n';
  1285. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1286. out:
  1287. free_page((unsigned long)page);
  1288. return retval;
  1289. }
  1290. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  1291. size_t nbytes, loff_t *ppos)
  1292. {
  1293. struct cftype *cft = __d_cft(file->f_dentry);
  1294. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1295. if (!cft || cgroup_is_removed(cgrp))
  1296. return -ENODEV;
  1297. if (cft->read)
  1298. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  1299. if (cft->read_uint)
  1300. return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
  1301. return -EINVAL;
  1302. }
  1303. static int cgroup_file_open(struct inode *inode, struct file *file)
  1304. {
  1305. int err;
  1306. struct cftype *cft;
  1307. err = generic_file_open(inode, file);
  1308. if (err)
  1309. return err;
  1310. cft = __d_cft(file->f_dentry);
  1311. if (!cft)
  1312. return -ENODEV;
  1313. if (cft->open)
  1314. err = cft->open(inode, file);
  1315. else
  1316. err = 0;
  1317. return err;
  1318. }
  1319. static int cgroup_file_release(struct inode *inode, struct file *file)
  1320. {
  1321. struct cftype *cft = __d_cft(file->f_dentry);
  1322. if (cft->release)
  1323. return cft->release(inode, file);
  1324. return 0;
  1325. }
  1326. /*
  1327. * cgroup_rename - Only allow simple rename of directories in place.
  1328. */
  1329. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  1330. struct inode *new_dir, struct dentry *new_dentry)
  1331. {
  1332. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  1333. return -ENOTDIR;
  1334. if (new_dentry->d_inode)
  1335. return -EEXIST;
  1336. if (old_dir != new_dir)
  1337. return -EIO;
  1338. return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  1339. }
  1340. static struct file_operations cgroup_file_operations = {
  1341. .read = cgroup_file_read,
  1342. .write = cgroup_file_write,
  1343. .llseek = generic_file_llseek,
  1344. .open = cgroup_file_open,
  1345. .release = cgroup_file_release,
  1346. };
  1347. static struct inode_operations cgroup_dir_inode_operations = {
  1348. .lookup = simple_lookup,
  1349. .mkdir = cgroup_mkdir,
  1350. .rmdir = cgroup_rmdir,
  1351. .rename = cgroup_rename,
  1352. };
  1353. static int cgroup_create_file(struct dentry *dentry, int mode,
  1354. struct super_block *sb)
  1355. {
  1356. static struct dentry_operations cgroup_dops = {
  1357. .d_iput = cgroup_diput,
  1358. };
  1359. struct inode *inode;
  1360. if (!dentry)
  1361. return -ENOENT;
  1362. if (dentry->d_inode)
  1363. return -EEXIST;
  1364. inode = cgroup_new_inode(mode, sb);
  1365. if (!inode)
  1366. return -ENOMEM;
  1367. if (S_ISDIR(mode)) {
  1368. inode->i_op = &cgroup_dir_inode_operations;
  1369. inode->i_fop = &simple_dir_operations;
  1370. /* start off with i_nlink == 2 (for "." entry) */
  1371. inc_nlink(inode);
  1372. /* start with the directory inode held, so that we can
  1373. * populate it without racing with another mkdir */
  1374. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  1375. } else if (S_ISREG(mode)) {
  1376. inode->i_size = 0;
  1377. inode->i_fop = &cgroup_file_operations;
  1378. }
  1379. dentry->d_op = &cgroup_dops;
  1380. d_instantiate(dentry, inode);
  1381. dget(dentry); /* Extra count - pin the dentry in core */
  1382. return 0;
  1383. }
  1384. /*
  1385. * cgroup_create_dir - create a directory for an object.
  1386. * @cgrp: the cgroup we create the directory for. It must have a valid
  1387. * ->parent field. And we are going to fill its ->dentry field.
  1388. * @dentry: dentry of the new cgroup
  1389. * @mode: mode to set on new directory.
  1390. */
  1391. static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
  1392. int mode)
  1393. {
  1394. struct dentry *parent;
  1395. int error = 0;
  1396. parent = cgrp->parent->dentry;
  1397. error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
  1398. if (!error) {
  1399. dentry->d_fsdata = cgrp;
  1400. inc_nlink(parent->d_inode);
  1401. cgrp->dentry = dentry;
  1402. dget(dentry);
  1403. }
  1404. dput(dentry);
  1405. return error;
  1406. }
  1407. int cgroup_add_file(struct cgroup *cgrp,
  1408. struct cgroup_subsys *subsys,
  1409. const struct cftype *cft)
  1410. {
  1411. struct dentry *dir = cgrp->dentry;
  1412. struct dentry *dentry;
  1413. int error;
  1414. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  1415. if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
  1416. strcpy(name, subsys->name);
  1417. strcat(name, ".");
  1418. }
  1419. strcat(name, cft->name);
  1420. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  1421. dentry = lookup_one_len(name, dir, strlen(name));
  1422. if (!IS_ERR(dentry)) {
  1423. error = cgroup_create_file(dentry, 0644 | S_IFREG,
  1424. cgrp->root->sb);
  1425. if (!error)
  1426. dentry->d_fsdata = (void *)cft;
  1427. dput(dentry);
  1428. } else
  1429. error = PTR_ERR(dentry);
  1430. return error;
  1431. }
  1432. int cgroup_add_files(struct cgroup *cgrp,
  1433. struct cgroup_subsys *subsys,
  1434. const struct cftype cft[],
  1435. int count)
  1436. {
  1437. int i, err;
  1438. for (i = 0; i < count; i++) {
  1439. err = cgroup_add_file(cgrp, subsys, &cft[i]);
  1440. if (err)
  1441. return err;
  1442. }
  1443. return 0;
  1444. }
  1445. /**
  1446. * cgroup_task_count - count the number of tasks in a cgroup.
  1447. * @cgrp: the cgroup in question
  1448. *
  1449. * Return the number of tasks in the cgroup.
  1450. */
  1451. int cgroup_task_count(const struct cgroup *cgrp)
  1452. {
  1453. int count = 0;
  1454. struct list_head *l;
  1455. read_lock(&css_set_lock);
  1456. l = cgrp->css_sets.next;
  1457. while (l != &cgrp->css_sets) {
  1458. struct cg_cgroup_link *link =
  1459. list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  1460. count += atomic_read(&link->cg->ref.refcount);
  1461. l = l->next;
  1462. }
  1463. read_unlock(&css_set_lock);
  1464. return count;
  1465. }
  1466. /*
  1467. * Advance a list_head iterator. The iterator should be positioned at
  1468. * the start of a css_set
  1469. */
  1470. static void cgroup_advance_iter(struct cgroup *cgrp,
  1471. struct cgroup_iter *it)
  1472. {
  1473. struct list_head *l = it->cg_link;
  1474. struct cg_cgroup_link *link;
  1475. struct css_set *cg;
  1476. /* Advance to the next non-empty css_set */
  1477. do {
  1478. l = l->next;
  1479. if (l == &cgrp->css_sets) {
  1480. it->cg_link = NULL;
  1481. return;
  1482. }
  1483. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  1484. cg = link->cg;
  1485. } while (list_empty(&cg->tasks));
  1486. it->cg_link = l;
  1487. it->task = cg->tasks.next;
  1488. }
  1489. /*
  1490. * To reduce the fork() overhead for systems that are not actually
  1491. * using their cgroups capability, we don't maintain the lists running
  1492. * through each css_set to its tasks until we see the list actually
  1493. * used - in other words after the first call to cgroup_iter_start().
  1494. *
  1495. * The tasklist_lock is not held here, as do_each_thread() and
  1496. * while_each_thread() are protected by RCU.
  1497. */
  1498. void cgroup_enable_task_cg_lists(void)
  1499. {
  1500. struct task_struct *p, *g;
  1501. write_lock(&css_set_lock);
  1502. use_task_css_set_links = 1;
  1503. do_each_thread(g, p) {
  1504. task_lock(p);
  1505. if (list_empty(&p->cg_list))
  1506. list_add(&p->cg_list, &p->cgroups->tasks);
  1507. task_unlock(p);
  1508. } while_each_thread(g, p);
  1509. write_unlock(&css_set_lock);
  1510. }
  1511. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  1512. {
  1513. /*
  1514. * The first time anyone tries to iterate across a cgroup,
  1515. * we need to enable the list linking each css_set to its
  1516. * tasks, and fix up all existing tasks.
  1517. */
  1518. if (!use_task_css_set_links)
  1519. cgroup_enable_task_cg_lists();
  1520. read_lock(&css_set_lock);
  1521. it->cg_link = &cgrp->css_sets;
  1522. cgroup_advance_iter(cgrp, it);
  1523. }
  1524. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  1525. struct cgroup_iter *it)
  1526. {
  1527. struct task_struct *res;
  1528. struct list_head *l = it->task;
  1529. /* If the iterator cg is NULL, we have no tasks */
  1530. if (!it->cg_link)
  1531. return NULL;
  1532. res = list_entry(l, struct task_struct, cg_list);
  1533. /* Advance iterator to find next entry */
  1534. l = l->next;
  1535. if (l == &res->cgroups->tasks) {
  1536. /* We reached the end of this task list - move on to
  1537. * the next cg_cgroup_link */
  1538. cgroup_advance_iter(cgrp, it);
  1539. } else {
  1540. it->task = l;
  1541. }
  1542. return res;
  1543. }
  1544. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  1545. {
  1546. read_unlock(&css_set_lock);
  1547. }
  1548. static inline int started_after_time(struct task_struct *t1,
  1549. struct timespec *time,
  1550. struct task_struct *t2)
  1551. {
  1552. int start_diff = timespec_compare(&t1->start_time, time);
  1553. if (start_diff > 0) {
  1554. return 1;
  1555. } else if (start_diff < 0) {
  1556. return 0;
  1557. } else {
  1558. /*
  1559. * Arbitrarily, if two processes started at the same
  1560. * time, we'll say that the lower pointer value
  1561. * started first. Note that t2 may have exited by now
  1562. * so this may not be a valid pointer any longer, but
  1563. * that's fine - it still serves to distinguish
  1564. * between two tasks started (effectively) simultaneously.
  1565. */
  1566. return t1 > t2;
  1567. }
  1568. }
  1569. /*
  1570. * This function is a callback from heap_insert() and is used to order
  1571. * the heap.
  1572. * In this case we order the heap in descending task start time.
  1573. */
  1574. static inline int started_after(void *p1, void *p2)
  1575. {
  1576. struct task_struct *t1 = p1;
  1577. struct task_struct *t2 = p2;
  1578. return started_after_time(t1, &t2->start_time, t2);
  1579. }
  1580. /**
  1581. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  1582. * @scan: struct cgroup_scanner containing arguments for the scan
  1583. *
  1584. * Arguments include pointers to callback functions test_task() and
  1585. * process_task().
  1586. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  1587. * and if it returns true, call process_task() for it also.
  1588. * The test_task pointer may be NULL, meaning always true (select all tasks).
  1589. * Effectively duplicates cgroup_iter_{start,next,end}()
  1590. * but does not lock css_set_lock for the call to process_task().
  1591. * The struct cgroup_scanner may be embedded in any structure of the caller's
  1592. * creation.
  1593. * It is guaranteed that process_task() will act on every task that
  1594. * is a member of the cgroup for the duration of this call. This
  1595. * function may or may not call process_task() for tasks that exit
  1596. * or move to a different cgroup during the call, or are forked or
  1597. * move into the cgroup during the call.
  1598. *
  1599. * Note that test_task() may be called with locks held, and may in some
  1600. * situations be called multiple times for the same task, so it should
  1601. * be cheap.
  1602. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  1603. * pre-allocated and will be used for heap operations (and its "gt" member will
  1604. * be overwritten), else a temporary heap will be used (allocation of which
  1605. * may cause this function to fail).
  1606. */
  1607. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  1608. {
  1609. int retval, i;
  1610. struct cgroup_iter it;
  1611. struct task_struct *p, *dropped;
  1612. /* Never dereference latest_task, since it's not refcounted */
  1613. struct task_struct *latest_task = NULL;
  1614. struct ptr_heap tmp_heap;
  1615. struct ptr_heap *heap;
  1616. struct timespec latest_time = { 0, 0 };
  1617. if (scan->heap) {
  1618. /* The caller supplied our heap and pre-allocated its memory */
  1619. heap = scan->heap;
  1620. heap->gt = &started_after;
  1621. } else {
  1622. /* We need to allocate our own heap memory */
  1623. heap = &tmp_heap;
  1624. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  1625. if (retval)
  1626. /* cannot allocate the heap */
  1627. return retval;
  1628. }
  1629. again:
  1630. /*
  1631. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  1632. * to determine which are of interest, and using the scanner's
  1633. * "process_task" callback to process any of them that need an update.
  1634. * Since we don't want to hold any locks during the task updates,
  1635. * gather tasks to be processed in a heap structure.
  1636. * The heap is sorted by descending task start time.
  1637. * If the statically-sized heap fills up, we overflow tasks that
  1638. * started later, and in future iterations only consider tasks that
  1639. * started after the latest task in the previous pass. This
  1640. * guarantees forward progress and that we don't miss any tasks.
  1641. */
  1642. heap->size = 0;
  1643. cgroup_iter_start(scan->cg, &it);
  1644. while ((p = cgroup_iter_next(scan->cg, &it))) {
  1645. /*
  1646. * Only affect tasks that qualify per the caller's callback,
  1647. * if he provided one
  1648. */
  1649. if (scan->test_task && !scan->test_task(p, scan))
  1650. continue;
  1651. /*
  1652. * Only process tasks that started after the last task
  1653. * we processed
  1654. */
  1655. if (!started_after_time(p, &latest_time, latest_task))
  1656. continue;
  1657. dropped = heap_insert(heap, p);
  1658. if (dropped == NULL) {
  1659. /*
  1660. * The new task was inserted; the heap wasn't
  1661. * previously full
  1662. */
  1663. get_task_struct(p);
  1664. } else if (dropped != p) {
  1665. /*
  1666. * The new task was inserted, and pushed out a
  1667. * different task
  1668. */
  1669. get_task_struct(p);
  1670. put_task_struct(dropped);
  1671. }
  1672. /*
  1673. * Else the new task was newer than anything already in
  1674. * the heap and wasn't inserted
  1675. */
  1676. }
  1677. cgroup_iter_end(scan->cg, &it);
  1678. if (heap->size) {
  1679. for (i = 0; i < heap->size; i++) {
  1680. struct task_struct *p = heap->ptrs[i];
  1681. if (i == 0) {
  1682. latest_time = p->start_time;
  1683. latest_task = p;
  1684. }
  1685. /* Process the task per the caller's callback */
  1686. scan->process_task(p, scan);
  1687. put_task_struct(p);
  1688. }
  1689. /*
  1690. * If we had to process any tasks at all, scan again
  1691. * in case some of them were in the middle of forking
  1692. * children that didn't get processed.
  1693. * Not the most efficient way to do it, but it avoids
  1694. * having to take callback_mutex in the fork path
  1695. */
  1696. goto again;
  1697. }
  1698. if (heap == &tmp_heap)
  1699. heap_free(&tmp_heap);
  1700. return 0;
  1701. }
  1702. /*
  1703. * Stuff for reading the 'tasks' file.
  1704. *
  1705. * Reading this file can return large amounts of data if a cgroup has
  1706. * *lots* of attached tasks. So it may need several calls to read(),
  1707. * but we cannot guarantee that the information we produce is correct
  1708. * unless we produce it entirely atomically.
  1709. *
  1710. * Upon tasks file open(), a struct ctr_struct is allocated, that
  1711. * will have a pointer to an array (also allocated here). The struct
  1712. * ctr_struct * is stored in file->private_data. Its resources will
  1713. * be freed by release() when the file is closed. The array is used
  1714. * to sprintf the PIDs and then used by read().
  1715. */
  1716. struct ctr_struct {
  1717. char *buf;
  1718. int bufsz;
  1719. };
  1720. /*
  1721. * Load into 'pidarray' up to 'npids' of the tasks using cgroup
  1722. * 'cgrp'. Return actual number of pids loaded. No need to
  1723. * task_lock(p) when reading out p->cgroup, since we're in an RCU
  1724. * read section, so the css_set can't go away, and is
  1725. * immutable after creation.
  1726. */
  1727. static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
  1728. {
  1729. int n = 0;
  1730. struct cgroup_iter it;
  1731. struct task_struct *tsk;
  1732. cgroup_iter_start(cgrp, &it);
  1733. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  1734. if (unlikely(n == npids))
  1735. break;
  1736. pidarray[n++] = task_pid_vnr(tsk);
  1737. }
  1738. cgroup_iter_end(cgrp, &it);
  1739. return n;
  1740. }
  1741. /**
  1742. * cgroupstats_build - build and fill cgroupstats
  1743. * @stats: cgroupstats to fill information into
  1744. * @dentry: A dentry entry belonging to the cgroup for which stats have
  1745. * been requested.
  1746. *
  1747. * Build and fill cgroupstats so that taskstats can export it to user
  1748. * space.
  1749. */
  1750. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  1751. {
  1752. int ret = -EINVAL;
  1753. struct cgroup *cgrp;
  1754. struct cgroup_iter it;
  1755. struct task_struct *tsk;
  1756. /*
  1757. * Validate dentry by checking the superblock operations
  1758. */
  1759. if (dentry->d_sb->s_op != &cgroup_ops)
  1760. goto err;
  1761. ret = 0;
  1762. cgrp = dentry->d_fsdata;
  1763. rcu_read_lock();
  1764. cgroup_iter_start(cgrp, &it);
  1765. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  1766. switch (tsk->state) {
  1767. case TASK_RUNNING:
  1768. stats->nr_running++;
  1769. break;
  1770. case TASK_INTERRUPTIBLE:
  1771. stats->nr_sleeping++;
  1772. break;
  1773. case TASK_UNINTERRUPTIBLE:
  1774. stats->nr_uninterruptible++;
  1775. break;
  1776. case TASK_STOPPED:
  1777. stats->nr_stopped++;
  1778. break;
  1779. default:
  1780. if (delayacct_is_task_waiting_on_io(tsk))
  1781. stats->nr_io_wait++;
  1782. break;
  1783. }
  1784. }
  1785. cgroup_iter_end(cgrp, &it);
  1786. rcu_read_unlock();
  1787. err:
  1788. return ret;
  1789. }
  1790. static int cmppid(const void *a, const void *b)
  1791. {
  1792. return *(pid_t *)a - *(pid_t *)b;
  1793. }
  1794. /*
  1795. * Convert array 'a' of 'npids' pid_t's to a string of newline separated
  1796. * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
  1797. * count 'cnt' of how many chars would be written if buf were large enough.
  1798. */
  1799. static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
  1800. {
  1801. int cnt = 0;
  1802. int i;
  1803. for (i = 0; i < npids; i++)
  1804. cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
  1805. return cnt;
  1806. }
  1807. /*
  1808. * Handle an open on 'tasks' file. Prepare a buffer listing the
  1809. * process id's of tasks currently attached to the cgroup being opened.
  1810. *
  1811. * Does not require any specific cgroup mutexes, and does not take any.
  1812. */
  1813. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  1814. {
  1815. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1816. struct ctr_struct *ctr;
  1817. pid_t *pidarray;
  1818. int npids;
  1819. char c;
  1820. if (!(file->f_mode & FMODE_READ))
  1821. return 0;
  1822. ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
  1823. if (!ctr)
  1824. goto err0;
  1825. /*
  1826. * If cgroup gets more users after we read count, we won't have
  1827. * enough space - tough. This race is indistinguishable to the
  1828. * caller from the case that the additional cgroup users didn't
  1829. * show up until sometime later on.
  1830. */
  1831. npids = cgroup_task_count(cgrp);
  1832. if (npids) {
  1833. pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
  1834. if (!pidarray)
  1835. goto err1;
  1836. npids = pid_array_load(pidarray, npids, cgrp);
  1837. sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
  1838. /* Call pid_array_to_buf() twice, first just to get bufsz */
  1839. ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
  1840. ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
  1841. if (!ctr->buf)
  1842. goto err2;
  1843. ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
  1844. kfree(pidarray);
  1845. } else {
  1846. ctr->buf = NULL;
  1847. ctr->bufsz = 0;
  1848. }
  1849. file->private_data = ctr;
  1850. return 0;
  1851. err2:
  1852. kfree(pidarray);
  1853. err1:
  1854. kfree(ctr);
  1855. err0:
  1856. return -ENOMEM;
  1857. }
  1858. static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
  1859. struct cftype *cft,
  1860. struct file *file, char __user *buf,
  1861. size_t nbytes, loff_t *ppos)
  1862. {
  1863. struct ctr_struct *ctr = file->private_data;
  1864. return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
  1865. }
  1866. static int cgroup_tasks_release(struct inode *unused_inode,
  1867. struct file *file)
  1868. {
  1869. struct ctr_struct *ctr;
  1870. if (file->f_mode & FMODE_READ) {
  1871. ctr = file->private_data;
  1872. kfree(ctr->buf);
  1873. kfree(ctr);
  1874. }
  1875. return 0;
  1876. }
  1877. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  1878. struct cftype *cft)
  1879. {
  1880. return notify_on_release(cgrp);
  1881. }
  1882. static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
  1883. {
  1884. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  1885. }
  1886. /*
  1887. * for the common functions, 'private' gives the type of file
  1888. */
  1889. static struct cftype files[] = {
  1890. {
  1891. .name = "tasks",
  1892. .open = cgroup_tasks_open,
  1893. .read = cgroup_tasks_read,
  1894. .write = cgroup_common_file_write,
  1895. .release = cgroup_tasks_release,
  1896. .private = FILE_TASKLIST,
  1897. },
  1898. {
  1899. .name = "notify_on_release",
  1900. .read_uint = cgroup_read_notify_on_release,
  1901. .write = cgroup_common_file_write,
  1902. .private = FILE_NOTIFY_ON_RELEASE,
  1903. },
  1904. {
  1905. .name = "releasable",
  1906. .read_uint = cgroup_read_releasable,
  1907. .private = FILE_RELEASABLE,
  1908. }
  1909. };
  1910. static struct cftype cft_release_agent = {
  1911. .name = "release_agent",
  1912. .read = cgroup_common_file_read,
  1913. .write = cgroup_common_file_write,
  1914. .private = FILE_RELEASE_AGENT,
  1915. };
  1916. static int cgroup_populate_dir(struct cgroup *cgrp)
  1917. {
  1918. int err;
  1919. struct cgroup_subsys *ss;
  1920. /* First clear out any existing files */
  1921. cgroup_clear_directory(cgrp->dentry);
  1922. err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
  1923. if (err < 0)
  1924. return err;
  1925. if (cgrp == cgrp->top_cgroup) {
  1926. if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
  1927. return err;
  1928. }
  1929. for_each_subsys(cgrp->root, ss) {
  1930. if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
  1931. return err;
  1932. }
  1933. return 0;
  1934. }
  1935. static void init_cgroup_css(struct cgroup_subsys_state *css,
  1936. struct cgroup_subsys *ss,
  1937. struct cgroup *cgrp)
  1938. {
  1939. css->cgroup = cgrp;
  1940. atomic_set(&css->refcnt, 0);
  1941. css->flags = 0;
  1942. if (cgrp == dummytop)
  1943. set_bit(CSS_ROOT, &css->flags);
  1944. BUG_ON(cgrp->subsys[ss->subsys_id]);
  1945. cgrp->subsys[ss->subsys_id] = css;
  1946. }
  1947. /*
  1948. * cgroup_create - create a cgroup
  1949. * @parent: cgroup that will be parent of the new cgroup
  1950. * @dentry: dentry of the new cgroup
  1951. * @mode: mode to set on new inode
  1952. *
  1953. * Must be called with the mutex on the parent inode held
  1954. */
  1955. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  1956. int mode)
  1957. {
  1958. struct cgroup *cgrp;
  1959. struct cgroupfs_root *root = parent->root;
  1960. int err = 0;
  1961. struct cgroup_subsys *ss;
  1962. struct super_block *sb = root->sb;
  1963. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  1964. if (!cgrp)
  1965. return -ENOMEM;
  1966. /* Grab a reference on the superblock so the hierarchy doesn't
  1967. * get deleted on unmount if there are child cgroups. This
  1968. * can be done outside cgroup_mutex, since the sb can't
  1969. * disappear while someone has an open control file on the
  1970. * fs */
  1971. atomic_inc(&sb->s_active);
  1972. mutex_lock(&cgroup_mutex);
  1973. INIT_LIST_HEAD(&cgrp->sibling);
  1974. INIT_LIST_HEAD(&cgrp->children);
  1975. INIT_LIST_HEAD(&cgrp->css_sets);
  1976. INIT_LIST_HEAD(&cgrp->release_list);
  1977. cgrp->parent = parent;
  1978. cgrp->root = parent->root;
  1979. cgrp->top_cgroup = parent->top_cgroup;
  1980. if (notify_on_release(parent))
  1981. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  1982. for_each_subsys(root, ss) {
  1983. struct cgroup_subsys_state *css = ss->create(ss, cgrp);
  1984. if (IS_ERR(css)) {
  1985. err = PTR_ERR(css);
  1986. goto err_destroy;
  1987. }
  1988. init_cgroup_css(css, ss, cgrp);
  1989. }
  1990. list_add(&cgrp->sibling, &cgrp->parent->children);
  1991. root->number_of_cgroups++;
  1992. err = cgroup_create_dir(cgrp, dentry, mode);
  1993. if (err < 0)
  1994. goto err_remove;
  1995. /* The cgroup directory was pre-locked for us */
  1996. BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
  1997. err = cgroup_populate_dir(cgrp);
  1998. /* If err < 0, we have a half-filled directory - oh well ;) */
  1999. mutex_unlock(&cgroup_mutex);
  2000. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  2001. return 0;
  2002. err_remove:
  2003. list_del(&cgrp->sibling);
  2004. root->number_of_cgroups--;
  2005. err_destroy:
  2006. for_each_subsys(root, ss) {
  2007. if (cgrp->subsys[ss->subsys_id])
  2008. ss->destroy(ss, cgrp);
  2009. }
  2010. mutex_unlock(&cgroup_mutex);
  2011. /* Release the reference count that we took on the superblock */
  2012. deactivate_super(sb);
  2013. kfree(cgrp);
  2014. return err;
  2015. }
  2016. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  2017. {
  2018. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  2019. /* the vfs holds inode->i_mutex already */
  2020. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  2021. }
  2022. static inline int cgroup_has_css_refs(struct cgroup *cgrp)
  2023. {
  2024. /* Check the reference count on each subsystem. Since we
  2025. * already established that there are no tasks in the
  2026. * cgroup, if the css refcount is also 0, then there should
  2027. * be no outstanding references, so the subsystem is safe to
  2028. * destroy. We scan across all subsystems rather than using
  2029. * the per-hierarchy linked list of mounted subsystems since
  2030. * we can be called via check_for_release() with no
  2031. * synchronization other than RCU, and the subsystem linked
  2032. * list isn't RCU-safe */
  2033. int i;
  2034. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2035. struct cgroup_subsys *ss = subsys[i];
  2036. struct cgroup_subsys_state *css;
  2037. /* Skip subsystems not in this hierarchy */
  2038. if (ss->root != cgrp->root)
  2039. continue;
  2040. css = cgrp->subsys[ss->subsys_id];
  2041. /* When called from check_for_release() it's possible
  2042. * that by this point the cgroup has been removed
  2043. * and the css deleted. But a false-positive doesn't
  2044. * matter, since it can only happen if the cgroup
  2045. * has been deleted and hence no longer needs the
  2046. * release agent to be called anyway. */
  2047. if (css && atomic_read(&css->refcnt))
  2048. return 1;
  2049. }
  2050. return 0;
  2051. }
  2052. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  2053. {
  2054. struct cgroup *cgrp = dentry->d_fsdata;
  2055. struct dentry *d;
  2056. struct cgroup *parent;
  2057. struct super_block *sb;
  2058. struct cgroupfs_root *root;
  2059. /* the vfs holds both inode->i_mutex already */
  2060. mutex_lock(&cgroup_mutex);
  2061. if (atomic_read(&cgrp->count) != 0) {
  2062. mutex_unlock(&cgroup_mutex);
  2063. return -EBUSY;
  2064. }
  2065. if (!list_empty(&cgrp->children)) {
  2066. mutex_unlock(&cgroup_mutex);
  2067. return -EBUSY;
  2068. }
  2069. parent = cgrp->parent;
  2070. root = cgrp->root;
  2071. sb = root->sb;
  2072. /*
  2073. * Call pre_destroy handlers of subsys. Notify subsystems
  2074. * that rmdir() request comes.
  2075. */
  2076. cgroup_call_pre_destroy(cgrp);
  2077. if (cgroup_has_css_refs(cgrp)) {
  2078. mutex_unlock(&cgroup_mutex);
  2079. return -EBUSY;
  2080. }
  2081. spin_lock(&release_list_lock);
  2082. set_bit(CGRP_REMOVED, &cgrp->flags);
  2083. if (!list_empty(&cgrp->release_list))
  2084. list_del(&cgrp->release_list);
  2085. spin_unlock(&release_list_lock);
  2086. /* delete my sibling from parent->children */
  2087. list_del(&cgrp->sibling);
  2088. spin_lock(&cgrp->dentry->d_lock);
  2089. d = dget(cgrp->dentry);
  2090. cgrp->dentry = NULL;
  2091. spin_unlock(&d->d_lock);
  2092. cgroup_d_remove_dir(d);
  2093. dput(d);
  2094. set_bit(CGRP_RELEASABLE, &parent->flags);
  2095. check_for_release(parent);
  2096. mutex_unlock(&cgroup_mutex);
  2097. return 0;
  2098. }
  2099. static void cgroup_init_subsys(struct cgroup_subsys *ss)
  2100. {
  2101. struct cgroup_subsys_state *css;
  2102. struct list_head *l;
  2103. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  2104. /* Create the top cgroup state for this subsystem */
  2105. ss->root = &rootnode;
  2106. css = ss->create(ss, dummytop);
  2107. /* We don't handle early failures gracefully */
  2108. BUG_ON(IS_ERR(css));
  2109. init_cgroup_css(css, ss, dummytop);
  2110. /* Update all cgroup groups to contain a subsys
  2111. * pointer to this state - since the subsystem is
  2112. * newly registered, all tasks and hence all cgroup
  2113. * groups are in the subsystem's top cgroup. */
  2114. write_lock(&css_set_lock);
  2115. l = &init_css_set.list;
  2116. do {
  2117. struct css_set *cg =
  2118. list_entry(l, struct css_set, list);
  2119. cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
  2120. l = l->next;
  2121. } while (l != &init_css_set.list);
  2122. write_unlock(&css_set_lock);
  2123. /* If this subsystem requested that it be notified with fork
  2124. * events, we should send it one now for every process in the
  2125. * system */
  2126. if (ss->fork) {
  2127. struct task_struct *g, *p;
  2128. read_lock(&tasklist_lock);
  2129. do_each_thread(g, p) {
  2130. ss->fork(ss, p);
  2131. } while_each_thread(g, p);
  2132. read_unlock(&tasklist_lock);
  2133. }
  2134. need_forkexit_callback |= ss->fork || ss->exit;
  2135. ss->active = 1;
  2136. }
  2137. /**
  2138. * cgroup_init_early - cgroup initialization at system boot
  2139. *
  2140. * Initialize cgroups at system boot, and initialize any
  2141. * subsystems that request early init.
  2142. */
  2143. int __init cgroup_init_early(void)
  2144. {
  2145. int i;
  2146. kref_init(&init_css_set.ref);
  2147. kref_get(&init_css_set.ref);
  2148. INIT_LIST_HEAD(&init_css_set.list);
  2149. INIT_LIST_HEAD(&init_css_set.cg_links);
  2150. INIT_LIST_HEAD(&init_css_set.tasks);
  2151. css_set_count = 1;
  2152. init_cgroup_root(&rootnode);
  2153. list_add(&rootnode.root_list, &roots);
  2154. root_count = 1;
  2155. init_task.cgroups = &init_css_set;
  2156. init_css_set_link.cg = &init_css_set;
  2157. list_add(&init_css_set_link.cgrp_link_list,
  2158. &rootnode.top_cgroup.css_sets);
  2159. list_add(&init_css_set_link.cg_link_list,
  2160. &init_css_set.cg_links);
  2161. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2162. struct cgroup_subsys *ss = subsys[i];
  2163. BUG_ON(!ss->name);
  2164. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  2165. BUG_ON(!ss->create);
  2166. BUG_ON(!ss->destroy);
  2167. if (ss->subsys_id != i) {
  2168. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  2169. ss->name, ss->subsys_id);
  2170. BUG();
  2171. }
  2172. if (ss->early_init)
  2173. cgroup_init_subsys(ss);
  2174. }
  2175. return 0;
  2176. }
  2177. /**
  2178. * cgroup_init - cgroup initialization
  2179. *
  2180. * Register cgroup filesystem and /proc file, and initialize
  2181. * any subsystems that didn't request early init.
  2182. */
  2183. int __init cgroup_init(void)
  2184. {
  2185. int err;
  2186. int i;
  2187. struct proc_dir_entry *entry;
  2188. err = bdi_init(&cgroup_backing_dev_info);
  2189. if (err)
  2190. return err;
  2191. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2192. struct cgroup_subsys *ss = subsys[i];
  2193. if (!ss->early_init)
  2194. cgroup_init_subsys(ss);
  2195. }
  2196. err = register_filesystem(&cgroup_fs_type);
  2197. if (err < 0)
  2198. goto out;
  2199. entry = create_proc_entry("cgroups", 0, NULL);
  2200. if (entry)
  2201. entry->proc_fops = &proc_cgroupstats_operations;
  2202. out:
  2203. if (err)
  2204. bdi_destroy(&cgroup_backing_dev_info);
  2205. return err;
  2206. }
  2207. /*
  2208. * proc_cgroup_show()
  2209. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  2210. * - Used for /proc/<pid>/cgroup.
  2211. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  2212. * doesn't really matter if tsk->cgroup changes after we read it,
  2213. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  2214. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  2215. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  2216. * cgroup to top_cgroup.
  2217. */
  2218. /* TODO: Use a proper seq_file iterator */
  2219. static int proc_cgroup_show(struct seq_file *m, void *v)
  2220. {
  2221. struct pid *pid;
  2222. struct task_struct *tsk;
  2223. char *buf;
  2224. int retval;
  2225. struct cgroupfs_root *root;
  2226. retval = -ENOMEM;
  2227. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2228. if (!buf)
  2229. goto out;
  2230. retval = -ESRCH;
  2231. pid = m->private;
  2232. tsk = get_pid_task(pid, PIDTYPE_PID);
  2233. if (!tsk)
  2234. goto out_free;
  2235. retval = 0;
  2236. mutex_lock(&cgroup_mutex);
  2237. for_each_root(root) {
  2238. struct cgroup_subsys *ss;
  2239. struct cgroup *cgrp;
  2240. int subsys_id;
  2241. int count = 0;
  2242. /* Skip this hierarchy if it has no active subsystems */
  2243. if (!root->actual_subsys_bits)
  2244. continue;
  2245. seq_printf(m, "%lu:", root->subsys_bits);
  2246. for_each_subsys(root, ss)
  2247. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  2248. seq_putc(m, ':');
  2249. get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
  2250. cgrp = task_cgroup(tsk, subsys_id);
  2251. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  2252. if (retval < 0)
  2253. goto out_unlock;
  2254. seq_puts(m, buf);
  2255. seq_putc(m, '\n');
  2256. }
  2257. out_unlock:
  2258. mutex_unlock(&cgroup_mutex);
  2259. put_task_struct(tsk);
  2260. out_free:
  2261. kfree(buf);
  2262. out:
  2263. return retval;
  2264. }
  2265. static int cgroup_open(struct inode *inode, struct file *file)
  2266. {
  2267. struct pid *pid = PROC_I(inode)->pid;
  2268. return single_open(file, proc_cgroup_show, pid);
  2269. }
  2270. struct file_operations proc_cgroup_operations = {
  2271. .open = cgroup_open,
  2272. .read = seq_read,
  2273. .llseek = seq_lseek,
  2274. .release = single_release,
  2275. };
  2276. /* Display information about each subsystem and each hierarchy */
  2277. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  2278. {
  2279. int i;
  2280. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  2281. mutex_lock(&cgroup_mutex);
  2282. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2283. struct cgroup_subsys *ss = subsys[i];
  2284. seq_printf(m, "%s\t%lu\t%d\t%d\n",
  2285. ss->name, ss->root->subsys_bits,
  2286. ss->root->number_of_cgroups, !ss->disabled);
  2287. }
  2288. mutex_unlock(&cgroup_mutex);
  2289. return 0;
  2290. }
  2291. static int cgroupstats_open(struct inode *inode, struct file *file)
  2292. {
  2293. return single_open(file, proc_cgroupstats_show, NULL);
  2294. }
  2295. static struct file_operations proc_cgroupstats_operations = {
  2296. .open = cgroupstats_open,
  2297. .read = seq_read,
  2298. .llseek = seq_lseek,
  2299. .release = single_release,
  2300. };
  2301. /**
  2302. * cgroup_fork - attach newly forked task to its parents cgroup.
  2303. * @child: pointer to task_struct of forking parent process.
  2304. *
  2305. * Description: A task inherits its parent's cgroup at fork().
  2306. *
  2307. * A pointer to the shared css_set was automatically copied in
  2308. * fork.c by dup_task_struct(). However, we ignore that copy, since
  2309. * it was not made under the protection of RCU or cgroup_mutex, so
  2310. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  2311. * have already changed current->cgroups, allowing the previously
  2312. * referenced cgroup group to be removed and freed.
  2313. *
  2314. * At the point that cgroup_fork() is called, 'current' is the parent
  2315. * task, and the passed argument 'child' points to the child task.
  2316. */
  2317. void cgroup_fork(struct task_struct *child)
  2318. {
  2319. task_lock(current);
  2320. child->cgroups = current->cgroups;
  2321. get_css_set(child->cgroups);
  2322. task_unlock(current);
  2323. INIT_LIST_HEAD(&child->cg_list);
  2324. }
  2325. /**
  2326. * cgroup_fork_callbacks - run fork callbacks
  2327. * @child: the new task
  2328. *
  2329. * Called on a new task very soon before adding it to the
  2330. * tasklist. No need to take any locks since no-one can
  2331. * be operating on this task.
  2332. */
  2333. void cgroup_fork_callbacks(struct task_struct *child)
  2334. {
  2335. if (need_forkexit_callback) {
  2336. int i;
  2337. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2338. struct cgroup_subsys *ss = subsys[i];
  2339. if (ss->fork)
  2340. ss->fork(ss, child);
  2341. }
  2342. }
  2343. }
  2344. /**
  2345. * cgroup_post_fork - called on a new task after adding it to the task list
  2346. * @child: the task in question
  2347. *
  2348. * Adds the task to the list running through its css_set if necessary.
  2349. * Has to be after the task is visible on the task list in case we race
  2350. * with the first call to cgroup_iter_start() - to guarantee that the
  2351. * new task ends up on its list.
  2352. */
  2353. void cgroup_post_fork(struct task_struct *child)
  2354. {
  2355. if (use_task_css_set_links) {
  2356. write_lock(&css_set_lock);
  2357. if (list_empty(&child->cg_list))
  2358. list_add(&child->cg_list, &child->cgroups->tasks);
  2359. write_unlock(&css_set_lock);
  2360. }
  2361. }
  2362. /**
  2363. * cgroup_exit - detach cgroup from exiting task
  2364. * @tsk: pointer to task_struct of exiting process
  2365. * @run_callback: run exit callbacks?
  2366. *
  2367. * Description: Detach cgroup from @tsk and release it.
  2368. *
  2369. * Note that cgroups marked notify_on_release force every task in
  2370. * them to take the global cgroup_mutex mutex when exiting.
  2371. * This could impact scaling on very large systems. Be reluctant to
  2372. * use notify_on_release cgroups where very high task exit scaling
  2373. * is required on large systems.
  2374. *
  2375. * the_top_cgroup_hack:
  2376. *
  2377. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  2378. *
  2379. * We call cgroup_exit() while the task is still competent to
  2380. * handle notify_on_release(), then leave the task attached to the
  2381. * root cgroup in each hierarchy for the remainder of its exit.
  2382. *
  2383. * To do this properly, we would increment the reference count on
  2384. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  2385. * code we would add a second cgroup function call, to drop that
  2386. * reference. This would just create an unnecessary hot spot on
  2387. * the top_cgroup reference count, to no avail.
  2388. *
  2389. * Normally, holding a reference to a cgroup without bumping its
  2390. * count is unsafe. The cgroup could go away, or someone could
  2391. * attach us to a different cgroup, decrementing the count on
  2392. * the first cgroup that we never incremented. But in this case,
  2393. * top_cgroup isn't going away, and either task has PF_EXITING set,
  2394. * which wards off any cgroup_attach_task() attempts, or task is a failed
  2395. * fork, never visible to cgroup_attach_task.
  2396. */
  2397. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  2398. {
  2399. int i;
  2400. struct css_set *cg;
  2401. if (run_callbacks && need_forkexit_callback) {
  2402. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2403. struct cgroup_subsys *ss = subsys[i];
  2404. if (ss->exit)
  2405. ss->exit(ss, tsk);
  2406. }
  2407. }
  2408. /*
  2409. * Unlink from the css_set task list if necessary.
  2410. * Optimistically check cg_list before taking
  2411. * css_set_lock
  2412. */
  2413. if (!list_empty(&tsk->cg_list)) {
  2414. write_lock(&css_set_lock);
  2415. if (!list_empty(&tsk->cg_list))
  2416. list_del(&tsk->cg_list);
  2417. write_unlock(&css_set_lock);
  2418. }
  2419. /* Reassign the task to the init_css_set. */
  2420. task_lock(tsk);
  2421. cg = tsk->cgroups;
  2422. tsk->cgroups = &init_css_set;
  2423. task_unlock(tsk);
  2424. if (cg)
  2425. put_css_set_taskexit(cg);
  2426. }
  2427. /**
  2428. * cgroup_clone - clone the cgroup the given subsystem is attached to
  2429. * @tsk: the task to be moved
  2430. * @subsys: the given subsystem
  2431. *
  2432. * Duplicate the current cgroup in the hierarchy that the given
  2433. * subsystem is attached to, and move this task into the new
  2434. * child.
  2435. */
  2436. int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
  2437. {
  2438. struct dentry *dentry;
  2439. int ret = 0;
  2440. char nodename[MAX_CGROUP_TYPE_NAMELEN];
  2441. struct cgroup *parent, *child;
  2442. struct inode *inode;
  2443. struct css_set *cg;
  2444. struct cgroupfs_root *root;
  2445. struct cgroup_subsys *ss;
  2446. /* We shouldn't be called by an unregistered subsystem */
  2447. BUG_ON(!subsys->active);
  2448. /* First figure out what hierarchy and cgroup we're dealing
  2449. * with, and pin them so we can drop cgroup_mutex */
  2450. mutex_lock(&cgroup_mutex);
  2451. again:
  2452. root = subsys->root;
  2453. if (root == &rootnode) {
  2454. printk(KERN_INFO
  2455. "Not cloning cgroup for unused subsystem %s\n",
  2456. subsys->name);
  2457. mutex_unlock(&cgroup_mutex);
  2458. return 0;
  2459. }
  2460. cg = tsk->cgroups;
  2461. parent = task_cgroup(tsk, subsys->subsys_id);
  2462. snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
  2463. /* Pin the hierarchy */
  2464. atomic_inc(&parent->root->sb->s_active);
  2465. /* Keep the cgroup alive */
  2466. get_css_set(cg);
  2467. mutex_unlock(&cgroup_mutex);
  2468. /* Now do the VFS work to create a cgroup */
  2469. inode = parent->dentry->d_inode;
  2470. /* Hold the parent directory mutex across this operation to
  2471. * stop anyone else deleting the new cgroup */
  2472. mutex_lock(&inode->i_mutex);
  2473. dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
  2474. if (IS_ERR(dentry)) {
  2475. printk(KERN_INFO
  2476. "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
  2477. PTR_ERR(dentry));
  2478. ret = PTR_ERR(dentry);
  2479. goto out_release;
  2480. }
  2481. /* Create the cgroup directory, which also creates the cgroup */
  2482. ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
  2483. child = __d_cgrp(dentry);
  2484. dput(dentry);
  2485. if (ret) {
  2486. printk(KERN_INFO
  2487. "Failed to create cgroup %s: %d\n", nodename,
  2488. ret);
  2489. goto out_release;
  2490. }
  2491. if (!child) {
  2492. printk(KERN_INFO
  2493. "Couldn't find new cgroup %s\n", nodename);
  2494. ret = -ENOMEM;
  2495. goto out_release;
  2496. }
  2497. /* The cgroup now exists. Retake cgroup_mutex and check
  2498. * that we're still in the same state that we thought we
  2499. * were. */
  2500. mutex_lock(&cgroup_mutex);
  2501. if ((root != subsys->root) ||
  2502. (parent != task_cgroup(tsk, subsys->subsys_id))) {
  2503. /* Aargh, we raced ... */
  2504. mutex_unlock(&inode->i_mutex);
  2505. put_css_set(cg);
  2506. deactivate_super(parent->root->sb);
  2507. /* The cgroup is still accessible in the VFS, but
  2508. * we're not going to try to rmdir() it at this
  2509. * point. */
  2510. printk(KERN_INFO
  2511. "Race in cgroup_clone() - leaking cgroup %s\n",
  2512. nodename);
  2513. goto again;
  2514. }
  2515. /* do any required auto-setup */
  2516. for_each_subsys(root, ss) {
  2517. if (ss->post_clone)
  2518. ss->post_clone(ss, child);
  2519. }
  2520. /* All seems fine. Finish by moving the task into the new cgroup */
  2521. ret = cgroup_attach_task(child, tsk);
  2522. mutex_unlock(&cgroup_mutex);
  2523. out_release:
  2524. mutex_unlock(&inode->i_mutex);
  2525. mutex_lock(&cgroup_mutex);
  2526. put_css_set(cg);
  2527. mutex_unlock(&cgroup_mutex);
  2528. deactivate_super(parent->root->sb);
  2529. return ret;
  2530. }
  2531. /**
  2532. * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
  2533. * @cgrp: the cgroup in question
  2534. *
  2535. * See if @cgrp is a descendant of the current task's cgroup in
  2536. * the appropriate hierarchy.
  2537. *
  2538. * If we are sending in dummytop, then presumably we are creating
  2539. * the top cgroup in the subsystem.
  2540. *
  2541. * Called only by the ns (nsproxy) cgroup.
  2542. */
  2543. int cgroup_is_descendant(const struct cgroup *cgrp)
  2544. {
  2545. int ret;
  2546. struct cgroup *target;
  2547. int subsys_id;
  2548. if (cgrp == dummytop)
  2549. return 1;
  2550. get_first_subsys(cgrp, NULL, &subsys_id);
  2551. target = task_cgroup(current, subsys_id);
  2552. while (cgrp != target && cgrp!= cgrp->top_cgroup)
  2553. cgrp = cgrp->parent;
  2554. ret = (cgrp == target);
  2555. return ret;
  2556. }
  2557. static void check_for_release(struct cgroup *cgrp)
  2558. {
  2559. /* All of these checks rely on RCU to keep the cgroup
  2560. * structure alive */
  2561. if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
  2562. && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
  2563. /* Control Group is currently removeable. If it's not
  2564. * already queued for a userspace notification, queue
  2565. * it now */
  2566. int need_schedule_work = 0;
  2567. spin_lock(&release_list_lock);
  2568. if (!cgroup_is_removed(cgrp) &&
  2569. list_empty(&cgrp->release_list)) {
  2570. list_add(&cgrp->release_list, &release_list);
  2571. need_schedule_work = 1;
  2572. }
  2573. spin_unlock(&release_list_lock);
  2574. if (need_schedule_work)
  2575. schedule_work(&release_agent_work);
  2576. }
  2577. }
  2578. void __css_put(struct cgroup_subsys_state *css)
  2579. {
  2580. struct cgroup *cgrp = css->cgroup;
  2581. rcu_read_lock();
  2582. if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
  2583. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  2584. check_for_release(cgrp);
  2585. }
  2586. rcu_read_unlock();
  2587. }
  2588. /*
  2589. * Notify userspace when a cgroup is released, by running the
  2590. * configured release agent with the name of the cgroup (path
  2591. * relative to the root of cgroup file system) as the argument.
  2592. *
  2593. * Most likely, this user command will try to rmdir this cgroup.
  2594. *
  2595. * This races with the possibility that some other task will be
  2596. * attached to this cgroup before it is removed, or that some other
  2597. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  2598. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  2599. * unused, and this cgroup will be reprieved from its death sentence,
  2600. * to continue to serve a useful existence. Next time it's released,
  2601. * we will get notified again, if it still has 'notify_on_release' set.
  2602. *
  2603. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  2604. * means only wait until the task is successfully execve()'d. The
  2605. * separate release agent task is forked by call_usermodehelper(),
  2606. * then control in this thread returns here, without waiting for the
  2607. * release agent task. We don't bother to wait because the caller of
  2608. * this routine has no use for the exit status of the release agent
  2609. * task, so no sense holding our caller up for that.
  2610. */
  2611. static void cgroup_release_agent(struct work_struct *work)
  2612. {
  2613. BUG_ON(work != &release_agent_work);
  2614. mutex_lock(&cgroup_mutex);
  2615. spin_lock(&release_list_lock);
  2616. while (!list_empty(&release_list)) {
  2617. char *argv[3], *envp[3];
  2618. int i;
  2619. char *pathbuf;
  2620. struct cgroup *cgrp = list_entry(release_list.next,
  2621. struct cgroup,
  2622. release_list);
  2623. list_del_init(&cgrp->release_list);
  2624. spin_unlock(&release_list_lock);
  2625. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2626. if (!pathbuf) {
  2627. spin_lock(&release_list_lock);
  2628. continue;
  2629. }
  2630. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
  2631. kfree(pathbuf);
  2632. spin_lock(&release_list_lock);
  2633. continue;
  2634. }
  2635. i = 0;
  2636. argv[i++] = cgrp->root->release_agent_path;
  2637. argv[i++] = (char *)pathbuf;
  2638. argv[i] = NULL;
  2639. i = 0;
  2640. /* minimal command environment */
  2641. envp[i++] = "HOME=/";
  2642. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  2643. envp[i] = NULL;
  2644. /* Drop the lock while we invoke the usermode helper,
  2645. * since the exec could involve hitting disk and hence
  2646. * be a slow process */
  2647. mutex_unlock(&cgroup_mutex);
  2648. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  2649. kfree(pathbuf);
  2650. mutex_lock(&cgroup_mutex);
  2651. spin_lock(&release_list_lock);
  2652. }
  2653. spin_unlock(&release_list_lock);
  2654. mutex_unlock(&cgroup_mutex);
  2655. }
  2656. static int __init cgroup_disable(char *str)
  2657. {
  2658. int i;
  2659. char *token;
  2660. while ((token = strsep(&str, ",")) != NULL) {
  2661. if (!*token)
  2662. continue;
  2663. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2664. struct cgroup_subsys *ss = subsys[i];
  2665. if (!strcmp(token, ss->name)) {
  2666. ss->disabled = 1;
  2667. printk(KERN_INFO "Disabling %s control group"
  2668. " subsystem\n", ss->name);
  2669. break;
  2670. }
  2671. }
  2672. }
  2673. return 1;
  2674. }
  2675. __setup("cgroup_disable=", cgroup_disable);