numa_64.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/ctype.h>
  12. #include <linux/module.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/sched.h>
  15. #include <asm/e820.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h>
  18. #include <asm/numa.h>
  19. #include <asm/acpi.h>
  20. #include <asm/k8.h>
  21. #ifndef Dprintk
  22. #define Dprintk(x...)
  23. #endif
  24. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  25. EXPORT_SYMBOL(node_data);
  26. bootmem_data_t plat_node_bdata[MAX_NUMNODES];
  27. struct memnode memnode;
  28. int x86_cpu_to_node_map_init[NR_CPUS] = {
  29. [0 ... NR_CPUS-1] = NUMA_NO_NODE
  30. };
  31. void *x86_cpu_to_node_map_early_ptr;
  32. DEFINE_PER_CPU(int, x86_cpu_to_node_map) = NUMA_NO_NODE;
  33. EXPORT_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  34. EXPORT_SYMBOL(x86_cpu_to_node_map_early_ptr);
  35. s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  36. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  37. };
  38. cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
  39. EXPORT_SYMBOL(node_to_cpumask_map);
  40. int numa_off __initdata;
  41. unsigned long __initdata nodemap_addr;
  42. unsigned long __initdata nodemap_size;
  43. /*
  44. * Given a shift value, try to populate memnodemap[]
  45. * Returns :
  46. * 1 if OK
  47. * 0 if memnodmap[] too small (of shift too small)
  48. * -1 if node overlap or lost ram (shift too big)
  49. */
  50. static int __init populate_memnodemap(const struct bootnode *nodes,
  51. int numnodes, int shift)
  52. {
  53. unsigned long addr, end;
  54. int i, res = -1;
  55. memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
  56. for (i = 0; i < numnodes; i++) {
  57. addr = nodes[i].start;
  58. end = nodes[i].end;
  59. if (addr >= end)
  60. continue;
  61. if ((end >> shift) >= memnodemapsize)
  62. return 0;
  63. do {
  64. if (memnodemap[addr >> shift] != NUMA_NO_NODE)
  65. return -1;
  66. memnodemap[addr >> shift] = i;
  67. addr += (1UL << shift);
  68. } while (addr < end);
  69. res = 1;
  70. }
  71. return res;
  72. }
  73. static int __init allocate_cachealigned_memnodemap(void)
  74. {
  75. unsigned long addr;
  76. memnodemap = memnode.embedded_map;
  77. if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
  78. return 0;
  79. addr = 0x8000;
  80. nodemap_size = round_up(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
  81. nodemap_addr = find_e820_area(addr, end_pfn<<PAGE_SHIFT,
  82. nodemap_size, L1_CACHE_BYTES);
  83. if (nodemap_addr == -1UL) {
  84. printk(KERN_ERR
  85. "NUMA: Unable to allocate Memory to Node hash map\n");
  86. nodemap_addr = nodemap_size = 0;
  87. return -1;
  88. }
  89. memnodemap = phys_to_virt(nodemap_addr);
  90. reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
  91. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  92. nodemap_addr, nodemap_addr + nodemap_size);
  93. return 0;
  94. }
  95. /*
  96. * The LSB of all start and end addresses in the node map is the value of the
  97. * maximum possible shift.
  98. */
  99. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  100. int numnodes)
  101. {
  102. int i, nodes_used = 0;
  103. unsigned long start, end;
  104. unsigned long bitfield = 0, memtop = 0;
  105. for (i = 0; i < numnodes; i++) {
  106. start = nodes[i].start;
  107. end = nodes[i].end;
  108. if (start >= end)
  109. continue;
  110. bitfield |= start;
  111. nodes_used++;
  112. if (end > memtop)
  113. memtop = end;
  114. }
  115. if (nodes_used <= 1)
  116. i = 63;
  117. else
  118. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  119. memnodemapsize = (memtop >> i)+1;
  120. return i;
  121. }
  122. int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
  123. {
  124. int shift;
  125. shift = extract_lsb_from_nodes(nodes, numnodes);
  126. if (allocate_cachealigned_memnodemap())
  127. return -1;
  128. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  129. shift);
  130. if (populate_memnodemap(nodes, numnodes, shift) != 1) {
  131. printk(KERN_INFO "Your memory is not aligned you need to "
  132. "rebuild your kernel with a bigger NODEMAPSIZE "
  133. "shift=%d\n", shift);
  134. return -1;
  135. }
  136. return shift;
  137. }
  138. int early_pfn_to_nid(unsigned long pfn)
  139. {
  140. return phys_to_nid(pfn << PAGE_SHIFT);
  141. }
  142. static void * __init early_node_mem(int nodeid, unsigned long start,
  143. unsigned long end, unsigned long size,
  144. unsigned long align)
  145. {
  146. unsigned long mem = find_e820_area(start, end, size, align);
  147. void *ptr;
  148. if (mem != -1L)
  149. return __va(mem);
  150. ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
  151. if (ptr == NULL) {
  152. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  153. size, nodeid);
  154. return NULL;
  155. }
  156. return ptr;
  157. }
  158. /* Initialize bootmem allocator for a node */
  159. void __init setup_node_bootmem(int nodeid, unsigned long start,
  160. unsigned long end)
  161. {
  162. unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
  163. unsigned long bootmap_start, nodedata_phys;
  164. void *bootmap;
  165. const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
  166. start = round_up(start, ZONE_ALIGN);
  167. printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
  168. start, end);
  169. start_pfn = start >> PAGE_SHIFT;
  170. end_pfn = end >> PAGE_SHIFT;
  171. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
  172. SMP_CACHE_BYTES);
  173. if (node_data[nodeid] == NULL)
  174. return;
  175. nodedata_phys = __pa(node_data[nodeid]);
  176. printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
  177. nodedata_phys + pgdat_size - 1);
  178. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  179. NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
  180. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  181. NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
  182. /* Find a place for the bootmem map */
  183. bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  184. bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
  185. /*
  186. * SMP_CAHCE_BYTES could be enough, but init_bootmem_node like
  187. * to use that to align to PAGE_SIZE
  188. */
  189. bootmap = early_node_mem(nodeid, bootmap_start, end,
  190. bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
  191. if (bootmap == NULL) {
  192. if (nodedata_phys < start || nodedata_phys >= end)
  193. free_bootmem(nodedata_phys, pgdat_size);
  194. node_data[nodeid] = NULL;
  195. return;
  196. }
  197. bootmap_start = __pa(bootmap);
  198. bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
  199. bootmap_start >> PAGE_SHIFT,
  200. start_pfn, end_pfn);
  201. printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
  202. bootmap_start, bootmap_start + bootmap_size - 1,
  203. bootmap_pages);
  204. free_bootmem_with_active_regions(nodeid, end);
  205. reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size,
  206. BOOTMEM_DEFAULT);
  207. reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
  208. bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
  209. #ifdef CONFIG_ACPI_NUMA
  210. srat_reserve_add_area(nodeid);
  211. #endif
  212. node_set_online(nodeid);
  213. }
  214. /*
  215. * There are unfortunately some poorly designed mainboards around that
  216. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  217. * mapping. To avoid this fill in the mapping for all possible CPUs,
  218. * as the number of CPUs is not known yet. We round robin the existing
  219. * nodes.
  220. */
  221. void __init numa_init_array(void)
  222. {
  223. int rr, i;
  224. rr = first_node(node_online_map);
  225. for (i = 0; i < NR_CPUS; i++) {
  226. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  227. continue;
  228. numa_set_node(i, rr);
  229. rr = next_node(rr, node_online_map);
  230. if (rr == MAX_NUMNODES)
  231. rr = first_node(node_online_map);
  232. }
  233. }
  234. #ifdef CONFIG_NUMA_EMU
  235. /* Numa emulation */
  236. char *cmdline __initdata;
  237. /*
  238. * Setups up nid to range from addr to addr + size. If the end
  239. * boundary is greater than max_addr, then max_addr is used instead.
  240. * The return value is 0 if there is additional memory left for
  241. * allocation past addr and -1 otherwise. addr is adjusted to be at
  242. * the end of the node.
  243. */
  244. static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
  245. u64 size, u64 max_addr)
  246. {
  247. int ret = 0;
  248. nodes[nid].start = *addr;
  249. *addr += size;
  250. if (*addr >= max_addr) {
  251. *addr = max_addr;
  252. ret = -1;
  253. }
  254. nodes[nid].end = *addr;
  255. node_set(nid, node_possible_map);
  256. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  257. nodes[nid].start, nodes[nid].end,
  258. (nodes[nid].end - nodes[nid].start) >> 20);
  259. return ret;
  260. }
  261. /*
  262. * Splits num_nodes nodes up equally starting at node_start. The return value
  263. * is the number of nodes split up and addr is adjusted to be at the end of the
  264. * last node allocated.
  265. */
  266. static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
  267. u64 max_addr, int node_start,
  268. int num_nodes)
  269. {
  270. unsigned int big;
  271. u64 size;
  272. int i;
  273. if (num_nodes <= 0)
  274. return -1;
  275. if (num_nodes > MAX_NUMNODES)
  276. num_nodes = MAX_NUMNODES;
  277. size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
  278. num_nodes;
  279. /*
  280. * Calculate the number of big nodes that can be allocated as a result
  281. * of consolidating the leftovers.
  282. */
  283. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
  284. FAKE_NODE_MIN_SIZE;
  285. /* Round down to nearest FAKE_NODE_MIN_SIZE. */
  286. size &= FAKE_NODE_MIN_HASH_MASK;
  287. if (!size) {
  288. printk(KERN_ERR "Not enough memory for each node. "
  289. "NUMA emulation disabled.\n");
  290. return -1;
  291. }
  292. for (i = node_start; i < num_nodes + node_start; i++) {
  293. u64 end = *addr + size;
  294. if (i < big)
  295. end += FAKE_NODE_MIN_SIZE;
  296. /*
  297. * The final node can have the remaining system RAM. Other
  298. * nodes receive roughly the same amount of available pages.
  299. */
  300. if (i == num_nodes + node_start - 1)
  301. end = max_addr;
  302. else
  303. while (end - *addr - e820_hole_size(*addr, end) <
  304. size) {
  305. end += FAKE_NODE_MIN_SIZE;
  306. if (end > max_addr) {
  307. end = max_addr;
  308. break;
  309. }
  310. }
  311. if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
  312. break;
  313. }
  314. return i - node_start + 1;
  315. }
  316. /*
  317. * Splits the remaining system RAM into chunks of size. The remaining memory is
  318. * always assigned to a final node and can be asymmetric. Returns the number of
  319. * nodes split.
  320. */
  321. static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
  322. u64 max_addr, int node_start, u64 size)
  323. {
  324. int i = node_start;
  325. size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
  326. while (!setup_node_range(i++, nodes, addr, size, max_addr))
  327. ;
  328. return i - node_start;
  329. }
  330. /*
  331. * Sets up the system RAM area from start_pfn to end_pfn according to the
  332. * numa=fake command-line option.
  333. */
  334. static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
  335. {
  336. struct bootnode nodes[MAX_NUMNODES];
  337. u64 size, addr = start_pfn << PAGE_SHIFT;
  338. u64 max_addr = end_pfn << PAGE_SHIFT;
  339. int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
  340. memset(&nodes, 0, sizeof(nodes));
  341. /*
  342. * If the numa=fake command-line is just a single number N, split the
  343. * system RAM into N fake nodes.
  344. */
  345. if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
  346. long n = simple_strtol(cmdline, NULL, 0);
  347. num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
  348. if (num_nodes < 0)
  349. return num_nodes;
  350. goto out;
  351. }
  352. /* Parse the command line. */
  353. for (coeff_flag = 0; ; cmdline++) {
  354. if (*cmdline && isdigit(*cmdline)) {
  355. num = num * 10 + *cmdline - '0';
  356. continue;
  357. }
  358. if (*cmdline == '*') {
  359. if (num > 0)
  360. coeff = num;
  361. coeff_flag = 1;
  362. }
  363. if (!*cmdline || *cmdline == ',') {
  364. if (!coeff_flag)
  365. coeff = 1;
  366. /*
  367. * Round down to the nearest FAKE_NODE_MIN_SIZE.
  368. * Command-line coefficients are in megabytes.
  369. */
  370. size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
  371. if (size)
  372. for (i = 0; i < coeff; i++, num_nodes++)
  373. if (setup_node_range(num_nodes, nodes,
  374. &addr, size, max_addr) < 0)
  375. goto done;
  376. if (!*cmdline)
  377. break;
  378. coeff_flag = 0;
  379. coeff = -1;
  380. }
  381. num = 0;
  382. }
  383. done:
  384. if (!num_nodes)
  385. return -1;
  386. /* Fill remainder of system RAM, if appropriate. */
  387. if (addr < max_addr) {
  388. if (coeff_flag && coeff < 0) {
  389. /* Split remaining nodes into num-sized chunks */
  390. num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
  391. num_nodes, num);
  392. goto out;
  393. }
  394. switch (*(cmdline - 1)) {
  395. case '*':
  396. /* Split remaining nodes into coeff chunks */
  397. if (coeff <= 0)
  398. break;
  399. num_nodes += split_nodes_equally(nodes, &addr, max_addr,
  400. num_nodes, coeff);
  401. break;
  402. case ',':
  403. /* Do not allocate remaining system RAM */
  404. break;
  405. default:
  406. /* Give one final node */
  407. setup_node_range(num_nodes, nodes, &addr,
  408. max_addr - addr, max_addr);
  409. num_nodes++;
  410. }
  411. }
  412. out:
  413. memnode_shift = compute_hash_shift(nodes, num_nodes);
  414. if (memnode_shift < 0) {
  415. memnode_shift = 0;
  416. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  417. "disabled.\n");
  418. return -1;
  419. }
  420. /*
  421. * We need to vacate all active ranges that may have been registered by
  422. * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
  423. * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
  424. */
  425. remove_all_active_ranges();
  426. #ifdef CONFIG_ACPI_NUMA
  427. acpi_numa = -1;
  428. #endif
  429. for_each_node_mask(i, node_possible_map) {
  430. e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  431. nodes[i].end >> PAGE_SHIFT);
  432. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  433. }
  434. acpi_fake_nodes(nodes, num_nodes);
  435. numa_init_array();
  436. return 0;
  437. }
  438. #endif /* CONFIG_NUMA_EMU */
  439. void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  440. {
  441. int i;
  442. nodes_clear(node_possible_map);
  443. nodes_clear(node_online_map);
  444. #ifdef CONFIG_NUMA_EMU
  445. if (cmdline && !numa_emulation(start_pfn, end_pfn))
  446. return;
  447. nodes_clear(node_possible_map);
  448. nodes_clear(node_online_map);
  449. #endif
  450. #ifdef CONFIG_ACPI_NUMA
  451. if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  452. end_pfn << PAGE_SHIFT))
  453. return;
  454. nodes_clear(node_possible_map);
  455. nodes_clear(node_online_map);
  456. #endif
  457. #ifdef CONFIG_K8_NUMA
  458. if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
  459. end_pfn<<PAGE_SHIFT))
  460. return;
  461. nodes_clear(node_possible_map);
  462. nodes_clear(node_online_map);
  463. #endif
  464. printk(KERN_INFO "%s\n",
  465. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  466. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  467. start_pfn << PAGE_SHIFT,
  468. end_pfn << PAGE_SHIFT);
  469. /* setup dummy node covering all memory */
  470. memnode_shift = 63;
  471. memnodemap = memnode.embedded_map;
  472. memnodemap[0] = 0;
  473. node_set_online(0);
  474. node_set(0, node_possible_map);
  475. for (i = 0; i < NR_CPUS; i++)
  476. numa_set_node(i, 0);
  477. /* cpumask_of_cpu() may not be available during early startup */
  478. memset(&node_to_cpumask_map[0], 0, sizeof(node_to_cpumask_map[0]));
  479. cpu_set(0, node_to_cpumask_map[0]);
  480. e820_register_active_regions(0, start_pfn, end_pfn);
  481. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  482. }
  483. __cpuinit void numa_add_cpu(int cpu)
  484. {
  485. set_bit(cpu,
  486. (unsigned long *)&node_to_cpumask_map[early_cpu_to_node(cpu)]);
  487. }
  488. void __cpuinit numa_set_node(int cpu, int node)
  489. {
  490. int *cpu_to_node_map = x86_cpu_to_node_map_early_ptr;
  491. if(cpu_to_node_map)
  492. cpu_to_node_map[cpu] = node;
  493. else if(per_cpu_offset(cpu))
  494. per_cpu(x86_cpu_to_node_map, cpu) = node;
  495. else
  496. Dprintk(KERN_INFO "Setting node for non-present cpu %d\n", cpu);
  497. }
  498. unsigned long __init numa_free_all_bootmem(void)
  499. {
  500. unsigned long pages = 0;
  501. int i;
  502. for_each_online_node(i)
  503. pages += free_all_bootmem_node(NODE_DATA(i));
  504. return pages;
  505. }
  506. void __init paging_init(void)
  507. {
  508. unsigned long max_zone_pfns[MAX_NR_ZONES];
  509. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  510. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  511. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  512. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  513. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  514. sparse_init();
  515. free_area_init_nodes(max_zone_pfns);
  516. }
  517. static __init int numa_setup(char *opt)
  518. {
  519. if (!opt)
  520. return -EINVAL;
  521. if (!strncmp(opt, "off", 3))
  522. numa_off = 1;
  523. #ifdef CONFIG_NUMA_EMU
  524. if (!strncmp(opt, "fake=", 5))
  525. cmdline = opt + 5;
  526. #endif
  527. #ifdef CONFIG_ACPI_NUMA
  528. if (!strncmp(opt, "noacpi", 6))
  529. acpi_numa = -1;
  530. if (!strncmp(opt, "hotadd=", 7))
  531. hotadd_percent = simple_strtoul(opt+7, NULL, 10);
  532. #endif
  533. return 0;
  534. }
  535. early_param("numa", numa_setup);
  536. /*
  537. * Setup early cpu_to_node.
  538. *
  539. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  540. * and apicid_to_node[] tables have valid entries for a CPU.
  541. * This means we skip cpu_to_node[] initialisation for NUMA
  542. * emulation and faking node case (when running a kernel compiled
  543. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  544. * is already initialized in a round robin manner at numa_init_array,
  545. * prior to this call, and this initialization is good enough
  546. * for the fake NUMA cases.
  547. */
  548. void __init init_cpu_to_node(void)
  549. {
  550. int i;
  551. for (i = 0; i < NR_CPUS; i++) {
  552. int node;
  553. u16 apicid = x86_cpu_to_apicid_init[i];
  554. if (apicid == BAD_APICID)
  555. continue;
  556. node = apicid_to_node[apicid];
  557. if (node == NUMA_NO_NODE)
  558. continue;
  559. if (!node_online(node))
  560. continue;
  561. numa_set_node(i, node);
  562. }
  563. }