db8500-prcmu.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/db8500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <mach/hardware.h>
  34. #include <mach/irqs.h>
  35. #include <mach/db8500-regs.h>
  36. #include <mach/id.h>
  37. #include "db8500-prcmu-regs.h"
  38. /* Offset for the firmware version within the TCPM */
  39. #define PRCMU_FW_VERSION_OFFSET 0xA4
  40. /* PRCMU project numbers, defined by PRCMU FW */
  41. #define PRCMU_PROJECT_ID_8500V1_0 1
  42. #define PRCMU_PROJECT_ID_8500V2_0 2
  43. #define PRCMU_PROJECT_ID_8400V2_0 3
  44. /* Index of different voltages to be used when accessing AVSData */
  45. #define PRCM_AVS_BASE 0x2FC
  46. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  47. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  48. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  49. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  50. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  51. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  52. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  53. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  54. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  55. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  56. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  57. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  58. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  59. #define PRCM_AVS_VOLTAGE 0
  60. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  61. #define PRCM_AVS_ISSLOWSTARTUP 6
  62. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  63. #define PRCM_AVS_ISMODEENABLE 7
  64. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  65. #define PRCM_BOOT_STATUS 0xFFF
  66. #define PRCM_ROMCODE_A2P 0xFFE
  67. #define PRCM_ROMCODE_P2A 0xFFD
  68. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  69. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  71. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  72. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  73. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  74. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  75. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  76. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  77. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  78. /* Req Mailboxes */
  79. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  80. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  81. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  82. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  83. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  84. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  85. /* Ack Mailboxes */
  86. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  87. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  88. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  89. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  90. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  91. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  92. /* Mailbox 0 headers */
  93. #define MB0H_POWER_STATE_TRANS 0
  94. #define MB0H_CONFIG_WAKEUPS_EXE 1
  95. #define MB0H_READ_WAKEUP_ACK 3
  96. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  97. #define MB0H_WAKEUP_EXE 2
  98. #define MB0H_WAKEUP_SLEEP 5
  99. /* Mailbox 0 REQs */
  100. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  101. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  102. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  103. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  104. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  105. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  106. /* Mailbox 0 ACKs */
  107. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  108. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  109. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  110. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  111. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  112. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  113. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  114. /* Mailbox 1 headers */
  115. #define MB1H_ARM_APE_OPP 0x0
  116. #define MB1H_RESET_MODEM 0x2
  117. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  118. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  119. #define MB1H_RELEASE_USB_WAKEUP 0x5
  120. #define MB1H_PLL_ON_OFF 0x6
  121. /* Mailbox 1 Requests */
  122. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  123. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  124. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  125. #define PLL_SOC1_OFF 0x4
  126. #define PLL_SOC1_ON 0x8
  127. /* Mailbox 1 ACKs */
  128. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  129. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  130. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  131. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  132. /* Mailbox 2 headers */
  133. #define MB2H_DPS 0x0
  134. #define MB2H_AUTO_PWR 0x1
  135. /* Mailbox 2 REQs */
  136. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  137. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  138. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  139. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  140. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  141. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  142. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  143. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  144. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  145. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  146. /* Mailbox 2 ACKs */
  147. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  148. #define HWACC_PWR_ST_OK 0xFE
  149. /* Mailbox 3 headers */
  150. #define MB3H_ANC 0x0
  151. #define MB3H_SIDETONE 0x1
  152. #define MB3H_SYSCLK 0xE
  153. /* Mailbox 3 Requests */
  154. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  155. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  156. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  157. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  159. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  160. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  161. /* Mailbox 4 headers */
  162. #define MB4H_DDR_INIT 0x0
  163. #define MB4H_MEM_ST 0x1
  164. #define MB4H_HOTDOG 0x12
  165. #define MB4H_HOTMON 0x13
  166. #define MB4H_HOT_PERIOD 0x14
  167. #define MB4H_A9WDOG_CONF 0x16
  168. #define MB4H_A9WDOG_EN 0x17
  169. #define MB4H_A9WDOG_DIS 0x18
  170. #define MB4H_A9WDOG_LOAD 0x19
  171. #define MB4H_A9WDOG_KICK 0x20
  172. /* Mailbox 4 Requests */
  173. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  175. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  176. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  178. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  179. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  180. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  181. #define HOTMON_CONFIG_LOW BIT(0)
  182. #define HOTMON_CONFIG_HIGH BIT(1)
  183. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  184. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  185. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  186. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  187. #define A9WDOG_AUTO_OFF_EN BIT(7)
  188. #define A9WDOG_AUTO_OFF_DIS 0
  189. #define A9WDOG_ID_MASK 0xf
  190. /* Mailbox 5 Requests */
  191. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  192. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  193. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  194. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  195. #define PRCMU_I2C_WRITE(slave) \
  196. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  197. #define PRCMU_I2C_READ(slave) \
  198. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  199. #define PRCMU_I2C_STOP_EN BIT(3)
  200. /* Mailbox 5 ACKs */
  201. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  202. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  203. #define I2C_WR_OK 0x1
  204. #define I2C_RD_OK 0x2
  205. #define NUM_MB 8
  206. #define MBOX_BIT BIT
  207. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  208. /*
  209. * Wakeups/IRQs
  210. */
  211. #define WAKEUP_BIT_RTC BIT(0)
  212. #define WAKEUP_BIT_RTT0 BIT(1)
  213. #define WAKEUP_BIT_RTT1 BIT(2)
  214. #define WAKEUP_BIT_HSI0 BIT(3)
  215. #define WAKEUP_BIT_HSI1 BIT(4)
  216. #define WAKEUP_BIT_CA_WAKE BIT(5)
  217. #define WAKEUP_BIT_USB BIT(6)
  218. #define WAKEUP_BIT_ABB BIT(7)
  219. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  220. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  221. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  222. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  223. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  224. #define WAKEUP_BIT_ANC_OK BIT(13)
  225. #define WAKEUP_BIT_SW_ERROR BIT(14)
  226. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  227. #define WAKEUP_BIT_ARM BIT(17)
  228. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  229. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  230. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  231. #define WAKEUP_BIT_GPIO0 BIT(23)
  232. #define WAKEUP_BIT_GPIO1 BIT(24)
  233. #define WAKEUP_BIT_GPIO2 BIT(25)
  234. #define WAKEUP_BIT_GPIO3 BIT(26)
  235. #define WAKEUP_BIT_GPIO4 BIT(27)
  236. #define WAKEUP_BIT_GPIO5 BIT(28)
  237. #define WAKEUP_BIT_GPIO6 BIT(29)
  238. #define WAKEUP_BIT_GPIO7 BIT(30)
  239. #define WAKEUP_BIT_GPIO8 BIT(31)
  240. /*
  241. * This vector maps irq numbers to the bits in the bit field used in
  242. * communication with the PRCMU firmware.
  243. *
  244. * The reason for having this is to keep the irq numbers contiguous even though
  245. * the bits in the bit field are not. (The bits also have a tendency to move
  246. * around, to further complicate matters.)
  247. */
  248. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  249. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  250. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  251. IRQ_ENTRY(RTC),
  252. IRQ_ENTRY(RTT0),
  253. IRQ_ENTRY(RTT1),
  254. IRQ_ENTRY(HSI0),
  255. IRQ_ENTRY(HSI1),
  256. IRQ_ENTRY(CA_WAKE),
  257. IRQ_ENTRY(USB),
  258. IRQ_ENTRY(ABB),
  259. IRQ_ENTRY(ABB_FIFO),
  260. IRQ_ENTRY(CA_SLEEP),
  261. IRQ_ENTRY(ARM),
  262. IRQ_ENTRY(HOTMON_LOW),
  263. IRQ_ENTRY(HOTMON_HIGH),
  264. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  265. IRQ_ENTRY(GPIO0),
  266. IRQ_ENTRY(GPIO1),
  267. IRQ_ENTRY(GPIO2),
  268. IRQ_ENTRY(GPIO3),
  269. IRQ_ENTRY(GPIO4),
  270. IRQ_ENTRY(GPIO5),
  271. IRQ_ENTRY(GPIO6),
  272. IRQ_ENTRY(GPIO7),
  273. IRQ_ENTRY(GPIO8)
  274. };
  275. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  276. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  277. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  278. WAKEUP_ENTRY(RTC),
  279. WAKEUP_ENTRY(RTT0),
  280. WAKEUP_ENTRY(RTT1),
  281. WAKEUP_ENTRY(HSI0),
  282. WAKEUP_ENTRY(HSI1),
  283. WAKEUP_ENTRY(USB),
  284. WAKEUP_ENTRY(ABB),
  285. WAKEUP_ENTRY(ABB_FIFO),
  286. WAKEUP_ENTRY(ARM)
  287. };
  288. /*
  289. * mb0_transfer - state needed for mailbox 0 communication.
  290. * @lock: The transaction lock.
  291. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  292. * the request data.
  293. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  294. * @req: Request data that need to persist between requests.
  295. */
  296. static struct {
  297. spinlock_t lock;
  298. spinlock_t dbb_irqs_lock;
  299. struct work_struct mask_work;
  300. struct mutex ac_wake_lock;
  301. struct completion ac_wake_work;
  302. struct {
  303. u32 dbb_irqs;
  304. u32 dbb_wakeups;
  305. u32 abb_events;
  306. } req;
  307. } mb0_transfer;
  308. /*
  309. * mb1_transfer - state needed for mailbox 1 communication.
  310. * @lock: The transaction lock.
  311. * @work: The transaction completion structure.
  312. * @ack: Reply ("acknowledge") data.
  313. */
  314. static struct {
  315. struct mutex lock;
  316. struct completion work;
  317. struct {
  318. u8 header;
  319. u8 arm_opp;
  320. u8 ape_opp;
  321. u8 ape_voltage_status;
  322. } ack;
  323. } mb1_transfer;
  324. /*
  325. * mb2_transfer - state needed for mailbox 2 communication.
  326. * @lock: The transaction lock.
  327. * @work: The transaction completion structure.
  328. * @auto_pm_lock: The autonomous power management configuration lock.
  329. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  330. * @req: Request data that need to persist between requests.
  331. * @ack: Reply ("acknowledge") data.
  332. */
  333. static struct {
  334. struct mutex lock;
  335. struct completion work;
  336. spinlock_t auto_pm_lock;
  337. bool auto_pm_enabled;
  338. struct {
  339. u8 status;
  340. } ack;
  341. } mb2_transfer;
  342. /*
  343. * mb3_transfer - state needed for mailbox 3 communication.
  344. * @lock: The request lock.
  345. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  346. * @sysclk_work: Work structure used for sysclk requests.
  347. */
  348. static struct {
  349. spinlock_t lock;
  350. struct mutex sysclk_lock;
  351. struct completion sysclk_work;
  352. } mb3_transfer;
  353. /*
  354. * mb4_transfer - state needed for mailbox 4 communication.
  355. * @lock: The transaction lock.
  356. * @work: The transaction completion structure.
  357. */
  358. static struct {
  359. struct mutex lock;
  360. struct completion work;
  361. } mb4_transfer;
  362. /*
  363. * mb5_transfer - state needed for mailbox 5 communication.
  364. * @lock: The transaction lock.
  365. * @work: The transaction completion structure.
  366. * @ack: Reply ("acknowledge") data.
  367. */
  368. static struct {
  369. struct mutex lock;
  370. struct completion work;
  371. struct {
  372. u8 status;
  373. u8 value;
  374. } ack;
  375. } mb5_transfer;
  376. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  377. /* Spinlocks */
  378. static DEFINE_SPINLOCK(clkout_lock);
  379. static DEFINE_SPINLOCK(gpiocr_lock);
  380. /* Global var to runtime determine TCDM base for v2 or v1 */
  381. static __iomem void *tcdm_base;
  382. struct clk_mgt {
  383. unsigned int offset;
  384. u32 pllsw;
  385. };
  386. static DEFINE_SPINLOCK(clk_mgt_lock);
  387. #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
  388. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  389. CLK_MGT_ENTRY(SGACLK),
  390. CLK_MGT_ENTRY(UARTCLK),
  391. CLK_MGT_ENTRY(MSP02CLK),
  392. CLK_MGT_ENTRY(MSP1CLK),
  393. CLK_MGT_ENTRY(I2CCLK),
  394. CLK_MGT_ENTRY(SDMMCCLK),
  395. CLK_MGT_ENTRY(SLIMCLK),
  396. CLK_MGT_ENTRY(PER1CLK),
  397. CLK_MGT_ENTRY(PER2CLK),
  398. CLK_MGT_ENTRY(PER3CLK),
  399. CLK_MGT_ENTRY(PER5CLK),
  400. CLK_MGT_ENTRY(PER6CLK),
  401. CLK_MGT_ENTRY(PER7CLK),
  402. CLK_MGT_ENTRY(LCDCLK),
  403. CLK_MGT_ENTRY(BMLCLK),
  404. CLK_MGT_ENTRY(HSITXCLK),
  405. CLK_MGT_ENTRY(HSIRXCLK),
  406. CLK_MGT_ENTRY(HDMICLK),
  407. CLK_MGT_ENTRY(APEATCLK),
  408. CLK_MGT_ENTRY(APETRACECLK),
  409. CLK_MGT_ENTRY(MCDECLK),
  410. CLK_MGT_ENTRY(IPI2CCLK),
  411. CLK_MGT_ENTRY(DSIALTCLK),
  412. CLK_MGT_ENTRY(DMACLK),
  413. CLK_MGT_ENTRY(B2R2CLK),
  414. CLK_MGT_ENTRY(TVCLK),
  415. CLK_MGT_ENTRY(SSPCLK),
  416. CLK_MGT_ENTRY(RNGCLK),
  417. CLK_MGT_ENTRY(UICCCLK),
  418. };
  419. /*
  420. * Used by MCDE to setup all necessary PRCMU registers
  421. */
  422. #define PRCMU_RESET_DSIPLL 0x00004000
  423. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  424. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  425. #define PRCMU_CLK_PLL_SW_SHIFT 5
  426. #define PRCMU_CLK_38 (1 << 9)
  427. #define PRCMU_CLK_38_SRC (1 << 10)
  428. #define PRCMU_CLK_38_DIV (1 << 11)
  429. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  430. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  431. /* PLLDIV=8, PLLSW=4 (PLLDDR) */
  432. #define PRCMU_DSI_CLOCK_SETTING_U8400 0x00000088
  433. /* DPI 50000000 Hz */
  434. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  435. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  436. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  437. /* D=101, N=1, R=4, SELDIV2=0 */
  438. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  439. /* D=70, N=1, R=3, SELDIV2=0 */
  440. #define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
  441. #define PRCMU_ENABLE_PLLDSI 0x00000001
  442. #define PRCMU_DISABLE_PLLDSI 0x00000000
  443. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  444. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  445. /* ESC clk, div0=1, div1=1, div2=3 */
  446. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  447. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  448. #define PRCMU_DSI_RESET_SW 0x00000007
  449. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  450. static struct {
  451. u8 project_number;
  452. u8 api_version;
  453. u8 func_version;
  454. u8 errata;
  455. } prcmu_version;
  456. int prcmu_enable_dsipll(void)
  457. {
  458. int i;
  459. unsigned int plldsifreq;
  460. /* Clear DSIPLL_RESETN */
  461. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  462. /* Unclamp DSIPLL in/out */
  463. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  464. if (prcmu_is_u8400())
  465. plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
  466. else
  467. plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
  468. /* Set DSI PLL FREQ */
  469. writel(plldsifreq, PRCM_PLLDSI_FREQ);
  470. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  471. /* Enable Escape clocks */
  472. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  473. /* Start DSI PLL */
  474. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  475. /* Reset DSI PLL */
  476. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  477. for (i = 0; i < 10; i++) {
  478. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  479. == PRCMU_PLLDSI_LOCKP_LOCKED)
  480. break;
  481. udelay(100);
  482. }
  483. /* Set DSIPLL_RESETN */
  484. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  485. return 0;
  486. }
  487. int prcmu_disable_dsipll(void)
  488. {
  489. /* Disable dsi pll */
  490. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  491. /* Disable escapeclock */
  492. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  493. return 0;
  494. }
  495. int prcmu_set_display_clocks(void)
  496. {
  497. unsigned long flags;
  498. unsigned int dsiclk;
  499. if (prcmu_is_u8400())
  500. dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
  501. else
  502. dsiclk = PRCMU_DSI_CLOCK_SETTING;
  503. spin_lock_irqsave(&clk_mgt_lock, flags);
  504. /* Grab the HW semaphore. */
  505. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  506. cpu_relax();
  507. writel(dsiclk, PRCM_HDMICLK_MGT);
  508. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  509. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  510. /* Release the HW semaphore. */
  511. writel(0, PRCM_SEM);
  512. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  513. return 0;
  514. }
  515. /**
  516. * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
  517. */
  518. void prcmu_enable_spi2(void)
  519. {
  520. u32 reg;
  521. unsigned long flags;
  522. spin_lock_irqsave(&gpiocr_lock, flags);
  523. reg = readl(PRCM_GPIOCR);
  524. writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  525. spin_unlock_irqrestore(&gpiocr_lock, flags);
  526. }
  527. /**
  528. * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
  529. */
  530. void prcmu_disable_spi2(void)
  531. {
  532. u32 reg;
  533. unsigned long flags;
  534. spin_lock_irqsave(&gpiocr_lock, flags);
  535. reg = readl(PRCM_GPIOCR);
  536. writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  537. spin_unlock_irqrestore(&gpiocr_lock, flags);
  538. }
  539. bool prcmu_has_arm_maxopp(void)
  540. {
  541. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  542. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  543. }
  544. bool prcmu_is_u8400(void)
  545. {
  546. return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
  547. }
  548. /**
  549. * prcmu_get_boot_status - PRCMU boot status checking
  550. * Returns: the current PRCMU boot status
  551. */
  552. int prcmu_get_boot_status(void)
  553. {
  554. return readb(tcdm_base + PRCM_BOOT_STATUS);
  555. }
  556. /**
  557. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  558. * @val: Value to be set, i.e. transition requested
  559. * Returns: 0 on success, -EINVAL on invalid argument
  560. *
  561. * This function is used to run the following power state sequences -
  562. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  563. */
  564. int prcmu_set_rc_a2p(enum romcode_write val)
  565. {
  566. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  567. return -EINVAL;
  568. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  569. return 0;
  570. }
  571. /**
  572. * prcmu_get_rc_p2a - This function is used to get power state sequences
  573. * Returns: the power transition that has last happened
  574. *
  575. * This function can return the following transitions-
  576. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  577. */
  578. enum romcode_read prcmu_get_rc_p2a(void)
  579. {
  580. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  581. }
  582. /**
  583. * prcmu_get_current_mode - Return the current XP70 power mode
  584. * Returns: Returns the current AP(ARM) power mode: init,
  585. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  586. */
  587. enum ap_pwrst prcmu_get_xp70_current_state(void)
  588. {
  589. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  590. }
  591. /**
  592. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  593. * @clkout: The CLKOUT number (0 or 1).
  594. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  595. * @div: The divider to be applied.
  596. *
  597. * Configures one of the programmable clock outputs (CLKOUTs).
  598. * @div should be in the range [1,63] to request a configuration, or 0 to
  599. * inform that the configuration is no longer requested.
  600. */
  601. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  602. {
  603. static int requests[2];
  604. int r = 0;
  605. unsigned long flags;
  606. u32 val;
  607. u32 bits;
  608. u32 mask;
  609. u32 div_mask;
  610. BUG_ON(clkout > 1);
  611. BUG_ON(div > 63);
  612. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  613. if (!div && !requests[clkout])
  614. return -EINVAL;
  615. switch (clkout) {
  616. case 0:
  617. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  618. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  619. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  620. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  621. break;
  622. case 1:
  623. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  624. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  625. PRCM_CLKOCR_CLK1TYPE);
  626. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  627. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  628. break;
  629. }
  630. bits &= mask;
  631. spin_lock_irqsave(&clkout_lock, flags);
  632. val = readl(PRCM_CLKOCR);
  633. if (val & div_mask) {
  634. if (div) {
  635. if ((val & mask) != bits) {
  636. r = -EBUSY;
  637. goto unlock_and_return;
  638. }
  639. } else {
  640. if ((val & mask & ~div_mask) != bits) {
  641. r = -EINVAL;
  642. goto unlock_and_return;
  643. }
  644. }
  645. }
  646. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  647. requests[clkout] += (div ? 1 : -1);
  648. unlock_and_return:
  649. spin_unlock_irqrestore(&clkout_lock, flags);
  650. return r;
  651. }
  652. int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  653. {
  654. unsigned long flags;
  655. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  656. spin_lock_irqsave(&mb0_transfer.lock, flags);
  657. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  658. cpu_relax();
  659. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  660. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  661. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  662. writeb((keep_ulp_clk ? 1 : 0),
  663. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  664. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  665. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  666. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  667. return 0;
  668. }
  669. /* This function should only be called while mb0_transfer.lock is held. */
  670. static void config_wakeups(void)
  671. {
  672. const u8 header[2] = {
  673. MB0H_CONFIG_WAKEUPS_EXE,
  674. MB0H_CONFIG_WAKEUPS_SLEEP
  675. };
  676. static u32 last_dbb_events;
  677. static u32 last_abb_events;
  678. u32 dbb_events;
  679. u32 abb_events;
  680. unsigned int i;
  681. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  682. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  683. abb_events = mb0_transfer.req.abb_events;
  684. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  685. return;
  686. for (i = 0; i < 2; i++) {
  687. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  688. cpu_relax();
  689. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  690. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  691. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  692. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  693. }
  694. last_dbb_events = dbb_events;
  695. last_abb_events = abb_events;
  696. }
  697. void prcmu_enable_wakeups(u32 wakeups)
  698. {
  699. unsigned long flags;
  700. u32 bits;
  701. int i;
  702. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  703. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  704. if (wakeups & BIT(i))
  705. bits |= prcmu_wakeup_bit[i];
  706. }
  707. spin_lock_irqsave(&mb0_transfer.lock, flags);
  708. mb0_transfer.req.dbb_wakeups = bits;
  709. config_wakeups();
  710. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  711. }
  712. void prcmu_config_abb_event_readout(u32 abb_events)
  713. {
  714. unsigned long flags;
  715. spin_lock_irqsave(&mb0_transfer.lock, flags);
  716. mb0_transfer.req.abb_events = abb_events;
  717. config_wakeups();
  718. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  719. }
  720. void prcmu_get_abb_event_buffer(void __iomem **buf)
  721. {
  722. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  723. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  724. else
  725. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  726. }
  727. /**
  728. * prcmu_set_arm_opp - set the appropriate ARM OPP
  729. * @opp: The new ARM operating point to which transition is to be made
  730. * Returns: 0 on success, non-zero on failure
  731. *
  732. * This function sets the the operating point of the ARM.
  733. */
  734. int prcmu_set_arm_opp(u8 opp)
  735. {
  736. int r;
  737. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  738. return -EINVAL;
  739. r = 0;
  740. mutex_lock(&mb1_transfer.lock);
  741. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  742. cpu_relax();
  743. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  744. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  745. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  746. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  747. wait_for_completion(&mb1_transfer.work);
  748. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  749. (mb1_transfer.ack.arm_opp != opp))
  750. r = -EIO;
  751. mutex_unlock(&mb1_transfer.lock);
  752. return r;
  753. }
  754. /**
  755. * prcmu_get_arm_opp - get the current ARM OPP
  756. *
  757. * Returns: the current ARM OPP
  758. */
  759. int prcmu_get_arm_opp(void)
  760. {
  761. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  762. }
  763. /**
  764. * prcmu_get_ddr_opp - get the current DDR OPP
  765. *
  766. * Returns: the current DDR OPP
  767. */
  768. int prcmu_get_ddr_opp(void)
  769. {
  770. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  771. }
  772. /**
  773. * set_ddr_opp - set the appropriate DDR OPP
  774. * @opp: The new DDR operating point to which transition is to be made
  775. * Returns: 0 on success, non-zero on failure
  776. *
  777. * This function sets the operating point of the DDR.
  778. */
  779. int prcmu_set_ddr_opp(u8 opp)
  780. {
  781. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  782. return -EINVAL;
  783. /* Changing the DDR OPP can hang the hardware pre-v21 */
  784. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  785. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  786. return 0;
  787. }
  788. /**
  789. * set_ape_opp - set the appropriate APE OPP
  790. * @opp: The new APE operating point to which transition is to be made
  791. * Returns: 0 on success, non-zero on failure
  792. *
  793. * This function sets the operating point of the APE.
  794. */
  795. int prcmu_set_ape_opp(u8 opp)
  796. {
  797. int r = 0;
  798. mutex_lock(&mb1_transfer.lock);
  799. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  800. cpu_relax();
  801. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  802. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  803. writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  804. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  805. wait_for_completion(&mb1_transfer.work);
  806. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  807. (mb1_transfer.ack.ape_opp != opp))
  808. r = -EIO;
  809. mutex_unlock(&mb1_transfer.lock);
  810. return r;
  811. }
  812. /**
  813. * prcmu_get_ape_opp - get the current APE OPP
  814. *
  815. * Returns: the current APE OPP
  816. */
  817. int prcmu_get_ape_opp(void)
  818. {
  819. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  820. }
  821. /**
  822. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  823. * @enable: true to request the higher voltage, false to drop a request.
  824. *
  825. * Calls to this function to enable and disable requests must be balanced.
  826. */
  827. int prcmu_request_ape_opp_100_voltage(bool enable)
  828. {
  829. int r = 0;
  830. u8 header;
  831. static unsigned int requests;
  832. mutex_lock(&mb1_transfer.lock);
  833. if (enable) {
  834. if (0 != requests++)
  835. goto unlock_and_return;
  836. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  837. } else {
  838. if (requests == 0) {
  839. r = -EIO;
  840. goto unlock_and_return;
  841. } else if (1 != requests--) {
  842. goto unlock_and_return;
  843. }
  844. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  845. }
  846. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  847. cpu_relax();
  848. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  849. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  850. wait_for_completion(&mb1_transfer.work);
  851. if ((mb1_transfer.ack.header != header) ||
  852. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  853. r = -EIO;
  854. unlock_and_return:
  855. mutex_unlock(&mb1_transfer.lock);
  856. return r;
  857. }
  858. /**
  859. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  860. *
  861. * This function releases the power state requirements of a USB wakeup.
  862. */
  863. int prcmu_release_usb_wakeup_state(void)
  864. {
  865. int r = 0;
  866. mutex_lock(&mb1_transfer.lock);
  867. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  868. cpu_relax();
  869. writeb(MB1H_RELEASE_USB_WAKEUP,
  870. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  871. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  872. wait_for_completion(&mb1_transfer.work);
  873. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  874. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  875. r = -EIO;
  876. mutex_unlock(&mb1_transfer.lock);
  877. return r;
  878. }
  879. /**
  880. * prcmu_set_epod - set the state of a EPOD (power domain)
  881. * @epod_id: The EPOD to set
  882. * @epod_state: The new EPOD state
  883. *
  884. * This function sets the state of a EPOD (power domain). It may not be called
  885. * from interrupt context.
  886. */
  887. int prcmu_set_epod(u16 epod_id, u8 epod_state)
  888. {
  889. int r = 0;
  890. bool ram_retention = false;
  891. int i;
  892. /* check argument */
  893. BUG_ON(epod_id >= NUM_EPOD_ID);
  894. /* set flag if retention is possible */
  895. switch (epod_id) {
  896. case EPOD_ID_SVAMMDSP:
  897. case EPOD_ID_SIAMMDSP:
  898. case EPOD_ID_ESRAM12:
  899. case EPOD_ID_ESRAM34:
  900. ram_retention = true;
  901. break;
  902. }
  903. /* check argument */
  904. BUG_ON(epod_state > EPOD_STATE_ON);
  905. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  906. /* get lock */
  907. mutex_lock(&mb2_transfer.lock);
  908. /* wait for mailbox */
  909. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  910. cpu_relax();
  911. /* fill in mailbox */
  912. for (i = 0; i < NUM_EPOD_ID; i++)
  913. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  914. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  915. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  916. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  917. /*
  918. * The current firmware version does not handle errors correctly,
  919. * and we cannot recover if there is an error.
  920. * This is expected to change when the firmware is updated.
  921. */
  922. if (!wait_for_completion_timeout(&mb2_transfer.work,
  923. msecs_to_jiffies(20000))) {
  924. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  925. __func__);
  926. r = -EIO;
  927. goto unlock_and_return;
  928. }
  929. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  930. r = -EIO;
  931. unlock_and_return:
  932. mutex_unlock(&mb2_transfer.lock);
  933. return r;
  934. }
  935. /**
  936. * prcmu_configure_auto_pm - Configure autonomous power management.
  937. * @sleep: Configuration for ApSleep.
  938. * @idle: Configuration for ApIdle.
  939. */
  940. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  941. struct prcmu_auto_pm_config *idle)
  942. {
  943. u32 sleep_cfg;
  944. u32 idle_cfg;
  945. unsigned long flags;
  946. BUG_ON((sleep == NULL) || (idle == NULL));
  947. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  948. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  949. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  950. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  951. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  952. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  953. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  954. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  955. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  956. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  957. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  958. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  959. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  960. /*
  961. * The autonomous power management configuration is done through
  962. * fields in mailbox 2, but these fields are only used as shared
  963. * variables - i.e. there is no need to send a message.
  964. */
  965. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  966. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  967. mb2_transfer.auto_pm_enabled =
  968. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  969. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  970. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  971. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  972. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  973. }
  974. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  975. bool prcmu_is_auto_pm_enabled(void)
  976. {
  977. return mb2_transfer.auto_pm_enabled;
  978. }
  979. static int request_sysclk(bool enable)
  980. {
  981. int r;
  982. unsigned long flags;
  983. r = 0;
  984. mutex_lock(&mb3_transfer.sysclk_lock);
  985. spin_lock_irqsave(&mb3_transfer.lock, flags);
  986. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  987. cpu_relax();
  988. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  989. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  990. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  991. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  992. /*
  993. * The firmware only sends an ACK if we want to enable the
  994. * SysClk, and it succeeds.
  995. */
  996. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  997. msecs_to_jiffies(20000))) {
  998. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  999. __func__);
  1000. r = -EIO;
  1001. }
  1002. mutex_unlock(&mb3_transfer.sysclk_lock);
  1003. return r;
  1004. }
  1005. static int request_timclk(bool enable)
  1006. {
  1007. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1008. if (!enable)
  1009. val |= PRCM_TCR_STOP_TIMERS;
  1010. writel(val, PRCM_TCR);
  1011. return 0;
  1012. }
  1013. static int request_reg_clock(u8 clock, bool enable)
  1014. {
  1015. u32 val;
  1016. unsigned long flags;
  1017. spin_lock_irqsave(&clk_mgt_lock, flags);
  1018. /* Grab the HW semaphore. */
  1019. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1020. cpu_relax();
  1021. val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
  1022. if (enable) {
  1023. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1024. } else {
  1025. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1026. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1027. }
  1028. writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
  1029. /* Release the HW semaphore. */
  1030. writel(0, PRCM_SEM);
  1031. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1032. return 0;
  1033. }
  1034. /**
  1035. * prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1036. * @clock: The clock for which the request is made.
  1037. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1038. *
  1039. * This function should only be used by the clock implementation.
  1040. * Do not use it from any other place!
  1041. */
  1042. int prcmu_request_clock(u8 clock, bool enable)
  1043. {
  1044. if (clock < PRCMU_NUM_REG_CLOCKS)
  1045. return request_reg_clock(clock, enable);
  1046. else if (clock == PRCMU_TIMCLK)
  1047. return request_timclk(enable);
  1048. else if (clock == PRCMU_SYSCLK)
  1049. return request_sysclk(enable);
  1050. else
  1051. return -EINVAL;
  1052. }
  1053. int prcmu_config_esram0_deep_sleep(u8 state)
  1054. {
  1055. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1056. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1057. return -EINVAL;
  1058. mutex_lock(&mb4_transfer.lock);
  1059. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1060. cpu_relax();
  1061. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1062. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1063. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1064. writeb(DDR_PWR_STATE_ON,
  1065. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1066. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1067. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1068. wait_for_completion(&mb4_transfer.work);
  1069. mutex_unlock(&mb4_transfer.lock);
  1070. return 0;
  1071. }
  1072. int prcmu_config_hotdog(u8 threshold)
  1073. {
  1074. mutex_lock(&mb4_transfer.lock);
  1075. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1076. cpu_relax();
  1077. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1078. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1079. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1080. wait_for_completion(&mb4_transfer.work);
  1081. mutex_unlock(&mb4_transfer.lock);
  1082. return 0;
  1083. }
  1084. int prcmu_config_hotmon(u8 low, u8 high)
  1085. {
  1086. mutex_lock(&mb4_transfer.lock);
  1087. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1088. cpu_relax();
  1089. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1090. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1091. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1092. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1093. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1094. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1095. wait_for_completion(&mb4_transfer.work);
  1096. mutex_unlock(&mb4_transfer.lock);
  1097. return 0;
  1098. }
  1099. static int config_hot_period(u16 val)
  1100. {
  1101. mutex_lock(&mb4_transfer.lock);
  1102. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1103. cpu_relax();
  1104. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1105. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1106. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1107. wait_for_completion(&mb4_transfer.work);
  1108. mutex_unlock(&mb4_transfer.lock);
  1109. return 0;
  1110. }
  1111. int prcmu_start_temp_sense(u16 cycles32k)
  1112. {
  1113. if (cycles32k == 0xFFFF)
  1114. return -EINVAL;
  1115. return config_hot_period(cycles32k);
  1116. }
  1117. int prcmu_stop_temp_sense(void)
  1118. {
  1119. return config_hot_period(0xFFFF);
  1120. }
  1121. /**
  1122. * prcmu_set_clock_divider() - Configure the clock divider.
  1123. * @clock: The clock for which the request is made.
  1124. * @divider: The clock divider. (< 32)
  1125. *
  1126. * This function should only be used by the clock implementation.
  1127. * Do not use it from any other place!
  1128. */
  1129. int prcmu_set_clock_divider(u8 clock, u8 divider)
  1130. {
  1131. u32 val;
  1132. unsigned long flags;
  1133. if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
  1134. return -EINVAL;
  1135. spin_lock_irqsave(&clk_mgt_lock, flags);
  1136. /* Grab the HW semaphore. */
  1137. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1138. cpu_relax();
  1139. val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
  1140. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
  1141. val |= (u32)divider;
  1142. writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
  1143. /* Release the HW semaphore. */
  1144. writel(0, PRCM_SEM);
  1145. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1146. return 0;
  1147. }
  1148. /**
  1149. * prcmu_abb_read() - Read register value(s) from the ABB.
  1150. * @slave: The I2C slave address.
  1151. * @reg: The (start) register address.
  1152. * @value: The read out value(s).
  1153. * @size: The number of registers to read.
  1154. *
  1155. * Reads register value(s) from the ABB.
  1156. * @size has to be 1 for the current firmware version.
  1157. */
  1158. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1159. {
  1160. int r;
  1161. if (size != 1)
  1162. return -EINVAL;
  1163. mutex_lock(&mb5_transfer.lock);
  1164. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1165. cpu_relax();
  1166. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1167. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1168. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1169. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1170. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1171. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1172. msecs_to_jiffies(20000))) {
  1173. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1174. __func__);
  1175. r = -EIO;
  1176. } else {
  1177. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1178. }
  1179. if (!r)
  1180. *value = mb5_transfer.ack.value;
  1181. mutex_unlock(&mb5_transfer.lock);
  1182. return r;
  1183. }
  1184. /**
  1185. * prcmu_abb_write() - Write register value(s) to the ABB.
  1186. * @slave: The I2C slave address.
  1187. * @reg: The (start) register address.
  1188. * @value: The value(s) to write.
  1189. * @size: The number of registers to write.
  1190. *
  1191. * Reads register value(s) from the ABB.
  1192. * @size has to be 1 for the current firmware version.
  1193. */
  1194. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1195. {
  1196. int r;
  1197. if (size != 1)
  1198. return -EINVAL;
  1199. mutex_lock(&mb5_transfer.lock);
  1200. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1201. cpu_relax();
  1202. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1203. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1204. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1205. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1206. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1207. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1208. msecs_to_jiffies(20000))) {
  1209. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1210. __func__);
  1211. r = -EIO;
  1212. } else {
  1213. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1214. }
  1215. mutex_unlock(&mb5_transfer.lock);
  1216. return r;
  1217. }
  1218. /**
  1219. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1220. */
  1221. void prcmu_ac_wake_req(void)
  1222. {
  1223. u32 val;
  1224. mutex_lock(&mb0_transfer.ac_wake_lock);
  1225. val = readl(PRCM_HOSTACCESS_REQ);
  1226. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1227. goto unlock_and_return;
  1228. atomic_set(&ac_wake_req_state, 1);
  1229. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1230. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1231. msecs_to_jiffies(20000))) {
  1232. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1233. __func__);
  1234. }
  1235. unlock_and_return:
  1236. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1237. }
  1238. /**
  1239. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1240. */
  1241. void prcmu_ac_sleep_req()
  1242. {
  1243. u32 val;
  1244. mutex_lock(&mb0_transfer.ac_wake_lock);
  1245. val = readl(PRCM_HOSTACCESS_REQ);
  1246. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1247. goto unlock_and_return;
  1248. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1249. PRCM_HOSTACCESS_REQ);
  1250. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1251. msecs_to_jiffies(20000))) {
  1252. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1253. __func__);
  1254. }
  1255. atomic_set(&ac_wake_req_state, 0);
  1256. unlock_and_return:
  1257. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1258. }
  1259. bool prcmu_is_ac_wake_requested(void)
  1260. {
  1261. return (atomic_read(&ac_wake_req_state) != 0);
  1262. }
  1263. /**
  1264. * prcmu_system_reset - System reset
  1265. *
  1266. * Saves the reset reason code and then sets the APE_SOFRST register which
  1267. * fires interrupt to fw
  1268. */
  1269. void prcmu_system_reset(u16 reset_code)
  1270. {
  1271. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1272. writel(1, PRCM_APE_SOFTRST);
  1273. }
  1274. /**
  1275. * prcmu_reset_modem - ask the PRCMU to reset modem
  1276. */
  1277. void prcmu_modem_reset(void)
  1278. {
  1279. mutex_lock(&mb1_transfer.lock);
  1280. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1281. cpu_relax();
  1282. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1283. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1284. wait_for_completion(&mb1_transfer.work);
  1285. /*
  1286. * No need to check return from PRCMU as modem should go in reset state
  1287. * This state is already managed by upper layer
  1288. */
  1289. mutex_unlock(&mb1_transfer.lock);
  1290. }
  1291. static void ack_dbb_wakeup(void)
  1292. {
  1293. unsigned long flags;
  1294. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1295. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1296. cpu_relax();
  1297. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1298. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1299. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1300. }
  1301. static inline void print_unknown_header_warning(u8 n, u8 header)
  1302. {
  1303. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  1304. header, n);
  1305. }
  1306. static bool read_mailbox_0(void)
  1307. {
  1308. bool r;
  1309. u32 ev;
  1310. unsigned int n;
  1311. u8 header;
  1312. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  1313. switch (header) {
  1314. case MB0H_WAKEUP_EXE:
  1315. case MB0H_WAKEUP_SLEEP:
  1316. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  1317. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  1318. else
  1319. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  1320. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  1321. complete(&mb0_transfer.ac_wake_work);
  1322. if (ev & WAKEUP_BIT_SYSCLK_OK)
  1323. complete(&mb3_transfer.sysclk_work);
  1324. ev &= mb0_transfer.req.dbb_irqs;
  1325. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  1326. if (ev & prcmu_irq_bit[n])
  1327. generic_handle_irq(IRQ_PRCMU_BASE + n);
  1328. }
  1329. r = true;
  1330. break;
  1331. default:
  1332. print_unknown_header_warning(0, header);
  1333. r = false;
  1334. break;
  1335. }
  1336. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  1337. return r;
  1338. }
  1339. static bool read_mailbox_1(void)
  1340. {
  1341. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  1342. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  1343. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  1344. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  1345. PRCM_ACK_MB1_CURRENT_APE_OPP);
  1346. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  1347. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  1348. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  1349. complete(&mb1_transfer.work);
  1350. return false;
  1351. }
  1352. static bool read_mailbox_2(void)
  1353. {
  1354. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  1355. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  1356. complete(&mb2_transfer.work);
  1357. return false;
  1358. }
  1359. static bool read_mailbox_3(void)
  1360. {
  1361. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  1362. return false;
  1363. }
  1364. static bool read_mailbox_4(void)
  1365. {
  1366. u8 header;
  1367. bool do_complete = true;
  1368. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  1369. switch (header) {
  1370. case MB4H_MEM_ST:
  1371. case MB4H_HOTDOG:
  1372. case MB4H_HOTMON:
  1373. case MB4H_HOT_PERIOD:
  1374. case MB4H_A9WDOG_CONF:
  1375. case MB4H_A9WDOG_EN:
  1376. case MB4H_A9WDOG_DIS:
  1377. case MB4H_A9WDOG_LOAD:
  1378. case MB4H_A9WDOG_KICK:
  1379. break;
  1380. default:
  1381. print_unknown_header_warning(4, header);
  1382. do_complete = false;
  1383. break;
  1384. }
  1385. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  1386. if (do_complete)
  1387. complete(&mb4_transfer.work);
  1388. return false;
  1389. }
  1390. static bool read_mailbox_5(void)
  1391. {
  1392. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  1393. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  1394. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  1395. complete(&mb5_transfer.work);
  1396. return false;
  1397. }
  1398. static bool read_mailbox_6(void)
  1399. {
  1400. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  1401. return false;
  1402. }
  1403. static bool read_mailbox_7(void)
  1404. {
  1405. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  1406. return false;
  1407. }
  1408. static bool (* const read_mailbox[NUM_MB])(void) = {
  1409. read_mailbox_0,
  1410. read_mailbox_1,
  1411. read_mailbox_2,
  1412. read_mailbox_3,
  1413. read_mailbox_4,
  1414. read_mailbox_5,
  1415. read_mailbox_6,
  1416. read_mailbox_7
  1417. };
  1418. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  1419. {
  1420. u32 bits;
  1421. u8 n;
  1422. irqreturn_t r;
  1423. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  1424. if (unlikely(!bits))
  1425. return IRQ_NONE;
  1426. r = IRQ_HANDLED;
  1427. for (n = 0; bits; n++) {
  1428. if (bits & MBOX_BIT(n)) {
  1429. bits -= MBOX_BIT(n);
  1430. if (read_mailbox[n]())
  1431. r = IRQ_WAKE_THREAD;
  1432. }
  1433. }
  1434. return r;
  1435. }
  1436. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  1437. {
  1438. ack_dbb_wakeup();
  1439. return IRQ_HANDLED;
  1440. }
  1441. static void prcmu_mask_work(struct work_struct *work)
  1442. {
  1443. unsigned long flags;
  1444. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1445. config_wakeups();
  1446. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1447. }
  1448. static void prcmu_irq_mask(struct irq_data *d)
  1449. {
  1450. unsigned long flags;
  1451. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  1452. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  1453. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  1454. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  1455. schedule_work(&mb0_transfer.mask_work);
  1456. }
  1457. static void prcmu_irq_unmask(struct irq_data *d)
  1458. {
  1459. unsigned long flags;
  1460. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  1461. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  1462. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  1463. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  1464. schedule_work(&mb0_transfer.mask_work);
  1465. }
  1466. static void noop(struct irq_data *d)
  1467. {
  1468. }
  1469. static struct irq_chip prcmu_irq_chip = {
  1470. .name = "prcmu",
  1471. .irq_disable = prcmu_irq_mask,
  1472. .irq_ack = noop,
  1473. .irq_mask = prcmu_irq_mask,
  1474. .irq_unmask = prcmu_irq_unmask,
  1475. };
  1476. void __init prcmu_early_init(void)
  1477. {
  1478. unsigned int i;
  1479. if (cpu_is_u8500v1()) {
  1480. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
  1481. } else if (cpu_is_u8500v2()) {
  1482. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  1483. if (tcpm_base != NULL) {
  1484. int version;
  1485. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  1486. prcmu_version.project_number = version & 0xFF;
  1487. prcmu_version.api_version = (version >> 8) & 0xFF;
  1488. prcmu_version.func_version = (version >> 16) & 0xFF;
  1489. prcmu_version.errata = (version >> 24) & 0xFF;
  1490. pr_info("PRCMU firmware version %d.%d.%d\n",
  1491. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  1492. (version >> 24) & 0xFF);
  1493. iounmap(tcpm_base);
  1494. }
  1495. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  1496. } else {
  1497. pr_err("prcmu: Unsupported chip version\n");
  1498. BUG();
  1499. }
  1500. spin_lock_init(&mb0_transfer.lock);
  1501. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  1502. mutex_init(&mb0_transfer.ac_wake_lock);
  1503. init_completion(&mb0_transfer.ac_wake_work);
  1504. mutex_init(&mb1_transfer.lock);
  1505. init_completion(&mb1_transfer.work);
  1506. mutex_init(&mb2_transfer.lock);
  1507. init_completion(&mb2_transfer.work);
  1508. spin_lock_init(&mb2_transfer.auto_pm_lock);
  1509. spin_lock_init(&mb3_transfer.lock);
  1510. mutex_init(&mb3_transfer.sysclk_lock);
  1511. init_completion(&mb3_transfer.sysclk_work);
  1512. mutex_init(&mb4_transfer.lock);
  1513. init_completion(&mb4_transfer.work);
  1514. mutex_init(&mb5_transfer.lock);
  1515. init_completion(&mb5_transfer.work);
  1516. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  1517. /* Initalize irqs. */
  1518. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  1519. unsigned int irq;
  1520. irq = IRQ_PRCMU_BASE + i;
  1521. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  1522. handle_simple_irq);
  1523. set_irq_flags(irq, IRQF_VALID);
  1524. }
  1525. }
  1526. static void __init init_prcm_registers(void)
  1527. {
  1528. u32 val;
  1529. val = readl(PRCM_A9PL_FORCE_CLKEN);
  1530. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  1531. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  1532. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  1533. }
  1534. /*
  1535. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  1536. */
  1537. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  1538. REGULATOR_SUPPLY("v-ape", NULL),
  1539. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  1540. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  1541. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  1542. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  1543. /* "v-mmc" changed to "vcore" in the mainline kernel */
  1544. REGULATOR_SUPPLY("vcore", "sdi0"),
  1545. REGULATOR_SUPPLY("vcore", "sdi1"),
  1546. REGULATOR_SUPPLY("vcore", "sdi2"),
  1547. REGULATOR_SUPPLY("vcore", "sdi3"),
  1548. REGULATOR_SUPPLY("vcore", "sdi4"),
  1549. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  1550. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  1551. /* "v-uart" changed to "vcore" in the mainline kernel */
  1552. REGULATOR_SUPPLY("vcore", "uart0"),
  1553. REGULATOR_SUPPLY("vcore", "uart1"),
  1554. REGULATOR_SUPPLY("vcore", "uart2"),
  1555. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  1556. };
  1557. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  1558. /* CG2900 and CW1200 power to off-chip peripherals */
  1559. REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
  1560. REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
  1561. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  1562. /* AV8100 regulator */
  1563. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  1564. };
  1565. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  1566. REGULATOR_SUPPLY("vsupply", "b2r2.0"),
  1567. REGULATOR_SUPPLY("vsupply", "mcde.0"),
  1568. };
  1569. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  1570. [DB8500_REGULATOR_VAPE] = {
  1571. .constraints = {
  1572. .name = "db8500-vape",
  1573. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1574. },
  1575. .consumer_supplies = db8500_vape_consumers,
  1576. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  1577. },
  1578. [DB8500_REGULATOR_VARM] = {
  1579. .constraints = {
  1580. .name = "db8500-varm",
  1581. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1582. },
  1583. },
  1584. [DB8500_REGULATOR_VMODEM] = {
  1585. .constraints = {
  1586. .name = "db8500-vmodem",
  1587. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1588. },
  1589. },
  1590. [DB8500_REGULATOR_VPLL] = {
  1591. .constraints = {
  1592. .name = "db8500-vpll",
  1593. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1594. },
  1595. },
  1596. [DB8500_REGULATOR_VSMPS1] = {
  1597. .constraints = {
  1598. .name = "db8500-vsmps1",
  1599. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1600. },
  1601. },
  1602. [DB8500_REGULATOR_VSMPS2] = {
  1603. .constraints = {
  1604. .name = "db8500-vsmps2",
  1605. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1606. },
  1607. .consumer_supplies = db8500_vsmps2_consumers,
  1608. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  1609. },
  1610. [DB8500_REGULATOR_VSMPS3] = {
  1611. .constraints = {
  1612. .name = "db8500-vsmps3",
  1613. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1614. },
  1615. },
  1616. [DB8500_REGULATOR_VRF1] = {
  1617. .constraints = {
  1618. .name = "db8500-vrf1",
  1619. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1620. },
  1621. },
  1622. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  1623. .supply_regulator = "db8500-vape",
  1624. .constraints = {
  1625. .name = "db8500-sva-mmdsp",
  1626. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1627. },
  1628. },
  1629. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  1630. .constraints = {
  1631. /* "ret" means "retention" */
  1632. .name = "db8500-sva-mmdsp-ret",
  1633. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1634. },
  1635. },
  1636. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  1637. .supply_regulator = "db8500-vape",
  1638. .constraints = {
  1639. .name = "db8500-sva-pipe",
  1640. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1641. },
  1642. },
  1643. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  1644. .supply_regulator = "db8500-vape",
  1645. .constraints = {
  1646. .name = "db8500-sia-mmdsp",
  1647. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1648. },
  1649. },
  1650. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  1651. .constraints = {
  1652. .name = "db8500-sia-mmdsp-ret",
  1653. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1654. },
  1655. },
  1656. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  1657. .supply_regulator = "db8500-vape",
  1658. .constraints = {
  1659. .name = "db8500-sia-pipe",
  1660. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1661. },
  1662. },
  1663. [DB8500_REGULATOR_SWITCH_SGA] = {
  1664. .supply_regulator = "db8500-vape",
  1665. .constraints = {
  1666. .name = "db8500-sga",
  1667. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1668. },
  1669. },
  1670. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  1671. .supply_regulator = "db8500-vape",
  1672. .constraints = {
  1673. .name = "db8500-b2r2-mcde",
  1674. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1675. },
  1676. .consumer_supplies = db8500_b2r2_mcde_consumers,
  1677. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  1678. },
  1679. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  1680. .supply_regulator = "db8500-vape",
  1681. .constraints = {
  1682. .name = "db8500-esram12",
  1683. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1684. },
  1685. },
  1686. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  1687. .constraints = {
  1688. .name = "db8500-esram12-ret",
  1689. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1690. },
  1691. },
  1692. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  1693. .supply_regulator = "db8500-vape",
  1694. .constraints = {
  1695. .name = "db8500-esram34",
  1696. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1697. },
  1698. },
  1699. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  1700. .constraints = {
  1701. .name = "db8500-esram34-ret",
  1702. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1703. },
  1704. },
  1705. };
  1706. static struct mfd_cell db8500_prcmu_devs[] = {
  1707. {
  1708. .name = "db8500-prcmu-regulators",
  1709. .platform_data = &db8500_regulators,
  1710. .pdata_size = sizeof(db8500_regulators),
  1711. },
  1712. {
  1713. .name = "cpufreq-u8500",
  1714. },
  1715. };
  1716. /**
  1717. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  1718. *
  1719. */
  1720. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  1721. {
  1722. int err = 0;
  1723. if (ux500_is_svp())
  1724. return -ENODEV;
  1725. init_prcm_registers();
  1726. /* Clean up the mailbox interrupts after pre-kernel code. */
  1727. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  1728. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  1729. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  1730. if (err < 0) {
  1731. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  1732. err = -EBUSY;
  1733. goto no_irq_return;
  1734. }
  1735. if (cpu_is_u8500v20_or_later())
  1736. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  1737. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  1738. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  1739. 0);
  1740. if (err)
  1741. pr_err("prcmu: Failed to add subdevices\n");
  1742. else
  1743. pr_info("DB8500 PRCMU initialized\n");
  1744. no_irq_return:
  1745. return err;
  1746. }
  1747. static struct platform_driver db8500_prcmu_driver = {
  1748. .driver = {
  1749. .name = "db8500-prcmu",
  1750. .owner = THIS_MODULE,
  1751. },
  1752. };
  1753. static int __init db8500_prcmu_init(void)
  1754. {
  1755. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  1756. }
  1757. arch_initcall(db8500_prcmu_init);
  1758. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  1759. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  1760. MODULE_LICENSE("GPL v2");