spi.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/spi/spi.h>
  26. /* SPI bustype and spi_master class are registered after board init code
  27. * provides the SPI device tables, ensuring that both are present by the
  28. * time controller driver registration causes spi_devices to "enumerate".
  29. */
  30. static void spidev_release(struct device *dev)
  31. {
  32. struct spi_device *spi = to_spi_device(dev);
  33. /* spi masters may cleanup for released devices */
  34. if (spi->master->cleanup)
  35. spi->master->cleanup(spi);
  36. spi_master_put(spi->master);
  37. kfree(dev);
  38. }
  39. static ssize_t
  40. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  41. {
  42. const struct spi_device *spi = to_spi_device(dev);
  43. return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
  44. }
  45. static struct device_attribute spi_dev_attrs[] = {
  46. __ATTR_RO(modalias),
  47. __ATTR_NULL,
  48. };
  49. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  50. * and the sysfs version makes coldplug work too.
  51. */
  52. static int spi_match_device(struct device *dev, struct device_driver *drv)
  53. {
  54. const struct spi_device *spi = to_spi_device(dev);
  55. return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
  56. }
  57. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  58. {
  59. const struct spi_device *spi = to_spi_device(dev);
  60. add_uevent_var(env, "MODALIAS=%s", spi->modalias);
  61. return 0;
  62. }
  63. #ifdef CONFIG_PM
  64. static int spi_suspend(struct device *dev, pm_message_t message)
  65. {
  66. int value = 0;
  67. struct spi_driver *drv = to_spi_driver(dev->driver);
  68. /* suspend will stop irqs and dma; no more i/o */
  69. if (drv) {
  70. if (drv->suspend)
  71. value = drv->suspend(to_spi_device(dev), message);
  72. else
  73. dev_dbg(dev, "... can't suspend\n");
  74. }
  75. return value;
  76. }
  77. static int spi_resume(struct device *dev)
  78. {
  79. int value = 0;
  80. struct spi_driver *drv = to_spi_driver(dev->driver);
  81. /* resume may restart the i/o queue */
  82. if (drv) {
  83. if (drv->resume)
  84. value = drv->resume(to_spi_device(dev));
  85. else
  86. dev_dbg(dev, "... can't resume\n");
  87. }
  88. return value;
  89. }
  90. #else
  91. #define spi_suspend NULL
  92. #define spi_resume NULL
  93. #endif
  94. struct bus_type spi_bus_type = {
  95. .name = "spi",
  96. .dev_attrs = spi_dev_attrs,
  97. .match = spi_match_device,
  98. .uevent = spi_uevent,
  99. .suspend = spi_suspend,
  100. .resume = spi_resume,
  101. };
  102. EXPORT_SYMBOL_GPL(spi_bus_type);
  103. static int spi_drv_probe(struct device *dev)
  104. {
  105. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  106. return sdrv->probe(to_spi_device(dev));
  107. }
  108. static int spi_drv_remove(struct device *dev)
  109. {
  110. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  111. return sdrv->remove(to_spi_device(dev));
  112. }
  113. static void spi_drv_shutdown(struct device *dev)
  114. {
  115. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  116. sdrv->shutdown(to_spi_device(dev));
  117. }
  118. /**
  119. * spi_register_driver - register a SPI driver
  120. * @sdrv: the driver to register
  121. * Context: can sleep
  122. */
  123. int spi_register_driver(struct spi_driver *sdrv)
  124. {
  125. sdrv->driver.bus = &spi_bus_type;
  126. if (sdrv->probe)
  127. sdrv->driver.probe = spi_drv_probe;
  128. if (sdrv->remove)
  129. sdrv->driver.remove = spi_drv_remove;
  130. if (sdrv->shutdown)
  131. sdrv->driver.shutdown = spi_drv_shutdown;
  132. return driver_register(&sdrv->driver);
  133. }
  134. EXPORT_SYMBOL_GPL(spi_register_driver);
  135. /*-------------------------------------------------------------------------*/
  136. /* SPI devices should normally not be created by SPI device drivers; that
  137. * would make them board-specific. Similarly with SPI master drivers.
  138. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  139. * with other readonly (flashable) information about mainboard devices.
  140. */
  141. struct boardinfo {
  142. struct list_head list;
  143. unsigned n_board_info;
  144. struct spi_board_info board_info[0];
  145. };
  146. static LIST_HEAD(board_list);
  147. static DEFINE_MUTEX(board_lock);
  148. /**
  149. * spi_alloc_device - Allocate a new SPI device
  150. * @master: Controller to which device is connected
  151. * Context: can sleep
  152. *
  153. * Allows a driver to allocate and initialize a spi_device without
  154. * registering it immediately. This allows a driver to directly
  155. * fill the spi_device with device parameters before calling
  156. * spi_add_device() on it.
  157. *
  158. * Caller is responsible to call spi_add_device() on the returned
  159. * spi_device structure to add it to the SPI master. If the caller
  160. * needs to discard the spi_device without adding it, then it should
  161. * call spi_dev_put() on it.
  162. *
  163. * Returns a pointer to the new device, or NULL.
  164. */
  165. struct spi_device *spi_alloc_device(struct spi_master *master)
  166. {
  167. struct spi_device *spi;
  168. struct device *dev = master->dev.parent;
  169. if (!spi_master_get(master))
  170. return NULL;
  171. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  172. if (!spi) {
  173. dev_err(dev, "cannot alloc spi_device\n");
  174. spi_master_put(master);
  175. return NULL;
  176. }
  177. spi->master = master;
  178. spi->dev.parent = dev;
  179. spi->dev.bus = &spi_bus_type;
  180. spi->dev.release = spidev_release;
  181. device_initialize(&spi->dev);
  182. return spi;
  183. }
  184. EXPORT_SYMBOL_GPL(spi_alloc_device);
  185. /**
  186. * spi_add_device - Add spi_device allocated with spi_alloc_device
  187. * @spi: spi_device to register
  188. *
  189. * Companion function to spi_alloc_device. Devices allocated with
  190. * spi_alloc_device can be added onto the spi bus with this function.
  191. *
  192. * Returns 0 on success; non-zero on failure
  193. */
  194. int spi_add_device(struct spi_device *spi)
  195. {
  196. struct device *dev = spi->master->dev.parent;
  197. int status;
  198. /* Chipselects are numbered 0..max; validate. */
  199. if (spi->chip_select >= spi->master->num_chipselect) {
  200. dev_err(dev, "cs%d >= max %d\n",
  201. spi->chip_select,
  202. spi->master->num_chipselect);
  203. return -EINVAL;
  204. }
  205. /* Set the bus ID string */
  206. snprintf(spi->dev.bus_id, sizeof spi->dev.bus_id,
  207. "%s.%u", spi->master->dev.bus_id,
  208. spi->chip_select);
  209. /* drivers may modify this initial i/o setup */
  210. status = spi->master->setup(spi);
  211. if (status < 0) {
  212. dev_err(dev, "can't %s %s, status %d\n",
  213. "setup", spi->dev.bus_id, status);
  214. return status;
  215. }
  216. /* driver core catches callers that misbehave by defining
  217. * devices that already exist.
  218. */
  219. status = device_add(&spi->dev);
  220. if (status < 0) {
  221. dev_err(dev, "can't %s %s, status %d\n",
  222. "add", spi->dev.bus_id, status);
  223. return status;
  224. }
  225. dev_dbg(dev, "registered child %s\n", spi->dev.bus_id);
  226. return 0;
  227. }
  228. EXPORT_SYMBOL_GPL(spi_add_device);
  229. /**
  230. * spi_new_device - instantiate one new SPI device
  231. * @master: Controller to which device is connected
  232. * @chip: Describes the SPI device
  233. * Context: can sleep
  234. *
  235. * On typical mainboards, this is purely internal; and it's not needed
  236. * after board init creates the hard-wired devices. Some development
  237. * platforms may not be able to use spi_register_board_info though, and
  238. * this is exported so that for example a USB or parport based adapter
  239. * driver could add devices (which it would learn about out-of-band).
  240. *
  241. * Returns the new device, or NULL.
  242. */
  243. struct spi_device *spi_new_device(struct spi_master *master,
  244. struct spi_board_info *chip)
  245. {
  246. struct spi_device *proxy;
  247. int status;
  248. /* NOTE: caller did any chip->bus_num checks necessary.
  249. *
  250. * Also, unless we change the return value convention to use
  251. * error-or-pointer (not NULL-or-pointer), troubleshootability
  252. * suggests syslogged diagnostics are best here (ugh).
  253. */
  254. proxy = spi_alloc_device(master);
  255. if (!proxy)
  256. return NULL;
  257. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  258. proxy->chip_select = chip->chip_select;
  259. proxy->max_speed_hz = chip->max_speed_hz;
  260. proxy->mode = chip->mode;
  261. proxy->irq = chip->irq;
  262. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  263. proxy->dev.platform_data = (void *) chip->platform_data;
  264. proxy->controller_data = chip->controller_data;
  265. proxy->controller_state = NULL;
  266. status = spi_add_device(proxy);
  267. if (status < 0) {
  268. spi_dev_put(proxy);
  269. return NULL;
  270. }
  271. return proxy;
  272. }
  273. EXPORT_SYMBOL_GPL(spi_new_device);
  274. /**
  275. * spi_register_board_info - register SPI devices for a given board
  276. * @info: array of chip descriptors
  277. * @n: how many descriptors are provided
  278. * Context: can sleep
  279. *
  280. * Board-specific early init code calls this (probably during arch_initcall)
  281. * with segments of the SPI device table. Any device nodes are created later,
  282. * after the relevant parent SPI controller (bus_num) is defined. We keep
  283. * this table of devices forever, so that reloading a controller driver will
  284. * not make Linux forget about these hard-wired devices.
  285. *
  286. * Other code can also call this, e.g. a particular add-on board might provide
  287. * SPI devices through its expansion connector, so code initializing that board
  288. * would naturally declare its SPI devices.
  289. *
  290. * The board info passed can safely be __initdata ... but be careful of
  291. * any embedded pointers (platform_data, etc), they're copied as-is.
  292. */
  293. int __init
  294. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  295. {
  296. struct boardinfo *bi;
  297. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  298. if (!bi)
  299. return -ENOMEM;
  300. bi->n_board_info = n;
  301. memcpy(bi->board_info, info, n * sizeof *info);
  302. mutex_lock(&board_lock);
  303. list_add_tail(&bi->list, &board_list);
  304. mutex_unlock(&board_lock);
  305. return 0;
  306. }
  307. /* FIXME someone should add support for a __setup("spi", ...) that
  308. * creates board info from kernel command lines
  309. */
  310. static void scan_boardinfo(struct spi_master *master)
  311. {
  312. struct boardinfo *bi;
  313. mutex_lock(&board_lock);
  314. list_for_each_entry(bi, &board_list, list) {
  315. struct spi_board_info *chip = bi->board_info;
  316. unsigned n;
  317. for (n = bi->n_board_info; n > 0; n--, chip++) {
  318. if (chip->bus_num != master->bus_num)
  319. continue;
  320. /* NOTE: this relies on spi_new_device to
  321. * issue diagnostics when given bogus inputs
  322. */
  323. (void) spi_new_device(master, chip);
  324. }
  325. }
  326. mutex_unlock(&board_lock);
  327. }
  328. /*-------------------------------------------------------------------------*/
  329. static void spi_master_release(struct device *dev)
  330. {
  331. struct spi_master *master;
  332. master = container_of(dev, struct spi_master, dev);
  333. kfree(master);
  334. }
  335. static struct class spi_master_class = {
  336. .name = "spi_master",
  337. .owner = THIS_MODULE,
  338. .dev_release = spi_master_release,
  339. };
  340. /**
  341. * spi_alloc_master - allocate SPI master controller
  342. * @dev: the controller, possibly using the platform_bus
  343. * @size: how much zeroed driver-private data to allocate; the pointer to this
  344. * memory is in the driver_data field of the returned device,
  345. * accessible with spi_master_get_devdata().
  346. * Context: can sleep
  347. *
  348. * This call is used only by SPI master controller drivers, which are the
  349. * only ones directly touching chip registers. It's how they allocate
  350. * an spi_master structure, prior to calling spi_register_master().
  351. *
  352. * This must be called from context that can sleep. It returns the SPI
  353. * master structure on success, else NULL.
  354. *
  355. * The caller is responsible for assigning the bus number and initializing
  356. * the master's methods before calling spi_register_master(); and (after errors
  357. * adding the device) calling spi_master_put() to prevent a memory leak.
  358. */
  359. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  360. {
  361. struct spi_master *master;
  362. if (!dev)
  363. return NULL;
  364. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  365. if (!master)
  366. return NULL;
  367. device_initialize(&master->dev);
  368. master->dev.class = &spi_master_class;
  369. master->dev.parent = get_device(dev);
  370. spi_master_set_devdata(master, &master[1]);
  371. return master;
  372. }
  373. EXPORT_SYMBOL_GPL(spi_alloc_master);
  374. /**
  375. * spi_register_master - register SPI master controller
  376. * @master: initialized master, originally from spi_alloc_master()
  377. * Context: can sleep
  378. *
  379. * SPI master controllers connect to their drivers using some non-SPI bus,
  380. * such as the platform bus. The final stage of probe() in that code
  381. * includes calling spi_register_master() to hook up to this SPI bus glue.
  382. *
  383. * SPI controllers use board specific (often SOC specific) bus numbers,
  384. * and board-specific addressing for SPI devices combines those numbers
  385. * with chip select numbers. Since SPI does not directly support dynamic
  386. * device identification, boards need configuration tables telling which
  387. * chip is at which address.
  388. *
  389. * This must be called from context that can sleep. It returns zero on
  390. * success, else a negative error code (dropping the master's refcount).
  391. * After a successful return, the caller is responsible for calling
  392. * spi_unregister_master().
  393. */
  394. int spi_register_master(struct spi_master *master)
  395. {
  396. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  397. struct device *dev = master->dev.parent;
  398. int status = -ENODEV;
  399. int dynamic = 0;
  400. if (!dev)
  401. return -ENODEV;
  402. /* even if it's just one always-selected device, there must
  403. * be at least one chipselect
  404. */
  405. if (master->num_chipselect == 0)
  406. return -EINVAL;
  407. /* convention: dynamically assigned bus IDs count down from the max */
  408. if (master->bus_num < 0) {
  409. /* FIXME switch to an IDR based scheme, something like
  410. * I2C now uses, so we can't run out of "dynamic" IDs
  411. */
  412. master->bus_num = atomic_dec_return(&dyn_bus_id);
  413. dynamic = 1;
  414. }
  415. /* register the device, then userspace will see it.
  416. * registration fails if the bus ID is in use.
  417. */
  418. snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
  419. "spi%u", master->bus_num);
  420. status = device_add(&master->dev);
  421. if (status < 0)
  422. goto done;
  423. dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
  424. dynamic ? " (dynamic)" : "");
  425. /* populate children from any spi device tables */
  426. scan_boardinfo(master);
  427. status = 0;
  428. done:
  429. return status;
  430. }
  431. EXPORT_SYMBOL_GPL(spi_register_master);
  432. static int __unregister(struct device *dev, void *master_dev)
  433. {
  434. /* note: before about 2.6.14-rc1 this would corrupt memory: */
  435. if (dev != master_dev)
  436. spi_unregister_device(to_spi_device(dev));
  437. return 0;
  438. }
  439. /**
  440. * spi_unregister_master - unregister SPI master controller
  441. * @master: the master being unregistered
  442. * Context: can sleep
  443. *
  444. * This call is used only by SPI master controller drivers, which are the
  445. * only ones directly touching chip registers.
  446. *
  447. * This must be called from context that can sleep.
  448. */
  449. void spi_unregister_master(struct spi_master *master)
  450. {
  451. int dummy;
  452. dummy = device_for_each_child(master->dev.parent, &master->dev,
  453. __unregister);
  454. device_unregister(&master->dev);
  455. }
  456. EXPORT_SYMBOL_GPL(spi_unregister_master);
  457. static int __spi_master_match(struct device *dev, void *data)
  458. {
  459. struct spi_master *m;
  460. u16 *bus_num = data;
  461. m = container_of(dev, struct spi_master, dev);
  462. return m->bus_num == *bus_num;
  463. }
  464. /**
  465. * spi_busnum_to_master - look up master associated with bus_num
  466. * @bus_num: the master's bus number
  467. * Context: can sleep
  468. *
  469. * This call may be used with devices that are registered after
  470. * arch init time. It returns a refcounted pointer to the relevant
  471. * spi_master (which the caller must release), or NULL if there is
  472. * no such master registered.
  473. */
  474. struct spi_master *spi_busnum_to_master(u16 bus_num)
  475. {
  476. struct device *dev;
  477. struct spi_master *master = NULL;
  478. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  479. __spi_master_match);
  480. if (dev)
  481. master = container_of(dev, struct spi_master, dev);
  482. /* reference got in class_find_device */
  483. return master;
  484. }
  485. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  486. /*-------------------------------------------------------------------------*/
  487. static void spi_complete(void *arg)
  488. {
  489. complete(arg);
  490. }
  491. /**
  492. * spi_sync - blocking/synchronous SPI data transfers
  493. * @spi: device with which data will be exchanged
  494. * @message: describes the data transfers
  495. * Context: can sleep
  496. *
  497. * This call may only be used from a context that may sleep. The sleep
  498. * is non-interruptible, and has no timeout. Low-overhead controller
  499. * drivers may DMA directly into and out of the message buffers.
  500. *
  501. * Note that the SPI device's chip select is active during the message,
  502. * and then is normally disabled between messages. Drivers for some
  503. * frequently-used devices may want to minimize costs of selecting a chip,
  504. * by leaving it selected in anticipation that the next message will go
  505. * to the same chip. (That may increase power usage.)
  506. *
  507. * Also, the caller is guaranteeing that the memory associated with the
  508. * message will not be freed before this call returns.
  509. *
  510. * It returns zero on success, else a negative error code.
  511. */
  512. int spi_sync(struct spi_device *spi, struct spi_message *message)
  513. {
  514. DECLARE_COMPLETION_ONSTACK(done);
  515. int status;
  516. message->complete = spi_complete;
  517. message->context = &done;
  518. status = spi_async(spi, message);
  519. if (status == 0) {
  520. wait_for_completion(&done);
  521. status = message->status;
  522. }
  523. message->context = NULL;
  524. return status;
  525. }
  526. EXPORT_SYMBOL_GPL(spi_sync);
  527. /* portable code must never pass more than 32 bytes */
  528. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  529. static u8 *buf;
  530. /**
  531. * spi_write_then_read - SPI synchronous write followed by read
  532. * @spi: device with which data will be exchanged
  533. * @txbuf: data to be written (need not be dma-safe)
  534. * @n_tx: size of txbuf, in bytes
  535. * @rxbuf: buffer into which data will be read
  536. * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
  537. * Context: can sleep
  538. *
  539. * This performs a half duplex MicroWire style transaction with the
  540. * device, sending txbuf and then reading rxbuf. The return value
  541. * is zero for success, else a negative errno status code.
  542. * This call may only be used from a context that may sleep.
  543. *
  544. * Parameters to this routine are always copied using a small buffer;
  545. * portable code should never use this for more than 32 bytes.
  546. * Performance-sensitive or bulk transfer code should instead use
  547. * spi_{async,sync}() calls with dma-safe buffers.
  548. */
  549. int spi_write_then_read(struct spi_device *spi,
  550. const u8 *txbuf, unsigned n_tx,
  551. u8 *rxbuf, unsigned n_rx)
  552. {
  553. static DEFINE_MUTEX(lock);
  554. int status;
  555. struct spi_message message;
  556. struct spi_transfer x[2];
  557. u8 *local_buf;
  558. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  559. * (as a pure convenience thing), but we can keep heap costs
  560. * out of the hot path ...
  561. */
  562. if ((n_tx + n_rx) > SPI_BUFSIZ)
  563. return -EINVAL;
  564. spi_message_init(&message);
  565. memset(x, 0, sizeof x);
  566. if (n_tx) {
  567. x[0].len = n_tx;
  568. spi_message_add_tail(&x[0], &message);
  569. }
  570. if (n_rx) {
  571. x[1].len = n_rx;
  572. spi_message_add_tail(&x[1], &message);
  573. }
  574. /* ... unless someone else is using the pre-allocated buffer */
  575. if (!mutex_trylock(&lock)) {
  576. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  577. if (!local_buf)
  578. return -ENOMEM;
  579. } else
  580. local_buf = buf;
  581. memcpy(local_buf, txbuf, n_tx);
  582. x[0].tx_buf = local_buf;
  583. x[1].rx_buf = local_buf + n_tx;
  584. /* do the i/o */
  585. status = spi_sync(spi, &message);
  586. if (status == 0)
  587. memcpy(rxbuf, x[1].rx_buf, n_rx);
  588. if (x[0].tx_buf == buf)
  589. mutex_unlock(&lock);
  590. else
  591. kfree(local_buf);
  592. return status;
  593. }
  594. EXPORT_SYMBOL_GPL(spi_write_then_read);
  595. /*-------------------------------------------------------------------------*/
  596. static int __init spi_init(void)
  597. {
  598. int status;
  599. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  600. if (!buf) {
  601. status = -ENOMEM;
  602. goto err0;
  603. }
  604. status = bus_register(&spi_bus_type);
  605. if (status < 0)
  606. goto err1;
  607. status = class_register(&spi_master_class);
  608. if (status < 0)
  609. goto err2;
  610. return 0;
  611. err2:
  612. bus_unregister(&spi_bus_type);
  613. err1:
  614. kfree(buf);
  615. buf = NULL;
  616. err0:
  617. return status;
  618. }
  619. /* board_info is normally registered in arch_initcall(),
  620. * but even essential drivers wait till later
  621. *
  622. * REVISIT only boardinfo really needs static linking. the rest (device and
  623. * driver registration) _could_ be dynamically linked (modular) ... costs
  624. * include needing to have boardinfo data structures be much more public.
  625. */
  626. subsys_initcall(spi_init);