kvm_main.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. DEFINE_SPINLOCK(kvm_lock);
  52. LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. struct dentry *kvm_debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. bool kvm_rebooting;
  61. static inline int valid_vcpu(int n)
  62. {
  63. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  64. }
  65. static inline int is_mmio_pfn(pfn_t pfn)
  66. {
  67. if (pfn_valid(pfn))
  68. return PageReserved(pfn_to_page(pfn));
  69. return true;
  70. }
  71. /*
  72. * Switches to specified vcpu, until a matching vcpu_put()
  73. */
  74. void vcpu_load(struct kvm_vcpu *vcpu)
  75. {
  76. int cpu;
  77. mutex_lock(&vcpu->mutex);
  78. cpu = get_cpu();
  79. preempt_notifier_register(&vcpu->preempt_notifier);
  80. kvm_arch_vcpu_load(vcpu, cpu);
  81. put_cpu();
  82. }
  83. void vcpu_put(struct kvm_vcpu *vcpu)
  84. {
  85. preempt_disable();
  86. kvm_arch_vcpu_put(vcpu);
  87. preempt_notifier_unregister(&vcpu->preempt_notifier);
  88. preempt_enable();
  89. mutex_unlock(&vcpu->mutex);
  90. }
  91. static void ack_flush(void *_completed)
  92. {
  93. }
  94. void kvm_flush_remote_tlbs(struct kvm *kvm)
  95. {
  96. int i, cpu, me;
  97. cpumask_t cpus;
  98. struct kvm_vcpu *vcpu;
  99. me = get_cpu();
  100. cpus_clear(cpus);
  101. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  102. vcpu = kvm->vcpus[i];
  103. if (!vcpu)
  104. continue;
  105. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  106. continue;
  107. cpu = vcpu->cpu;
  108. if (cpu != -1 && cpu != me)
  109. cpu_set(cpu, cpus);
  110. }
  111. if (cpus_empty(cpus))
  112. goto out;
  113. ++kvm->stat.remote_tlb_flush;
  114. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  115. out:
  116. put_cpu();
  117. }
  118. void kvm_reload_remote_mmus(struct kvm *kvm)
  119. {
  120. int i, cpu, me;
  121. cpumask_t cpus;
  122. struct kvm_vcpu *vcpu;
  123. me = get_cpu();
  124. cpus_clear(cpus);
  125. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  126. vcpu = kvm->vcpus[i];
  127. if (!vcpu)
  128. continue;
  129. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  130. continue;
  131. cpu = vcpu->cpu;
  132. if (cpu != -1 && cpu != me)
  133. cpu_set(cpu, cpus);
  134. }
  135. if (cpus_empty(cpus))
  136. goto out;
  137. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  138. out:
  139. put_cpu();
  140. }
  141. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  142. {
  143. struct page *page;
  144. int r;
  145. mutex_init(&vcpu->mutex);
  146. vcpu->cpu = -1;
  147. vcpu->kvm = kvm;
  148. vcpu->vcpu_id = id;
  149. init_waitqueue_head(&vcpu->wq);
  150. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  151. if (!page) {
  152. r = -ENOMEM;
  153. goto fail;
  154. }
  155. vcpu->run = page_address(page);
  156. r = kvm_arch_vcpu_init(vcpu);
  157. if (r < 0)
  158. goto fail_free_run;
  159. return 0;
  160. fail_free_run:
  161. free_page((unsigned long)vcpu->run);
  162. fail:
  163. return r;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  166. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  167. {
  168. kvm_arch_vcpu_uninit(vcpu);
  169. free_page((unsigned long)vcpu->run);
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  172. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  173. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  174. {
  175. return container_of(mn, struct kvm, mmu_notifier);
  176. }
  177. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  178. struct mm_struct *mm,
  179. unsigned long address)
  180. {
  181. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  182. int need_tlb_flush;
  183. /*
  184. * When ->invalidate_page runs, the linux pte has been zapped
  185. * already but the page is still allocated until
  186. * ->invalidate_page returns. So if we increase the sequence
  187. * here the kvm page fault will notice if the spte can't be
  188. * established because the page is going to be freed. If
  189. * instead the kvm page fault establishes the spte before
  190. * ->invalidate_page runs, kvm_unmap_hva will release it
  191. * before returning.
  192. *
  193. * The sequence increase only need to be seen at spin_unlock
  194. * time, and not at spin_lock time.
  195. *
  196. * Increasing the sequence after the spin_unlock would be
  197. * unsafe because the kvm page fault could then establish the
  198. * pte after kvm_unmap_hva returned, without noticing the page
  199. * is going to be freed.
  200. */
  201. spin_lock(&kvm->mmu_lock);
  202. kvm->mmu_notifier_seq++;
  203. need_tlb_flush = kvm_unmap_hva(kvm, address);
  204. spin_unlock(&kvm->mmu_lock);
  205. /* we've to flush the tlb before the pages can be freed */
  206. if (need_tlb_flush)
  207. kvm_flush_remote_tlbs(kvm);
  208. }
  209. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  210. struct mm_struct *mm,
  211. unsigned long start,
  212. unsigned long end)
  213. {
  214. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  215. int need_tlb_flush = 0;
  216. spin_lock(&kvm->mmu_lock);
  217. /*
  218. * The count increase must become visible at unlock time as no
  219. * spte can be established without taking the mmu_lock and
  220. * count is also read inside the mmu_lock critical section.
  221. */
  222. kvm->mmu_notifier_count++;
  223. for (; start < end; start += PAGE_SIZE)
  224. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  225. spin_unlock(&kvm->mmu_lock);
  226. /* we've to flush the tlb before the pages can be freed */
  227. if (need_tlb_flush)
  228. kvm_flush_remote_tlbs(kvm);
  229. }
  230. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  231. struct mm_struct *mm,
  232. unsigned long start,
  233. unsigned long end)
  234. {
  235. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  236. spin_lock(&kvm->mmu_lock);
  237. /*
  238. * This sequence increase will notify the kvm page fault that
  239. * the page that is going to be mapped in the spte could have
  240. * been freed.
  241. */
  242. kvm->mmu_notifier_seq++;
  243. /*
  244. * The above sequence increase must be visible before the
  245. * below count decrease but both values are read by the kvm
  246. * page fault under mmu_lock spinlock so we don't need to add
  247. * a smb_wmb() here in between the two.
  248. */
  249. kvm->mmu_notifier_count--;
  250. spin_unlock(&kvm->mmu_lock);
  251. BUG_ON(kvm->mmu_notifier_count < 0);
  252. }
  253. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  254. struct mm_struct *mm,
  255. unsigned long address)
  256. {
  257. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  258. int young;
  259. spin_lock(&kvm->mmu_lock);
  260. young = kvm_age_hva(kvm, address);
  261. spin_unlock(&kvm->mmu_lock);
  262. if (young)
  263. kvm_flush_remote_tlbs(kvm);
  264. return young;
  265. }
  266. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  267. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  268. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  269. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  270. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  271. };
  272. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  273. static struct kvm *kvm_create_vm(void)
  274. {
  275. struct kvm *kvm = kvm_arch_create_vm();
  276. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  277. struct page *page;
  278. #endif
  279. if (IS_ERR(kvm))
  280. goto out;
  281. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  282. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  283. if (!page) {
  284. kfree(kvm);
  285. return ERR_PTR(-ENOMEM);
  286. }
  287. kvm->coalesced_mmio_ring =
  288. (struct kvm_coalesced_mmio_ring *)page_address(page);
  289. #endif
  290. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  291. {
  292. int err;
  293. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  294. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  295. if (err) {
  296. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  297. put_page(page);
  298. #endif
  299. kfree(kvm);
  300. return ERR_PTR(err);
  301. }
  302. }
  303. #endif
  304. kvm->mm = current->mm;
  305. atomic_inc(&kvm->mm->mm_count);
  306. spin_lock_init(&kvm->mmu_lock);
  307. kvm_io_bus_init(&kvm->pio_bus);
  308. mutex_init(&kvm->lock);
  309. kvm_io_bus_init(&kvm->mmio_bus);
  310. init_rwsem(&kvm->slots_lock);
  311. atomic_set(&kvm->users_count, 1);
  312. spin_lock(&kvm_lock);
  313. list_add(&kvm->vm_list, &vm_list);
  314. spin_unlock(&kvm_lock);
  315. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  316. kvm_coalesced_mmio_init(kvm);
  317. #endif
  318. out:
  319. return kvm;
  320. }
  321. /*
  322. * Free any memory in @free but not in @dont.
  323. */
  324. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  325. struct kvm_memory_slot *dont)
  326. {
  327. if (!dont || free->rmap != dont->rmap)
  328. vfree(free->rmap);
  329. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  330. vfree(free->dirty_bitmap);
  331. if (!dont || free->lpage_info != dont->lpage_info)
  332. vfree(free->lpage_info);
  333. free->npages = 0;
  334. free->dirty_bitmap = NULL;
  335. free->rmap = NULL;
  336. free->lpage_info = NULL;
  337. }
  338. void kvm_free_physmem(struct kvm *kvm)
  339. {
  340. int i;
  341. for (i = 0; i < kvm->nmemslots; ++i)
  342. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  343. }
  344. static void kvm_destroy_vm(struct kvm *kvm)
  345. {
  346. struct mm_struct *mm = kvm->mm;
  347. spin_lock(&kvm_lock);
  348. list_del(&kvm->vm_list);
  349. spin_unlock(&kvm_lock);
  350. kvm_io_bus_destroy(&kvm->pio_bus);
  351. kvm_io_bus_destroy(&kvm->mmio_bus);
  352. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  353. if (kvm->coalesced_mmio_ring != NULL)
  354. free_page((unsigned long)kvm->coalesced_mmio_ring);
  355. #endif
  356. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  357. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  358. #endif
  359. kvm_arch_destroy_vm(kvm);
  360. mmdrop(mm);
  361. }
  362. void kvm_get_kvm(struct kvm *kvm)
  363. {
  364. atomic_inc(&kvm->users_count);
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  367. void kvm_put_kvm(struct kvm *kvm)
  368. {
  369. if (atomic_dec_and_test(&kvm->users_count))
  370. kvm_destroy_vm(kvm);
  371. }
  372. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  373. static int kvm_vm_release(struct inode *inode, struct file *filp)
  374. {
  375. struct kvm *kvm = filp->private_data;
  376. kvm_put_kvm(kvm);
  377. return 0;
  378. }
  379. /*
  380. * Allocate some memory and give it an address in the guest physical address
  381. * space.
  382. *
  383. * Discontiguous memory is allowed, mostly for framebuffers.
  384. *
  385. * Must be called holding mmap_sem for write.
  386. */
  387. int __kvm_set_memory_region(struct kvm *kvm,
  388. struct kvm_userspace_memory_region *mem,
  389. int user_alloc)
  390. {
  391. int r;
  392. gfn_t base_gfn;
  393. unsigned long npages;
  394. unsigned long i;
  395. struct kvm_memory_slot *memslot;
  396. struct kvm_memory_slot old, new;
  397. r = -EINVAL;
  398. /* General sanity checks */
  399. if (mem->memory_size & (PAGE_SIZE - 1))
  400. goto out;
  401. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  402. goto out;
  403. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  404. goto out;
  405. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  406. goto out;
  407. memslot = &kvm->memslots[mem->slot];
  408. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  409. npages = mem->memory_size >> PAGE_SHIFT;
  410. if (!npages)
  411. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  412. new = old = *memslot;
  413. new.base_gfn = base_gfn;
  414. new.npages = npages;
  415. new.flags = mem->flags;
  416. /* Disallow changing a memory slot's size. */
  417. r = -EINVAL;
  418. if (npages && old.npages && npages != old.npages)
  419. goto out_free;
  420. /* Check for overlaps */
  421. r = -EEXIST;
  422. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  423. struct kvm_memory_slot *s = &kvm->memslots[i];
  424. if (s == memslot)
  425. continue;
  426. if (!((base_gfn + npages <= s->base_gfn) ||
  427. (base_gfn >= s->base_gfn + s->npages)))
  428. goto out_free;
  429. }
  430. /* Free page dirty bitmap if unneeded */
  431. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  432. new.dirty_bitmap = NULL;
  433. r = -ENOMEM;
  434. /* Allocate if a slot is being created */
  435. #ifndef CONFIG_S390
  436. if (npages && !new.rmap) {
  437. new.rmap = vmalloc(npages * sizeof(struct page *));
  438. if (!new.rmap)
  439. goto out_free;
  440. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  441. new.user_alloc = user_alloc;
  442. /*
  443. * hva_to_rmmap() serialzies with the mmu_lock and to be
  444. * safe it has to ignore memslots with !user_alloc &&
  445. * !userspace_addr.
  446. */
  447. if (user_alloc)
  448. new.userspace_addr = mem->userspace_addr;
  449. else
  450. new.userspace_addr = 0;
  451. }
  452. if (npages && !new.lpage_info) {
  453. int largepages = npages / KVM_PAGES_PER_HPAGE;
  454. if (npages % KVM_PAGES_PER_HPAGE)
  455. largepages++;
  456. if (base_gfn % KVM_PAGES_PER_HPAGE)
  457. largepages++;
  458. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  459. if (!new.lpage_info)
  460. goto out_free;
  461. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  462. if (base_gfn % KVM_PAGES_PER_HPAGE)
  463. new.lpage_info[0].write_count = 1;
  464. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  465. new.lpage_info[largepages-1].write_count = 1;
  466. }
  467. /* Allocate page dirty bitmap if needed */
  468. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  469. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  470. new.dirty_bitmap = vmalloc(dirty_bytes);
  471. if (!new.dirty_bitmap)
  472. goto out_free;
  473. memset(new.dirty_bitmap, 0, dirty_bytes);
  474. }
  475. #endif /* not defined CONFIG_S390 */
  476. if (!npages)
  477. kvm_arch_flush_shadow(kvm);
  478. spin_lock(&kvm->mmu_lock);
  479. if (mem->slot >= kvm->nmemslots)
  480. kvm->nmemslots = mem->slot + 1;
  481. *memslot = new;
  482. spin_unlock(&kvm->mmu_lock);
  483. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  484. if (r) {
  485. spin_lock(&kvm->mmu_lock);
  486. *memslot = old;
  487. spin_unlock(&kvm->mmu_lock);
  488. goto out_free;
  489. }
  490. kvm_free_physmem_slot(&old, &new);
  491. return 0;
  492. out_free:
  493. kvm_free_physmem_slot(&new, &old);
  494. out:
  495. return r;
  496. }
  497. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  498. int kvm_set_memory_region(struct kvm *kvm,
  499. struct kvm_userspace_memory_region *mem,
  500. int user_alloc)
  501. {
  502. int r;
  503. down_write(&kvm->slots_lock);
  504. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  505. up_write(&kvm->slots_lock);
  506. return r;
  507. }
  508. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  509. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  510. struct
  511. kvm_userspace_memory_region *mem,
  512. int user_alloc)
  513. {
  514. if (mem->slot >= KVM_MEMORY_SLOTS)
  515. return -EINVAL;
  516. return kvm_set_memory_region(kvm, mem, user_alloc);
  517. }
  518. int kvm_get_dirty_log(struct kvm *kvm,
  519. struct kvm_dirty_log *log, int *is_dirty)
  520. {
  521. struct kvm_memory_slot *memslot;
  522. int r, i;
  523. int n;
  524. unsigned long any = 0;
  525. r = -EINVAL;
  526. if (log->slot >= KVM_MEMORY_SLOTS)
  527. goto out;
  528. memslot = &kvm->memslots[log->slot];
  529. r = -ENOENT;
  530. if (!memslot->dirty_bitmap)
  531. goto out;
  532. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  533. for (i = 0; !any && i < n/sizeof(long); ++i)
  534. any = memslot->dirty_bitmap[i];
  535. r = -EFAULT;
  536. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  537. goto out;
  538. if (any)
  539. *is_dirty = 1;
  540. r = 0;
  541. out:
  542. return r;
  543. }
  544. int is_error_page(struct page *page)
  545. {
  546. return page == bad_page;
  547. }
  548. EXPORT_SYMBOL_GPL(is_error_page);
  549. int is_error_pfn(pfn_t pfn)
  550. {
  551. return pfn == bad_pfn;
  552. }
  553. EXPORT_SYMBOL_GPL(is_error_pfn);
  554. static inline unsigned long bad_hva(void)
  555. {
  556. return PAGE_OFFSET;
  557. }
  558. int kvm_is_error_hva(unsigned long addr)
  559. {
  560. return addr == bad_hva();
  561. }
  562. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  563. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  564. {
  565. int i;
  566. for (i = 0; i < kvm->nmemslots; ++i) {
  567. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  568. if (gfn >= memslot->base_gfn
  569. && gfn < memslot->base_gfn + memslot->npages)
  570. return memslot;
  571. }
  572. return NULL;
  573. }
  574. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  575. {
  576. gfn = unalias_gfn(kvm, gfn);
  577. return __gfn_to_memslot(kvm, gfn);
  578. }
  579. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  580. {
  581. int i;
  582. gfn = unalias_gfn(kvm, gfn);
  583. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  584. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  585. if (gfn >= memslot->base_gfn
  586. && gfn < memslot->base_gfn + memslot->npages)
  587. return 1;
  588. }
  589. return 0;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  592. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  593. {
  594. struct kvm_memory_slot *slot;
  595. gfn = unalias_gfn(kvm, gfn);
  596. slot = __gfn_to_memslot(kvm, gfn);
  597. if (!slot)
  598. return bad_hva();
  599. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  600. }
  601. EXPORT_SYMBOL_GPL(gfn_to_hva);
  602. /*
  603. * Requires current->mm->mmap_sem to be held
  604. */
  605. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  606. {
  607. struct page *page[1];
  608. unsigned long addr;
  609. int npages;
  610. pfn_t pfn;
  611. might_sleep();
  612. addr = gfn_to_hva(kvm, gfn);
  613. if (kvm_is_error_hva(addr)) {
  614. get_page(bad_page);
  615. return page_to_pfn(bad_page);
  616. }
  617. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  618. NULL);
  619. if (unlikely(npages != 1)) {
  620. struct vm_area_struct *vma;
  621. vma = find_vma(current->mm, addr);
  622. if (vma == NULL || addr < vma->vm_start ||
  623. !(vma->vm_flags & VM_PFNMAP)) {
  624. get_page(bad_page);
  625. return page_to_pfn(bad_page);
  626. }
  627. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  628. BUG_ON(!is_mmio_pfn(pfn));
  629. } else
  630. pfn = page_to_pfn(page[0]);
  631. return pfn;
  632. }
  633. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  634. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  635. {
  636. pfn_t pfn;
  637. pfn = gfn_to_pfn(kvm, gfn);
  638. if (!is_mmio_pfn(pfn))
  639. return pfn_to_page(pfn);
  640. WARN_ON(is_mmio_pfn(pfn));
  641. get_page(bad_page);
  642. return bad_page;
  643. }
  644. EXPORT_SYMBOL_GPL(gfn_to_page);
  645. void kvm_release_page_clean(struct page *page)
  646. {
  647. kvm_release_pfn_clean(page_to_pfn(page));
  648. }
  649. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  650. void kvm_release_pfn_clean(pfn_t pfn)
  651. {
  652. if (!is_mmio_pfn(pfn))
  653. put_page(pfn_to_page(pfn));
  654. }
  655. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  656. void kvm_release_page_dirty(struct page *page)
  657. {
  658. kvm_release_pfn_dirty(page_to_pfn(page));
  659. }
  660. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  661. void kvm_release_pfn_dirty(pfn_t pfn)
  662. {
  663. kvm_set_pfn_dirty(pfn);
  664. kvm_release_pfn_clean(pfn);
  665. }
  666. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  667. void kvm_set_page_dirty(struct page *page)
  668. {
  669. kvm_set_pfn_dirty(page_to_pfn(page));
  670. }
  671. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  672. void kvm_set_pfn_dirty(pfn_t pfn)
  673. {
  674. if (!is_mmio_pfn(pfn)) {
  675. struct page *page = pfn_to_page(pfn);
  676. if (!PageReserved(page))
  677. SetPageDirty(page);
  678. }
  679. }
  680. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  681. void kvm_set_pfn_accessed(pfn_t pfn)
  682. {
  683. if (!is_mmio_pfn(pfn))
  684. mark_page_accessed(pfn_to_page(pfn));
  685. }
  686. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  687. void kvm_get_pfn(pfn_t pfn)
  688. {
  689. if (!is_mmio_pfn(pfn))
  690. get_page(pfn_to_page(pfn));
  691. }
  692. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  693. static int next_segment(unsigned long len, int offset)
  694. {
  695. if (len > PAGE_SIZE - offset)
  696. return PAGE_SIZE - offset;
  697. else
  698. return len;
  699. }
  700. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  701. int len)
  702. {
  703. int r;
  704. unsigned long addr;
  705. addr = gfn_to_hva(kvm, gfn);
  706. if (kvm_is_error_hva(addr))
  707. return -EFAULT;
  708. r = copy_from_user(data, (void __user *)addr + offset, len);
  709. if (r)
  710. return -EFAULT;
  711. return 0;
  712. }
  713. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  714. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  715. {
  716. gfn_t gfn = gpa >> PAGE_SHIFT;
  717. int seg;
  718. int offset = offset_in_page(gpa);
  719. int ret;
  720. while ((seg = next_segment(len, offset)) != 0) {
  721. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  722. if (ret < 0)
  723. return ret;
  724. offset = 0;
  725. len -= seg;
  726. data += seg;
  727. ++gfn;
  728. }
  729. return 0;
  730. }
  731. EXPORT_SYMBOL_GPL(kvm_read_guest);
  732. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  733. unsigned long len)
  734. {
  735. int r;
  736. unsigned long addr;
  737. gfn_t gfn = gpa >> PAGE_SHIFT;
  738. int offset = offset_in_page(gpa);
  739. addr = gfn_to_hva(kvm, gfn);
  740. if (kvm_is_error_hva(addr))
  741. return -EFAULT;
  742. pagefault_disable();
  743. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  744. pagefault_enable();
  745. if (r)
  746. return -EFAULT;
  747. return 0;
  748. }
  749. EXPORT_SYMBOL(kvm_read_guest_atomic);
  750. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  751. int offset, int len)
  752. {
  753. int r;
  754. unsigned long addr;
  755. addr = gfn_to_hva(kvm, gfn);
  756. if (kvm_is_error_hva(addr))
  757. return -EFAULT;
  758. r = copy_to_user((void __user *)addr + offset, data, len);
  759. if (r)
  760. return -EFAULT;
  761. mark_page_dirty(kvm, gfn);
  762. return 0;
  763. }
  764. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  765. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  766. unsigned long len)
  767. {
  768. gfn_t gfn = gpa >> PAGE_SHIFT;
  769. int seg;
  770. int offset = offset_in_page(gpa);
  771. int ret;
  772. while ((seg = next_segment(len, offset)) != 0) {
  773. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  774. if (ret < 0)
  775. return ret;
  776. offset = 0;
  777. len -= seg;
  778. data += seg;
  779. ++gfn;
  780. }
  781. return 0;
  782. }
  783. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  784. {
  785. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  786. }
  787. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  788. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  789. {
  790. gfn_t gfn = gpa >> PAGE_SHIFT;
  791. int seg;
  792. int offset = offset_in_page(gpa);
  793. int ret;
  794. while ((seg = next_segment(len, offset)) != 0) {
  795. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  796. if (ret < 0)
  797. return ret;
  798. offset = 0;
  799. len -= seg;
  800. ++gfn;
  801. }
  802. return 0;
  803. }
  804. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  805. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  806. {
  807. struct kvm_memory_slot *memslot;
  808. gfn = unalias_gfn(kvm, gfn);
  809. memslot = __gfn_to_memslot(kvm, gfn);
  810. if (memslot && memslot->dirty_bitmap) {
  811. unsigned long rel_gfn = gfn - memslot->base_gfn;
  812. /* avoid RMW */
  813. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  814. set_bit(rel_gfn, memslot->dirty_bitmap);
  815. }
  816. }
  817. /*
  818. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  819. */
  820. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  821. {
  822. DEFINE_WAIT(wait);
  823. for (;;) {
  824. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  825. if (kvm_cpu_has_interrupt(vcpu))
  826. break;
  827. if (kvm_cpu_has_pending_timer(vcpu))
  828. break;
  829. if (kvm_arch_vcpu_runnable(vcpu))
  830. break;
  831. if (signal_pending(current))
  832. break;
  833. vcpu_put(vcpu);
  834. schedule();
  835. vcpu_load(vcpu);
  836. }
  837. finish_wait(&vcpu->wq, &wait);
  838. }
  839. void kvm_resched(struct kvm_vcpu *vcpu)
  840. {
  841. if (!need_resched())
  842. return;
  843. cond_resched();
  844. }
  845. EXPORT_SYMBOL_GPL(kvm_resched);
  846. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  847. {
  848. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  849. struct page *page;
  850. if (vmf->pgoff == 0)
  851. page = virt_to_page(vcpu->run);
  852. #ifdef CONFIG_X86
  853. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  854. page = virt_to_page(vcpu->arch.pio_data);
  855. #endif
  856. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  857. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  858. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  859. #endif
  860. else
  861. return VM_FAULT_SIGBUS;
  862. get_page(page);
  863. vmf->page = page;
  864. return 0;
  865. }
  866. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  867. .fault = kvm_vcpu_fault,
  868. };
  869. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  870. {
  871. vma->vm_ops = &kvm_vcpu_vm_ops;
  872. return 0;
  873. }
  874. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  875. {
  876. struct kvm_vcpu *vcpu = filp->private_data;
  877. kvm_put_kvm(vcpu->kvm);
  878. return 0;
  879. }
  880. static const struct file_operations kvm_vcpu_fops = {
  881. .release = kvm_vcpu_release,
  882. .unlocked_ioctl = kvm_vcpu_ioctl,
  883. .compat_ioctl = kvm_vcpu_ioctl,
  884. .mmap = kvm_vcpu_mmap,
  885. };
  886. /*
  887. * Allocates an inode for the vcpu.
  888. */
  889. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  890. {
  891. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  892. if (fd < 0)
  893. kvm_put_kvm(vcpu->kvm);
  894. return fd;
  895. }
  896. /*
  897. * Creates some virtual cpus. Good luck creating more than one.
  898. */
  899. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  900. {
  901. int r;
  902. struct kvm_vcpu *vcpu;
  903. if (!valid_vcpu(n))
  904. return -EINVAL;
  905. vcpu = kvm_arch_vcpu_create(kvm, n);
  906. if (IS_ERR(vcpu))
  907. return PTR_ERR(vcpu);
  908. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  909. r = kvm_arch_vcpu_setup(vcpu);
  910. if (r)
  911. goto vcpu_destroy;
  912. mutex_lock(&kvm->lock);
  913. if (kvm->vcpus[n]) {
  914. r = -EEXIST;
  915. mutex_unlock(&kvm->lock);
  916. goto vcpu_destroy;
  917. }
  918. kvm->vcpus[n] = vcpu;
  919. mutex_unlock(&kvm->lock);
  920. /* Now it's all set up, let userspace reach it */
  921. kvm_get_kvm(kvm);
  922. r = create_vcpu_fd(vcpu);
  923. if (r < 0)
  924. goto unlink;
  925. return r;
  926. unlink:
  927. mutex_lock(&kvm->lock);
  928. kvm->vcpus[n] = NULL;
  929. mutex_unlock(&kvm->lock);
  930. vcpu_destroy:
  931. kvm_arch_vcpu_destroy(vcpu);
  932. return r;
  933. }
  934. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  935. {
  936. if (sigset) {
  937. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  938. vcpu->sigset_active = 1;
  939. vcpu->sigset = *sigset;
  940. } else
  941. vcpu->sigset_active = 0;
  942. return 0;
  943. }
  944. static long kvm_vcpu_ioctl(struct file *filp,
  945. unsigned int ioctl, unsigned long arg)
  946. {
  947. struct kvm_vcpu *vcpu = filp->private_data;
  948. void __user *argp = (void __user *)arg;
  949. int r;
  950. struct kvm_fpu *fpu = NULL;
  951. struct kvm_sregs *kvm_sregs = NULL;
  952. if (vcpu->kvm->mm != current->mm)
  953. return -EIO;
  954. switch (ioctl) {
  955. case KVM_RUN:
  956. r = -EINVAL;
  957. if (arg)
  958. goto out;
  959. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  960. break;
  961. case KVM_GET_REGS: {
  962. struct kvm_regs *kvm_regs;
  963. r = -ENOMEM;
  964. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  965. if (!kvm_regs)
  966. goto out;
  967. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  968. if (r)
  969. goto out_free1;
  970. r = -EFAULT;
  971. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  972. goto out_free1;
  973. r = 0;
  974. out_free1:
  975. kfree(kvm_regs);
  976. break;
  977. }
  978. case KVM_SET_REGS: {
  979. struct kvm_regs *kvm_regs;
  980. r = -ENOMEM;
  981. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  982. if (!kvm_regs)
  983. goto out;
  984. r = -EFAULT;
  985. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  986. goto out_free2;
  987. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  988. if (r)
  989. goto out_free2;
  990. r = 0;
  991. out_free2:
  992. kfree(kvm_regs);
  993. break;
  994. }
  995. case KVM_GET_SREGS: {
  996. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  997. r = -ENOMEM;
  998. if (!kvm_sregs)
  999. goto out;
  1000. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1001. if (r)
  1002. goto out;
  1003. r = -EFAULT;
  1004. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1005. goto out;
  1006. r = 0;
  1007. break;
  1008. }
  1009. case KVM_SET_SREGS: {
  1010. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1011. r = -ENOMEM;
  1012. if (!kvm_sregs)
  1013. goto out;
  1014. r = -EFAULT;
  1015. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1016. goto out;
  1017. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1018. if (r)
  1019. goto out;
  1020. r = 0;
  1021. break;
  1022. }
  1023. case KVM_GET_MP_STATE: {
  1024. struct kvm_mp_state mp_state;
  1025. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1026. if (r)
  1027. goto out;
  1028. r = -EFAULT;
  1029. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1030. goto out;
  1031. r = 0;
  1032. break;
  1033. }
  1034. case KVM_SET_MP_STATE: {
  1035. struct kvm_mp_state mp_state;
  1036. r = -EFAULT;
  1037. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1038. goto out;
  1039. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1040. if (r)
  1041. goto out;
  1042. r = 0;
  1043. break;
  1044. }
  1045. case KVM_TRANSLATE: {
  1046. struct kvm_translation tr;
  1047. r = -EFAULT;
  1048. if (copy_from_user(&tr, argp, sizeof tr))
  1049. goto out;
  1050. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1051. if (r)
  1052. goto out;
  1053. r = -EFAULT;
  1054. if (copy_to_user(argp, &tr, sizeof tr))
  1055. goto out;
  1056. r = 0;
  1057. break;
  1058. }
  1059. case KVM_DEBUG_GUEST: {
  1060. struct kvm_debug_guest dbg;
  1061. r = -EFAULT;
  1062. if (copy_from_user(&dbg, argp, sizeof dbg))
  1063. goto out;
  1064. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1065. if (r)
  1066. goto out;
  1067. r = 0;
  1068. break;
  1069. }
  1070. case KVM_SET_SIGNAL_MASK: {
  1071. struct kvm_signal_mask __user *sigmask_arg = argp;
  1072. struct kvm_signal_mask kvm_sigmask;
  1073. sigset_t sigset, *p;
  1074. p = NULL;
  1075. if (argp) {
  1076. r = -EFAULT;
  1077. if (copy_from_user(&kvm_sigmask, argp,
  1078. sizeof kvm_sigmask))
  1079. goto out;
  1080. r = -EINVAL;
  1081. if (kvm_sigmask.len != sizeof sigset)
  1082. goto out;
  1083. r = -EFAULT;
  1084. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1085. sizeof sigset))
  1086. goto out;
  1087. p = &sigset;
  1088. }
  1089. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1090. break;
  1091. }
  1092. case KVM_GET_FPU: {
  1093. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1094. r = -ENOMEM;
  1095. if (!fpu)
  1096. goto out;
  1097. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1098. if (r)
  1099. goto out;
  1100. r = -EFAULT;
  1101. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1102. goto out;
  1103. r = 0;
  1104. break;
  1105. }
  1106. case KVM_SET_FPU: {
  1107. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1108. r = -ENOMEM;
  1109. if (!fpu)
  1110. goto out;
  1111. r = -EFAULT;
  1112. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1113. goto out;
  1114. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1115. if (r)
  1116. goto out;
  1117. r = 0;
  1118. break;
  1119. }
  1120. default:
  1121. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1122. }
  1123. out:
  1124. kfree(fpu);
  1125. kfree(kvm_sregs);
  1126. return r;
  1127. }
  1128. static long kvm_vm_ioctl(struct file *filp,
  1129. unsigned int ioctl, unsigned long arg)
  1130. {
  1131. struct kvm *kvm = filp->private_data;
  1132. void __user *argp = (void __user *)arg;
  1133. int r;
  1134. if (kvm->mm != current->mm)
  1135. return -EIO;
  1136. switch (ioctl) {
  1137. case KVM_CREATE_VCPU:
  1138. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1139. if (r < 0)
  1140. goto out;
  1141. break;
  1142. case KVM_SET_USER_MEMORY_REGION: {
  1143. struct kvm_userspace_memory_region kvm_userspace_mem;
  1144. r = -EFAULT;
  1145. if (copy_from_user(&kvm_userspace_mem, argp,
  1146. sizeof kvm_userspace_mem))
  1147. goto out;
  1148. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1149. if (r)
  1150. goto out;
  1151. break;
  1152. }
  1153. case KVM_GET_DIRTY_LOG: {
  1154. struct kvm_dirty_log log;
  1155. r = -EFAULT;
  1156. if (copy_from_user(&log, argp, sizeof log))
  1157. goto out;
  1158. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1159. if (r)
  1160. goto out;
  1161. break;
  1162. }
  1163. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1164. case KVM_REGISTER_COALESCED_MMIO: {
  1165. struct kvm_coalesced_mmio_zone zone;
  1166. r = -EFAULT;
  1167. if (copy_from_user(&zone, argp, sizeof zone))
  1168. goto out;
  1169. r = -ENXIO;
  1170. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1171. if (r)
  1172. goto out;
  1173. r = 0;
  1174. break;
  1175. }
  1176. case KVM_UNREGISTER_COALESCED_MMIO: {
  1177. struct kvm_coalesced_mmio_zone zone;
  1178. r = -EFAULT;
  1179. if (copy_from_user(&zone, argp, sizeof zone))
  1180. goto out;
  1181. r = -ENXIO;
  1182. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1183. if (r)
  1184. goto out;
  1185. r = 0;
  1186. break;
  1187. }
  1188. #endif
  1189. default:
  1190. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1191. }
  1192. out:
  1193. return r;
  1194. }
  1195. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1196. {
  1197. struct kvm *kvm = vma->vm_file->private_data;
  1198. struct page *page;
  1199. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  1200. return VM_FAULT_SIGBUS;
  1201. page = gfn_to_page(kvm, vmf->pgoff);
  1202. if (is_error_page(page)) {
  1203. kvm_release_page_clean(page);
  1204. return VM_FAULT_SIGBUS;
  1205. }
  1206. vmf->page = page;
  1207. return 0;
  1208. }
  1209. static struct vm_operations_struct kvm_vm_vm_ops = {
  1210. .fault = kvm_vm_fault,
  1211. };
  1212. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1213. {
  1214. vma->vm_ops = &kvm_vm_vm_ops;
  1215. return 0;
  1216. }
  1217. static const struct file_operations kvm_vm_fops = {
  1218. .release = kvm_vm_release,
  1219. .unlocked_ioctl = kvm_vm_ioctl,
  1220. .compat_ioctl = kvm_vm_ioctl,
  1221. .mmap = kvm_vm_mmap,
  1222. };
  1223. static int kvm_dev_ioctl_create_vm(void)
  1224. {
  1225. int fd;
  1226. struct kvm *kvm;
  1227. kvm = kvm_create_vm();
  1228. if (IS_ERR(kvm))
  1229. return PTR_ERR(kvm);
  1230. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1231. if (fd < 0)
  1232. kvm_put_kvm(kvm);
  1233. return fd;
  1234. }
  1235. static long kvm_dev_ioctl(struct file *filp,
  1236. unsigned int ioctl, unsigned long arg)
  1237. {
  1238. long r = -EINVAL;
  1239. switch (ioctl) {
  1240. case KVM_GET_API_VERSION:
  1241. r = -EINVAL;
  1242. if (arg)
  1243. goto out;
  1244. r = KVM_API_VERSION;
  1245. break;
  1246. case KVM_CREATE_VM:
  1247. r = -EINVAL;
  1248. if (arg)
  1249. goto out;
  1250. r = kvm_dev_ioctl_create_vm();
  1251. break;
  1252. case KVM_CHECK_EXTENSION:
  1253. r = kvm_dev_ioctl_check_extension(arg);
  1254. break;
  1255. case KVM_GET_VCPU_MMAP_SIZE:
  1256. r = -EINVAL;
  1257. if (arg)
  1258. goto out;
  1259. r = PAGE_SIZE; /* struct kvm_run */
  1260. #ifdef CONFIG_X86
  1261. r += PAGE_SIZE; /* pio data page */
  1262. #endif
  1263. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1264. r += PAGE_SIZE; /* coalesced mmio ring page */
  1265. #endif
  1266. break;
  1267. case KVM_TRACE_ENABLE:
  1268. case KVM_TRACE_PAUSE:
  1269. case KVM_TRACE_DISABLE:
  1270. r = kvm_trace_ioctl(ioctl, arg);
  1271. break;
  1272. default:
  1273. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1274. }
  1275. out:
  1276. return r;
  1277. }
  1278. static struct file_operations kvm_chardev_ops = {
  1279. .unlocked_ioctl = kvm_dev_ioctl,
  1280. .compat_ioctl = kvm_dev_ioctl,
  1281. };
  1282. static struct miscdevice kvm_dev = {
  1283. KVM_MINOR,
  1284. "kvm",
  1285. &kvm_chardev_ops,
  1286. };
  1287. static void hardware_enable(void *junk)
  1288. {
  1289. int cpu = raw_smp_processor_id();
  1290. if (cpu_isset(cpu, cpus_hardware_enabled))
  1291. return;
  1292. cpu_set(cpu, cpus_hardware_enabled);
  1293. kvm_arch_hardware_enable(NULL);
  1294. }
  1295. static void hardware_disable(void *junk)
  1296. {
  1297. int cpu = raw_smp_processor_id();
  1298. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1299. return;
  1300. cpu_clear(cpu, cpus_hardware_enabled);
  1301. kvm_arch_hardware_disable(NULL);
  1302. }
  1303. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1304. void *v)
  1305. {
  1306. int cpu = (long)v;
  1307. val &= ~CPU_TASKS_FROZEN;
  1308. switch (val) {
  1309. case CPU_DYING:
  1310. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1311. cpu);
  1312. hardware_disable(NULL);
  1313. break;
  1314. case CPU_UP_CANCELED:
  1315. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1316. cpu);
  1317. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1318. break;
  1319. case CPU_ONLINE:
  1320. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1321. cpu);
  1322. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1323. break;
  1324. }
  1325. return NOTIFY_OK;
  1326. }
  1327. asmlinkage void kvm_handle_fault_on_reboot(void)
  1328. {
  1329. if (kvm_rebooting)
  1330. /* spin while reset goes on */
  1331. while (true)
  1332. ;
  1333. /* Fault while not rebooting. We want the trace. */
  1334. BUG();
  1335. }
  1336. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1337. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1338. void *v)
  1339. {
  1340. if (val == SYS_RESTART) {
  1341. /*
  1342. * Some (well, at least mine) BIOSes hang on reboot if
  1343. * in vmx root mode.
  1344. */
  1345. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1346. kvm_rebooting = true;
  1347. on_each_cpu(hardware_disable, NULL, 1);
  1348. }
  1349. return NOTIFY_OK;
  1350. }
  1351. static struct notifier_block kvm_reboot_notifier = {
  1352. .notifier_call = kvm_reboot,
  1353. .priority = 0,
  1354. };
  1355. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1356. {
  1357. memset(bus, 0, sizeof(*bus));
  1358. }
  1359. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1360. {
  1361. int i;
  1362. for (i = 0; i < bus->dev_count; i++) {
  1363. struct kvm_io_device *pos = bus->devs[i];
  1364. kvm_iodevice_destructor(pos);
  1365. }
  1366. }
  1367. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1368. gpa_t addr, int len, int is_write)
  1369. {
  1370. int i;
  1371. for (i = 0; i < bus->dev_count; i++) {
  1372. struct kvm_io_device *pos = bus->devs[i];
  1373. if (pos->in_range(pos, addr, len, is_write))
  1374. return pos;
  1375. }
  1376. return NULL;
  1377. }
  1378. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1379. {
  1380. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1381. bus->devs[bus->dev_count++] = dev;
  1382. }
  1383. static struct notifier_block kvm_cpu_notifier = {
  1384. .notifier_call = kvm_cpu_hotplug,
  1385. .priority = 20, /* must be > scheduler priority */
  1386. };
  1387. static int vm_stat_get(void *_offset, u64 *val)
  1388. {
  1389. unsigned offset = (long)_offset;
  1390. struct kvm *kvm;
  1391. *val = 0;
  1392. spin_lock(&kvm_lock);
  1393. list_for_each_entry(kvm, &vm_list, vm_list)
  1394. *val += *(u32 *)((void *)kvm + offset);
  1395. spin_unlock(&kvm_lock);
  1396. return 0;
  1397. }
  1398. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1399. static int vcpu_stat_get(void *_offset, u64 *val)
  1400. {
  1401. unsigned offset = (long)_offset;
  1402. struct kvm *kvm;
  1403. struct kvm_vcpu *vcpu;
  1404. int i;
  1405. *val = 0;
  1406. spin_lock(&kvm_lock);
  1407. list_for_each_entry(kvm, &vm_list, vm_list)
  1408. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1409. vcpu = kvm->vcpus[i];
  1410. if (vcpu)
  1411. *val += *(u32 *)((void *)vcpu + offset);
  1412. }
  1413. spin_unlock(&kvm_lock);
  1414. return 0;
  1415. }
  1416. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1417. static struct file_operations *stat_fops[] = {
  1418. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1419. [KVM_STAT_VM] = &vm_stat_fops,
  1420. };
  1421. static void kvm_init_debug(void)
  1422. {
  1423. struct kvm_stats_debugfs_item *p;
  1424. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1425. for (p = debugfs_entries; p->name; ++p)
  1426. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1427. (void *)(long)p->offset,
  1428. stat_fops[p->kind]);
  1429. }
  1430. static void kvm_exit_debug(void)
  1431. {
  1432. struct kvm_stats_debugfs_item *p;
  1433. for (p = debugfs_entries; p->name; ++p)
  1434. debugfs_remove(p->dentry);
  1435. debugfs_remove(kvm_debugfs_dir);
  1436. }
  1437. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1438. {
  1439. hardware_disable(NULL);
  1440. return 0;
  1441. }
  1442. static int kvm_resume(struct sys_device *dev)
  1443. {
  1444. hardware_enable(NULL);
  1445. return 0;
  1446. }
  1447. static struct sysdev_class kvm_sysdev_class = {
  1448. .name = "kvm",
  1449. .suspend = kvm_suspend,
  1450. .resume = kvm_resume,
  1451. };
  1452. static struct sys_device kvm_sysdev = {
  1453. .id = 0,
  1454. .cls = &kvm_sysdev_class,
  1455. };
  1456. struct page *bad_page;
  1457. pfn_t bad_pfn;
  1458. static inline
  1459. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1460. {
  1461. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1462. }
  1463. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1464. {
  1465. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1466. kvm_arch_vcpu_load(vcpu, cpu);
  1467. }
  1468. static void kvm_sched_out(struct preempt_notifier *pn,
  1469. struct task_struct *next)
  1470. {
  1471. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1472. kvm_arch_vcpu_put(vcpu);
  1473. }
  1474. int kvm_init(void *opaque, unsigned int vcpu_size,
  1475. struct module *module)
  1476. {
  1477. int r;
  1478. int cpu;
  1479. kvm_init_debug();
  1480. r = kvm_arch_init(opaque);
  1481. if (r)
  1482. goto out_fail;
  1483. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1484. if (bad_page == NULL) {
  1485. r = -ENOMEM;
  1486. goto out;
  1487. }
  1488. bad_pfn = page_to_pfn(bad_page);
  1489. r = kvm_arch_hardware_setup();
  1490. if (r < 0)
  1491. goto out_free_0;
  1492. for_each_online_cpu(cpu) {
  1493. smp_call_function_single(cpu,
  1494. kvm_arch_check_processor_compat,
  1495. &r, 1);
  1496. if (r < 0)
  1497. goto out_free_1;
  1498. }
  1499. on_each_cpu(hardware_enable, NULL, 1);
  1500. r = register_cpu_notifier(&kvm_cpu_notifier);
  1501. if (r)
  1502. goto out_free_2;
  1503. register_reboot_notifier(&kvm_reboot_notifier);
  1504. r = sysdev_class_register(&kvm_sysdev_class);
  1505. if (r)
  1506. goto out_free_3;
  1507. r = sysdev_register(&kvm_sysdev);
  1508. if (r)
  1509. goto out_free_4;
  1510. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1511. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1512. __alignof__(struct kvm_vcpu),
  1513. 0, NULL);
  1514. if (!kvm_vcpu_cache) {
  1515. r = -ENOMEM;
  1516. goto out_free_5;
  1517. }
  1518. kvm_chardev_ops.owner = module;
  1519. r = misc_register(&kvm_dev);
  1520. if (r) {
  1521. printk(KERN_ERR "kvm: misc device register failed\n");
  1522. goto out_free;
  1523. }
  1524. kvm_preempt_ops.sched_in = kvm_sched_in;
  1525. kvm_preempt_ops.sched_out = kvm_sched_out;
  1526. return 0;
  1527. out_free:
  1528. kmem_cache_destroy(kvm_vcpu_cache);
  1529. out_free_5:
  1530. sysdev_unregister(&kvm_sysdev);
  1531. out_free_4:
  1532. sysdev_class_unregister(&kvm_sysdev_class);
  1533. out_free_3:
  1534. unregister_reboot_notifier(&kvm_reboot_notifier);
  1535. unregister_cpu_notifier(&kvm_cpu_notifier);
  1536. out_free_2:
  1537. on_each_cpu(hardware_disable, NULL, 1);
  1538. out_free_1:
  1539. kvm_arch_hardware_unsetup();
  1540. out_free_0:
  1541. __free_page(bad_page);
  1542. out:
  1543. kvm_arch_exit();
  1544. kvm_exit_debug();
  1545. out_fail:
  1546. return r;
  1547. }
  1548. EXPORT_SYMBOL_GPL(kvm_init);
  1549. void kvm_exit(void)
  1550. {
  1551. kvm_trace_cleanup();
  1552. misc_deregister(&kvm_dev);
  1553. kmem_cache_destroy(kvm_vcpu_cache);
  1554. sysdev_unregister(&kvm_sysdev);
  1555. sysdev_class_unregister(&kvm_sysdev_class);
  1556. unregister_reboot_notifier(&kvm_reboot_notifier);
  1557. unregister_cpu_notifier(&kvm_cpu_notifier);
  1558. on_each_cpu(hardware_disable, NULL, 1);
  1559. kvm_arch_hardware_unsetup();
  1560. kvm_arch_exit();
  1561. kvm_exit_debug();
  1562. __free_page(bad_page);
  1563. }
  1564. EXPORT_SYMBOL_GPL(kvm_exit);