fs_enet-main.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/pci.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/spinlock.h>
  33. #include <linux/mii.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/bitops.h>
  36. #include <linux/fs.h>
  37. #include <linux/platform_device.h>
  38. #include <linux/phy.h>
  39. #include <linux/vmalloc.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/irq.h>
  43. #include <asm/uaccess.h>
  44. #include "fs_enet.h"
  45. /*************************************************/
  46. static char version[] __devinitdata =
  47. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  48. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  49. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  50. MODULE_LICENSE("GPL");
  51. MODULE_VERSION(DRV_MODULE_VERSION);
  52. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  53. module_param(fs_enet_debug, int, 0);
  54. MODULE_PARM_DESC(fs_enet_debug,
  55. "Freescale bitmapped debugging message enable value");
  56. static void fs_set_multicast_list(struct net_device *dev)
  57. {
  58. struct fs_enet_private *fep = netdev_priv(dev);
  59. (*fep->ops->set_multicast_list)(dev);
  60. }
  61. /* NAPI receive function */
  62. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. const struct fs_platform_info *fpi = fep->fpi;
  66. cbd_t *bdp;
  67. struct sk_buff *skb, *skbn, *skbt;
  68. int received = 0;
  69. u16 pkt_len, sc;
  70. int curidx;
  71. int rx_work_limit = 0; /* pacify gcc */
  72. rx_work_limit = min(dev->quota, *budget);
  73. if (!netif_running(dev))
  74. return 0;
  75. /*
  76. * First, grab all of the stats for the incoming packet.
  77. * These get messed up if we get called due to a busy condition.
  78. */
  79. bdp = fep->cur_rx;
  80. /* clear RX status bits for napi*/
  81. (*fep->ops->napi_clear_rx_event)(dev);
  82. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  83. curidx = bdp - fep->rx_bd_base;
  84. /*
  85. * Since we have allocated space to hold a complete frame,
  86. * the last indicator should be set.
  87. */
  88. if ((sc & BD_ENET_RX_LAST) == 0)
  89. printk(KERN_WARNING DRV_MODULE_NAME
  90. ": %s rcv is not +last\n",
  91. dev->name);
  92. /*
  93. * Check for errors.
  94. */
  95. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  96. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  97. fep->stats.rx_errors++;
  98. /* Frame too long or too short. */
  99. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  100. fep->stats.rx_length_errors++;
  101. /* Frame alignment */
  102. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  103. fep->stats.rx_frame_errors++;
  104. /* CRC Error */
  105. if (sc & BD_ENET_RX_CR)
  106. fep->stats.rx_crc_errors++;
  107. /* FIFO overrun */
  108. if (sc & BD_ENET_RX_OV)
  109. fep->stats.rx_crc_errors++;
  110. skb = fep->rx_skbuff[curidx];
  111. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  112. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  113. DMA_FROM_DEVICE);
  114. skbn = skb;
  115. } else {
  116. /* napi, got packet but no quota */
  117. if (--rx_work_limit < 0)
  118. break;
  119. skb = fep->rx_skbuff[curidx];
  120. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  121. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  122. DMA_FROM_DEVICE);
  123. /*
  124. * Process the incoming frame.
  125. */
  126. fep->stats.rx_packets++;
  127. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  128. fep->stats.rx_bytes += pkt_len + 4;
  129. if (pkt_len <= fpi->rx_copybreak) {
  130. /* +2 to make IP header L1 cache aligned */
  131. skbn = dev_alloc_skb(pkt_len + 2);
  132. if (skbn != NULL) {
  133. skb_reserve(skbn, 2); /* align IP header */
  134. skb_copy_from_linear_data(skb,
  135. skbn->data, pkt_len);
  136. /* swap */
  137. skbt = skb;
  138. skb = skbn;
  139. skbn = skbt;
  140. }
  141. } else
  142. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  143. if (skbn != NULL) {
  144. skb_put(skb, pkt_len); /* Make room */
  145. skb->protocol = eth_type_trans(skb, dev);
  146. received++;
  147. netif_receive_skb(skb);
  148. } else {
  149. printk(KERN_WARNING DRV_MODULE_NAME
  150. ": %s Memory squeeze, dropping packet.\n",
  151. dev->name);
  152. fep->stats.rx_dropped++;
  153. skbn = skb;
  154. }
  155. }
  156. fep->rx_skbuff[curidx] = skbn;
  157. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  158. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  159. DMA_FROM_DEVICE));
  160. CBDW_DATLEN(bdp, 0);
  161. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  162. /*
  163. * Update BD pointer to next entry.
  164. */
  165. if ((sc & BD_ENET_RX_WRAP) == 0)
  166. bdp++;
  167. else
  168. bdp = fep->rx_bd_base;
  169. (*fep->ops->rx_bd_done)(dev);
  170. }
  171. fep->cur_rx = bdp;
  172. dev->quota -= received;
  173. *budget -= received;
  174. if (rx_work_limit < 0)
  175. return 1; /* not done */
  176. /* done */
  177. netif_rx_complete(dev);
  178. (*fep->ops->napi_enable_rx)(dev);
  179. return 0;
  180. }
  181. /* non NAPI receive function */
  182. static int fs_enet_rx_non_napi(struct net_device *dev)
  183. {
  184. struct fs_enet_private *fep = netdev_priv(dev);
  185. const struct fs_platform_info *fpi = fep->fpi;
  186. cbd_t *bdp;
  187. struct sk_buff *skb, *skbn, *skbt;
  188. int received = 0;
  189. u16 pkt_len, sc;
  190. int curidx;
  191. /*
  192. * First, grab all of the stats for the incoming packet.
  193. * These get messed up if we get called due to a busy condition.
  194. */
  195. bdp = fep->cur_rx;
  196. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  197. curidx = bdp - fep->rx_bd_base;
  198. /*
  199. * Since we have allocated space to hold a complete frame,
  200. * the last indicator should be set.
  201. */
  202. if ((sc & BD_ENET_RX_LAST) == 0)
  203. printk(KERN_WARNING DRV_MODULE_NAME
  204. ": %s rcv is not +last\n",
  205. dev->name);
  206. /*
  207. * Check for errors.
  208. */
  209. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  210. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  211. fep->stats.rx_errors++;
  212. /* Frame too long or too short. */
  213. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  214. fep->stats.rx_length_errors++;
  215. /* Frame alignment */
  216. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  217. fep->stats.rx_frame_errors++;
  218. /* CRC Error */
  219. if (sc & BD_ENET_RX_CR)
  220. fep->stats.rx_crc_errors++;
  221. /* FIFO overrun */
  222. if (sc & BD_ENET_RX_OV)
  223. fep->stats.rx_crc_errors++;
  224. skb = fep->rx_skbuff[curidx];
  225. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  226. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  227. DMA_FROM_DEVICE);
  228. skbn = skb;
  229. } else {
  230. skb = fep->rx_skbuff[curidx];
  231. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  232. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  233. DMA_FROM_DEVICE);
  234. /*
  235. * Process the incoming frame.
  236. */
  237. fep->stats.rx_packets++;
  238. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  239. fep->stats.rx_bytes += pkt_len + 4;
  240. if (pkt_len <= fpi->rx_copybreak) {
  241. /* +2 to make IP header L1 cache aligned */
  242. skbn = dev_alloc_skb(pkt_len + 2);
  243. if (skbn != NULL) {
  244. skb_reserve(skbn, 2); /* align IP header */
  245. skb_copy_from_linear_data(skb,
  246. skbn->data, pkt_len);
  247. /* swap */
  248. skbt = skb;
  249. skb = skbn;
  250. skbn = skbt;
  251. }
  252. } else
  253. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  254. if (skbn != NULL) {
  255. skb_put(skb, pkt_len); /* Make room */
  256. skb->protocol = eth_type_trans(skb, dev);
  257. received++;
  258. netif_rx(skb);
  259. } else {
  260. printk(KERN_WARNING DRV_MODULE_NAME
  261. ": %s Memory squeeze, dropping packet.\n",
  262. dev->name);
  263. fep->stats.rx_dropped++;
  264. skbn = skb;
  265. }
  266. }
  267. fep->rx_skbuff[curidx] = skbn;
  268. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  269. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  270. DMA_FROM_DEVICE));
  271. CBDW_DATLEN(bdp, 0);
  272. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  273. /*
  274. * Update BD pointer to next entry.
  275. */
  276. if ((sc & BD_ENET_RX_WRAP) == 0)
  277. bdp++;
  278. else
  279. bdp = fep->rx_bd_base;
  280. (*fep->ops->rx_bd_done)(dev);
  281. }
  282. fep->cur_rx = bdp;
  283. return 0;
  284. }
  285. static void fs_enet_tx(struct net_device *dev)
  286. {
  287. struct fs_enet_private *fep = netdev_priv(dev);
  288. cbd_t *bdp;
  289. struct sk_buff *skb;
  290. int dirtyidx, do_wake, do_restart;
  291. u16 sc;
  292. spin_lock(&fep->lock);
  293. bdp = fep->dirty_tx;
  294. do_wake = do_restart = 0;
  295. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  296. dirtyidx = bdp - fep->tx_bd_base;
  297. if (fep->tx_free == fep->tx_ring)
  298. break;
  299. skb = fep->tx_skbuff[dirtyidx];
  300. /*
  301. * Check for errors.
  302. */
  303. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  304. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  305. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  306. fep->stats.tx_heartbeat_errors++;
  307. if (sc & BD_ENET_TX_LC) /* Late collision */
  308. fep->stats.tx_window_errors++;
  309. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  310. fep->stats.tx_aborted_errors++;
  311. if (sc & BD_ENET_TX_UN) /* Underrun */
  312. fep->stats.tx_fifo_errors++;
  313. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  314. fep->stats.tx_carrier_errors++;
  315. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  316. fep->stats.tx_errors++;
  317. do_restart = 1;
  318. }
  319. } else
  320. fep->stats.tx_packets++;
  321. if (sc & BD_ENET_TX_READY)
  322. printk(KERN_WARNING DRV_MODULE_NAME
  323. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  324. dev->name);
  325. /*
  326. * Deferred means some collisions occurred during transmit,
  327. * but we eventually sent the packet OK.
  328. */
  329. if (sc & BD_ENET_TX_DEF)
  330. fep->stats.collisions++;
  331. /* unmap */
  332. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  333. skb->len, DMA_TO_DEVICE);
  334. /*
  335. * Free the sk buffer associated with this last transmit.
  336. */
  337. dev_kfree_skb_irq(skb);
  338. fep->tx_skbuff[dirtyidx] = NULL;
  339. /*
  340. * Update pointer to next buffer descriptor to be transmitted.
  341. */
  342. if ((sc & BD_ENET_TX_WRAP) == 0)
  343. bdp++;
  344. else
  345. bdp = fep->tx_bd_base;
  346. /*
  347. * Since we have freed up a buffer, the ring is no longer
  348. * full.
  349. */
  350. if (!fep->tx_free++)
  351. do_wake = 1;
  352. }
  353. fep->dirty_tx = bdp;
  354. if (do_restart)
  355. (*fep->ops->tx_restart)(dev);
  356. spin_unlock(&fep->lock);
  357. if (do_wake)
  358. netif_wake_queue(dev);
  359. }
  360. /*
  361. * The interrupt handler.
  362. * This is called from the MPC core interrupt.
  363. */
  364. static irqreturn_t
  365. fs_enet_interrupt(int irq, void *dev_id)
  366. {
  367. struct net_device *dev = dev_id;
  368. struct fs_enet_private *fep;
  369. const struct fs_platform_info *fpi;
  370. u32 int_events;
  371. u32 int_clr_events;
  372. int nr, napi_ok;
  373. int handled;
  374. fep = netdev_priv(dev);
  375. fpi = fep->fpi;
  376. nr = 0;
  377. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  378. nr++;
  379. int_clr_events = int_events;
  380. if (fpi->use_napi)
  381. int_clr_events &= ~fep->ev_napi_rx;
  382. (*fep->ops->clear_int_events)(dev, int_clr_events);
  383. if (int_events & fep->ev_err)
  384. (*fep->ops->ev_error)(dev, int_events);
  385. if (int_events & fep->ev_rx) {
  386. if (!fpi->use_napi)
  387. fs_enet_rx_non_napi(dev);
  388. else {
  389. napi_ok = netif_rx_schedule_prep(dev);
  390. (*fep->ops->napi_disable_rx)(dev);
  391. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  392. /* NOTE: it is possible for FCCs in NAPI mode */
  393. /* to submit a spurious interrupt while in poll */
  394. if (napi_ok)
  395. __netif_rx_schedule(dev);
  396. }
  397. }
  398. if (int_events & fep->ev_tx)
  399. fs_enet_tx(dev);
  400. }
  401. handled = nr > 0;
  402. return IRQ_RETVAL(handled);
  403. }
  404. void fs_init_bds(struct net_device *dev)
  405. {
  406. struct fs_enet_private *fep = netdev_priv(dev);
  407. cbd_t *bdp;
  408. struct sk_buff *skb;
  409. int i;
  410. fs_cleanup_bds(dev);
  411. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  412. fep->tx_free = fep->tx_ring;
  413. fep->cur_rx = fep->rx_bd_base;
  414. /*
  415. * Initialize the receive buffer descriptors.
  416. */
  417. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  418. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  419. if (skb == NULL) {
  420. printk(KERN_WARNING DRV_MODULE_NAME
  421. ": %s Memory squeeze, unable to allocate skb\n",
  422. dev->name);
  423. break;
  424. }
  425. fep->rx_skbuff[i] = skb;
  426. CBDW_BUFADDR(bdp,
  427. dma_map_single(fep->dev, skb->data,
  428. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  429. DMA_FROM_DEVICE));
  430. CBDW_DATLEN(bdp, 0); /* zero */
  431. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  432. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  433. }
  434. /*
  435. * if we failed, fillup remainder
  436. */
  437. for (; i < fep->rx_ring; i++, bdp++) {
  438. fep->rx_skbuff[i] = NULL;
  439. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  440. }
  441. /*
  442. * ...and the same for transmit.
  443. */
  444. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  445. fep->tx_skbuff[i] = NULL;
  446. CBDW_BUFADDR(bdp, 0);
  447. CBDW_DATLEN(bdp, 0);
  448. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  449. }
  450. }
  451. void fs_cleanup_bds(struct net_device *dev)
  452. {
  453. struct fs_enet_private *fep = netdev_priv(dev);
  454. struct sk_buff *skb;
  455. cbd_t *bdp;
  456. int i;
  457. /*
  458. * Reset SKB transmit buffers.
  459. */
  460. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  461. if ((skb = fep->tx_skbuff[i]) == NULL)
  462. continue;
  463. /* unmap */
  464. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  465. skb->len, DMA_TO_DEVICE);
  466. fep->tx_skbuff[i] = NULL;
  467. dev_kfree_skb(skb);
  468. }
  469. /*
  470. * Reset SKB receive buffers
  471. */
  472. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  473. if ((skb = fep->rx_skbuff[i]) == NULL)
  474. continue;
  475. /* unmap */
  476. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  477. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  478. DMA_FROM_DEVICE);
  479. fep->rx_skbuff[i] = NULL;
  480. dev_kfree_skb(skb);
  481. }
  482. }
  483. /**********************************************************************************/
  484. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  485. {
  486. struct fs_enet_private *fep = netdev_priv(dev);
  487. cbd_t *bdp;
  488. int curidx;
  489. u16 sc;
  490. unsigned long flags;
  491. spin_lock_irqsave(&fep->tx_lock, flags);
  492. /*
  493. * Fill in a Tx ring entry
  494. */
  495. bdp = fep->cur_tx;
  496. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  497. netif_stop_queue(dev);
  498. spin_unlock_irqrestore(&fep->tx_lock, flags);
  499. /*
  500. * Ooops. All transmit buffers are full. Bail out.
  501. * This should not happen, since the tx queue should be stopped.
  502. */
  503. printk(KERN_WARNING DRV_MODULE_NAME
  504. ": %s tx queue full!.\n", dev->name);
  505. return NETDEV_TX_BUSY;
  506. }
  507. curidx = bdp - fep->tx_bd_base;
  508. /*
  509. * Clear all of the status flags.
  510. */
  511. CBDC_SC(bdp, BD_ENET_TX_STATS);
  512. /*
  513. * Save skb pointer.
  514. */
  515. fep->tx_skbuff[curidx] = skb;
  516. fep->stats.tx_bytes += skb->len;
  517. /*
  518. * Push the data cache so the CPM does not get stale memory data.
  519. */
  520. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  521. skb->data, skb->len, DMA_TO_DEVICE));
  522. CBDW_DATLEN(bdp, skb->len);
  523. dev->trans_start = jiffies;
  524. /*
  525. * If this was the last BD in the ring, start at the beginning again.
  526. */
  527. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  528. fep->cur_tx++;
  529. else
  530. fep->cur_tx = fep->tx_bd_base;
  531. if (!--fep->tx_free)
  532. netif_stop_queue(dev);
  533. /* Trigger transmission start */
  534. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  535. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  536. /* note that while FEC does not have this bit
  537. * it marks it as available for software use
  538. * yay for hw reuse :) */
  539. if (skb->len <= 60)
  540. sc |= BD_ENET_TX_PAD;
  541. CBDS_SC(bdp, sc);
  542. (*fep->ops->tx_kickstart)(dev);
  543. spin_unlock_irqrestore(&fep->tx_lock, flags);
  544. return NETDEV_TX_OK;
  545. }
  546. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  547. irq_handler_t irqf)
  548. {
  549. struct fs_enet_private *fep = netdev_priv(dev);
  550. (*fep->ops->pre_request_irq)(dev, irq);
  551. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  552. }
  553. static void fs_free_irq(struct net_device *dev, int irq)
  554. {
  555. struct fs_enet_private *fep = netdev_priv(dev);
  556. free_irq(irq, dev);
  557. (*fep->ops->post_free_irq)(dev, irq);
  558. }
  559. static void fs_timeout(struct net_device *dev)
  560. {
  561. struct fs_enet_private *fep = netdev_priv(dev);
  562. unsigned long flags;
  563. int wake = 0;
  564. fep->stats.tx_errors++;
  565. spin_lock_irqsave(&fep->lock, flags);
  566. if (dev->flags & IFF_UP) {
  567. phy_stop(fep->phydev);
  568. (*fep->ops->stop)(dev);
  569. (*fep->ops->restart)(dev);
  570. phy_start(fep->phydev);
  571. }
  572. phy_start(fep->phydev);
  573. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  574. spin_unlock_irqrestore(&fep->lock, flags);
  575. if (wake)
  576. netif_wake_queue(dev);
  577. }
  578. /*-----------------------------------------------------------------------------
  579. * generic link-change handler - should be sufficient for most cases
  580. *-----------------------------------------------------------------------------*/
  581. static void generic_adjust_link(struct net_device *dev)
  582. {
  583. struct fs_enet_private *fep = netdev_priv(dev);
  584. struct phy_device *phydev = fep->phydev;
  585. int new_state = 0;
  586. if (phydev->link) {
  587. /* adjust to duplex mode */
  588. if (phydev->duplex != fep->oldduplex){
  589. new_state = 1;
  590. fep->oldduplex = phydev->duplex;
  591. }
  592. if (phydev->speed != fep->oldspeed) {
  593. new_state = 1;
  594. fep->oldspeed = phydev->speed;
  595. }
  596. if (!fep->oldlink) {
  597. new_state = 1;
  598. fep->oldlink = 1;
  599. netif_schedule(dev);
  600. netif_carrier_on(dev);
  601. netif_start_queue(dev);
  602. }
  603. if (new_state)
  604. fep->ops->restart(dev);
  605. } else if (fep->oldlink) {
  606. new_state = 1;
  607. fep->oldlink = 0;
  608. fep->oldspeed = 0;
  609. fep->oldduplex = -1;
  610. netif_carrier_off(dev);
  611. netif_stop_queue(dev);
  612. }
  613. if (new_state && netif_msg_link(fep))
  614. phy_print_status(phydev);
  615. }
  616. static void fs_adjust_link(struct net_device *dev)
  617. {
  618. struct fs_enet_private *fep = netdev_priv(dev);
  619. unsigned long flags;
  620. spin_lock_irqsave(&fep->lock, flags);
  621. if(fep->ops->adjust_link)
  622. fep->ops->adjust_link(dev);
  623. else
  624. generic_adjust_link(dev);
  625. spin_unlock_irqrestore(&fep->lock, flags);
  626. }
  627. static int fs_init_phy(struct net_device *dev)
  628. {
  629. struct fs_enet_private *fep = netdev_priv(dev);
  630. struct phy_device *phydev;
  631. fep->oldlink = 0;
  632. fep->oldspeed = 0;
  633. fep->oldduplex = -1;
  634. if(fep->fpi->bus_id)
  635. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  636. PHY_INTERFACE_MODE_MII);
  637. else {
  638. printk("No phy bus ID specified in BSP code\n");
  639. return -EINVAL;
  640. }
  641. if (IS_ERR(phydev)) {
  642. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  643. return PTR_ERR(phydev);
  644. }
  645. fep->phydev = phydev;
  646. return 0;
  647. }
  648. static int fs_enet_open(struct net_device *dev)
  649. {
  650. struct fs_enet_private *fep = netdev_priv(dev);
  651. int r;
  652. int err;
  653. /* Install our interrupt handler. */
  654. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  655. if (r != 0) {
  656. printk(KERN_ERR DRV_MODULE_NAME
  657. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  658. return -EINVAL;
  659. }
  660. err = fs_init_phy(dev);
  661. if(err)
  662. return err;
  663. phy_start(fep->phydev);
  664. return 0;
  665. }
  666. static int fs_enet_close(struct net_device *dev)
  667. {
  668. struct fs_enet_private *fep = netdev_priv(dev);
  669. unsigned long flags;
  670. netif_stop_queue(dev);
  671. netif_carrier_off(dev);
  672. phy_stop(fep->phydev);
  673. spin_lock_irqsave(&fep->lock, flags);
  674. (*fep->ops->stop)(dev);
  675. spin_unlock_irqrestore(&fep->lock, flags);
  676. /* release any irqs */
  677. phy_disconnect(fep->phydev);
  678. fep->phydev = NULL;
  679. fs_free_irq(dev, fep->interrupt);
  680. return 0;
  681. }
  682. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  683. {
  684. struct fs_enet_private *fep = netdev_priv(dev);
  685. return &fep->stats;
  686. }
  687. /*************************************************************************/
  688. static void fs_get_drvinfo(struct net_device *dev,
  689. struct ethtool_drvinfo *info)
  690. {
  691. strcpy(info->driver, DRV_MODULE_NAME);
  692. strcpy(info->version, DRV_MODULE_VERSION);
  693. }
  694. static int fs_get_regs_len(struct net_device *dev)
  695. {
  696. struct fs_enet_private *fep = netdev_priv(dev);
  697. return (*fep->ops->get_regs_len)(dev);
  698. }
  699. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  700. void *p)
  701. {
  702. struct fs_enet_private *fep = netdev_priv(dev);
  703. unsigned long flags;
  704. int r, len;
  705. len = regs->len;
  706. spin_lock_irqsave(&fep->lock, flags);
  707. r = (*fep->ops->get_regs)(dev, p, &len);
  708. spin_unlock_irqrestore(&fep->lock, flags);
  709. if (r == 0)
  710. regs->version = 0;
  711. }
  712. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  713. {
  714. struct fs_enet_private *fep = netdev_priv(dev);
  715. return phy_ethtool_gset(fep->phydev, cmd);
  716. }
  717. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  718. {
  719. struct fs_enet_private *fep = netdev_priv(dev);
  720. phy_ethtool_sset(fep->phydev, cmd);
  721. return 0;
  722. }
  723. static int fs_nway_reset(struct net_device *dev)
  724. {
  725. return 0;
  726. }
  727. static u32 fs_get_msglevel(struct net_device *dev)
  728. {
  729. struct fs_enet_private *fep = netdev_priv(dev);
  730. return fep->msg_enable;
  731. }
  732. static void fs_set_msglevel(struct net_device *dev, u32 value)
  733. {
  734. struct fs_enet_private *fep = netdev_priv(dev);
  735. fep->msg_enable = value;
  736. }
  737. static const struct ethtool_ops fs_ethtool_ops = {
  738. .get_drvinfo = fs_get_drvinfo,
  739. .get_regs_len = fs_get_regs_len,
  740. .get_settings = fs_get_settings,
  741. .set_settings = fs_set_settings,
  742. .nway_reset = fs_nway_reset,
  743. .get_link = ethtool_op_get_link,
  744. .get_msglevel = fs_get_msglevel,
  745. .set_msglevel = fs_set_msglevel,
  746. .get_tx_csum = ethtool_op_get_tx_csum,
  747. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  748. .get_sg = ethtool_op_get_sg,
  749. .set_sg = ethtool_op_set_sg,
  750. .get_regs = fs_get_regs,
  751. };
  752. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  753. {
  754. struct fs_enet_private *fep = netdev_priv(dev);
  755. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  756. unsigned long flags;
  757. int rc;
  758. if (!netif_running(dev))
  759. return -EINVAL;
  760. spin_lock_irqsave(&fep->lock, flags);
  761. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  762. spin_unlock_irqrestore(&fep->lock, flags);
  763. return rc;
  764. }
  765. extern int fs_mii_connect(struct net_device *dev);
  766. extern void fs_mii_disconnect(struct net_device *dev);
  767. static struct net_device *fs_init_instance(struct device *dev,
  768. struct fs_platform_info *fpi)
  769. {
  770. struct net_device *ndev = NULL;
  771. struct fs_enet_private *fep = NULL;
  772. int privsize, i, r, err = 0, registered = 0;
  773. fpi->fs_no = fs_get_id(fpi);
  774. /* guard */
  775. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  776. return ERR_PTR(-EINVAL);
  777. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  778. (fpi->rx_ring + fpi->tx_ring));
  779. ndev = alloc_etherdev(privsize);
  780. if (!ndev) {
  781. err = -ENOMEM;
  782. goto err;
  783. }
  784. SET_MODULE_OWNER(ndev);
  785. fep = netdev_priv(ndev);
  786. memset(fep, 0, privsize); /* clear everything */
  787. fep->dev = dev;
  788. dev_set_drvdata(dev, ndev);
  789. fep->fpi = fpi;
  790. if (fpi->init_ioports)
  791. fpi->init_ioports((struct fs_platform_info *)fpi);
  792. #ifdef CONFIG_FS_ENET_HAS_FEC
  793. if (fs_get_fec_index(fpi->fs_no) >= 0)
  794. fep->ops = &fs_fec_ops;
  795. #endif
  796. #ifdef CONFIG_FS_ENET_HAS_SCC
  797. if (fs_get_scc_index(fpi->fs_no) >=0 )
  798. fep->ops = &fs_scc_ops;
  799. #endif
  800. #ifdef CONFIG_FS_ENET_HAS_FCC
  801. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  802. fep->ops = &fs_fcc_ops;
  803. #endif
  804. if (fep->ops == NULL) {
  805. printk(KERN_ERR DRV_MODULE_NAME
  806. ": %s No matching ops found (%d).\n",
  807. ndev->name, fpi->fs_no);
  808. err = -EINVAL;
  809. goto err;
  810. }
  811. r = (*fep->ops->setup_data)(ndev);
  812. if (r != 0) {
  813. printk(KERN_ERR DRV_MODULE_NAME
  814. ": %s setup_data failed\n",
  815. ndev->name);
  816. err = r;
  817. goto err;
  818. }
  819. /* point rx_skbuff, tx_skbuff */
  820. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  821. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  822. /* init locks */
  823. spin_lock_init(&fep->lock);
  824. spin_lock_init(&fep->tx_lock);
  825. /*
  826. * Set the Ethernet address.
  827. */
  828. for (i = 0; i < 6; i++)
  829. ndev->dev_addr[i] = fpi->macaddr[i];
  830. r = (*fep->ops->allocate_bd)(ndev);
  831. if (fep->ring_base == NULL) {
  832. printk(KERN_ERR DRV_MODULE_NAME
  833. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  834. err = r;
  835. goto err;
  836. }
  837. /*
  838. * Set receive and transmit descriptor base.
  839. */
  840. fep->rx_bd_base = fep->ring_base;
  841. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  842. /* initialize ring size variables */
  843. fep->tx_ring = fpi->tx_ring;
  844. fep->rx_ring = fpi->rx_ring;
  845. /*
  846. * The FEC Ethernet specific entries in the device structure.
  847. */
  848. ndev->open = fs_enet_open;
  849. ndev->hard_start_xmit = fs_enet_start_xmit;
  850. ndev->tx_timeout = fs_timeout;
  851. ndev->watchdog_timeo = 2 * HZ;
  852. ndev->stop = fs_enet_close;
  853. ndev->get_stats = fs_enet_get_stats;
  854. ndev->set_multicast_list = fs_set_multicast_list;
  855. if (fpi->use_napi) {
  856. ndev->poll = fs_enet_rx_napi;
  857. ndev->weight = fpi->napi_weight;
  858. }
  859. ndev->ethtool_ops = &fs_ethtool_ops;
  860. ndev->do_ioctl = fs_ioctl;
  861. init_timer(&fep->phy_timer_list);
  862. netif_carrier_off(ndev);
  863. err = register_netdev(ndev);
  864. if (err != 0) {
  865. printk(KERN_ERR DRV_MODULE_NAME
  866. ": %s register_netdev failed.\n", ndev->name);
  867. goto err;
  868. }
  869. registered = 1;
  870. return ndev;
  871. err:
  872. if (ndev != NULL) {
  873. if (registered)
  874. unregister_netdev(ndev);
  875. if (fep != NULL) {
  876. (*fep->ops->free_bd)(ndev);
  877. (*fep->ops->cleanup_data)(ndev);
  878. }
  879. free_netdev(ndev);
  880. }
  881. dev_set_drvdata(dev, NULL);
  882. return ERR_PTR(err);
  883. }
  884. static int fs_cleanup_instance(struct net_device *ndev)
  885. {
  886. struct fs_enet_private *fep;
  887. const struct fs_platform_info *fpi;
  888. struct device *dev;
  889. if (ndev == NULL)
  890. return -EINVAL;
  891. fep = netdev_priv(ndev);
  892. if (fep == NULL)
  893. return -EINVAL;
  894. fpi = fep->fpi;
  895. unregister_netdev(ndev);
  896. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  897. fep->ring_base, fep->ring_mem_addr);
  898. /* reset it */
  899. (*fep->ops->cleanup_data)(ndev);
  900. dev = fep->dev;
  901. if (dev != NULL) {
  902. dev_set_drvdata(dev, NULL);
  903. fep->dev = NULL;
  904. }
  905. free_netdev(ndev);
  906. return 0;
  907. }
  908. /**************************************************************************************/
  909. /* handy pointer to the immap */
  910. void *fs_enet_immap = NULL;
  911. static int setup_immap(void)
  912. {
  913. phys_addr_t paddr = 0;
  914. unsigned long size = 0;
  915. #ifdef CONFIG_CPM1
  916. paddr = IMAP_ADDR;
  917. size = 0x10000; /* map 64K */
  918. #endif
  919. #ifdef CONFIG_CPM2
  920. paddr = CPM_MAP_ADDR;
  921. size = 0x40000; /* map 256 K */
  922. #endif
  923. fs_enet_immap = ioremap(paddr, size);
  924. if (fs_enet_immap == NULL)
  925. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  926. return 0;
  927. }
  928. static void cleanup_immap(void)
  929. {
  930. if (fs_enet_immap != NULL) {
  931. iounmap(fs_enet_immap);
  932. fs_enet_immap = NULL;
  933. }
  934. }
  935. /**************************************************************************************/
  936. static int __devinit fs_enet_probe(struct device *dev)
  937. {
  938. struct net_device *ndev;
  939. /* no fixup - no device */
  940. if (dev->platform_data == NULL) {
  941. printk(KERN_INFO "fs_enet: "
  942. "probe called with no platform data; "
  943. "remove unused devices\n");
  944. return -ENODEV;
  945. }
  946. ndev = fs_init_instance(dev, dev->platform_data);
  947. if (IS_ERR(ndev))
  948. return PTR_ERR(ndev);
  949. return 0;
  950. }
  951. static int fs_enet_remove(struct device *dev)
  952. {
  953. return fs_cleanup_instance(dev_get_drvdata(dev));
  954. }
  955. static struct device_driver fs_enet_fec_driver = {
  956. .name = "fsl-cpm-fec",
  957. .bus = &platform_bus_type,
  958. .probe = fs_enet_probe,
  959. .remove = fs_enet_remove,
  960. #ifdef CONFIG_PM
  961. /* .suspend = fs_enet_suspend, TODO */
  962. /* .resume = fs_enet_resume, TODO */
  963. #endif
  964. };
  965. static struct device_driver fs_enet_scc_driver = {
  966. .name = "fsl-cpm-scc",
  967. .bus = &platform_bus_type,
  968. .probe = fs_enet_probe,
  969. .remove = fs_enet_remove,
  970. #ifdef CONFIG_PM
  971. /* .suspend = fs_enet_suspend, TODO */
  972. /* .resume = fs_enet_resume, TODO */
  973. #endif
  974. };
  975. static struct device_driver fs_enet_fcc_driver = {
  976. .name = "fsl-cpm-fcc",
  977. .bus = &platform_bus_type,
  978. .probe = fs_enet_probe,
  979. .remove = fs_enet_remove,
  980. #ifdef CONFIG_PM
  981. /* .suspend = fs_enet_suspend, TODO */
  982. /* .resume = fs_enet_resume, TODO */
  983. #endif
  984. };
  985. static int __init fs_init(void)
  986. {
  987. int r;
  988. printk(KERN_INFO
  989. "%s", version);
  990. r = setup_immap();
  991. if (r != 0)
  992. return r;
  993. #ifdef CONFIG_FS_ENET_HAS_FCC
  994. /* let's insert mii stuff */
  995. r = fs_enet_mdio_bb_init();
  996. if (r != 0) {
  997. printk(KERN_ERR DRV_MODULE_NAME
  998. "BB PHY init failed.\n");
  999. return r;
  1000. }
  1001. r = driver_register(&fs_enet_fcc_driver);
  1002. if (r != 0)
  1003. goto err;
  1004. #endif
  1005. #ifdef CONFIG_FS_ENET_HAS_FEC
  1006. r = fs_enet_mdio_fec_init();
  1007. if (r != 0) {
  1008. printk(KERN_ERR DRV_MODULE_NAME
  1009. "FEC PHY init failed.\n");
  1010. return r;
  1011. }
  1012. r = driver_register(&fs_enet_fec_driver);
  1013. if (r != 0)
  1014. goto err;
  1015. #endif
  1016. #ifdef CONFIG_FS_ENET_HAS_SCC
  1017. r = driver_register(&fs_enet_scc_driver);
  1018. if (r != 0)
  1019. goto err;
  1020. #endif
  1021. return 0;
  1022. err:
  1023. cleanup_immap();
  1024. return r;
  1025. }
  1026. static void __exit fs_cleanup(void)
  1027. {
  1028. driver_unregister(&fs_enet_fec_driver);
  1029. driver_unregister(&fs_enet_fcc_driver);
  1030. driver_unregister(&fs_enet_scc_driver);
  1031. cleanup_immap();
  1032. }
  1033. /**************************************************************************************/
  1034. module_init(fs_init);
  1035. module_exit(fs_cleanup);