inode.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. struct f2fs_iget_args {
  18. u64 ino;
  19. int on_free;
  20. };
  21. void f2fs_set_inode_flags(struct inode *inode)
  22. {
  23. unsigned int flags = F2FS_I(inode)->i_flags;
  24. inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
  25. S_NOATIME | S_DIRSYNC);
  26. if (flags & FS_SYNC_FL)
  27. inode->i_flags |= S_SYNC;
  28. if (flags & FS_APPEND_FL)
  29. inode->i_flags |= S_APPEND;
  30. if (flags & FS_IMMUTABLE_FL)
  31. inode->i_flags |= S_IMMUTABLE;
  32. if (flags & FS_NOATIME_FL)
  33. inode->i_flags |= S_NOATIME;
  34. if (flags & FS_DIRSYNC_FL)
  35. inode->i_flags |= S_DIRSYNC;
  36. }
  37. static int f2fs_iget_test(struct inode *inode, void *data)
  38. {
  39. struct f2fs_iget_args *args = data;
  40. if (inode->i_ino != args->ino)
  41. return 0;
  42. if (inode->i_state & (I_FREEING | I_WILL_FREE)) {
  43. args->on_free = 1;
  44. return 0;
  45. }
  46. return 1;
  47. }
  48. struct inode *f2fs_iget_nowait(struct super_block *sb, unsigned long ino)
  49. {
  50. struct f2fs_iget_args args = {
  51. .ino = ino,
  52. .on_free = 0
  53. };
  54. struct inode *inode = ilookup5(sb, ino, f2fs_iget_test, &args);
  55. if (inode)
  56. return inode;
  57. if (!args.on_free)
  58. return f2fs_iget(sb, ino);
  59. return ERR_PTR(-ENOENT);
  60. }
  61. static int do_read_inode(struct inode *inode)
  62. {
  63. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  64. struct f2fs_inode_info *fi = F2FS_I(inode);
  65. struct page *node_page;
  66. struct f2fs_node *rn;
  67. struct f2fs_inode *ri;
  68. /* Check if ino is within scope */
  69. check_nid_range(sbi, inode->i_ino);
  70. node_page = get_node_page(sbi, inode->i_ino);
  71. if (IS_ERR(node_page))
  72. return PTR_ERR(node_page);
  73. rn = page_address(node_page);
  74. ri = &(rn->i);
  75. inode->i_mode = le16_to_cpu(ri->i_mode);
  76. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  77. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  78. set_nlink(inode, le32_to_cpu(ri->i_links));
  79. inode->i_size = le64_to_cpu(ri->i_size);
  80. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  81. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  82. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  83. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  84. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  85. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  86. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  87. inode->i_generation = le32_to_cpu(ri->i_generation);
  88. if (ri->i_addr[0])
  89. inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  90. else
  91. inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  92. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  93. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  94. fi->i_flags = le32_to_cpu(ri->i_flags);
  95. fi->flags = 0;
  96. fi->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver) - 1;
  97. fi->i_advise = ri->i_advise;
  98. fi->i_pino = le32_to_cpu(ri->i_pino);
  99. get_extent_info(&fi->ext, ri->i_ext);
  100. f2fs_put_page(node_page, 1);
  101. return 0;
  102. }
  103. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  104. {
  105. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  106. struct inode *inode;
  107. int ret;
  108. inode = iget_locked(sb, ino);
  109. if (!inode)
  110. return ERR_PTR(-ENOMEM);
  111. if (!(inode->i_state & I_NEW))
  112. return inode;
  113. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  114. goto make_now;
  115. ret = do_read_inode(inode);
  116. if (ret)
  117. goto bad_inode;
  118. if (!sbi->por_doing && inode->i_nlink == 0) {
  119. ret = -ENOENT;
  120. goto bad_inode;
  121. }
  122. make_now:
  123. if (ino == F2FS_NODE_INO(sbi)) {
  124. inode->i_mapping->a_ops = &f2fs_node_aops;
  125. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  126. } else if (ino == F2FS_META_INO(sbi)) {
  127. inode->i_mapping->a_ops = &f2fs_meta_aops;
  128. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  129. } else if (S_ISREG(inode->i_mode)) {
  130. inode->i_op = &f2fs_file_inode_operations;
  131. inode->i_fop = &f2fs_file_operations;
  132. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  133. } else if (S_ISDIR(inode->i_mode)) {
  134. inode->i_op = &f2fs_dir_inode_operations;
  135. inode->i_fop = &f2fs_dir_operations;
  136. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  137. mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
  138. __GFP_ZERO);
  139. } else if (S_ISLNK(inode->i_mode)) {
  140. inode->i_op = &f2fs_symlink_inode_operations;
  141. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  142. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  143. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  144. inode->i_op = &f2fs_special_inode_operations;
  145. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  146. } else {
  147. ret = -EIO;
  148. goto bad_inode;
  149. }
  150. unlock_new_inode(inode);
  151. return inode;
  152. bad_inode:
  153. iget_failed(inode);
  154. return ERR_PTR(ret);
  155. }
  156. void update_inode(struct inode *inode, struct page *node_page)
  157. {
  158. struct f2fs_node *rn;
  159. struct f2fs_inode *ri;
  160. wait_on_page_writeback(node_page);
  161. rn = page_address(node_page);
  162. ri = &(rn->i);
  163. ri->i_mode = cpu_to_le16(inode->i_mode);
  164. ri->i_advise = F2FS_I(inode)->i_advise;
  165. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  166. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  167. ri->i_links = cpu_to_le32(inode->i_nlink);
  168. ri->i_size = cpu_to_le64(i_size_read(inode));
  169. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  170. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  171. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  172. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  173. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  174. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  175. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  176. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  177. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  178. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  179. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  180. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  181. ri->i_generation = cpu_to_le32(inode->i_generation);
  182. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  183. if (old_valid_dev(inode->i_rdev)) {
  184. ri->i_addr[0] =
  185. cpu_to_le32(old_encode_dev(inode->i_rdev));
  186. ri->i_addr[1] = 0;
  187. } else {
  188. ri->i_addr[0] = 0;
  189. ri->i_addr[1] =
  190. cpu_to_le32(new_encode_dev(inode->i_rdev));
  191. ri->i_addr[2] = 0;
  192. }
  193. }
  194. set_cold_node(inode, node_page);
  195. set_page_dirty(node_page);
  196. }
  197. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  198. {
  199. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  200. struct page *node_page;
  201. bool need_lock = false;
  202. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  203. inode->i_ino == F2FS_META_INO(sbi))
  204. return 0;
  205. if (wbc)
  206. f2fs_balance_fs(sbi);
  207. node_page = get_node_page(sbi, inode->i_ino);
  208. if (IS_ERR(node_page))
  209. return PTR_ERR(node_page);
  210. if (!PageDirty(node_page)) {
  211. need_lock = true;
  212. f2fs_put_page(node_page, 1);
  213. mutex_lock(&sbi->write_inode);
  214. node_page = get_node_page(sbi, inode->i_ino);
  215. if (IS_ERR(node_page)) {
  216. mutex_unlock(&sbi->write_inode);
  217. return PTR_ERR(node_page);
  218. }
  219. }
  220. update_inode(inode, node_page);
  221. f2fs_put_page(node_page, 1);
  222. if (need_lock)
  223. mutex_unlock(&sbi->write_inode);
  224. return 0;
  225. }
  226. /*
  227. * Called at the last iput() if i_nlink is zero
  228. */
  229. void f2fs_evict_inode(struct inode *inode)
  230. {
  231. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  232. truncate_inode_pages(&inode->i_data, 0);
  233. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  234. inode->i_ino == F2FS_META_INO(sbi))
  235. goto no_delete;
  236. BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
  237. remove_dirty_dir_inode(inode);
  238. if (inode->i_nlink || is_bad_inode(inode))
  239. goto no_delete;
  240. sb_start_intwrite(inode->i_sb);
  241. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  242. i_size_write(inode, 0);
  243. if (F2FS_HAS_BLOCKS(inode))
  244. f2fs_truncate(inode);
  245. remove_inode_page(inode);
  246. sb_end_intwrite(inode->i_sb);
  247. no_delete:
  248. clear_inode(inode);
  249. }