urb.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include "hcd.h"
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. spin_lock_init(&urb->lock);
  38. INIT_LIST_HEAD(&urb->anchor_list);
  39. }
  40. }
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, incrementes the usage counter, and returns a pointer to it.
  49. *
  50. * If no memory is available, NULL is returned.
  51. *
  52. * If the driver want to use this urb for interrupt, control, or bulk
  53. * endpoints, pass '0' as the number of iso packets.
  54. *
  55. * The driver must call usb_free_urb() when it is finished with the urb.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb) {
  64. err("alloc_urb: kmalloc failed");
  65. return NULL;
  66. }
  67. usb_init_urb(urb);
  68. return urb;
  69. }
  70. /**
  71. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  72. * @urb: pointer to the urb to free, may be NULL
  73. *
  74. * Must be called when a user of a urb is finished with it. When the last user
  75. * of the urb calls this function, the memory of the urb is freed.
  76. *
  77. * Note: The transfer buffer associated with the urb is not freed, that must be
  78. * done elsewhere.
  79. */
  80. void usb_free_urb(struct urb *urb)
  81. {
  82. if (urb)
  83. kref_put(&urb->kref, urb_destroy);
  84. }
  85. /**
  86. * usb_get_urb - increments the reference count of the urb
  87. * @urb: pointer to the urb to modify, may be NULL
  88. *
  89. * This must be called whenever a urb is transferred from a device driver to a
  90. * host controller driver. This allows proper reference counting to happen
  91. * for urbs.
  92. *
  93. * A pointer to the urb with the incremented reference counter is returned.
  94. */
  95. struct urb * usb_get_urb(struct urb *urb)
  96. {
  97. if (urb)
  98. kref_get(&urb->kref);
  99. return urb;
  100. }
  101. /**
  102. * usb_anchor_urb - anchors an URB while it is processed
  103. * @urb: pointer to the urb to anchor
  104. * @anchor: pointer to the anchor
  105. *
  106. * This can be called to have access to URBs which are to be executed
  107. * without bothering to track them
  108. */
  109. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  110. {
  111. unsigned long flags;
  112. spin_lock_irqsave(&anchor->lock, flags);
  113. usb_get_urb(urb);
  114. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  115. urb->anchor = anchor;
  116. spin_unlock_irqrestore(&anchor->lock, flags);
  117. }
  118. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  119. /**
  120. * usb_unanchor_urb - unanchors an URB
  121. * @urb: pointer to the urb to anchor
  122. *
  123. * Call this to stop the system keeping track of this URB
  124. */
  125. void usb_unanchor_urb(struct urb *urb)
  126. {
  127. unsigned long flags;
  128. struct usb_anchor *anchor;
  129. if (!urb)
  130. return;
  131. anchor = urb->anchor;
  132. if (!anchor)
  133. return;
  134. spin_lock_irqsave(&anchor->lock, flags);
  135. if (unlikely(anchor != urb->anchor)) {
  136. /* we've lost the race to another thread */
  137. spin_unlock_irqrestore(&anchor->lock, flags);
  138. return;
  139. }
  140. urb->anchor = NULL;
  141. list_del(&urb->anchor_list);
  142. spin_unlock_irqrestore(&anchor->lock, flags);
  143. usb_put_urb(urb);
  144. if (list_empty(&anchor->urb_list))
  145. wake_up(&anchor->wait);
  146. }
  147. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  148. /*-------------------------------------------------------------------*/
  149. /**
  150. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  151. * @urb: pointer to the urb describing the request
  152. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  153. * of valid options for this.
  154. *
  155. * This submits a transfer request, and transfers control of the URB
  156. * describing that request to the USB subsystem. Request completion will
  157. * be indicated later, asynchronously, by calling the completion handler.
  158. * The three types of completion are success, error, and unlink
  159. * (a software-induced fault, also called "request cancellation").
  160. *
  161. * URBs may be submitted in interrupt context.
  162. *
  163. * The caller must have correctly initialized the URB before submitting
  164. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  165. * available to ensure that most fields are correctly initialized, for
  166. * the particular kind of transfer, although they will not initialize
  167. * any transfer flags.
  168. *
  169. * Successful submissions return 0; otherwise this routine returns a
  170. * negative error number. If the submission is successful, the complete()
  171. * callback from the URB will be called exactly once, when the USB core and
  172. * Host Controller Driver (HCD) are finished with the URB. When the completion
  173. * function is called, control of the URB is returned to the device
  174. * driver which issued the request. The completion handler may then
  175. * immediately free or reuse that URB.
  176. *
  177. * With few exceptions, USB device drivers should never access URB fields
  178. * provided by usbcore or the HCD until its complete() is called.
  179. * The exceptions relate to periodic transfer scheduling. For both
  180. * interrupt and isochronous urbs, as part of successful URB submission
  181. * urb->interval is modified to reflect the actual transfer period used
  182. * (normally some power of two units). And for isochronous urbs,
  183. * urb->start_frame is modified to reflect when the URB's transfers were
  184. * scheduled to start. Not all isochronous transfer scheduling policies
  185. * will work, but most host controller drivers should easily handle ISO
  186. * queues going from now until 10-200 msec into the future.
  187. *
  188. * For control endpoints, the synchronous usb_control_msg() call is
  189. * often used (in non-interrupt context) instead of this call.
  190. * That is often used through convenience wrappers, for the requests
  191. * that are standardized in the USB 2.0 specification. For bulk
  192. * endpoints, a synchronous usb_bulk_msg() call is available.
  193. *
  194. * Request Queuing:
  195. *
  196. * URBs may be submitted to endpoints before previous ones complete, to
  197. * minimize the impact of interrupt latencies and system overhead on data
  198. * throughput. With that queuing policy, an endpoint's queue would never
  199. * be empty. This is required for continuous isochronous data streams,
  200. * and may also be required for some kinds of interrupt transfers. Such
  201. * queuing also maximizes bandwidth utilization by letting USB controllers
  202. * start work on later requests before driver software has finished the
  203. * completion processing for earlier (successful) requests.
  204. *
  205. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  206. * than one. This was previously a HCD-specific behavior, except for ISO
  207. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  208. * after faults (transfer errors or cancellation).
  209. *
  210. * Reserved Bandwidth Transfers:
  211. *
  212. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  213. * using the interval specified in the urb. Submitting the first urb to
  214. * the endpoint reserves the bandwidth necessary to make those transfers.
  215. * If the USB subsystem can't allocate sufficient bandwidth to perform
  216. * the periodic request, submitting such a periodic request should fail.
  217. *
  218. * Device drivers must explicitly request that repetition, by ensuring that
  219. * some URB is always on the endpoint's queue (except possibly for short
  220. * periods during completion callacks). When there is no longer an urb
  221. * queued, the endpoint's bandwidth reservation is canceled. This means
  222. * drivers can use their completion handlers to ensure they keep bandwidth
  223. * they need, by reinitializing and resubmitting the just-completed urb
  224. * until the driver longer needs that periodic bandwidth.
  225. *
  226. * Memory Flags:
  227. *
  228. * The general rules for how to decide which mem_flags to use
  229. * are the same as for kmalloc. There are four
  230. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  231. * GFP_ATOMIC.
  232. *
  233. * GFP_NOFS is not ever used, as it has not been implemented yet.
  234. *
  235. * GFP_ATOMIC is used when
  236. * (a) you are inside a completion handler, an interrupt, bottom half,
  237. * tasklet or timer, or
  238. * (b) you are holding a spinlock or rwlock (does not apply to
  239. * semaphores), or
  240. * (c) current->state != TASK_RUNNING, this is the case only after
  241. * you've changed it.
  242. *
  243. * GFP_NOIO is used in the block io path and error handling of storage
  244. * devices.
  245. *
  246. * All other situations use GFP_KERNEL.
  247. *
  248. * Some more specific rules for mem_flags can be inferred, such as
  249. * (1) start_xmit, timeout, and receive methods of network drivers must
  250. * use GFP_ATOMIC (they are called with a spinlock held);
  251. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  252. * called with a spinlock held);
  253. * (3) If you use a kernel thread with a network driver you must use
  254. * GFP_NOIO, unless (b) or (c) apply;
  255. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  256. * apply or your are in a storage driver's block io path;
  257. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  258. * (6) changing firmware on a running storage or net device uses
  259. * GFP_NOIO, unless b) or c) apply
  260. *
  261. */
  262. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  263. {
  264. int xfertype, max;
  265. struct usb_device *dev;
  266. struct usb_host_endpoint *ep;
  267. int is_out;
  268. if (!urb || urb->hcpriv || !urb->complete)
  269. return -EINVAL;
  270. if (!(dev = urb->dev) || dev->state < USB_STATE_DEFAULT)
  271. return -ENODEV;
  272. if (dev->bus->controller->power.power_state.event != PM_EVENT_ON
  273. || dev->state == USB_STATE_SUSPENDED)
  274. return -EHOSTUNREACH;
  275. /* For now, get the endpoint from the pipe. Eventually drivers
  276. * will be required to set urb->ep directly and we will eliminate
  277. * urb->pipe.
  278. */
  279. ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
  280. [usb_pipeendpoint(urb->pipe)];
  281. if (!ep)
  282. return -ENOENT;
  283. urb->ep = ep;
  284. urb->status = -EINPROGRESS;
  285. urb->actual_length = 0;
  286. /* Lots of sanity checks, so HCDs can rely on clean data
  287. * and don't need to duplicate tests
  288. */
  289. xfertype = usb_endpoint_type(&ep->desc);
  290. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  291. struct usb_ctrlrequest *setup =
  292. (struct usb_ctrlrequest *) urb->setup_packet;
  293. if (!setup)
  294. return -ENOEXEC;
  295. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  296. !setup->wLength;
  297. } else {
  298. is_out = usb_endpoint_dir_out(&ep->desc);
  299. }
  300. /* Cache the direction for later use */
  301. urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
  302. (is_out ? URB_DIR_OUT : URB_DIR_IN);
  303. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  304. dev->state < USB_STATE_CONFIGURED)
  305. return -ENODEV;
  306. max = le16_to_cpu(ep->desc.wMaxPacketSize);
  307. if (max <= 0) {
  308. dev_dbg(&dev->dev,
  309. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  310. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  311. __FUNCTION__, max);
  312. return -EMSGSIZE;
  313. }
  314. /* periodic transfers limit size per frame/uframe,
  315. * but drivers only control those sizes for ISO.
  316. * while we're checking, initialize return status.
  317. */
  318. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  319. int n, len;
  320. /* "high bandwidth" mode, 1-3 packets/uframe? */
  321. if (dev->speed == USB_SPEED_HIGH) {
  322. int mult = 1 + ((max >> 11) & 0x03);
  323. max &= 0x07ff;
  324. max *= mult;
  325. }
  326. if (urb->number_of_packets <= 0)
  327. return -EINVAL;
  328. for (n = 0; n < urb->number_of_packets; n++) {
  329. len = urb->iso_frame_desc[n].length;
  330. if (len < 0 || len > max)
  331. return -EMSGSIZE;
  332. urb->iso_frame_desc[n].status = -EXDEV;
  333. urb->iso_frame_desc[n].actual_length = 0;
  334. }
  335. }
  336. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  337. if (urb->transfer_buffer_length < 0)
  338. return -EMSGSIZE;
  339. #ifdef DEBUG
  340. /* stuff that drivers shouldn't do, but which shouldn't
  341. * cause problems in HCDs if they get it wrong.
  342. */
  343. {
  344. unsigned int orig_flags = urb->transfer_flags;
  345. unsigned int allowed;
  346. /* enforce simple/standard policy */
  347. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  348. URB_NO_INTERRUPT | URB_DIR_MASK);
  349. switch (xfertype) {
  350. case USB_ENDPOINT_XFER_BULK:
  351. if (is_out)
  352. allowed |= URB_ZERO_PACKET;
  353. /* FALLTHROUGH */
  354. case USB_ENDPOINT_XFER_CONTROL:
  355. allowed |= URB_NO_FSBR; /* only affects UHCI */
  356. /* FALLTHROUGH */
  357. default: /* all non-iso endpoints */
  358. if (!is_out)
  359. allowed |= URB_SHORT_NOT_OK;
  360. break;
  361. case USB_ENDPOINT_XFER_ISOC:
  362. allowed |= URB_ISO_ASAP;
  363. break;
  364. }
  365. urb->transfer_flags &= allowed;
  366. /* fail if submitter gave bogus flags */
  367. if (urb->transfer_flags != orig_flags) {
  368. err("BOGUS urb flags, %x --> %x",
  369. orig_flags, urb->transfer_flags);
  370. return -EINVAL;
  371. }
  372. }
  373. #endif
  374. /*
  375. * Force periodic transfer intervals to be legal values that are
  376. * a power of two (so HCDs don't need to).
  377. *
  378. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  379. * supports different values... this uses EHCI/UHCI defaults (and
  380. * EHCI can use smaller non-default values).
  381. */
  382. switch (xfertype) {
  383. case USB_ENDPOINT_XFER_ISOC:
  384. case USB_ENDPOINT_XFER_INT:
  385. /* too small? */
  386. if (urb->interval <= 0)
  387. return -EINVAL;
  388. /* too big? */
  389. switch (dev->speed) {
  390. case USB_SPEED_HIGH: /* units are microframes */
  391. // NOTE usb handles 2^15
  392. if (urb->interval > (1024 * 8))
  393. urb->interval = 1024 * 8;
  394. max = 1024 * 8;
  395. break;
  396. case USB_SPEED_FULL: /* units are frames/msec */
  397. case USB_SPEED_LOW:
  398. if (xfertype == USB_ENDPOINT_XFER_INT) {
  399. if (urb->interval > 255)
  400. return -EINVAL;
  401. // NOTE ohci only handles up to 32
  402. max = 128;
  403. } else {
  404. if (urb->interval > 1024)
  405. urb->interval = 1024;
  406. // NOTE usb and ohci handle up to 2^15
  407. max = 1024;
  408. }
  409. break;
  410. default:
  411. return -EINVAL;
  412. }
  413. /* Round down to a power of 2, no more than max */
  414. urb->interval = min(max, 1 << ilog2(urb->interval));
  415. }
  416. return usb_hcd_submit_urb(urb, mem_flags);
  417. }
  418. /*-------------------------------------------------------------------*/
  419. /**
  420. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  421. * @urb: pointer to urb describing a previously submitted request,
  422. * may be NULL
  423. *
  424. * This routine cancels an in-progress request. URBs complete only once
  425. * per submission, and may be canceled only once per submission.
  426. * Successful cancellation means termination of @urb will be expedited
  427. * and the completion handler will be called with a status code
  428. * indicating that the request has been canceled (rather than any other
  429. * code).
  430. *
  431. * This request is always asynchronous. Success is indicated by
  432. * returning -EINPROGRESS, at which time the URB will probably not yet
  433. * have been given back to the device driver. When it is eventually
  434. * called, the completion function will see @urb->status == -ECONNRESET.
  435. * Failure is indicated by usb_unlink_urb() returning any other value.
  436. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  437. * never submitted, or it was unlinked before, or the hardware is already
  438. * finished with it), even if the completion handler has not yet run.
  439. *
  440. * Unlinking and Endpoint Queues:
  441. *
  442. * [The behaviors and guarantees described below do not apply to virtual
  443. * root hubs but only to endpoint queues for physical USB devices.]
  444. *
  445. * Host Controller Drivers (HCDs) place all the URBs for a particular
  446. * endpoint in a queue. Normally the queue advances as the controller
  447. * hardware processes each request. But when an URB terminates with an
  448. * error its queue generally stops (see below), at least until that URB's
  449. * completion routine returns. It is guaranteed that a stopped queue
  450. * will not restart until all its unlinked URBs have been fully retired,
  451. * with their completion routines run, even if that's not until some time
  452. * after the original completion handler returns. The same behavior and
  453. * guarantee apply when an URB terminates because it was unlinked.
  454. *
  455. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  456. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  457. * and -EREMOTEIO. Control endpoint queues behave the same way except
  458. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  459. * for isochronous endpoints are treated differently, because they must
  460. * advance at fixed rates. Such queues do not stop when an URB
  461. * encounters an error or is unlinked. An unlinked isochronous URB may
  462. * leave a gap in the stream of packets; it is undefined whether such
  463. * gaps can be filled in.
  464. *
  465. * Note that early termination of an URB because a short packet was
  466. * received will generate a -EREMOTEIO error if and only if the
  467. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  468. * drivers can build deep queues for large or complex bulk transfers
  469. * and clean them up reliably after any sort of aborted transfer by
  470. * unlinking all pending URBs at the first fault.
  471. *
  472. * When a control URB terminates with an error other than -EREMOTEIO, it
  473. * is quite likely that the status stage of the transfer will not take
  474. * place.
  475. */
  476. int usb_unlink_urb(struct urb *urb)
  477. {
  478. if (!urb)
  479. return -EINVAL;
  480. if (!urb->dev)
  481. return -ENODEV;
  482. if (!urb->ep)
  483. return -EIDRM;
  484. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  485. }
  486. /**
  487. * usb_kill_urb - cancel a transfer request and wait for it to finish
  488. * @urb: pointer to URB describing a previously submitted request,
  489. * may be NULL
  490. *
  491. * This routine cancels an in-progress request. It is guaranteed that
  492. * upon return all completion handlers will have finished and the URB
  493. * will be totally idle and available for reuse. These features make
  494. * this an ideal way to stop I/O in a disconnect() callback or close()
  495. * function. If the request has not already finished or been unlinked
  496. * the completion handler will see urb->status == -ENOENT.
  497. *
  498. * While the routine is running, attempts to resubmit the URB will fail
  499. * with error -EPERM. Thus even if the URB's completion handler always
  500. * tries to resubmit, it will not succeed and the URB will become idle.
  501. *
  502. * This routine may not be used in an interrupt context (such as a bottom
  503. * half or a completion handler), or when holding a spinlock, or in other
  504. * situations where the caller can't schedule().
  505. */
  506. void usb_kill_urb(struct urb *urb)
  507. {
  508. might_sleep();
  509. if (!(urb && urb->dev && urb->ep))
  510. return;
  511. spin_lock_irq(&urb->lock);
  512. ++urb->reject;
  513. spin_unlock_irq(&urb->lock);
  514. usb_hcd_unlink_urb(urb, -ENOENT);
  515. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  516. spin_lock_irq(&urb->lock);
  517. --urb->reject;
  518. spin_unlock_irq(&urb->lock);
  519. }
  520. /**
  521. * usb_kill_anchored_urbs - cancel transfer requests en masse
  522. * @anchor: anchor the requests are bound to
  523. *
  524. * this allows all outstanding URBs to be killed starting
  525. * from the back of the queue
  526. */
  527. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  528. {
  529. struct urb *victim;
  530. spin_lock_irq(&anchor->lock);
  531. while (!list_empty(&anchor->urb_list)) {
  532. victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list);
  533. /* we must make sure the URB isn't freed before we kill it*/
  534. usb_get_urb(victim);
  535. spin_unlock_irq(&anchor->lock);
  536. /* this will unanchor the URB */
  537. usb_kill_urb(victim);
  538. usb_put_urb(victim);
  539. spin_lock_irq(&anchor->lock);
  540. }
  541. spin_unlock_irq(&anchor->lock);
  542. }
  543. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  544. /**
  545. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  546. * @anchor: the anchor you want to become unused
  547. * @timeout: how long you are willing to wait in milliseconds
  548. *
  549. * Call this is you want to be sure all an anchor's
  550. * URBs have finished
  551. */
  552. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  553. unsigned int timeout)
  554. {
  555. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  556. msecs_to_jiffies(timeout));
  557. }
  558. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  559. EXPORT_SYMBOL(usb_init_urb);
  560. EXPORT_SYMBOL(usb_alloc_urb);
  561. EXPORT_SYMBOL(usb_free_urb);
  562. EXPORT_SYMBOL(usb_get_urb);
  563. EXPORT_SYMBOL(usb_submit_urb);
  564. EXPORT_SYMBOL(usb_unlink_urb);
  565. EXPORT_SYMBOL(usb_kill_urb);