ieee80211_crypt_tkip.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
  3. *
  4. * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation. See README and COPYING for
  9. * more details.
  10. */
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include <linux/skbuff.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/if_ether.h>
  19. #include <linux/if_arp.h>
  20. #include <asm/string.h>
  21. #include <net/ieee80211.h>
  22. #include <linux/crypto.h>
  23. #include <asm/scatterlist.h>
  24. #include <linux/crc32.h>
  25. MODULE_AUTHOR("Jouni Malinen");
  26. MODULE_DESCRIPTION("Host AP crypt: TKIP");
  27. MODULE_LICENSE("GPL");
  28. struct ieee80211_tkip_data {
  29. #define TKIP_KEY_LEN 32
  30. u8 key[TKIP_KEY_LEN];
  31. int key_set;
  32. u32 tx_iv32;
  33. u16 tx_iv16;
  34. u16 tx_ttak[5];
  35. int tx_phase1_done;
  36. u32 rx_iv32;
  37. u16 rx_iv16;
  38. u16 rx_ttak[5];
  39. int rx_phase1_done;
  40. u32 rx_iv32_new;
  41. u16 rx_iv16_new;
  42. u32 dot11RSNAStatsTKIPReplays;
  43. u32 dot11RSNAStatsTKIPICVErrors;
  44. u32 dot11RSNAStatsTKIPLocalMICFailures;
  45. int key_idx;
  46. struct crypto_blkcipher *tfm_arc4;
  47. struct crypto_hash *tfm_michael;
  48. /* scratch buffers for virt_to_page() (crypto API) */
  49. u8 rx_hdr[16], tx_hdr[16];
  50. unsigned long flags;
  51. };
  52. static unsigned long ieee80211_tkip_set_flags(unsigned long flags, void *priv)
  53. {
  54. struct ieee80211_tkip_data *_priv = priv;
  55. unsigned long old_flags = _priv->flags;
  56. _priv->flags = flags;
  57. return old_flags;
  58. }
  59. static unsigned long ieee80211_tkip_get_flags(void *priv)
  60. {
  61. struct ieee80211_tkip_data *_priv = priv;
  62. return _priv->flags;
  63. }
  64. static void *ieee80211_tkip_init(int key_idx)
  65. {
  66. struct ieee80211_tkip_data *priv;
  67. priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
  68. if (priv == NULL)
  69. goto fail;
  70. priv->key_idx = key_idx;
  71. priv->tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
  72. CRYPTO_ALG_ASYNC);
  73. if (IS_ERR(priv->tfm_arc4)) {
  74. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  75. "crypto API arc4\n");
  76. priv->tfm_arc4 = NULL;
  77. goto fail;
  78. }
  79. priv->tfm_michael = crypto_alloc_hash("michael_mic", 0,
  80. CRYPTO_ALG_ASYNC);
  81. if (IS_ERR(priv->tfm_michael)) {
  82. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  83. "crypto API michael_mic\n");
  84. priv->tfm_michael = NULL;
  85. goto fail;
  86. }
  87. return priv;
  88. fail:
  89. if (priv) {
  90. if (priv->tfm_michael)
  91. crypto_free_hash(priv->tfm_michael);
  92. if (priv->tfm_arc4)
  93. crypto_free_blkcipher(priv->tfm_arc4);
  94. kfree(priv);
  95. }
  96. return NULL;
  97. }
  98. static void ieee80211_tkip_deinit(void *priv)
  99. {
  100. struct ieee80211_tkip_data *_priv = priv;
  101. if (_priv && _priv->tfm_michael)
  102. crypto_free_hash(_priv->tfm_michael);
  103. if (_priv && _priv->tfm_arc4)
  104. crypto_free_blkcipher(_priv->tfm_arc4);
  105. kfree(priv);
  106. }
  107. static inline u16 RotR1(u16 val)
  108. {
  109. return (val >> 1) | (val << 15);
  110. }
  111. static inline u8 Lo8(u16 val)
  112. {
  113. return val & 0xff;
  114. }
  115. static inline u8 Hi8(u16 val)
  116. {
  117. return val >> 8;
  118. }
  119. static inline u16 Lo16(u32 val)
  120. {
  121. return val & 0xffff;
  122. }
  123. static inline u16 Hi16(u32 val)
  124. {
  125. return val >> 16;
  126. }
  127. static inline u16 Mk16(u8 hi, u8 lo)
  128. {
  129. return lo | (((u16) hi) << 8);
  130. }
  131. static inline u16 Mk16_le(u16 * v)
  132. {
  133. return le16_to_cpu(*v);
  134. }
  135. static const u16 Sbox[256] = {
  136. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  137. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  138. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  139. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  140. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  141. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  142. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  143. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  144. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  145. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  146. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  147. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  148. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  149. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  150. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  151. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  152. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  153. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  154. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  155. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  156. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  157. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  158. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  159. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  160. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  161. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  162. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  163. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  164. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  165. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  166. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  167. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  168. };
  169. static inline u16 _S_(u16 v)
  170. {
  171. u16 t = Sbox[Hi8(v)];
  172. return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  173. }
  174. #define PHASE1_LOOP_COUNT 8
  175. static void tkip_mixing_phase1(u16 * TTAK, const u8 * TK, const u8 * TA,
  176. u32 IV32)
  177. {
  178. int i, j;
  179. /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  180. TTAK[0] = Lo16(IV32);
  181. TTAK[1] = Hi16(IV32);
  182. TTAK[2] = Mk16(TA[1], TA[0]);
  183. TTAK[3] = Mk16(TA[3], TA[2]);
  184. TTAK[4] = Mk16(TA[5], TA[4]);
  185. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  186. j = 2 * (i & 1);
  187. TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  188. TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  189. TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  190. TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  191. TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  192. }
  193. }
  194. static void tkip_mixing_phase2(u8 * WEPSeed, const u8 * TK, const u16 * TTAK,
  195. u16 IV16)
  196. {
  197. /* Make temporary area overlap WEP seed so that the final copy can be
  198. * avoided on little endian hosts. */
  199. u16 *PPK = (u16 *) & WEPSeed[4];
  200. /* Step 1 - make copy of TTAK and bring in TSC */
  201. PPK[0] = TTAK[0];
  202. PPK[1] = TTAK[1];
  203. PPK[2] = TTAK[2];
  204. PPK[3] = TTAK[3];
  205. PPK[4] = TTAK[4];
  206. PPK[5] = TTAK[4] + IV16;
  207. /* Step 2 - 96-bit bijective mixing using S-box */
  208. PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) & TK[0]));
  209. PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) & TK[2]));
  210. PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) & TK[4]));
  211. PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) & TK[6]));
  212. PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) & TK[8]));
  213. PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) & TK[10]));
  214. PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) & TK[12]));
  215. PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) & TK[14]));
  216. PPK[2] += RotR1(PPK[1]);
  217. PPK[3] += RotR1(PPK[2]);
  218. PPK[4] += RotR1(PPK[3]);
  219. PPK[5] += RotR1(PPK[4]);
  220. /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  221. * WEPSeed[0..2] is transmitted as WEP IV */
  222. WEPSeed[0] = Hi8(IV16);
  223. WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  224. WEPSeed[2] = Lo8(IV16);
  225. WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) & TK[0])) >> 1);
  226. #ifdef __BIG_ENDIAN
  227. {
  228. int i;
  229. for (i = 0; i < 6; i++)
  230. PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
  231. }
  232. #endif
  233. }
  234. static int ieee80211_tkip_hdr(struct sk_buff *skb, int hdr_len,
  235. u8 * rc4key, int keylen, void *priv)
  236. {
  237. struct ieee80211_tkip_data *tkey = priv;
  238. int len;
  239. u8 *pos;
  240. struct ieee80211_hdr_4addr *hdr;
  241. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  242. if (skb_headroom(skb) < 8 || skb->len < hdr_len)
  243. return -1;
  244. if (rc4key == NULL || keylen < 16)
  245. return -1;
  246. if (!tkey->tx_phase1_done) {
  247. tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
  248. tkey->tx_iv32);
  249. tkey->tx_phase1_done = 1;
  250. }
  251. tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16);
  252. len = skb->len - hdr_len;
  253. pos = skb_push(skb, 8);
  254. memmove(pos, pos + 8, hdr_len);
  255. pos += hdr_len;
  256. *pos++ = *rc4key;
  257. *pos++ = *(rc4key + 1);
  258. *pos++ = *(rc4key + 2);
  259. *pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */ ;
  260. *pos++ = tkey->tx_iv32 & 0xff;
  261. *pos++ = (tkey->tx_iv32 >> 8) & 0xff;
  262. *pos++ = (tkey->tx_iv32 >> 16) & 0xff;
  263. *pos++ = (tkey->tx_iv32 >> 24) & 0xff;
  264. tkey->tx_iv16++;
  265. if (tkey->tx_iv16 == 0) {
  266. tkey->tx_phase1_done = 0;
  267. tkey->tx_iv32++;
  268. }
  269. return 8;
  270. }
  271. static int ieee80211_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
  272. {
  273. struct ieee80211_tkip_data *tkey = priv;
  274. struct blkcipher_desc desc = { .tfm = tkey->tfm_arc4 };
  275. int len;
  276. u8 rc4key[16], *pos, *icv;
  277. u32 crc;
  278. struct scatterlist sg;
  279. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  280. if (net_ratelimit()) {
  281. struct ieee80211_hdr_4addr *hdr =
  282. (struct ieee80211_hdr_4addr *)skb->data;
  283. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  284. "TX packet to " MAC_FMT "\n",
  285. MAC_ARG(hdr->addr1));
  286. }
  287. return -1;
  288. }
  289. if (skb_tailroom(skb) < 4 || skb->len < hdr_len)
  290. return -1;
  291. len = skb->len - hdr_len;
  292. pos = skb->data + hdr_len;
  293. if ((ieee80211_tkip_hdr(skb, hdr_len, rc4key, 16, priv)) < 0)
  294. return -1;
  295. icv = skb_put(skb, 4);
  296. crc = ~crc32_le(~0, pos, len);
  297. icv[0] = crc;
  298. icv[1] = crc >> 8;
  299. icv[2] = crc >> 16;
  300. icv[3] = crc >> 24;
  301. crypto_blkcipher_setkey(tkey->tfm_arc4, rc4key, 16);
  302. sg.page = virt_to_page(pos);
  303. sg.offset = offset_in_page(pos);
  304. sg.length = len + 4;
  305. return crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
  306. }
  307. static int ieee80211_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
  308. {
  309. struct ieee80211_tkip_data *tkey = priv;
  310. struct blkcipher_desc desc = { .tfm = tkey->tfm_arc4 };
  311. u8 rc4key[16];
  312. u8 keyidx, *pos;
  313. u32 iv32;
  314. u16 iv16;
  315. struct ieee80211_hdr_4addr *hdr;
  316. u8 icv[4];
  317. u32 crc;
  318. struct scatterlist sg;
  319. int plen;
  320. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  321. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  322. if (net_ratelimit()) {
  323. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  324. "received packet from " MAC_FMT "\n",
  325. MAC_ARG(hdr->addr2));
  326. }
  327. return -1;
  328. }
  329. if (skb->len < hdr_len + 8 + 4)
  330. return -1;
  331. pos = skb->data + hdr_len;
  332. keyidx = pos[3];
  333. if (!(keyidx & (1 << 5))) {
  334. if (net_ratelimit()) {
  335. printk(KERN_DEBUG "TKIP: received packet without ExtIV"
  336. " flag from " MAC_FMT "\n", MAC_ARG(hdr->addr2));
  337. }
  338. return -2;
  339. }
  340. keyidx >>= 6;
  341. if (tkey->key_idx != keyidx) {
  342. printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
  343. "keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
  344. return -6;
  345. }
  346. if (!tkey->key_set) {
  347. if (net_ratelimit()) {
  348. printk(KERN_DEBUG "TKIP: received packet from " MAC_FMT
  349. " with keyid=%d that does not have a configured"
  350. " key\n", MAC_ARG(hdr->addr2), keyidx);
  351. }
  352. return -3;
  353. }
  354. iv16 = (pos[0] << 8) | pos[2];
  355. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  356. pos += 8;
  357. if (iv32 < tkey->rx_iv32 ||
  358. (iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16)) {
  359. if (net_ratelimit()) {
  360. printk(KERN_DEBUG "TKIP: replay detected: STA=" MAC_FMT
  361. " previous TSC %08x%04x received TSC "
  362. "%08x%04x\n", MAC_ARG(hdr->addr2),
  363. tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
  364. }
  365. tkey->dot11RSNAStatsTKIPReplays++;
  366. return -4;
  367. }
  368. if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
  369. tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32);
  370. tkey->rx_phase1_done = 1;
  371. }
  372. tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
  373. plen = skb->len - hdr_len - 12;
  374. crypto_blkcipher_setkey(tkey->tfm_arc4, rc4key, 16);
  375. sg.page = virt_to_page(pos);
  376. sg.offset = offset_in_page(pos);
  377. sg.length = plen + 4;
  378. if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4)) {
  379. if (net_ratelimit()) {
  380. printk(KERN_DEBUG ": TKIP: failed to decrypt "
  381. "received packet from " MAC_FMT "\n",
  382. MAC_ARG(hdr->addr2));
  383. }
  384. return -7;
  385. }
  386. crc = ~crc32_le(~0, pos, plen);
  387. icv[0] = crc;
  388. icv[1] = crc >> 8;
  389. icv[2] = crc >> 16;
  390. icv[3] = crc >> 24;
  391. if (memcmp(icv, pos + plen, 4) != 0) {
  392. if (iv32 != tkey->rx_iv32) {
  393. /* Previously cached Phase1 result was already lost, so
  394. * it needs to be recalculated for the next packet. */
  395. tkey->rx_phase1_done = 0;
  396. }
  397. if (net_ratelimit()) {
  398. printk(KERN_DEBUG "TKIP: ICV error detected: STA="
  399. MAC_FMT "\n", MAC_ARG(hdr->addr2));
  400. }
  401. tkey->dot11RSNAStatsTKIPICVErrors++;
  402. return -5;
  403. }
  404. /* Update real counters only after Michael MIC verification has
  405. * completed */
  406. tkey->rx_iv32_new = iv32;
  407. tkey->rx_iv16_new = iv16;
  408. /* Remove IV and ICV */
  409. memmove(skb->data + 8, skb->data, hdr_len);
  410. skb_pull(skb, 8);
  411. skb_trim(skb, skb->len - 4);
  412. return keyidx;
  413. }
  414. static int michael_mic(struct ieee80211_tkip_data *tkey, u8 * key, u8 * hdr,
  415. u8 * data, size_t data_len, u8 * mic)
  416. {
  417. struct hash_desc desc;
  418. struct scatterlist sg[2];
  419. if (tkey->tfm_michael == NULL) {
  420. printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
  421. return -1;
  422. }
  423. sg[0].page = virt_to_page(hdr);
  424. sg[0].offset = offset_in_page(hdr);
  425. sg[0].length = 16;
  426. sg[1].page = virt_to_page(data);
  427. sg[1].offset = offset_in_page(data);
  428. sg[1].length = data_len;
  429. if (crypto_hash_setkey(tkey->tfm_michael, key, 8))
  430. return -1;
  431. desc.tfm = tkey->tfm_michael;
  432. desc.flags = 0;
  433. return crypto_hash_digest(&desc, sg, data_len + 16, mic);
  434. }
  435. static void michael_mic_hdr(struct sk_buff *skb, u8 * hdr)
  436. {
  437. struct ieee80211_hdr_4addr *hdr11;
  438. u16 stype;
  439. hdr11 = (struct ieee80211_hdr_4addr *)skb->data;
  440. stype = WLAN_FC_GET_STYPE(le16_to_cpu(hdr11->frame_ctl));
  441. switch (le16_to_cpu(hdr11->frame_ctl) &
  442. (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
  443. case IEEE80211_FCTL_TODS:
  444. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  445. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  446. break;
  447. case IEEE80211_FCTL_FROMDS:
  448. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  449. memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
  450. break;
  451. case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
  452. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  453. memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
  454. break;
  455. case 0:
  456. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  457. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  458. break;
  459. }
  460. if (stype & IEEE80211_STYPE_QOS_DATA) {
  461. const struct ieee80211_hdr_3addrqos *qoshdr =
  462. (struct ieee80211_hdr_3addrqos *)skb->data;
  463. hdr[12] = le16_to_cpu(qoshdr->qos_ctl) & IEEE80211_QCTL_TID;
  464. } else
  465. hdr[12] = 0; /* priority */
  466. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  467. }
  468. static int ieee80211_michael_mic_add(struct sk_buff *skb, int hdr_len,
  469. void *priv)
  470. {
  471. struct ieee80211_tkip_data *tkey = priv;
  472. u8 *pos;
  473. if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
  474. printk(KERN_DEBUG "Invalid packet for Michael MIC add "
  475. "(tailroom=%d hdr_len=%d skb->len=%d)\n",
  476. skb_tailroom(skb), hdr_len, skb->len);
  477. return -1;
  478. }
  479. michael_mic_hdr(skb, tkey->tx_hdr);
  480. pos = skb_put(skb, 8);
  481. if (michael_mic(tkey, &tkey->key[16], tkey->tx_hdr,
  482. skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
  483. return -1;
  484. return 0;
  485. }
  486. static void ieee80211_michael_mic_failure(struct net_device *dev,
  487. struct ieee80211_hdr_4addr *hdr,
  488. int keyidx)
  489. {
  490. union iwreq_data wrqu;
  491. struct iw_michaelmicfailure ev;
  492. /* TODO: needed parameters: count, keyid, key type, TSC */
  493. memset(&ev, 0, sizeof(ev));
  494. ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
  495. if (hdr->addr1[0] & 0x01)
  496. ev.flags |= IW_MICFAILURE_GROUP;
  497. else
  498. ev.flags |= IW_MICFAILURE_PAIRWISE;
  499. ev.src_addr.sa_family = ARPHRD_ETHER;
  500. memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
  501. memset(&wrqu, 0, sizeof(wrqu));
  502. wrqu.data.length = sizeof(ev);
  503. wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
  504. }
  505. static int ieee80211_michael_mic_verify(struct sk_buff *skb, int keyidx,
  506. int hdr_len, void *priv)
  507. {
  508. struct ieee80211_tkip_data *tkey = priv;
  509. u8 mic[8];
  510. if (!tkey->key_set)
  511. return -1;
  512. michael_mic_hdr(skb, tkey->rx_hdr);
  513. if (michael_mic(tkey, &tkey->key[24], tkey->rx_hdr,
  514. skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
  515. return -1;
  516. if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) {
  517. struct ieee80211_hdr_4addr *hdr;
  518. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  519. printk(KERN_DEBUG "%s: Michael MIC verification failed for "
  520. "MSDU from " MAC_FMT " keyidx=%d\n",
  521. skb->dev ? skb->dev->name : "N/A", MAC_ARG(hdr->addr2),
  522. keyidx);
  523. if (skb->dev)
  524. ieee80211_michael_mic_failure(skb->dev, hdr, keyidx);
  525. tkey->dot11RSNAStatsTKIPLocalMICFailures++;
  526. return -1;
  527. }
  528. /* Update TSC counters for RX now that the packet verification has
  529. * completed. */
  530. tkey->rx_iv32 = tkey->rx_iv32_new;
  531. tkey->rx_iv16 = tkey->rx_iv16_new;
  532. skb_trim(skb, skb->len - 8);
  533. return 0;
  534. }
  535. static int ieee80211_tkip_set_key(void *key, int len, u8 * seq, void *priv)
  536. {
  537. struct ieee80211_tkip_data *tkey = priv;
  538. int keyidx;
  539. struct crypto_hash *tfm = tkey->tfm_michael;
  540. struct crypto_blkcipher *tfm2 = tkey->tfm_arc4;
  541. keyidx = tkey->key_idx;
  542. memset(tkey, 0, sizeof(*tkey));
  543. tkey->key_idx = keyidx;
  544. tkey->tfm_michael = tfm;
  545. tkey->tfm_arc4 = tfm2;
  546. if (len == TKIP_KEY_LEN) {
  547. memcpy(tkey->key, key, TKIP_KEY_LEN);
  548. tkey->key_set = 1;
  549. tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
  550. if (seq) {
  551. tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
  552. (seq[3] << 8) | seq[2];
  553. tkey->rx_iv16 = (seq[1] << 8) | seq[0];
  554. }
  555. } else if (len == 0)
  556. tkey->key_set = 0;
  557. else
  558. return -1;
  559. return 0;
  560. }
  561. static int ieee80211_tkip_get_key(void *key, int len, u8 * seq, void *priv)
  562. {
  563. struct ieee80211_tkip_data *tkey = priv;
  564. if (len < TKIP_KEY_LEN)
  565. return -1;
  566. if (!tkey->key_set)
  567. return 0;
  568. memcpy(key, tkey->key, TKIP_KEY_LEN);
  569. if (seq) {
  570. /* Return the sequence number of the last transmitted frame. */
  571. u16 iv16 = tkey->tx_iv16;
  572. u32 iv32 = tkey->tx_iv32;
  573. if (iv16 == 0)
  574. iv32--;
  575. iv16--;
  576. seq[0] = tkey->tx_iv16;
  577. seq[1] = tkey->tx_iv16 >> 8;
  578. seq[2] = tkey->tx_iv32;
  579. seq[3] = tkey->tx_iv32 >> 8;
  580. seq[4] = tkey->tx_iv32 >> 16;
  581. seq[5] = tkey->tx_iv32 >> 24;
  582. }
  583. return TKIP_KEY_LEN;
  584. }
  585. static char *ieee80211_tkip_print_stats(char *p, void *priv)
  586. {
  587. struct ieee80211_tkip_data *tkip = priv;
  588. p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
  589. "tx_pn=%02x%02x%02x%02x%02x%02x "
  590. "rx_pn=%02x%02x%02x%02x%02x%02x "
  591. "replays=%d icv_errors=%d local_mic_failures=%d\n",
  592. tkip->key_idx, tkip->key_set,
  593. (tkip->tx_iv32 >> 24) & 0xff,
  594. (tkip->tx_iv32 >> 16) & 0xff,
  595. (tkip->tx_iv32 >> 8) & 0xff,
  596. tkip->tx_iv32 & 0xff,
  597. (tkip->tx_iv16 >> 8) & 0xff,
  598. tkip->tx_iv16 & 0xff,
  599. (tkip->rx_iv32 >> 24) & 0xff,
  600. (tkip->rx_iv32 >> 16) & 0xff,
  601. (tkip->rx_iv32 >> 8) & 0xff,
  602. tkip->rx_iv32 & 0xff,
  603. (tkip->rx_iv16 >> 8) & 0xff,
  604. tkip->rx_iv16 & 0xff,
  605. tkip->dot11RSNAStatsTKIPReplays,
  606. tkip->dot11RSNAStatsTKIPICVErrors,
  607. tkip->dot11RSNAStatsTKIPLocalMICFailures);
  608. return p;
  609. }
  610. static struct ieee80211_crypto_ops ieee80211_crypt_tkip = {
  611. .name = "TKIP",
  612. .init = ieee80211_tkip_init,
  613. .deinit = ieee80211_tkip_deinit,
  614. .build_iv = ieee80211_tkip_hdr,
  615. .encrypt_mpdu = ieee80211_tkip_encrypt,
  616. .decrypt_mpdu = ieee80211_tkip_decrypt,
  617. .encrypt_msdu = ieee80211_michael_mic_add,
  618. .decrypt_msdu = ieee80211_michael_mic_verify,
  619. .set_key = ieee80211_tkip_set_key,
  620. .get_key = ieee80211_tkip_get_key,
  621. .print_stats = ieee80211_tkip_print_stats,
  622. .extra_mpdu_prefix_len = 4 + 4, /* IV + ExtIV */
  623. .extra_mpdu_postfix_len = 4, /* ICV */
  624. .extra_msdu_postfix_len = 8, /* MIC */
  625. .get_flags = ieee80211_tkip_get_flags,
  626. .set_flags = ieee80211_tkip_set_flags,
  627. .owner = THIS_MODULE,
  628. };
  629. static int __init ieee80211_crypto_tkip_init(void)
  630. {
  631. return ieee80211_register_crypto_ops(&ieee80211_crypt_tkip);
  632. }
  633. static void __exit ieee80211_crypto_tkip_exit(void)
  634. {
  635. ieee80211_unregister_crypto_ops(&ieee80211_crypt_tkip);
  636. }
  637. module_init(ieee80211_crypto_tkip_init);
  638. module_exit(ieee80211_crypto_tkip_exit);