ctree.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465
  1. #include <linux/module.h>
  2. #include "ctree.h"
  3. #include "disk-io.h"
  4. #include "transaction.h"
  5. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  6. *root, struct btrfs_path *path, int level);
  7. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  8. *root, struct btrfs_path *path, int data_size);
  9. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  10. *root, struct buffer_head *dst, struct buffer_head
  11. *src);
  12. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  13. btrfs_root *root, struct buffer_head *dst_buf,
  14. struct buffer_head *src_buf);
  15. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  16. struct btrfs_path *path, int level, int slot);
  17. inline void btrfs_init_path(struct btrfs_path *p)
  18. {
  19. memset(p, 0, sizeof(*p));
  20. }
  21. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  22. {
  23. int i;
  24. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  25. if (!p->nodes[i])
  26. break;
  27. btrfs_block_release(root, p->nodes[i]);
  28. }
  29. memset(p, 0, sizeof(*p));
  30. }
  31. static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  32. *root, struct buffer_head *buf, struct buffer_head
  33. *parent, int parent_slot, struct buffer_head
  34. **cow_ret)
  35. {
  36. struct buffer_head *cow;
  37. struct btrfs_node *cow_node;
  38. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  39. trans->transid) {
  40. *cow_ret = buf;
  41. return 0;
  42. }
  43. cow = btrfs_alloc_free_block(trans, root);
  44. cow_node = btrfs_buffer_node(cow);
  45. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  46. btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
  47. btrfs_set_header_generation(&cow_node->header, trans->transid);
  48. *cow_ret = cow;
  49. btrfs_mark_buffer_dirty(cow);
  50. btrfs_inc_ref(trans, root, buf);
  51. if (buf == root->node) {
  52. root->node = cow;
  53. get_bh(cow);
  54. if (buf != root->commit_root)
  55. btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
  56. btrfs_block_release(root, buf);
  57. } else {
  58. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  59. cow->b_blocknr);
  60. btrfs_mark_buffer_dirty(parent);
  61. btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
  62. }
  63. btrfs_block_release(root, buf);
  64. return 0;
  65. }
  66. /*
  67. * The leaf data grows from end-to-front in the node.
  68. * this returns the address of the start of the last item,
  69. * which is the stop of the leaf data stack
  70. */
  71. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  72. struct btrfs_leaf *leaf)
  73. {
  74. u32 nr = btrfs_header_nritems(&leaf->header);
  75. if (nr == 0)
  76. return BTRFS_LEAF_DATA_SIZE(root);
  77. return btrfs_item_offset(leaf->items + nr - 1);
  78. }
  79. /*
  80. * The space between the end of the leaf items and
  81. * the start of the leaf data. IOW, how much room
  82. * the leaf has left for both items and data
  83. */
  84. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  85. {
  86. int data_end = leaf_data_end(root, leaf);
  87. int nritems = btrfs_header_nritems(&leaf->header);
  88. char *items_end = (char *)(leaf->items + nritems + 1);
  89. return (char *)(btrfs_leaf_data(leaf) + data_end) - (char *)items_end;
  90. }
  91. /*
  92. * compare two keys in a memcmp fashion
  93. */
  94. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  95. {
  96. struct btrfs_key k1;
  97. btrfs_disk_key_to_cpu(&k1, disk);
  98. if (k1.objectid > k2->objectid)
  99. return 1;
  100. if (k1.objectid < k2->objectid)
  101. return -1;
  102. if (k1.offset > k2->offset)
  103. return 1;
  104. if (k1.offset < k2->offset)
  105. return -1;
  106. if (k1.flags > k2->flags)
  107. return 1;
  108. if (k1.flags < k2->flags)
  109. return -1;
  110. return 0;
  111. }
  112. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  113. int level)
  114. {
  115. int i;
  116. struct btrfs_node *parent = NULL;
  117. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  118. int parent_slot;
  119. u32 nritems = btrfs_header_nritems(&node->header);
  120. if (path->nodes[level + 1])
  121. parent = btrfs_buffer_node(path->nodes[level + 1]);
  122. parent_slot = path->slots[level + 1];
  123. BUG_ON(nritems == 0);
  124. if (parent) {
  125. struct btrfs_disk_key *parent_key;
  126. parent_key = &parent->ptrs[parent_slot].key;
  127. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  128. sizeof(struct btrfs_disk_key)));
  129. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  130. btrfs_header_blocknr(&node->header));
  131. }
  132. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  133. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  134. struct btrfs_key cpukey;
  135. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
  136. BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
  137. }
  138. return 0;
  139. }
  140. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  141. int level)
  142. {
  143. int i;
  144. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  145. struct btrfs_node *parent = NULL;
  146. int parent_slot;
  147. u32 nritems = btrfs_header_nritems(&leaf->header);
  148. if (path->nodes[level + 1])
  149. parent = btrfs_buffer_node(path->nodes[level + 1]);
  150. parent_slot = path->slots[level + 1];
  151. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  152. if (nritems == 0)
  153. return 0;
  154. if (parent) {
  155. struct btrfs_disk_key *parent_key;
  156. parent_key = &parent->ptrs[parent_slot].key;
  157. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  158. sizeof(struct btrfs_disk_key)));
  159. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  160. btrfs_header_blocknr(&leaf->header));
  161. }
  162. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  163. struct btrfs_key cpukey;
  164. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
  165. BUG_ON(comp_keys(&leaf->items[i].key,
  166. &cpukey) >= 0);
  167. BUG_ON(btrfs_item_offset(leaf->items + i) !=
  168. btrfs_item_end(leaf->items + i + 1));
  169. if (i == 0) {
  170. BUG_ON(btrfs_item_offset(leaf->items + i) +
  171. btrfs_item_size(leaf->items + i) !=
  172. BTRFS_LEAF_DATA_SIZE(root));
  173. }
  174. }
  175. return 0;
  176. }
  177. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  178. int level)
  179. {
  180. if (level == 0)
  181. return check_leaf(root, path, level);
  182. return check_node(root, path, level);
  183. }
  184. /*
  185. * search for key in the array p. items p are item_size apart
  186. * and there are 'max' items in p
  187. * the slot in the array is returned via slot, and it points to
  188. * the place where you would insert key if it is not found in
  189. * the array.
  190. *
  191. * slot may point to max if the key is bigger than all of the keys
  192. */
  193. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  194. int max, int *slot)
  195. {
  196. int low = 0;
  197. int high = max;
  198. int mid;
  199. int ret;
  200. struct btrfs_disk_key *tmp;
  201. while(low < high) {
  202. mid = (low + high) / 2;
  203. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  204. ret = comp_keys(tmp, key);
  205. if (ret < 0)
  206. low = mid + 1;
  207. else if (ret > 0)
  208. high = mid;
  209. else {
  210. *slot = mid;
  211. return 0;
  212. }
  213. }
  214. *slot = low;
  215. return 1;
  216. }
  217. /*
  218. * simple bin_search frontend that does the right thing for
  219. * leaves vs nodes
  220. */
  221. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  222. {
  223. if (btrfs_is_leaf(c)) {
  224. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  225. return generic_bin_search((void *)l->items,
  226. sizeof(struct btrfs_item),
  227. key, btrfs_header_nritems(&c->header),
  228. slot);
  229. } else {
  230. return generic_bin_search((void *)c->ptrs,
  231. sizeof(struct btrfs_key_ptr),
  232. key, btrfs_header_nritems(&c->header),
  233. slot);
  234. }
  235. return -1;
  236. }
  237. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  238. struct buffer_head *parent_buf,
  239. int slot)
  240. {
  241. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  242. if (slot < 0)
  243. return NULL;
  244. if (slot >= btrfs_header_nritems(&node->header))
  245. return NULL;
  246. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  247. }
  248. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  249. *root, struct btrfs_path *path, int level)
  250. {
  251. struct buffer_head *right_buf;
  252. struct buffer_head *mid_buf;
  253. struct buffer_head *left_buf;
  254. struct buffer_head *parent_buf = NULL;
  255. struct btrfs_node *right = NULL;
  256. struct btrfs_node *mid;
  257. struct btrfs_node *left = NULL;
  258. struct btrfs_node *parent = NULL;
  259. int ret = 0;
  260. int wret;
  261. int pslot;
  262. int orig_slot = path->slots[level];
  263. u64 orig_ptr;
  264. if (level == 0)
  265. return 0;
  266. mid_buf = path->nodes[level];
  267. mid = btrfs_buffer_node(mid_buf);
  268. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  269. if (level < BTRFS_MAX_LEVEL - 1)
  270. parent_buf = path->nodes[level + 1];
  271. pslot = path->slots[level + 1];
  272. /*
  273. * deal with the case where there is only one pointer in the root
  274. * by promoting the node below to a root
  275. */
  276. if (!parent_buf) {
  277. struct buffer_head *child;
  278. u64 blocknr = mid_buf->b_blocknr;
  279. if (btrfs_header_nritems(&mid->header) != 1)
  280. return 0;
  281. /* promote the child to a root */
  282. child = read_node_slot(root, mid_buf, 0);
  283. BUG_ON(!child);
  284. root->node = child;
  285. path->nodes[level] = NULL;
  286. clean_tree_block(trans, root, mid_buf);
  287. wait_on_buffer(mid_buf);
  288. /* once for the path */
  289. btrfs_block_release(root, mid_buf);
  290. /* once for the root ptr */
  291. btrfs_block_release(root, mid_buf);
  292. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  293. }
  294. parent = btrfs_buffer_node(parent_buf);
  295. if (btrfs_header_nritems(&mid->header) >
  296. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  297. return 0;
  298. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  299. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  300. /* first, try to make some room in the middle buffer */
  301. if (left_buf) {
  302. btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
  303. &left_buf);
  304. left = btrfs_buffer_node(left_buf);
  305. orig_slot += btrfs_header_nritems(&left->header);
  306. wret = push_node_left(trans, root, left_buf, mid_buf);
  307. if (wret < 0)
  308. ret = wret;
  309. }
  310. /*
  311. * then try to empty the right most buffer into the middle
  312. */
  313. if (right_buf) {
  314. btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
  315. &right_buf);
  316. right = btrfs_buffer_node(right_buf);
  317. wret = push_node_left(trans, root, mid_buf, right_buf);
  318. if (wret < 0)
  319. ret = wret;
  320. if (btrfs_header_nritems(&right->header) == 0) {
  321. u64 blocknr = right_buf->b_blocknr;
  322. clean_tree_block(trans, root, right_buf);
  323. wait_on_buffer(right_buf);
  324. btrfs_block_release(root, right_buf);
  325. right_buf = NULL;
  326. right = NULL;
  327. wret = del_ptr(trans, root, path, level + 1, pslot +
  328. 1);
  329. if (wret)
  330. ret = wret;
  331. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  332. if (wret)
  333. ret = wret;
  334. } else {
  335. btrfs_memcpy(root, parent,
  336. &parent->ptrs[pslot + 1].key,
  337. &right->ptrs[0].key,
  338. sizeof(struct btrfs_disk_key));
  339. btrfs_mark_buffer_dirty(parent_buf);
  340. }
  341. }
  342. if (btrfs_header_nritems(&mid->header) == 1) {
  343. /*
  344. * we're not allowed to leave a node with one item in the
  345. * tree during a delete. A deletion from lower in the tree
  346. * could try to delete the only pointer in this node.
  347. * So, pull some keys from the left.
  348. * There has to be a left pointer at this point because
  349. * otherwise we would have pulled some pointers from the
  350. * right
  351. */
  352. BUG_ON(!left_buf);
  353. wret = balance_node_right(trans, root, mid_buf, left_buf);
  354. if (wret < 0)
  355. ret = wret;
  356. BUG_ON(wret == 1);
  357. }
  358. if (btrfs_header_nritems(&mid->header) == 0) {
  359. /* we've managed to empty the middle node, drop it */
  360. u64 blocknr = mid_buf->b_blocknr;
  361. clean_tree_block(trans, root, mid_buf);
  362. wait_on_buffer(mid_buf);
  363. btrfs_block_release(root, mid_buf);
  364. mid_buf = NULL;
  365. mid = NULL;
  366. wret = del_ptr(trans, root, path, level + 1, pslot);
  367. if (wret)
  368. ret = wret;
  369. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  370. if (wret)
  371. ret = wret;
  372. } else {
  373. /* update the parent key to reflect our changes */
  374. btrfs_memcpy(root, parent,
  375. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  376. sizeof(struct btrfs_disk_key));
  377. btrfs_mark_buffer_dirty(parent_buf);
  378. }
  379. /* update the path */
  380. if (left_buf) {
  381. if (btrfs_header_nritems(&left->header) > orig_slot) {
  382. get_bh(left_buf);
  383. path->nodes[level] = left_buf;
  384. path->slots[level + 1] -= 1;
  385. path->slots[level] = orig_slot;
  386. if (mid_buf)
  387. btrfs_block_release(root, mid_buf);
  388. } else {
  389. orig_slot -= btrfs_header_nritems(&left->header);
  390. path->slots[level] = orig_slot;
  391. }
  392. }
  393. /* double check we haven't messed things up */
  394. check_block(root, path, level);
  395. if (orig_ptr !=
  396. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  397. path->slots[level]))
  398. BUG();
  399. if (right_buf)
  400. btrfs_block_release(root, right_buf);
  401. if (left_buf)
  402. btrfs_block_release(root, left_buf);
  403. return ret;
  404. }
  405. /*
  406. * look for key in the tree. path is filled in with nodes along the way
  407. * if key is found, we return zero and you can find the item in the leaf
  408. * level of the path (level 0)
  409. *
  410. * If the key isn't found, the path points to the slot where it should
  411. * be inserted, and 1 is returned. If there are other errors during the
  412. * search a negative error number is returned.
  413. *
  414. * if ins_len > 0, nodes and leaves will be split as we walk down the
  415. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  416. * possible)
  417. */
  418. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  419. *root, struct btrfs_key *key, struct btrfs_path *p, int
  420. ins_len, int cow)
  421. {
  422. struct buffer_head *b;
  423. struct buffer_head *cow_buf;
  424. struct btrfs_node *c;
  425. int slot;
  426. int ret;
  427. int level;
  428. WARN_ON(p->nodes[0] != NULL);
  429. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  430. again:
  431. b = root->node;
  432. get_bh(b);
  433. while (b) {
  434. c = btrfs_buffer_node(b);
  435. level = btrfs_header_level(&c->header);
  436. if (cow) {
  437. int wret;
  438. wret = btrfs_cow_block(trans, root, b,
  439. p->nodes[level + 1],
  440. p->slots[level + 1],
  441. &cow_buf);
  442. b = cow_buf;
  443. }
  444. BUG_ON(!cow && ins_len);
  445. c = btrfs_buffer_node(b);
  446. p->nodes[level] = b;
  447. ret = check_block(root, p, level);
  448. if (ret)
  449. return -1;
  450. ret = bin_search(c, key, &slot);
  451. if (!btrfs_is_leaf(c)) {
  452. if (ret && slot > 0)
  453. slot -= 1;
  454. p->slots[level] = slot;
  455. if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
  456. BTRFS_NODEPTRS_PER_BLOCK(root)) {
  457. int sret = split_node(trans, root, p, level);
  458. BUG_ON(sret > 0);
  459. if (sret)
  460. return sret;
  461. b = p->nodes[level];
  462. c = btrfs_buffer_node(b);
  463. slot = p->slots[level];
  464. } else if (ins_len < 0) {
  465. int sret = balance_level(trans, root, p,
  466. level);
  467. if (sret)
  468. return sret;
  469. b = p->nodes[level];
  470. if (!b)
  471. goto again;
  472. c = btrfs_buffer_node(b);
  473. slot = p->slots[level];
  474. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  475. }
  476. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  477. } else {
  478. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  479. p->slots[level] = slot;
  480. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  481. sizeof(struct btrfs_item) + ins_len) {
  482. int sret = split_leaf(trans, root, p, ins_len);
  483. BUG_ON(sret > 0);
  484. if (sret)
  485. return sret;
  486. }
  487. return ret;
  488. }
  489. }
  490. return 1;
  491. }
  492. /*
  493. * adjust the pointers going up the tree, starting at level
  494. * making sure the right key of each node is points to 'key'.
  495. * This is used after shifting pointers to the left, so it stops
  496. * fixing up pointers when a given leaf/node is not in slot 0 of the
  497. * higher levels
  498. *
  499. * If this fails to write a tree block, it returns -1, but continues
  500. * fixing up the blocks in ram so the tree is consistent.
  501. */
  502. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  503. *root, struct btrfs_path *path, struct btrfs_disk_key
  504. *key, int level)
  505. {
  506. int i;
  507. int ret = 0;
  508. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  509. struct btrfs_node *t;
  510. int tslot = path->slots[i];
  511. if (!path->nodes[i])
  512. break;
  513. t = btrfs_buffer_node(path->nodes[i]);
  514. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  515. btrfs_mark_buffer_dirty(path->nodes[i]);
  516. if (tslot != 0)
  517. break;
  518. }
  519. return ret;
  520. }
  521. /*
  522. * try to push data from one node into the next node left in the
  523. * tree.
  524. *
  525. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  526. * error, and > 0 if there was no room in the left hand block.
  527. */
  528. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  529. *root, struct buffer_head *dst_buf, struct
  530. buffer_head *src_buf)
  531. {
  532. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  533. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  534. int push_items = 0;
  535. int src_nritems;
  536. int dst_nritems;
  537. int ret = 0;
  538. src_nritems = btrfs_header_nritems(&src->header);
  539. dst_nritems = btrfs_header_nritems(&dst->header);
  540. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  541. if (push_items <= 0) {
  542. return 1;
  543. }
  544. if (src_nritems < push_items)
  545. push_items = src_nritems;
  546. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  547. push_items * sizeof(struct btrfs_key_ptr));
  548. if (push_items < src_nritems) {
  549. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  550. (src_nritems - push_items) *
  551. sizeof(struct btrfs_key_ptr));
  552. }
  553. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  554. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  555. btrfs_mark_buffer_dirty(src_buf);
  556. btrfs_mark_buffer_dirty(dst_buf);
  557. return ret;
  558. }
  559. /*
  560. * try to push data from one node into the next node right in the
  561. * tree.
  562. *
  563. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  564. * error, and > 0 if there was no room in the right hand block.
  565. *
  566. * this will only push up to 1/2 the contents of the left node over
  567. */
  568. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  569. btrfs_root *root, struct buffer_head *dst_buf,
  570. struct buffer_head *src_buf)
  571. {
  572. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  573. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  574. int push_items = 0;
  575. int max_push;
  576. int src_nritems;
  577. int dst_nritems;
  578. int ret = 0;
  579. src_nritems = btrfs_header_nritems(&src->header);
  580. dst_nritems = btrfs_header_nritems(&dst->header);
  581. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  582. if (push_items <= 0) {
  583. return 1;
  584. }
  585. max_push = src_nritems / 2 + 1;
  586. /* don't try to empty the node */
  587. if (max_push > src_nritems)
  588. return 1;
  589. if (max_push < push_items)
  590. push_items = max_push;
  591. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  592. dst_nritems * sizeof(struct btrfs_key_ptr));
  593. btrfs_memcpy(root, dst, dst->ptrs,
  594. src->ptrs + src_nritems - push_items,
  595. push_items * sizeof(struct btrfs_key_ptr));
  596. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  597. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  598. btrfs_mark_buffer_dirty(src_buf);
  599. btrfs_mark_buffer_dirty(dst_buf);
  600. return ret;
  601. }
  602. /*
  603. * helper function to insert a new root level in the tree.
  604. * A new node is allocated, and a single item is inserted to
  605. * point to the existing root
  606. *
  607. * returns zero on success or < 0 on failure.
  608. */
  609. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  610. *root, struct btrfs_path *path, int level)
  611. {
  612. struct buffer_head *t;
  613. struct btrfs_node *lower;
  614. struct btrfs_node *c;
  615. struct btrfs_disk_key *lower_key;
  616. BUG_ON(path->nodes[level]);
  617. BUG_ON(path->nodes[level-1] != root->node);
  618. t = btrfs_alloc_free_block(trans, root);
  619. c = btrfs_buffer_node(t);
  620. memset(c, 0, root->blocksize);
  621. btrfs_set_header_nritems(&c->header, 1);
  622. btrfs_set_header_level(&c->header, level);
  623. btrfs_set_header_blocknr(&c->header, t->b_blocknr);
  624. btrfs_set_header_generation(&c->header, trans->transid);
  625. btrfs_set_header_parentid(&c->header,
  626. btrfs_header_parentid(btrfs_buffer_header(root->node)));
  627. lower = btrfs_buffer_node(path->nodes[level-1]);
  628. if (btrfs_is_leaf(lower))
  629. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  630. else
  631. lower_key = &lower->ptrs[0].key;
  632. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  633. sizeof(struct btrfs_disk_key));
  634. btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
  635. btrfs_mark_buffer_dirty(t);
  636. /* the super has an extra ref to root->node */
  637. btrfs_block_release(root, root->node);
  638. root->node = t;
  639. get_bh(t);
  640. path->nodes[level] = t;
  641. path->slots[level] = 0;
  642. return 0;
  643. }
  644. /*
  645. * worker function to insert a single pointer in a node.
  646. * the node should have enough room for the pointer already
  647. *
  648. * slot and level indicate where you want the key to go, and
  649. * blocknr is the block the key points to.
  650. *
  651. * returns zero on success and < 0 on any error
  652. */
  653. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  654. *root, struct btrfs_path *path, struct btrfs_disk_key
  655. *key, u64 blocknr, int slot, int level)
  656. {
  657. struct btrfs_node *lower;
  658. int nritems;
  659. BUG_ON(!path->nodes[level]);
  660. lower = btrfs_buffer_node(path->nodes[level]);
  661. nritems = btrfs_header_nritems(&lower->header);
  662. if (slot > nritems)
  663. BUG();
  664. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  665. BUG();
  666. if (slot != nritems) {
  667. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  668. lower->ptrs + slot,
  669. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  670. }
  671. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  672. key, sizeof(struct btrfs_disk_key));
  673. btrfs_set_node_blockptr(lower, slot, blocknr);
  674. btrfs_set_header_nritems(&lower->header, nritems + 1);
  675. btrfs_mark_buffer_dirty(path->nodes[level]);
  676. return 0;
  677. }
  678. /*
  679. * split the node at the specified level in path in two.
  680. * The path is corrected to point to the appropriate node after the split
  681. *
  682. * Before splitting this tries to make some room in the node by pushing
  683. * left and right, if either one works, it returns right away.
  684. *
  685. * returns 0 on success and < 0 on failure
  686. */
  687. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  688. *root, struct btrfs_path *path, int level)
  689. {
  690. struct buffer_head *t;
  691. struct btrfs_node *c;
  692. struct buffer_head *split_buffer;
  693. struct btrfs_node *split;
  694. int mid;
  695. int ret;
  696. int wret;
  697. u32 c_nritems;
  698. t = path->nodes[level];
  699. c = btrfs_buffer_node(t);
  700. if (t == root->node) {
  701. /* trying to split the root, lets make a new one */
  702. ret = insert_new_root(trans, root, path, level + 1);
  703. if (ret)
  704. return ret;
  705. }
  706. c_nritems = btrfs_header_nritems(&c->header);
  707. split_buffer = btrfs_alloc_free_block(trans, root);
  708. split = btrfs_buffer_node(split_buffer);
  709. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  710. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  711. btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
  712. btrfs_set_header_generation(&split->header, trans->transid);
  713. btrfs_set_header_parentid(&split->header,
  714. btrfs_header_parentid(btrfs_buffer_header(root->node)));
  715. mid = (c_nritems + 1) / 2;
  716. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  717. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  718. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  719. btrfs_set_header_nritems(&c->header, mid);
  720. ret = 0;
  721. btrfs_mark_buffer_dirty(t);
  722. btrfs_mark_buffer_dirty(split_buffer);
  723. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  724. split_buffer->b_blocknr, path->slots[level + 1] + 1,
  725. level + 1);
  726. if (wret)
  727. ret = wret;
  728. if (path->slots[level] >= mid) {
  729. path->slots[level] -= mid;
  730. btrfs_block_release(root, t);
  731. path->nodes[level] = split_buffer;
  732. path->slots[level + 1] += 1;
  733. } else {
  734. btrfs_block_release(root, split_buffer);
  735. }
  736. return ret;
  737. }
  738. /*
  739. * how many bytes are required to store the items in a leaf. start
  740. * and nr indicate which items in the leaf to check. This totals up the
  741. * space used both by the item structs and the item data
  742. */
  743. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  744. {
  745. int data_len;
  746. int end = start + nr - 1;
  747. if (!nr)
  748. return 0;
  749. data_len = btrfs_item_end(l->items + start);
  750. data_len = data_len - btrfs_item_offset(l->items + end);
  751. data_len += sizeof(struct btrfs_item) * nr;
  752. return data_len;
  753. }
  754. /*
  755. * push some data in the path leaf to the right, trying to free up at
  756. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  757. *
  758. * returns 1 if the push failed because the other node didn't have enough
  759. * room, 0 if everything worked out and < 0 if there were major errors.
  760. */
  761. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  762. *root, struct btrfs_path *path, int data_size)
  763. {
  764. struct buffer_head *left_buf = path->nodes[0];
  765. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  766. struct btrfs_leaf *right;
  767. struct buffer_head *right_buf;
  768. struct buffer_head *upper;
  769. struct btrfs_node *upper_node;
  770. int slot;
  771. int i;
  772. int free_space;
  773. int push_space = 0;
  774. int push_items = 0;
  775. struct btrfs_item *item;
  776. u32 left_nritems;
  777. u32 right_nritems;
  778. slot = path->slots[1];
  779. if (!path->nodes[1]) {
  780. return 1;
  781. }
  782. upper = path->nodes[1];
  783. upper_node = btrfs_buffer_node(upper);
  784. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  785. return 1;
  786. }
  787. right_buf = read_tree_block(root,
  788. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  789. right = btrfs_buffer_leaf(right_buf);
  790. free_space = btrfs_leaf_free_space(root, right);
  791. if (free_space < data_size + sizeof(struct btrfs_item)) {
  792. btrfs_block_release(root, right_buf);
  793. return 1;
  794. }
  795. /* cow and double check */
  796. btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
  797. right = btrfs_buffer_leaf(right_buf);
  798. free_space = btrfs_leaf_free_space(root, right);
  799. if (free_space < data_size + sizeof(struct btrfs_item)) {
  800. btrfs_block_release(root, right_buf);
  801. return 1;
  802. }
  803. left_nritems = btrfs_header_nritems(&left->header);
  804. for (i = left_nritems - 1; i >= 0; i--) {
  805. item = left->items + i;
  806. if (path->slots[0] == i)
  807. push_space += data_size + sizeof(*item);
  808. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  809. free_space)
  810. break;
  811. push_items++;
  812. push_space += btrfs_item_size(item) + sizeof(*item);
  813. }
  814. if (push_items == 0) {
  815. btrfs_block_release(root, right_buf);
  816. return 1;
  817. }
  818. right_nritems = btrfs_header_nritems(&right->header);
  819. /* push left to right */
  820. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  821. push_space -= leaf_data_end(root, left);
  822. /* make room in the right data area */
  823. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  824. leaf_data_end(root, right) - push_space,
  825. btrfs_leaf_data(right) +
  826. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  827. leaf_data_end(root, right));
  828. /* copy from the left data area */
  829. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  830. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  831. btrfs_leaf_data(left) + leaf_data_end(root, left),
  832. push_space);
  833. btrfs_memmove(root, right, right->items + push_items, right->items,
  834. right_nritems * sizeof(struct btrfs_item));
  835. /* copy the items from left to right */
  836. btrfs_memcpy(root, right, right->items, left->items +
  837. left_nritems - push_items,
  838. push_items * sizeof(struct btrfs_item));
  839. /* update the item pointers */
  840. right_nritems += push_items;
  841. btrfs_set_header_nritems(&right->header, right_nritems);
  842. push_space = BTRFS_LEAF_DATA_SIZE(root);
  843. for (i = 0; i < right_nritems; i++) {
  844. btrfs_set_item_offset(right->items + i, push_space -
  845. btrfs_item_size(right->items + i));
  846. push_space = btrfs_item_offset(right->items + i);
  847. }
  848. left_nritems -= push_items;
  849. btrfs_set_header_nritems(&left->header, left_nritems);
  850. btrfs_mark_buffer_dirty(left_buf);
  851. btrfs_mark_buffer_dirty(right_buf);
  852. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  853. &right->items[0].key, sizeof(struct btrfs_disk_key));
  854. btrfs_mark_buffer_dirty(upper);
  855. /* then fixup the leaf pointer in the path */
  856. if (path->slots[0] >= left_nritems) {
  857. path->slots[0] -= left_nritems;
  858. btrfs_block_release(root, path->nodes[0]);
  859. path->nodes[0] = right_buf;
  860. path->slots[1] += 1;
  861. } else {
  862. btrfs_block_release(root, right_buf);
  863. }
  864. return 0;
  865. }
  866. /*
  867. * push some data in the path leaf to the left, trying to free up at
  868. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  869. */
  870. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  871. *root, struct btrfs_path *path, int data_size)
  872. {
  873. struct buffer_head *right_buf = path->nodes[0];
  874. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  875. struct buffer_head *t;
  876. struct btrfs_leaf *left;
  877. int slot;
  878. int i;
  879. int free_space;
  880. int push_space = 0;
  881. int push_items = 0;
  882. struct btrfs_item *item;
  883. u32 old_left_nritems;
  884. int ret = 0;
  885. int wret;
  886. slot = path->slots[1];
  887. if (slot == 0) {
  888. return 1;
  889. }
  890. if (!path->nodes[1]) {
  891. return 1;
  892. }
  893. t = read_tree_block(root,
  894. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  895. left = btrfs_buffer_leaf(t);
  896. free_space = btrfs_leaf_free_space(root, left);
  897. if (free_space < data_size + sizeof(struct btrfs_item)) {
  898. btrfs_block_release(root, t);
  899. return 1;
  900. }
  901. /* cow and double check */
  902. btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  903. left = btrfs_buffer_leaf(t);
  904. free_space = btrfs_leaf_free_space(root, left);
  905. if (free_space < data_size + sizeof(struct btrfs_item)) {
  906. btrfs_block_release(root, t);
  907. return 1;
  908. }
  909. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  910. item = right->items + i;
  911. if (path->slots[0] == i)
  912. push_space += data_size + sizeof(*item);
  913. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  914. free_space)
  915. break;
  916. push_items++;
  917. push_space += btrfs_item_size(item) + sizeof(*item);
  918. }
  919. if (push_items == 0) {
  920. btrfs_block_release(root, t);
  921. return 1;
  922. }
  923. /* push data from right to left */
  924. btrfs_memcpy(root, left, left->items +
  925. btrfs_header_nritems(&left->header),
  926. right->items, push_items * sizeof(struct btrfs_item));
  927. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  928. btrfs_item_offset(right->items + push_items -1);
  929. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  930. leaf_data_end(root, left) - push_space,
  931. btrfs_leaf_data(right) +
  932. btrfs_item_offset(right->items + push_items - 1),
  933. push_space);
  934. old_left_nritems = btrfs_header_nritems(&left->header);
  935. BUG_ON(old_left_nritems < 0);
  936. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  937. u32 ioff = btrfs_item_offset(left->items + i);
  938. btrfs_set_item_offset(left->items + i, ioff -
  939. (BTRFS_LEAF_DATA_SIZE(root) -
  940. btrfs_item_offset(left->items +
  941. old_left_nritems - 1)));
  942. }
  943. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  944. /* fixup right node */
  945. push_space = btrfs_item_offset(right->items + push_items - 1) -
  946. leaf_data_end(root, right);
  947. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  948. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  949. btrfs_leaf_data(right) +
  950. leaf_data_end(root, right), push_space);
  951. btrfs_memmove(root, right, right->items, right->items + push_items,
  952. (btrfs_header_nritems(&right->header) - push_items) *
  953. sizeof(struct btrfs_item));
  954. btrfs_set_header_nritems(&right->header,
  955. btrfs_header_nritems(&right->header) -
  956. push_items);
  957. push_space = BTRFS_LEAF_DATA_SIZE(root);
  958. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  959. btrfs_set_item_offset(right->items + i, push_space -
  960. btrfs_item_size(right->items + i));
  961. push_space = btrfs_item_offset(right->items + i);
  962. }
  963. btrfs_mark_buffer_dirty(t);
  964. btrfs_mark_buffer_dirty(right_buf);
  965. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  966. if (wret)
  967. ret = wret;
  968. /* then fixup the leaf pointer in the path */
  969. if (path->slots[0] < push_items) {
  970. path->slots[0] += old_left_nritems;
  971. btrfs_block_release(root, path->nodes[0]);
  972. path->nodes[0] = t;
  973. path->slots[1] -= 1;
  974. } else {
  975. btrfs_block_release(root, t);
  976. path->slots[0] -= push_items;
  977. }
  978. BUG_ON(path->slots[0] < 0);
  979. return ret;
  980. }
  981. /*
  982. * split the path's leaf in two, making sure there is at least data_size
  983. * available for the resulting leaf level of the path.
  984. *
  985. * returns 0 if all went well and < 0 on failure.
  986. */
  987. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  988. *root, struct btrfs_path *path, int data_size)
  989. {
  990. struct buffer_head *l_buf;
  991. struct btrfs_leaf *l;
  992. u32 nritems;
  993. int mid;
  994. int slot;
  995. struct btrfs_leaf *right;
  996. struct buffer_head *right_buffer;
  997. int space_needed = data_size + sizeof(struct btrfs_item);
  998. int data_copy_size;
  999. int rt_data_off;
  1000. int i;
  1001. int ret;
  1002. int wret;
  1003. /* first try to make some room by pushing left and right */
  1004. wret = push_leaf_left(trans, root, path, data_size);
  1005. if (wret < 0)
  1006. return wret;
  1007. if (wret) {
  1008. wret = push_leaf_right(trans, root, path, data_size);
  1009. if (wret < 0)
  1010. return wret;
  1011. }
  1012. l_buf = path->nodes[0];
  1013. l = btrfs_buffer_leaf(l_buf);
  1014. /* did the pushes work? */
  1015. if (btrfs_leaf_free_space(root, l) >=
  1016. sizeof(struct btrfs_item) + data_size)
  1017. return 0;
  1018. if (!path->nodes[1]) {
  1019. ret = insert_new_root(trans, root, path, 1);
  1020. if (ret)
  1021. return ret;
  1022. }
  1023. slot = path->slots[0];
  1024. nritems = btrfs_header_nritems(&l->header);
  1025. mid = (nritems + 1)/ 2;
  1026. right_buffer = btrfs_alloc_free_block(trans, root);
  1027. BUG_ON(!right_buffer);
  1028. BUG_ON(mid == nritems);
  1029. right = btrfs_buffer_leaf(right_buffer);
  1030. memset(&right->header, 0, sizeof(right->header));
  1031. if (mid <= slot) {
  1032. /* FIXME, just alloc a new leaf here */
  1033. if (leaf_space_used(l, mid, nritems - mid) + space_needed >
  1034. BTRFS_LEAF_DATA_SIZE(root))
  1035. BUG();
  1036. } else {
  1037. /* FIXME, just alloc a new leaf here */
  1038. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1039. BTRFS_LEAF_DATA_SIZE(root))
  1040. BUG();
  1041. }
  1042. btrfs_set_header_nritems(&right->header, nritems - mid);
  1043. btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
  1044. btrfs_set_header_generation(&right->header, trans->transid);
  1045. btrfs_set_header_level(&right->header, 0);
  1046. btrfs_set_header_parentid(&right->header,
  1047. btrfs_header_parentid(btrfs_buffer_header(root->node)));
  1048. data_copy_size = btrfs_item_end(l->items + mid) -
  1049. leaf_data_end(root, l);
  1050. btrfs_memcpy(root, right, right->items, l->items + mid,
  1051. (nritems - mid) * sizeof(struct btrfs_item));
  1052. btrfs_memcpy(root, right,
  1053. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1054. data_copy_size, btrfs_leaf_data(l) +
  1055. leaf_data_end(root, l), data_copy_size);
  1056. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1057. btrfs_item_end(l->items + mid);
  1058. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1059. u32 ioff = btrfs_item_offset(right->items + i);
  1060. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1061. }
  1062. btrfs_set_header_nritems(&l->header, mid);
  1063. ret = 0;
  1064. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1065. right_buffer->b_blocknr, path->slots[1] + 1, 1);
  1066. if (wret)
  1067. ret = wret;
  1068. btrfs_mark_buffer_dirty(right_buffer);
  1069. btrfs_mark_buffer_dirty(l_buf);
  1070. BUG_ON(path->slots[0] != slot);
  1071. if (mid <= slot) {
  1072. btrfs_block_release(root, path->nodes[0]);
  1073. path->nodes[0] = right_buffer;
  1074. path->slots[0] -= mid;
  1075. path->slots[1] += 1;
  1076. } else
  1077. btrfs_block_release(root, right_buffer);
  1078. BUG_ON(path->slots[0] < 0);
  1079. return ret;
  1080. }
  1081. /*
  1082. * Given a key and some data, insert an item into the tree.
  1083. * This does all the path init required, making room in the tree if needed.
  1084. */
  1085. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1086. *root, struct btrfs_path *path, struct btrfs_key
  1087. *cpu_key, u32 data_size)
  1088. {
  1089. int ret = 0;
  1090. int slot;
  1091. int slot_orig;
  1092. struct btrfs_leaf *leaf;
  1093. struct buffer_head *leaf_buf;
  1094. u32 nritems;
  1095. unsigned int data_end;
  1096. struct btrfs_disk_key disk_key;
  1097. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1098. /* create a root if there isn't one */
  1099. if (!root->node)
  1100. BUG();
  1101. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1102. if (ret == 0) {
  1103. return -EEXIST;
  1104. }
  1105. if (ret < 0)
  1106. goto out;
  1107. slot_orig = path->slots[0];
  1108. leaf_buf = path->nodes[0];
  1109. leaf = btrfs_buffer_leaf(leaf_buf);
  1110. nritems = btrfs_header_nritems(&leaf->header);
  1111. data_end = leaf_data_end(root, leaf);
  1112. if (btrfs_leaf_free_space(root, leaf) <
  1113. sizeof(struct btrfs_item) + data_size)
  1114. BUG();
  1115. slot = path->slots[0];
  1116. BUG_ON(slot < 0);
  1117. if (slot != nritems) {
  1118. int i;
  1119. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1120. /*
  1121. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1122. */
  1123. /* first correct the data pointers */
  1124. for (i = slot; i < nritems; i++) {
  1125. u32 ioff = btrfs_item_offset(leaf->items + i);
  1126. btrfs_set_item_offset(leaf->items + i,
  1127. ioff - data_size);
  1128. }
  1129. /* shift the items */
  1130. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1131. leaf->items + slot,
  1132. (nritems - slot) * sizeof(struct btrfs_item));
  1133. /* shift the data */
  1134. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1135. data_end - data_size, btrfs_leaf_data(leaf) +
  1136. data_end, old_data - data_end);
  1137. data_end = old_data;
  1138. }
  1139. /* setup the item for the new data */
  1140. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1141. sizeof(struct btrfs_disk_key));
  1142. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1143. btrfs_set_item_size(leaf->items + slot, data_size);
  1144. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1145. btrfs_mark_buffer_dirty(leaf_buf);
  1146. ret = 0;
  1147. if (slot == 0)
  1148. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1149. if (btrfs_leaf_free_space(root, leaf) < 0)
  1150. BUG();
  1151. check_leaf(root, path, 0);
  1152. out:
  1153. return ret;
  1154. }
  1155. /*
  1156. * Given a key and some data, insert an item into the tree.
  1157. * This does all the path init required, making room in the tree if needed.
  1158. */
  1159. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1160. *root, struct btrfs_key *cpu_key, void *data, u32
  1161. data_size)
  1162. {
  1163. int ret = 0;
  1164. struct btrfs_path path;
  1165. u8 *ptr;
  1166. btrfs_init_path(&path);
  1167. ret = btrfs_insert_empty_item(trans, root, &path, cpu_key, data_size);
  1168. if (!ret) {
  1169. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path.nodes[0]),
  1170. path.slots[0], u8);
  1171. btrfs_memcpy(root, path.nodes[0]->b_data,
  1172. ptr, data, data_size);
  1173. btrfs_mark_buffer_dirty(path.nodes[0]);
  1174. }
  1175. btrfs_release_path(root, &path);
  1176. return ret;
  1177. }
  1178. /*
  1179. * delete the pointer from a given node.
  1180. *
  1181. * If the delete empties a node, the node is removed from the tree,
  1182. * continuing all the way the root if required. The root is converted into
  1183. * a leaf if all the nodes are emptied.
  1184. */
  1185. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1186. struct btrfs_path *path, int level, int slot)
  1187. {
  1188. struct btrfs_node *node;
  1189. struct buffer_head *parent = path->nodes[level];
  1190. u32 nritems;
  1191. int ret = 0;
  1192. int wret;
  1193. node = btrfs_buffer_node(parent);
  1194. nritems = btrfs_header_nritems(&node->header);
  1195. if (slot != nritems -1) {
  1196. btrfs_memmove(root, node, node->ptrs + slot,
  1197. node->ptrs + slot + 1,
  1198. sizeof(struct btrfs_key_ptr) *
  1199. (nritems - slot - 1));
  1200. }
  1201. nritems--;
  1202. btrfs_set_header_nritems(&node->header, nritems);
  1203. if (nritems == 0 && parent == root->node) {
  1204. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1205. BUG_ON(btrfs_header_level(header) != 1);
  1206. /* just turn the root into a leaf and break */
  1207. btrfs_set_header_level(header, 0);
  1208. } else if (slot == 0) {
  1209. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1210. level + 1);
  1211. if (wret)
  1212. ret = wret;
  1213. }
  1214. btrfs_mark_buffer_dirty(parent);
  1215. return ret;
  1216. }
  1217. /*
  1218. * delete the item at the leaf level in path. If that empties
  1219. * the leaf, remove it from the tree
  1220. */
  1221. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1222. struct btrfs_path *path)
  1223. {
  1224. int slot;
  1225. struct btrfs_leaf *leaf;
  1226. struct buffer_head *leaf_buf;
  1227. int doff;
  1228. int dsize;
  1229. int ret = 0;
  1230. int wret;
  1231. u32 nritems;
  1232. leaf_buf = path->nodes[0];
  1233. leaf = btrfs_buffer_leaf(leaf_buf);
  1234. slot = path->slots[0];
  1235. doff = btrfs_item_offset(leaf->items + slot);
  1236. dsize = btrfs_item_size(leaf->items + slot);
  1237. nritems = btrfs_header_nritems(&leaf->header);
  1238. if (slot != nritems - 1) {
  1239. int i;
  1240. int data_end = leaf_data_end(root, leaf);
  1241. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1242. data_end + dsize,
  1243. btrfs_leaf_data(leaf) + data_end,
  1244. doff - data_end);
  1245. for (i = slot + 1; i < nritems; i++) {
  1246. u32 ioff = btrfs_item_offset(leaf->items + i);
  1247. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1248. }
  1249. btrfs_memmove(root, leaf, leaf->items + slot,
  1250. leaf->items + slot + 1,
  1251. sizeof(struct btrfs_item) *
  1252. (nritems - slot - 1));
  1253. }
  1254. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1255. nritems--;
  1256. /* delete the leaf if we've emptied it */
  1257. if (nritems == 0) {
  1258. if (leaf_buf == root->node) {
  1259. btrfs_set_header_level(&leaf->header, 0);
  1260. } else {
  1261. clean_tree_block(trans, root, leaf_buf);
  1262. wait_on_buffer(leaf_buf);
  1263. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1264. if (wret)
  1265. ret = wret;
  1266. wret = btrfs_free_extent(trans, root,
  1267. leaf_buf->b_blocknr, 1, 1);
  1268. if (wret)
  1269. ret = wret;
  1270. }
  1271. } else {
  1272. int used = leaf_space_used(leaf, 0, nritems);
  1273. if (slot == 0) {
  1274. wret = fixup_low_keys(trans, root, path,
  1275. &leaf->items[0].key, 1);
  1276. if (wret)
  1277. ret = wret;
  1278. }
  1279. /* delete the leaf if it is mostly empty */
  1280. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1281. /* push_leaf_left fixes the path.
  1282. * make sure the path still points to our leaf
  1283. * for possible call to del_ptr below
  1284. */
  1285. slot = path->slots[1];
  1286. get_bh(leaf_buf);
  1287. wret = push_leaf_left(trans, root, path, 1);
  1288. if (wret < 0)
  1289. ret = wret;
  1290. if (path->nodes[0] == leaf_buf &&
  1291. btrfs_header_nritems(&leaf->header)) {
  1292. wret = push_leaf_right(trans, root, path, 1);
  1293. if (wret < 0)
  1294. ret = wret;
  1295. }
  1296. if (btrfs_header_nritems(&leaf->header) == 0) {
  1297. u64 blocknr = leaf_buf->b_blocknr;
  1298. clean_tree_block(trans, root, leaf_buf);
  1299. wait_on_buffer(leaf_buf);
  1300. wret = del_ptr(trans, root, path, 1, slot);
  1301. if (wret)
  1302. ret = wret;
  1303. btrfs_block_release(root, leaf_buf);
  1304. wret = btrfs_free_extent(trans, root, blocknr,
  1305. 1, 1);
  1306. if (wret)
  1307. ret = wret;
  1308. } else {
  1309. btrfs_mark_buffer_dirty(leaf_buf);
  1310. btrfs_block_release(root, leaf_buf);
  1311. }
  1312. } else {
  1313. btrfs_mark_buffer_dirty(leaf_buf);
  1314. }
  1315. }
  1316. return ret;
  1317. }
  1318. /*
  1319. * walk up the tree as far as required to find the next leaf.
  1320. * returns 0 if it found something or 1 if there are no greater leaves.
  1321. * returns < 0 on io errors.
  1322. */
  1323. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1324. {
  1325. int slot;
  1326. int level = 1;
  1327. u64 blocknr;
  1328. struct buffer_head *c;
  1329. struct btrfs_node *c_node;
  1330. struct buffer_head *next = NULL;
  1331. while(level < BTRFS_MAX_LEVEL) {
  1332. if (!path->nodes[level])
  1333. return 1;
  1334. slot = path->slots[level] + 1;
  1335. c = path->nodes[level];
  1336. c_node = btrfs_buffer_node(c);
  1337. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1338. level++;
  1339. continue;
  1340. }
  1341. blocknr = btrfs_node_blockptr(c_node, slot);
  1342. if (next)
  1343. btrfs_block_release(root, next);
  1344. next = read_tree_block(root, blocknr);
  1345. break;
  1346. }
  1347. path->slots[level] = slot;
  1348. while(1) {
  1349. level--;
  1350. c = path->nodes[level];
  1351. btrfs_block_release(root, c);
  1352. path->nodes[level] = next;
  1353. path->slots[level] = 0;
  1354. if (!level)
  1355. break;
  1356. next = read_tree_block(root,
  1357. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1358. }
  1359. return 0;
  1360. }