mmzone.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/cache.h>
  9. #include <linux/threads.h>
  10. #include <linux/numa.h>
  11. #include <linux/init.h>
  12. #include <linux/seqlock.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/atomic.h>
  15. #include <asm/page.h>
  16. /* Free memory management - zoned buddy allocator. */
  17. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  18. #define MAX_ORDER 11
  19. #else
  20. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  21. #endif
  22. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  23. struct free_area {
  24. struct list_head free_list;
  25. unsigned long nr_free;
  26. };
  27. struct pglist_data;
  28. /*
  29. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  30. * So add a wild amount of padding here to ensure that they fall into separate
  31. * cachelines. There are very few zone structures in the machine, so space
  32. * consumption is not a concern here.
  33. */
  34. #if defined(CONFIG_SMP)
  35. struct zone_padding {
  36. char x[0];
  37. } ____cacheline_internodealigned_in_smp;
  38. #define ZONE_PADDING(name) struct zone_padding name;
  39. #else
  40. #define ZONE_PADDING(name)
  41. #endif
  42. enum zone_stat_item {
  43. NR_ANON_PAGES, /* Mapped anonymous pages */
  44. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  45. only modified from process context */
  46. NR_FILE_PAGES,
  47. NR_SLAB_RECLAIMABLE,
  48. NR_SLAB_UNRECLAIMABLE,
  49. NR_PAGETABLE, /* used for pagetables */
  50. NR_FILE_DIRTY,
  51. NR_WRITEBACK,
  52. NR_UNSTABLE_NFS, /* NFS unstable pages */
  53. NR_BOUNCE,
  54. NR_VMSCAN_WRITE,
  55. #ifdef CONFIG_NUMA
  56. NUMA_HIT, /* allocated in intended node */
  57. NUMA_MISS, /* allocated in non intended node */
  58. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  59. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  60. NUMA_LOCAL, /* allocation from local node */
  61. NUMA_OTHER, /* allocation from other node */
  62. #endif
  63. NR_VM_ZONE_STAT_ITEMS };
  64. struct per_cpu_pages {
  65. int count; /* number of pages in the list */
  66. int high; /* high watermark, emptying needed */
  67. int batch; /* chunk size for buddy add/remove */
  68. struct list_head list; /* the list of pages */
  69. };
  70. struct per_cpu_pageset {
  71. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  72. #ifdef CONFIG_SMP
  73. s8 stat_threshold;
  74. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  75. #endif
  76. } ____cacheline_aligned_in_smp;
  77. #ifdef CONFIG_NUMA
  78. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  79. #else
  80. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  81. #endif
  82. enum zone_type {
  83. /*
  84. * ZONE_DMA is used when there are devices that are not able
  85. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  86. * carve out the portion of memory that is needed for these devices.
  87. * The range is arch specific.
  88. *
  89. * Some examples
  90. *
  91. * Architecture Limit
  92. * ---------------------------
  93. * parisc, ia64, sparc <4G
  94. * s390 <2G
  95. * arm26 <48M
  96. * arm Various
  97. * alpha Unlimited or 0-16MB.
  98. *
  99. * i386, x86_64 and multiple other arches
  100. * <16M.
  101. */
  102. ZONE_DMA,
  103. #ifdef CONFIG_ZONE_DMA32
  104. /*
  105. * x86_64 needs two ZONE_DMAs because it supports devices that are
  106. * only able to do DMA to the lower 16M but also 32 bit devices that
  107. * can only do DMA areas below 4G.
  108. */
  109. ZONE_DMA32,
  110. #endif
  111. /*
  112. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  113. * performed on pages in ZONE_NORMAL if the DMA devices support
  114. * transfers to all addressable memory.
  115. */
  116. ZONE_NORMAL,
  117. #ifdef CONFIG_HIGHMEM
  118. /*
  119. * A memory area that is only addressable by the kernel through
  120. * mapping portions into its own address space. This is for example
  121. * used by i386 to allow the kernel to address the memory beyond
  122. * 900MB. The kernel will set up special mappings (page
  123. * table entries on i386) for each page that the kernel needs to
  124. * access.
  125. */
  126. ZONE_HIGHMEM,
  127. #endif
  128. MAX_NR_ZONES
  129. };
  130. /*
  131. * When a memory allocation must conform to specific limitations (such
  132. * as being suitable for DMA) the caller will pass in hints to the
  133. * allocator in the gfp_mask, in the zone modifier bits. These bits
  134. * are used to select a priority ordered list of memory zones which
  135. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  136. */
  137. #if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
  138. #define ZONES_SHIFT 1
  139. #else
  140. #define ZONES_SHIFT 2
  141. #endif
  142. struct zone {
  143. /* Fields commonly accessed by the page allocator */
  144. unsigned long free_pages;
  145. unsigned long pages_min, pages_low, pages_high;
  146. /*
  147. * We don't know if the memory that we're going to allocate will be freeable
  148. * or/and it will be released eventually, so to avoid totally wasting several
  149. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  150. * to run OOM on the lower zones despite there's tons of freeable ram
  151. * on the higher zones). This array is recalculated at runtime if the
  152. * sysctl_lowmem_reserve_ratio sysctl changes.
  153. */
  154. unsigned long lowmem_reserve[MAX_NR_ZONES];
  155. #ifdef CONFIG_NUMA
  156. int node;
  157. /*
  158. * zone reclaim becomes active if more unmapped pages exist.
  159. */
  160. unsigned long min_unmapped_pages;
  161. unsigned long min_slab_pages;
  162. struct per_cpu_pageset *pageset[NR_CPUS];
  163. #else
  164. struct per_cpu_pageset pageset[NR_CPUS];
  165. #endif
  166. /*
  167. * free areas of different sizes
  168. */
  169. spinlock_t lock;
  170. #ifdef CONFIG_MEMORY_HOTPLUG
  171. /* see spanned/present_pages for more description */
  172. seqlock_t span_seqlock;
  173. #endif
  174. struct free_area free_area[MAX_ORDER];
  175. ZONE_PADDING(_pad1_)
  176. /* Fields commonly accessed by the page reclaim scanner */
  177. spinlock_t lru_lock;
  178. struct list_head active_list;
  179. struct list_head inactive_list;
  180. unsigned long nr_scan_active;
  181. unsigned long nr_scan_inactive;
  182. unsigned long nr_active;
  183. unsigned long nr_inactive;
  184. unsigned long pages_scanned; /* since last reclaim */
  185. int all_unreclaimable; /* All pages pinned */
  186. /* A count of how many reclaimers are scanning this zone */
  187. atomic_t reclaim_in_progress;
  188. /* Zone statistics */
  189. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  190. /*
  191. * prev_priority holds the scanning priority for this zone. It is
  192. * defined as the scanning priority at which we achieved our reclaim
  193. * target at the previous try_to_free_pages() or balance_pgdat()
  194. * invokation.
  195. *
  196. * We use prev_priority as a measure of how much stress page reclaim is
  197. * under - it drives the swappiness decision: whether to unmap mapped
  198. * pages.
  199. *
  200. * temp_priority is used to remember the scanning priority at which
  201. * this zone was successfully refilled to free_pages == pages_high.
  202. *
  203. * Access to both these fields is quite racy even on uniprocessor. But
  204. * it is expected to average out OK.
  205. */
  206. int temp_priority;
  207. int prev_priority;
  208. ZONE_PADDING(_pad2_)
  209. /* Rarely used or read-mostly fields */
  210. /*
  211. * wait_table -- the array holding the hash table
  212. * wait_table_hash_nr_entries -- the size of the hash table array
  213. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  214. *
  215. * The purpose of all these is to keep track of the people
  216. * waiting for a page to become available and make them
  217. * runnable again when possible. The trouble is that this
  218. * consumes a lot of space, especially when so few things
  219. * wait on pages at a given time. So instead of using
  220. * per-page waitqueues, we use a waitqueue hash table.
  221. *
  222. * The bucket discipline is to sleep on the same queue when
  223. * colliding and wake all in that wait queue when removing.
  224. * When something wakes, it must check to be sure its page is
  225. * truly available, a la thundering herd. The cost of a
  226. * collision is great, but given the expected load of the
  227. * table, they should be so rare as to be outweighed by the
  228. * benefits from the saved space.
  229. *
  230. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  231. * primary users of these fields, and in mm/page_alloc.c
  232. * free_area_init_core() performs the initialization of them.
  233. */
  234. wait_queue_head_t * wait_table;
  235. unsigned long wait_table_hash_nr_entries;
  236. unsigned long wait_table_bits;
  237. /*
  238. * Discontig memory support fields.
  239. */
  240. struct pglist_data *zone_pgdat;
  241. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  242. unsigned long zone_start_pfn;
  243. /*
  244. * zone_start_pfn, spanned_pages and present_pages are all
  245. * protected by span_seqlock. It is a seqlock because it has
  246. * to be read outside of zone->lock, and it is done in the main
  247. * allocator path. But, it is written quite infrequently.
  248. *
  249. * The lock is declared along with zone->lock because it is
  250. * frequently read in proximity to zone->lock. It's good to
  251. * give them a chance of being in the same cacheline.
  252. */
  253. unsigned long spanned_pages; /* total size, including holes */
  254. unsigned long present_pages; /* amount of memory (excluding holes) */
  255. /*
  256. * rarely used fields:
  257. */
  258. char *name;
  259. } ____cacheline_internodealigned_in_smp;
  260. /*
  261. * The "priority" of VM scanning is how much of the queues we will scan in one
  262. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  263. * queues ("queue_length >> 12") during an aging round.
  264. */
  265. #define DEF_PRIORITY 12
  266. /*
  267. * One allocation request operates on a zonelist. A zonelist
  268. * is a list of zones, the first one is the 'goal' of the
  269. * allocation, the other zones are fallback zones, in decreasing
  270. * priority.
  271. *
  272. * Right now a zonelist takes up less than a cacheline. We never
  273. * modify it apart from boot-up, and only a few indices are used,
  274. * so despite the zonelist table being relatively big, the cache
  275. * footprint of this construct is very small.
  276. */
  277. struct zonelist {
  278. struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
  279. };
  280. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  281. struct node_active_region {
  282. unsigned long start_pfn;
  283. unsigned long end_pfn;
  284. int nid;
  285. };
  286. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  287. #ifndef CONFIG_DISCONTIGMEM
  288. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  289. extern struct page *mem_map;
  290. #endif
  291. /*
  292. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  293. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  294. * zone denotes.
  295. *
  296. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  297. * it's memory layout.
  298. *
  299. * Memory statistics and page replacement data structures are maintained on a
  300. * per-zone basis.
  301. */
  302. struct bootmem_data;
  303. typedef struct pglist_data {
  304. struct zone node_zones[MAX_NR_ZONES];
  305. struct zonelist node_zonelists[MAX_NR_ZONES];
  306. int nr_zones;
  307. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  308. struct page *node_mem_map;
  309. #endif
  310. struct bootmem_data *bdata;
  311. #ifdef CONFIG_MEMORY_HOTPLUG
  312. /*
  313. * Must be held any time you expect node_start_pfn, node_present_pages
  314. * or node_spanned_pages stay constant. Holding this will also
  315. * guarantee that any pfn_valid() stays that way.
  316. *
  317. * Nests above zone->lock and zone->size_seqlock.
  318. */
  319. spinlock_t node_size_lock;
  320. #endif
  321. unsigned long node_start_pfn;
  322. unsigned long node_present_pages; /* total number of physical pages */
  323. unsigned long node_spanned_pages; /* total size of physical page
  324. range, including holes */
  325. int node_id;
  326. wait_queue_head_t kswapd_wait;
  327. struct task_struct *kswapd;
  328. int kswapd_max_order;
  329. } pg_data_t;
  330. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  331. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  332. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  333. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  334. #else
  335. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  336. #endif
  337. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  338. #include <linux/memory_hotplug.h>
  339. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  340. unsigned long *free, struct pglist_data *pgdat);
  341. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  342. unsigned long *free);
  343. void build_all_zonelists(void);
  344. void wakeup_kswapd(struct zone *zone, int order);
  345. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  346. int classzone_idx, int alloc_flags);
  347. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  348. unsigned long size);
  349. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  350. void memory_present(int nid, unsigned long start, unsigned long end);
  351. #else
  352. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  353. #endif
  354. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  355. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  356. #endif
  357. /*
  358. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  359. */
  360. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  361. static inline int populated_zone(struct zone *zone)
  362. {
  363. return (!!zone->present_pages);
  364. }
  365. static inline int is_highmem_idx(enum zone_type idx)
  366. {
  367. #ifdef CONFIG_HIGHMEM
  368. return (idx == ZONE_HIGHMEM);
  369. #else
  370. return 0;
  371. #endif
  372. }
  373. static inline int is_normal_idx(enum zone_type idx)
  374. {
  375. return (idx == ZONE_NORMAL);
  376. }
  377. /**
  378. * is_highmem - helper function to quickly check if a struct zone is a
  379. * highmem zone or not. This is an attempt to keep references
  380. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  381. * @zone - pointer to struct zone variable
  382. */
  383. static inline int is_highmem(struct zone *zone)
  384. {
  385. #ifdef CONFIG_HIGHMEM
  386. return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
  387. #else
  388. return 0;
  389. #endif
  390. }
  391. static inline int is_normal(struct zone *zone)
  392. {
  393. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  394. }
  395. static inline int is_dma32(struct zone *zone)
  396. {
  397. #ifdef CONFIG_ZONE_DMA32
  398. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  399. #else
  400. return 0;
  401. #endif
  402. }
  403. static inline int is_dma(struct zone *zone)
  404. {
  405. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  406. }
  407. /* These two functions are used to setup the per zone pages min values */
  408. struct ctl_table;
  409. struct file;
  410. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  411. void __user *, size_t *, loff_t *);
  412. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  413. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  414. void __user *, size_t *, loff_t *);
  415. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  416. void __user *, size_t *, loff_t *);
  417. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  418. struct file *, void __user *, size_t *, loff_t *);
  419. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  420. struct file *, void __user *, size_t *, loff_t *);
  421. #include <linux/topology.h>
  422. /* Returns the number of the current Node. */
  423. #ifndef numa_node_id
  424. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  425. #endif
  426. #ifndef CONFIG_NEED_MULTIPLE_NODES
  427. extern struct pglist_data contig_page_data;
  428. #define NODE_DATA(nid) (&contig_page_data)
  429. #define NODE_MEM_MAP(nid) mem_map
  430. #define MAX_NODES_SHIFT 1
  431. #else /* CONFIG_NEED_MULTIPLE_NODES */
  432. #include <asm/mmzone.h>
  433. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  434. extern struct pglist_data *first_online_pgdat(void);
  435. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  436. extern struct zone *next_zone(struct zone *zone);
  437. /**
  438. * for_each_pgdat - helper macro to iterate over all nodes
  439. * @pgdat - pointer to a pg_data_t variable
  440. */
  441. #define for_each_online_pgdat(pgdat) \
  442. for (pgdat = first_online_pgdat(); \
  443. pgdat; \
  444. pgdat = next_online_pgdat(pgdat))
  445. /**
  446. * for_each_zone - helper macro to iterate over all memory zones
  447. * @zone - pointer to struct zone variable
  448. *
  449. * The user only needs to declare the zone variable, for_each_zone
  450. * fills it in.
  451. */
  452. #define for_each_zone(zone) \
  453. for (zone = (first_online_pgdat())->node_zones; \
  454. zone; \
  455. zone = next_zone(zone))
  456. #ifdef CONFIG_SPARSEMEM
  457. #include <asm/sparsemem.h>
  458. #endif
  459. #if BITS_PER_LONG == 32
  460. /*
  461. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  462. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  463. */
  464. #define FLAGS_RESERVED 9
  465. #elif BITS_PER_LONG == 64
  466. /*
  467. * with 64 bit flags field, there's plenty of room.
  468. */
  469. #define FLAGS_RESERVED 32
  470. #else
  471. #error BITS_PER_LONG not defined
  472. #endif
  473. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  474. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  475. #define early_pfn_to_nid(nid) (0UL)
  476. #endif
  477. #ifdef CONFIG_FLATMEM
  478. #define pfn_to_nid(pfn) (0)
  479. #endif
  480. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  481. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  482. #ifdef CONFIG_SPARSEMEM
  483. /*
  484. * SECTION_SHIFT #bits space required to store a section #
  485. *
  486. * PA_SECTION_SHIFT physical address to/from section number
  487. * PFN_SECTION_SHIFT pfn to/from section number
  488. */
  489. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  490. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  491. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  492. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  493. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  494. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  495. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  496. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  497. #endif
  498. struct page;
  499. struct mem_section {
  500. /*
  501. * This is, logically, a pointer to an array of struct
  502. * pages. However, it is stored with some other magic.
  503. * (see sparse.c::sparse_init_one_section())
  504. *
  505. * Additionally during early boot we encode node id of
  506. * the location of the section here to guide allocation.
  507. * (see sparse.c::memory_present())
  508. *
  509. * Making it a UL at least makes someone do a cast
  510. * before using it wrong.
  511. */
  512. unsigned long section_mem_map;
  513. };
  514. #ifdef CONFIG_SPARSEMEM_EXTREME
  515. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  516. #else
  517. #define SECTIONS_PER_ROOT 1
  518. #endif
  519. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  520. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  521. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  522. #ifdef CONFIG_SPARSEMEM_EXTREME
  523. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  524. #else
  525. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  526. #endif
  527. static inline struct mem_section *__nr_to_section(unsigned long nr)
  528. {
  529. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  530. return NULL;
  531. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  532. }
  533. extern int __section_nr(struct mem_section* ms);
  534. /*
  535. * We use the lower bits of the mem_map pointer to store
  536. * a little bit of information. There should be at least
  537. * 3 bits here due to 32-bit alignment.
  538. */
  539. #define SECTION_MARKED_PRESENT (1UL<<0)
  540. #define SECTION_HAS_MEM_MAP (1UL<<1)
  541. #define SECTION_MAP_LAST_BIT (1UL<<2)
  542. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  543. #define SECTION_NID_SHIFT 2
  544. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  545. {
  546. unsigned long map = section->section_mem_map;
  547. map &= SECTION_MAP_MASK;
  548. return (struct page *)map;
  549. }
  550. static inline int valid_section(struct mem_section *section)
  551. {
  552. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  553. }
  554. static inline int section_has_mem_map(struct mem_section *section)
  555. {
  556. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  557. }
  558. static inline int valid_section_nr(unsigned long nr)
  559. {
  560. return valid_section(__nr_to_section(nr));
  561. }
  562. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  563. {
  564. return __nr_to_section(pfn_to_section_nr(pfn));
  565. }
  566. static inline int pfn_valid(unsigned long pfn)
  567. {
  568. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  569. return 0;
  570. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  571. }
  572. /*
  573. * These are _only_ used during initialisation, therefore they
  574. * can use __initdata ... They could have names to indicate
  575. * this restriction.
  576. */
  577. #ifdef CONFIG_NUMA
  578. #define pfn_to_nid(pfn) \
  579. ({ \
  580. unsigned long __pfn_to_nid_pfn = (pfn); \
  581. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  582. })
  583. #else
  584. #define pfn_to_nid(pfn) (0)
  585. #endif
  586. #define early_pfn_valid(pfn) pfn_valid(pfn)
  587. void sparse_init(void);
  588. #else
  589. #define sparse_init() do {} while (0)
  590. #define sparse_index_init(_sec, _nid) do {} while (0)
  591. #endif /* CONFIG_SPARSEMEM */
  592. #ifndef early_pfn_valid
  593. #define early_pfn_valid(pfn) (1)
  594. #endif
  595. void memory_present(int nid, unsigned long start, unsigned long end);
  596. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  597. #endif /* !__ASSEMBLY__ */
  598. #endif /* __KERNEL__ */
  599. #endif /* _LINUX_MMZONE_H */