spinlock.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. #ifndef _ASM_X86_SPINLOCK_H
  2. #define _ASM_X86_SPINLOCK_H
  3. #include <linux/atomic.h>
  4. #include <asm/page.h>
  5. #include <asm/processor.h>
  6. #include <linux/compiler.h>
  7. #include <asm/paravirt.h>
  8. /*
  9. * Your basic SMP spinlocks, allowing only a single CPU anywhere
  10. *
  11. * Simple spin lock operations. There are two variants, one clears IRQ's
  12. * on the local processor, one does not.
  13. *
  14. * These are fair FIFO ticket locks, which are currently limited to 256
  15. * CPUs.
  16. *
  17. * (the type definitions are in asm/spinlock_types.h)
  18. */
  19. #ifdef CONFIG_X86_32
  20. # define LOCK_PTR_REG "a"
  21. #else
  22. # define LOCK_PTR_REG "D"
  23. #endif
  24. #if defined(CONFIG_X86_32) && \
  25. (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
  26. /*
  27. * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
  28. * (PPro errata 66, 92)
  29. */
  30. # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
  31. #else
  32. # define UNLOCK_LOCK_PREFIX
  33. #endif
  34. /*
  35. * Ticket locks are conceptually two parts, one indicating the current head of
  36. * the queue, and the other indicating the current tail. The lock is acquired
  37. * by atomically noting the tail and incrementing it by one (thus adding
  38. * ourself to the queue and noting our position), then waiting until the head
  39. * becomes equal to the the initial value of the tail.
  40. *
  41. * We use an xadd covering *both* parts of the lock, to increment the tail and
  42. * also load the position of the head, which takes care of memory ordering
  43. * issues and should be optimal for the uncontended case. Note the tail must be
  44. * in the high part, because a wide xadd increment of the low part would carry
  45. * up and contaminate the high part.
  46. */
  47. static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
  48. {
  49. register struct __raw_tickets inc = { .tail = 1 };
  50. inc = xadd(&lock->tickets, inc);
  51. for (;;) {
  52. if (inc.head == inc.tail)
  53. break;
  54. cpu_relax();
  55. inc.head = ACCESS_ONCE(lock->tickets.head);
  56. }
  57. barrier(); /* make sure nothing creeps before the lock is taken */
  58. }
  59. static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
  60. {
  61. arch_spinlock_t old, new;
  62. old.tickets = ACCESS_ONCE(lock->tickets);
  63. if (old.tickets.head != old.tickets.tail)
  64. return 0;
  65. new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
  66. /* cmpxchg is a full barrier, so nothing can move before it */
  67. return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
  68. }
  69. static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
  70. {
  71. __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
  72. }
  73. static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
  74. {
  75. struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
  76. return tmp.tail != tmp.head;
  77. }
  78. static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
  79. {
  80. struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
  81. return (__ticket_t)(tmp.tail - tmp.head) > 1;
  82. }
  83. #ifndef CONFIG_PARAVIRT_SPINLOCKS
  84. static inline int arch_spin_is_locked(arch_spinlock_t *lock)
  85. {
  86. return __ticket_spin_is_locked(lock);
  87. }
  88. static inline int arch_spin_is_contended(arch_spinlock_t *lock)
  89. {
  90. return __ticket_spin_is_contended(lock);
  91. }
  92. #define arch_spin_is_contended arch_spin_is_contended
  93. static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
  94. {
  95. __ticket_spin_lock(lock);
  96. }
  97. static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
  98. {
  99. return __ticket_spin_trylock(lock);
  100. }
  101. static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
  102. {
  103. __ticket_spin_unlock(lock);
  104. }
  105. static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
  106. unsigned long flags)
  107. {
  108. arch_spin_lock(lock);
  109. }
  110. #endif /* CONFIG_PARAVIRT_SPINLOCKS */
  111. static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
  112. {
  113. while (arch_spin_is_locked(lock))
  114. cpu_relax();
  115. }
  116. /*
  117. * Read-write spinlocks, allowing multiple readers
  118. * but only one writer.
  119. *
  120. * NOTE! it is quite common to have readers in interrupts
  121. * but no interrupt writers. For those circumstances we
  122. * can "mix" irq-safe locks - any writer needs to get a
  123. * irq-safe write-lock, but readers can get non-irqsafe
  124. * read-locks.
  125. *
  126. * On x86, we implement read-write locks as a 32-bit counter
  127. * with the high bit (sign) being the "contended" bit.
  128. */
  129. /**
  130. * read_can_lock - would read_trylock() succeed?
  131. * @lock: the rwlock in question.
  132. */
  133. static inline int arch_read_can_lock(arch_rwlock_t *lock)
  134. {
  135. return lock->lock > 0;
  136. }
  137. /**
  138. * write_can_lock - would write_trylock() succeed?
  139. * @lock: the rwlock in question.
  140. */
  141. static inline int arch_write_can_lock(arch_rwlock_t *lock)
  142. {
  143. return lock->write == WRITE_LOCK_CMP;
  144. }
  145. static inline void arch_read_lock(arch_rwlock_t *rw)
  146. {
  147. asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
  148. "jns 1f\n"
  149. "call __read_lock_failed\n\t"
  150. "1:\n"
  151. ::LOCK_PTR_REG (rw) : "memory");
  152. }
  153. static inline void arch_write_lock(arch_rwlock_t *rw)
  154. {
  155. asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
  156. "jz 1f\n"
  157. "call __write_lock_failed\n\t"
  158. "1:\n"
  159. ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
  160. : "memory");
  161. }
  162. static inline int arch_read_trylock(arch_rwlock_t *lock)
  163. {
  164. READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
  165. if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
  166. return 1;
  167. READ_LOCK_ATOMIC(inc)(count);
  168. return 0;
  169. }
  170. static inline int arch_write_trylock(arch_rwlock_t *lock)
  171. {
  172. atomic_t *count = (atomic_t *)&lock->write;
  173. if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
  174. return 1;
  175. atomic_add(WRITE_LOCK_CMP, count);
  176. return 0;
  177. }
  178. static inline void arch_read_unlock(arch_rwlock_t *rw)
  179. {
  180. asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
  181. :"+m" (rw->lock) : : "memory");
  182. }
  183. static inline void arch_write_unlock(arch_rwlock_t *rw)
  184. {
  185. asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
  186. : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
  187. }
  188. #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
  189. #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
  190. #undef READ_LOCK_SIZE
  191. #undef READ_LOCK_ATOMIC
  192. #undef WRITE_LOCK_ADD
  193. #undef WRITE_LOCK_SUB
  194. #undef WRITE_LOCK_CMP
  195. #define arch_spin_relax(lock) cpu_relax()
  196. #define arch_read_relax(lock) cpu_relax()
  197. #define arch_write_relax(lock) cpu_relax()
  198. /* The {read|write|spin}_lock() on x86 are full memory barriers. */
  199. static inline void smp_mb__after_lock(void) { }
  200. #define ARCH_HAS_SMP_MB_AFTER_LOCK
  201. #endif /* _ASM_X86_SPINLOCK_H */