time.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/init.h>
  45. #include <linux/profile.h>
  46. #include <linux/cpu.h>
  47. #include <linux/security.h>
  48. #include <linux/percpu.h>
  49. #include <linux/rtc.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/posix-timers.h>
  52. #include <linux/irq.h>
  53. #include <linux/delay.h>
  54. #include <linux/irq_work.h>
  55. #include <asm/trace.h>
  56. #include <asm/io.h>
  57. #include <asm/processor.h>
  58. #include <asm/nvram.h>
  59. #include <asm/cache.h>
  60. #include <asm/machdep.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/time.h>
  63. #include <asm/prom.h>
  64. #include <asm/irq.h>
  65. #include <asm/div64.h>
  66. #include <asm/smp.h>
  67. #include <asm/vdso_datapage.h>
  68. #include <asm/firmware.h>
  69. #include <asm/cputime.h>
  70. /* powerpc clocksource/clockevent code */
  71. #include <linux/clockchips.h>
  72. #include <linux/clocksource.h>
  73. static cycle_t rtc_read(struct clocksource *);
  74. static struct clocksource clocksource_rtc = {
  75. .name = "rtc",
  76. .rating = 400,
  77. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  78. .mask = CLOCKSOURCE_MASK(64),
  79. .read = rtc_read,
  80. };
  81. static cycle_t timebase_read(struct clocksource *);
  82. static struct clocksource clocksource_timebase = {
  83. .name = "timebase",
  84. .rating = 400,
  85. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  86. .mask = CLOCKSOURCE_MASK(64),
  87. .read = timebase_read,
  88. };
  89. #define DECREMENTER_MAX 0x7fffffff
  90. static int decrementer_set_next_event(unsigned long evt,
  91. struct clock_event_device *dev);
  92. static void decrementer_set_mode(enum clock_event_mode mode,
  93. struct clock_event_device *dev);
  94. struct clock_event_device decrementer_clockevent = {
  95. .name = "decrementer",
  96. .rating = 200,
  97. .irq = 0,
  98. .set_next_event = decrementer_set_next_event,
  99. .set_mode = decrementer_set_mode,
  100. .features = CLOCK_EVT_FEAT_ONESHOT,
  101. };
  102. EXPORT_SYMBOL(decrementer_clockevent);
  103. DEFINE_PER_CPU(u64, decrementers_next_tb);
  104. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  105. #define XSEC_PER_SEC (1024*1024)
  106. #ifdef CONFIG_PPC64
  107. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  108. #else
  109. /* compute ((xsec << 12) * max) >> 32 */
  110. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  111. #endif
  112. unsigned long tb_ticks_per_jiffy;
  113. unsigned long tb_ticks_per_usec = 100; /* sane default */
  114. EXPORT_SYMBOL(tb_ticks_per_usec);
  115. unsigned long tb_ticks_per_sec;
  116. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  117. DEFINE_SPINLOCK(rtc_lock);
  118. EXPORT_SYMBOL_GPL(rtc_lock);
  119. static u64 tb_to_ns_scale __read_mostly;
  120. static unsigned tb_to_ns_shift __read_mostly;
  121. static u64 boot_tb __read_mostly;
  122. extern struct timezone sys_tz;
  123. static long timezone_offset;
  124. unsigned long ppc_proc_freq;
  125. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  126. unsigned long ppc_tb_freq;
  127. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  128. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  129. /*
  130. * Factors for converting from cputime_t (timebase ticks) to
  131. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  132. * These are all stored as 0.64 fixed-point binary fractions.
  133. */
  134. u64 __cputime_jiffies_factor;
  135. EXPORT_SYMBOL(__cputime_jiffies_factor);
  136. u64 __cputime_usec_factor;
  137. EXPORT_SYMBOL(__cputime_usec_factor);
  138. u64 __cputime_sec_factor;
  139. EXPORT_SYMBOL(__cputime_sec_factor);
  140. u64 __cputime_clockt_factor;
  141. EXPORT_SYMBOL(__cputime_clockt_factor);
  142. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  143. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  144. cputime_t cputime_one_jiffy;
  145. void (*dtl_consumer)(struct dtl_entry *, u64);
  146. static void calc_cputime_factors(void)
  147. {
  148. struct div_result res;
  149. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  150. __cputime_jiffies_factor = res.result_low;
  151. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  152. __cputime_usec_factor = res.result_low;
  153. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  154. __cputime_sec_factor = res.result_low;
  155. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  156. __cputime_clockt_factor = res.result_low;
  157. }
  158. /*
  159. * Read the SPURR on systems that have it, otherwise the PURR,
  160. * or if that doesn't exist return the timebase value passed in.
  161. */
  162. static u64 read_spurr(u64 tb)
  163. {
  164. if (cpu_has_feature(CPU_FTR_SPURR))
  165. return mfspr(SPRN_SPURR);
  166. if (cpu_has_feature(CPU_FTR_PURR))
  167. return mfspr(SPRN_PURR);
  168. return tb;
  169. }
  170. #ifdef CONFIG_PPC_SPLPAR
  171. /*
  172. * Scan the dispatch trace log and count up the stolen time.
  173. * Should be called with interrupts disabled.
  174. */
  175. static u64 scan_dispatch_log(u64 stop_tb)
  176. {
  177. u64 i = local_paca->dtl_ridx;
  178. struct dtl_entry *dtl = local_paca->dtl_curr;
  179. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  180. struct lppaca *vpa = local_paca->lppaca_ptr;
  181. u64 tb_delta;
  182. u64 stolen = 0;
  183. u64 dtb;
  184. if (!dtl)
  185. return 0;
  186. if (i == vpa->dtl_idx)
  187. return 0;
  188. while (i < vpa->dtl_idx) {
  189. if (dtl_consumer)
  190. dtl_consumer(dtl, i);
  191. dtb = dtl->timebase;
  192. tb_delta = dtl->enqueue_to_dispatch_time +
  193. dtl->ready_to_enqueue_time;
  194. barrier();
  195. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  196. /* buffer has overflowed */
  197. i = vpa->dtl_idx - N_DISPATCH_LOG;
  198. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  199. continue;
  200. }
  201. if (dtb > stop_tb)
  202. break;
  203. stolen += tb_delta;
  204. ++i;
  205. ++dtl;
  206. if (dtl == dtl_end)
  207. dtl = local_paca->dispatch_log;
  208. }
  209. local_paca->dtl_ridx = i;
  210. local_paca->dtl_curr = dtl;
  211. return stolen;
  212. }
  213. /*
  214. * Accumulate stolen time by scanning the dispatch trace log.
  215. * Called on entry from user mode.
  216. */
  217. void accumulate_stolen_time(void)
  218. {
  219. u64 sst, ust;
  220. u8 save_soft_enabled = local_paca->soft_enabled;
  221. /* We are called early in the exception entry, before
  222. * soft/hard_enabled are sync'ed to the expected state
  223. * for the exception. We are hard disabled but the PACA
  224. * needs to reflect that so various debug stuff doesn't
  225. * complain
  226. */
  227. local_paca->soft_enabled = 0;
  228. sst = scan_dispatch_log(local_paca->starttime_user);
  229. ust = scan_dispatch_log(local_paca->starttime);
  230. local_paca->system_time -= sst;
  231. local_paca->user_time -= ust;
  232. local_paca->stolen_time += ust + sst;
  233. local_paca->soft_enabled = save_soft_enabled;
  234. }
  235. static inline u64 calculate_stolen_time(u64 stop_tb)
  236. {
  237. u64 stolen = 0;
  238. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  239. stolen = scan_dispatch_log(stop_tb);
  240. get_paca()->system_time -= stolen;
  241. }
  242. stolen += get_paca()->stolen_time;
  243. get_paca()->stolen_time = 0;
  244. return stolen;
  245. }
  246. #else /* CONFIG_PPC_SPLPAR */
  247. static inline u64 calculate_stolen_time(u64 stop_tb)
  248. {
  249. return 0;
  250. }
  251. #endif /* CONFIG_PPC_SPLPAR */
  252. /*
  253. * Account time for a transition between system, hard irq
  254. * or soft irq state.
  255. */
  256. void account_system_vtime(struct task_struct *tsk)
  257. {
  258. u64 now, nowscaled, delta, deltascaled;
  259. unsigned long flags;
  260. u64 stolen, udelta, sys_scaled, user_scaled;
  261. local_irq_save(flags);
  262. now = mftb();
  263. nowscaled = read_spurr(now);
  264. get_paca()->system_time += now - get_paca()->starttime;
  265. get_paca()->starttime = now;
  266. deltascaled = nowscaled - get_paca()->startspurr;
  267. get_paca()->startspurr = nowscaled;
  268. stolen = calculate_stolen_time(now);
  269. delta = get_paca()->system_time;
  270. get_paca()->system_time = 0;
  271. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  272. get_paca()->utime_sspurr = get_paca()->user_time;
  273. /*
  274. * Because we don't read the SPURR on every kernel entry/exit,
  275. * deltascaled includes both user and system SPURR ticks.
  276. * Apportion these ticks to system SPURR ticks and user
  277. * SPURR ticks in the same ratio as the system time (delta)
  278. * and user time (udelta) values obtained from the timebase
  279. * over the same interval. The system ticks get accounted here;
  280. * the user ticks get saved up in paca->user_time_scaled to be
  281. * used by account_process_tick.
  282. */
  283. sys_scaled = delta;
  284. user_scaled = udelta;
  285. if (deltascaled != delta + udelta) {
  286. if (udelta) {
  287. sys_scaled = deltascaled * delta / (delta + udelta);
  288. user_scaled = deltascaled - sys_scaled;
  289. } else {
  290. sys_scaled = deltascaled;
  291. }
  292. }
  293. get_paca()->user_time_scaled += user_scaled;
  294. if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
  295. account_system_time(tsk, 0, delta, sys_scaled);
  296. if (stolen)
  297. account_steal_time(stolen);
  298. } else {
  299. account_idle_time(delta + stolen);
  300. }
  301. local_irq_restore(flags);
  302. }
  303. EXPORT_SYMBOL_GPL(account_system_vtime);
  304. /*
  305. * Transfer the user and system times accumulated in the paca
  306. * by the exception entry and exit code to the generic process
  307. * user and system time records.
  308. * Must be called with interrupts disabled.
  309. * Assumes that account_system_vtime() has been called recently
  310. * (i.e. since the last entry from usermode) so that
  311. * get_paca()->user_time_scaled is up to date.
  312. */
  313. void account_process_tick(struct task_struct *tsk, int user_tick)
  314. {
  315. cputime_t utime, utimescaled;
  316. utime = get_paca()->user_time;
  317. utimescaled = get_paca()->user_time_scaled;
  318. get_paca()->user_time = 0;
  319. get_paca()->user_time_scaled = 0;
  320. get_paca()->utime_sspurr = 0;
  321. account_user_time(tsk, utime, utimescaled);
  322. }
  323. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  324. #define calc_cputime_factors()
  325. #endif
  326. void __delay(unsigned long loops)
  327. {
  328. unsigned long start;
  329. int diff;
  330. if (__USE_RTC()) {
  331. start = get_rtcl();
  332. do {
  333. /* the RTCL register wraps at 1000000000 */
  334. diff = get_rtcl() - start;
  335. if (diff < 0)
  336. diff += 1000000000;
  337. } while (diff < loops);
  338. } else {
  339. start = get_tbl();
  340. while (get_tbl() - start < loops)
  341. HMT_low();
  342. HMT_medium();
  343. }
  344. }
  345. EXPORT_SYMBOL(__delay);
  346. void udelay(unsigned long usecs)
  347. {
  348. __delay(tb_ticks_per_usec * usecs);
  349. }
  350. EXPORT_SYMBOL(udelay);
  351. #ifdef CONFIG_SMP
  352. unsigned long profile_pc(struct pt_regs *regs)
  353. {
  354. unsigned long pc = instruction_pointer(regs);
  355. if (in_lock_functions(pc))
  356. return regs->link;
  357. return pc;
  358. }
  359. EXPORT_SYMBOL(profile_pc);
  360. #endif
  361. #ifdef CONFIG_IRQ_WORK
  362. /*
  363. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  364. */
  365. #ifdef CONFIG_PPC64
  366. static inline unsigned long test_irq_work_pending(void)
  367. {
  368. unsigned long x;
  369. asm volatile("lbz %0,%1(13)"
  370. : "=r" (x)
  371. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  372. return x;
  373. }
  374. static inline void set_irq_work_pending_flag(void)
  375. {
  376. asm volatile("stb %0,%1(13)" : :
  377. "r" (1),
  378. "i" (offsetof(struct paca_struct, irq_work_pending)));
  379. }
  380. static inline void clear_irq_work_pending(void)
  381. {
  382. asm volatile("stb %0,%1(13)" : :
  383. "r" (0),
  384. "i" (offsetof(struct paca_struct, irq_work_pending)));
  385. }
  386. #else /* 32-bit */
  387. DEFINE_PER_CPU(u8, irq_work_pending);
  388. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  389. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  390. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  391. #endif /* 32 vs 64 bit */
  392. void arch_irq_work_raise(void)
  393. {
  394. preempt_disable();
  395. set_irq_work_pending_flag();
  396. set_dec(1);
  397. preempt_enable();
  398. }
  399. #else /* CONFIG_IRQ_WORK */
  400. #define test_irq_work_pending() 0
  401. #define clear_irq_work_pending()
  402. #endif /* CONFIG_IRQ_WORK */
  403. /*
  404. * timer_interrupt - gets called when the decrementer overflows,
  405. * with interrupts disabled.
  406. */
  407. void timer_interrupt(struct pt_regs * regs)
  408. {
  409. struct pt_regs *old_regs;
  410. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  411. struct clock_event_device *evt = &__get_cpu_var(decrementers);
  412. /* Ensure a positive value is written to the decrementer, or else
  413. * some CPUs will continue to take decrementer exceptions.
  414. */
  415. set_dec(DECREMENTER_MAX);
  416. /* Some implementations of hotplug will get timer interrupts while
  417. * offline, just ignore these
  418. */
  419. if (!cpu_online(smp_processor_id()))
  420. return;
  421. /* Conditionally hard-enable interrupts now that the DEC has been
  422. * bumped to its maximum value
  423. */
  424. may_hard_irq_enable();
  425. trace_timer_interrupt_entry(regs);
  426. __get_cpu_var(irq_stat).timer_irqs++;
  427. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  428. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  429. do_IRQ(regs);
  430. #endif
  431. old_regs = set_irq_regs(regs);
  432. irq_enter();
  433. if (test_irq_work_pending()) {
  434. clear_irq_work_pending();
  435. irq_work_run();
  436. }
  437. *next_tb = ~(u64)0;
  438. if (evt->event_handler)
  439. evt->event_handler(evt);
  440. #ifdef CONFIG_PPC64
  441. /* collect purr register values often, for accurate calculations */
  442. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  443. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  444. cu->current_tb = mfspr(SPRN_PURR);
  445. }
  446. #endif
  447. irq_exit();
  448. set_irq_regs(old_regs);
  449. trace_timer_interrupt_exit(regs);
  450. }
  451. #ifdef CONFIG_SUSPEND
  452. static void generic_suspend_disable_irqs(void)
  453. {
  454. /* Disable the decrementer, so that it doesn't interfere
  455. * with suspending.
  456. */
  457. set_dec(DECREMENTER_MAX);
  458. local_irq_disable();
  459. set_dec(DECREMENTER_MAX);
  460. }
  461. static void generic_suspend_enable_irqs(void)
  462. {
  463. local_irq_enable();
  464. }
  465. /* Overrides the weak version in kernel/power/main.c */
  466. void arch_suspend_disable_irqs(void)
  467. {
  468. if (ppc_md.suspend_disable_irqs)
  469. ppc_md.suspend_disable_irqs();
  470. generic_suspend_disable_irqs();
  471. }
  472. /* Overrides the weak version in kernel/power/main.c */
  473. void arch_suspend_enable_irqs(void)
  474. {
  475. generic_suspend_enable_irqs();
  476. if (ppc_md.suspend_enable_irqs)
  477. ppc_md.suspend_enable_irqs();
  478. }
  479. #endif
  480. /*
  481. * Scheduler clock - returns current time in nanosec units.
  482. *
  483. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  484. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  485. * are 64-bit unsigned numbers.
  486. */
  487. unsigned long long sched_clock(void)
  488. {
  489. if (__USE_RTC())
  490. return get_rtc();
  491. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  492. }
  493. static int __init get_freq(char *name, int cells, unsigned long *val)
  494. {
  495. struct device_node *cpu;
  496. const unsigned int *fp;
  497. int found = 0;
  498. /* The cpu node should have timebase and clock frequency properties */
  499. cpu = of_find_node_by_type(NULL, "cpu");
  500. if (cpu) {
  501. fp = of_get_property(cpu, name, NULL);
  502. if (fp) {
  503. found = 1;
  504. *val = of_read_ulong(fp, cells);
  505. }
  506. of_node_put(cpu);
  507. }
  508. return found;
  509. }
  510. /* should become __cpuinit when secondary_cpu_time_init also is */
  511. void start_cpu_decrementer(void)
  512. {
  513. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  514. /* Clear any pending timer interrupts */
  515. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  516. /* Enable decrementer interrupt */
  517. mtspr(SPRN_TCR, TCR_DIE);
  518. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  519. }
  520. void __init generic_calibrate_decr(void)
  521. {
  522. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  523. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  524. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  525. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  526. "(not found)\n");
  527. }
  528. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  529. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  530. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  531. printk(KERN_ERR "WARNING: Estimating processor frequency "
  532. "(not found)\n");
  533. }
  534. }
  535. int update_persistent_clock(struct timespec now)
  536. {
  537. struct rtc_time tm;
  538. if (!ppc_md.set_rtc_time)
  539. return 0;
  540. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  541. tm.tm_year -= 1900;
  542. tm.tm_mon -= 1;
  543. return ppc_md.set_rtc_time(&tm);
  544. }
  545. static void __read_persistent_clock(struct timespec *ts)
  546. {
  547. struct rtc_time tm;
  548. static int first = 1;
  549. ts->tv_nsec = 0;
  550. /* XXX this is a litle fragile but will work okay in the short term */
  551. if (first) {
  552. first = 0;
  553. if (ppc_md.time_init)
  554. timezone_offset = ppc_md.time_init();
  555. /* get_boot_time() isn't guaranteed to be safe to call late */
  556. if (ppc_md.get_boot_time) {
  557. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  558. return;
  559. }
  560. }
  561. if (!ppc_md.get_rtc_time) {
  562. ts->tv_sec = 0;
  563. return;
  564. }
  565. ppc_md.get_rtc_time(&tm);
  566. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  567. tm.tm_hour, tm.tm_min, tm.tm_sec);
  568. }
  569. void read_persistent_clock(struct timespec *ts)
  570. {
  571. __read_persistent_clock(ts);
  572. /* Sanitize it in case real time clock is set below EPOCH */
  573. if (ts->tv_sec < 0) {
  574. ts->tv_sec = 0;
  575. ts->tv_nsec = 0;
  576. }
  577. }
  578. /* clocksource code */
  579. static cycle_t rtc_read(struct clocksource *cs)
  580. {
  581. return (cycle_t)get_rtc();
  582. }
  583. static cycle_t timebase_read(struct clocksource *cs)
  584. {
  585. return (cycle_t)get_tb();
  586. }
  587. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  588. struct clocksource *clock, u32 mult)
  589. {
  590. u64 new_tb_to_xs, new_stamp_xsec;
  591. u32 frac_sec;
  592. if (clock != &clocksource_timebase)
  593. return;
  594. /* Make userspace gettimeofday spin until we're done. */
  595. ++vdso_data->tb_update_count;
  596. smp_mb();
  597. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  598. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  599. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  600. do_div(new_stamp_xsec, 1000000000);
  601. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  602. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  603. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  604. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  605. /*
  606. * tb_update_count is used to allow the userspace gettimeofday code
  607. * to assure itself that it sees a consistent view of the tb_to_xs and
  608. * stamp_xsec variables. It reads the tb_update_count, then reads
  609. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  610. * the two values of tb_update_count match and are even then the
  611. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  612. * loops back and reads them again until this criteria is met.
  613. * We expect the caller to have done the first increment of
  614. * vdso_data->tb_update_count already.
  615. */
  616. vdso_data->tb_orig_stamp = clock->cycle_last;
  617. vdso_data->stamp_xsec = new_stamp_xsec;
  618. vdso_data->tb_to_xs = new_tb_to_xs;
  619. vdso_data->wtom_clock_sec = wtm->tv_sec;
  620. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  621. vdso_data->stamp_xtime = *wall_time;
  622. vdso_data->stamp_sec_fraction = frac_sec;
  623. smp_wmb();
  624. ++(vdso_data->tb_update_count);
  625. }
  626. void update_vsyscall_tz(void)
  627. {
  628. /* Make userspace gettimeofday spin until we're done. */
  629. ++vdso_data->tb_update_count;
  630. smp_mb();
  631. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  632. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  633. smp_mb();
  634. ++vdso_data->tb_update_count;
  635. }
  636. static void __init clocksource_init(void)
  637. {
  638. struct clocksource *clock;
  639. if (__USE_RTC())
  640. clock = &clocksource_rtc;
  641. else
  642. clock = &clocksource_timebase;
  643. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  644. printk(KERN_ERR "clocksource: %s is already registered\n",
  645. clock->name);
  646. return;
  647. }
  648. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  649. clock->name, clock->mult, clock->shift);
  650. }
  651. static int decrementer_set_next_event(unsigned long evt,
  652. struct clock_event_device *dev)
  653. {
  654. __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
  655. set_dec(evt);
  656. return 0;
  657. }
  658. static void decrementer_set_mode(enum clock_event_mode mode,
  659. struct clock_event_device *dev)
  660. {
  661. if (mode != CLOCK_EVT_MODE_ONESHOT)
  662. decrementer_set_next_event(DECREMENTER_MAX, dev);
  663. }
  664. static void register_decrementer_clockevent(int cpu)
  665. {
  666. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  667. *dec = decrementer_clockevent;
  668. dec->cpumask = cpumask_of(cpu);
  669. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  670. dec->name, dec->mult, dec->shift, cpu);
  671. clockevents_register_device(dec);
  672. }
  673. static void __init init_decrementer_clockevent(void)
  674. {
  675. int cpu = smp_processor_id();
  676. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  677. decrementer_clockevent.max_delta_ns =
  678. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  679. decrementer_clockevent.min_delta_ns =
  680. clockevent_delta2ns(2, &decrementer_clockevent);
  681. register_decrementer_clockevent(cpu);
  682. }
  683. void secondary_cpu_time_init(void)
  684. {
  685. /* Start the decrementer on CPUs that have manual control
  686. * such as BookE
  687. */
  688. start_cpu_decrementer();
  689. /* FIME: Should make unrelatred change to move snapshot_timebase
  690. * call here ! */
  691. register_decrementer_clockevent(smp_processor_id());
  692. }
  693. /* This function is only called on the boot processor */
  694. void __init time_init(void)
  695. {
  696. struct div_result res;
  697. u64 scale;
  698. unsigned shift;
  699. if (__USE_RTC()) {
  700. /* 601 processor: dec counts down by 128 every 128ns */
  701. ppc_tb_freq = 1000000000;
  702. } else {
  703. /* Normal PowerPC with timebase register */
  704. ppc_md.calibrate_decr();
  705. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  706. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  707. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  708. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  709. }
  710. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  711. tb_ticks_per_sec = ppc_tb_freq;
  712. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  713. calc_cputime_factors();
  714. setup_cputime_one_jiffy();
  715. /*
  716. * Compute scale factor for sched_clock.
  717. * The calibrate_decr() function has set tb_ticks_per_sec,
  718. * which is the timebase frequency.
  719. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  720. * the 128-bit result as a 64.64 fixed-point number.
  721. * We then shift that number right until it is less than 1.0,
  722. * giving us the scale factor and shift count to use in
  723. * sched_clock().
  724. */
  725. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  726. scale = res.result_low;
  727. for (shift = 0; res.result_high != 0; ++shift) {
  728. scale = (scale >> 1) | (res.result_high << 63);
  729. res.result_high >>= 1;
  730. }
  731. tb_to_ns_scale = scale;
  732. tb_to_ns_shift = shift;
  733. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  734. boot_tb = get_tb_or_rtc();
  735. /* If platform provided a timezone (pmac), we correct the time */
  736. if (timezone_offset) {
  737. sys_tz.tz_minuteswest = -timezone_offset / 60;
  738. sys_tz.tz_dsttime = 0;
  739. }
  740. vdso_data->tb_update_count = 0;
  741. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  742. /* Start the decrementer on CPUs that have manual control
  743. * such as BookE
  744. */
  745. start_cpu_decrementer();
  746. /* Register the clocksource */
  747. clocksource_init();
  748. init_decrementer_clockevent();
  749. }
  750. #define FEBRUARY 2
  751. #define STARTOFTIME 1970
  752. #define SECDAY 86400L
  753. #define SECYR (SECDAY * 365)
  754. #define leapyear(year) ((year) % 4 == 0 && \
  755. ((year) % 100 != 0 || (year) % 400 == 0))
  756. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  757. #define days_in_month(a) (month_days[(a) - 1])
  758. static int month_days[12] = {
  759. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  760. };
  761. /*
  762. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  763. */
  764. void GregorianDay(struct rtc_time * tm)
  765. {
  766. int leapsToDate;
  767. int lastYear;
  768. int day;
  769. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  770. lastYear = tm->tm_year - 1;
  771. /*
  772. * Number of leap corrections to apply up to end of last year
  773. */
  774. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  775. /*
  776. * This year is a leap year if it is divisible by 4 except when it is
  777. * divisible by 100 unless it is divisible by 400
  778. *
  779. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  780. */
  781. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  782. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  783. tm->tm_mday;
  784. tm->tm_wday = day % 7;
  785. }
  786. void to_tm(int tim, struct rtc_time * tm)
  787. {
  788. register int i;
  789. register long hms, day;
  790. day = tim / SECDAY;
  791. hms = tim % SECDAY;
  792. /* Hours, minutes, seconds are easy */
  793. tm->tm_hour = hms / 3600;
  794. tm->tm_min = (hms % 3600) / 60;
  795. tm->tm_sec = (hms % 3600) % 60;
  796. /* Number of years in days */
  797. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  798. day -= days_in_year(i);
  799. tm->tm_year = i;
  800. /* Number of months in days left */
  801. if (leapyear(tm->tm_year))
  802. days_in_month(FEBRUARY) = 29;
  803. for (i = 1; day >= days_in_month(i); i++)
  804. day -= days_in_month(i);
  805. days_in_month(FEBRUARY) = 28;
  806. tm->tm_mon = i;
  807. /* Days are what is left over (+1) from all that. */
  808. tm->tm_mday = day + 1;
  809. /*
  810. * Determine the day of week
  811. */
  812. GregorianDay(tm);
  813. }
  814. /*
  815. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  816. * result.
  817. */
  818. void div128_by_32(u64 dividend_high, u64 dividend_low,
  819. unsigned divisor, struct div_result *dr)
  820. {
  821. unsigned long a, b, c, d;
  822. unsigned long w, x, y, z;
  823. u64 ra, rb, rc;
  824. a = dividend_high >> 32;
  825. b = dividend_high & 0xffffffff;
  826. c = dividend_low >> 32;
  827. d = dividend_low & 0xffffffff;
  828. w = a / divisor;
  829. ra = ((u64)(a - (w * divisor)) << 32) + b;
  830. rb = ((u64) do_div(ra, divisor) << 32) + c;
  831. x = ra;
  832. rc = ((u64) do_div(rb, divisor) << 32) + d;
  833. y = rb;
  834. do_div(rc, divisor);
  835. z = rc;
  836. dr->result_high = ((u64)w << 32) + x;
  837. dr->result_low = ((u64)y << 32) + z;
  838. }
  839. /* We don't need to calibrate delay, we use the CPU timebase for that */
  840. void calibrate_delay(void)
  841. {
  842. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  843. * as the number of __delay(1) in a jiffy, so make it so
  844. */
  845. loops_per_jiffy = tb_ticks_per_jiffy;
  846. }
  847. static int __init rtc_init(void)
  848. {
  849. struct platform_device *pdev;
  850. if (!ppc_md.get_rtc_time)
  851. return -ENODEV;
  852. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  853. if (IS_ERR(pdev))
  854. return PTR_ERR(pdev);
  855. return 0;
  856. }
  857. module_init(rtc_init);