keyspan_remote.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. /*
  2. * keyspan_remote: USB driver for the Keyspan DMR
  3. *
  4. * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. *
  10. * This driver has been put together with the support of Innosys, Inc.
  11. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product.
  12. */
  13. #include <linux/config.h>
  14. #include <linux/kernel.h>
  15. #include <linux/errno.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/input.h>
  21. #include <linux/usb.h>
  22. #include <linux/usb_input.h>
  23. #define DRIVER_VERSION "v0.1"
  24. #define DRIVER_AUTHOR "Michael Downey <downey@zymeta.com>"
  25. #define DRIVER_DESC "Driver for the USB Keyspan remote control."
  26. #define DRIVER_LICENSE "GPL"
  27. /* Parameters that can be passed to the driver. */
  28. static int debug;
  29. module_param(debug, int, 0444);
  30. MODULE_PARM_DESC(debug, "Enable extra debug messages and information");
  31. /* Vendor and product ids */
  32. #define USB_KEYSPAN_VENDOR_ID 0x06CD
  33. #define USB_KEYSPAN_PRODUCT_UIA11 0x0202
  34. /* Defines for converting the data from the remote. */
  35. #define ZERO 0x18
  36. #define ZERO_MASK 0x1F /* 5 bits for a 0 */
  37. #define ONE 0x3C
  38. #define ONE_MASK 0x3F /* 6 bits for a 1 */
  39. #define SYNC 0x3F80
  40. #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */
  41. #define STOP 0x00
  42. #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */
  43. #define GAP 0xFF
  44. #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */
  45. /* table of devices that work with this driver */
  46. static struct usb_device_id keyspan_table[] = {
  47. { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) },
  48. { } /* Terminating entry */
  49. };
  50. /* Structure to store all the real stuff that a remote sends to us. */
  51. struct keyspan_message {
  52. u16 system;
  53. u8 button;
  54. u8 toggle;
  55. };
  56. /* Structure used for all the bit testing magic needed to be done. */
  57. struct bit_tester {
  58. u32 tester;
  59. int len;
  60. int pos;
  61. int bits_left;
  62. u8 buffer[32];
  63. };
  64. /* Structure to hold all of our driver specific stuff */
  65. struct usb_keyspan {
  66. char name[128];
  67. char phys[64];
  68. struct usb_device* udev;
  69. struct input_dev *input;
  70. struct usb_interface* interface;
  71. struct usb_endpoint_descriptor* in_endpoint;
  72. struct urb* irq_urb;
  73. int open;
  74. dma_addr_t in_dma;
  75. unsigned char* in_buffer;
  76. /* variables used to parse messages from remote. */
  77. struct bit_tester data;
  78. int stage;
  79. int toggle;
  80. };
  81. /*
  82. * Table that maps the 31 possible keycodes to input keys.
  83. * Currently there are 15 and 17 button models so RESERVED codes
  84. * are blank areas in the mapping.
  85. */
  86. static const int keyspan_key_table[] = {
  87. KEY_RESERVED, /* 0 is just a place holder. */
  88. KEY_RESERVED,
  89. KEY_STOP,
  90. KEY_PLAYCD,
  91. KEY_RESERVED,
  92. KEY_PREVIOUSSONG,
  93. KEY_REWIND,
  94. KEY_FORWARD,
  95. KEY_NEXTSONG,
  96. KEY_RESERVED,
  97. KEY_RESERVED,
  98. KEY_RESERVED,
  99. KEY_PAUSE,
  100. KEY_VOLUMEUP,
  101. KEY_RESERVED,
  102. KEY_RESERVED,
  103. KEY_RESERVED,
  104. KEY_VOLUMEDOWN,
  105. KEY_RESERVED,
  106. KEY_UP,
  107. KEY_RESERVED,
  108. KEY_MUTE,
  109. KEY_LEFT,
  110. KEY_ENTER,
  111. KEY_RIGHT,
  112. KEY_RESERVED,
  113. KEY_RESERVED,
  114. KEY_DOWN,
  115. KEY_RESERVED,
  116. KEY_KPASTERISK,
  117. KEY_RESERVED,
  118. KEY_MENU
  119. };
  120. static struct usb_driver keyspan_driver;
  121. /*
  122. * Debug routine that prints out what we've received from the remote.
  123. */
  124. static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/
  125. {
  126. char codes[4 * RECV_SIZE];
  127. int i;
  128. for (i = 0; i < RECV_SIZE; i++)
  129. snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]);
  130. dev_info(&dev->udev->dev, "%s\n", codes);
  131. }
  132. /*
  133. * Routine that manages the bit_tester structure. It makes sure that there are
  134. * at least bits_needed bits loaded into the tester.
  135. */
  136. static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed)
  137. {
  138. if (dev->data.bits_left >= bits_needed)
  139. return 0;
  140. /*
  141. * Somehow we've missed the last message. The message will be repeated
  142. * though so it's not too big a deal
  143. */
  144. if (dev->data.pos >= dev->data.len) {
  145. dev_dbg(&dev->udev->dev,
  146. "%s - Error ran out of data. pos: %d, len: %d\n",
  147. __FUNCTION__, dev->data.pos, dev->data.len);
  148. return -1;
  149. }
  150. /* Load as much as we can into the tester. */
  151. while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) &&
  152. (dev->data.pos < dev->data.len)) {
  153. dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left);
  154. dev->data.bits_left += 8;
  155. }
  156. return 0;
  157. }
  158. /*
  159. * Routine that handles all the logic needed to parse out the message from the remote.
  160. */
  161. static void keyspan_check_data(struct usb_keyspan *remote, struct pt_regs *regs)
  162. {
  163. int i;
  164. int found = 0;
  165. struct keyspan_message message;
  166. switch(remote->stage) {
  167. case 0:
  168. /*
  169. * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler.
  170. * So the first byte that isn't a FF should be the start of a new message.
  171. */
  172. for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i);
  173. if (i < RECV_SIZE) {
  174. memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE);
  175. remote->data.len = RECV_SIZE;
  176. remote->data.pos = 0;
  177. remote->data.tester = 0;
  178. remote->data.bits_left = 0;
  179. remote->stage = 1;
  180. }
  181. break;
  182. case 1:
  183. /*
  184. * Stage 1 we should have 16 bytes and should be able to detect a
  185. * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's.
  186. */
  187. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  188. remote->data.len += RECV_SIZE;
  189. found = 0;
  190. while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) {
  191. for (i = 0; i < 8; ++i) {
  192. if (keyspan_load_tester(remote, 14) != 0) {
  193. remote->stage = 0;
  194. return;
  195. }
  196. if ((remote->data.tester & SYNC_MASK) == SYNC) {
  197. remote->data.tester = remote->data.tester >> 14;
  198. remote->data.bits_left -= 14;
  199. found = 1;
  200. break;
  201. } else {
  202. remote->data.tester = remote->data.tester >> 1;
  203. --remote->data.bits_left;
  204. }
  205. }
  206. }
  207. if (!found) {
  208. remote->stage = 0;
  209. remote->data.len = 0;
  210. } else {
  211. remote->stage = 2;
  212. }
  213. break;
  214. case 2:
  215. /*
  216. * Stage 2 we should have 24 bytes which will be enough for a full
  217. * message. We need to parse out the system code, button code,
  218. * toggle code, and stop.
  219. */
  220. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  221. remote->data.len += RECV_SIZE;
  222. message.system = 0;
  223. for (i = 0; i < 9; i++) {
  224. keyspan_load_tester(remote, 6);
  225. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  226. message.system = message.system << 1;
  227. remote->data.tester = remote->data.tester >> 5;
  228. remote->data.bits_left -= 5;
  229. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  230. message.system = (message.system << 1) + 1;
  231. remote->data.tester = remote->data.tester >> 6;
  232. remote->data.bits_left -= 6;
  233. } else {
  234. err("%s - Unknown sequence found in system data.\n", __FUNCTION__);
  235. remote->stage = 0;
  236. return;
  237. }
  238. }
  239. message.button = 0;
  240. for (i = 0; i < 5; i++) {
  241. keyspan_load_tester(remote, 6);
  242. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  243. message.button = message.button << 1;
  244. remote->data.tester = remote->data.tester >> 5;
  245. remote->data.bits_left -= 5;
  246. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  247. message.button = (message.button << 1) + 1;
  248. remote->data.tester = remote->data.tester >> 6;
  249. remote->data.bits_left -= 6;
  250. } else {
  251. err("%s - Unknown sequence found in button data.\n", __FUNCTION__);
  252. remote->stage = 0;
  253. return;
  254. }
  255. }
  256. keyspan_load_tester(remote, 6);
  257. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  258. message.toggle = 0;
  259. remote->data.tester = remote->data.tester >> 5;
  260. remote->data.bits_left -= 5;
  261. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  262. message.toggle = 1;
  263. remote->data.tester = remote->data.tester >> 6;
  264. remote->data.bits_left -= 6;
  265. } else {
  266. err("%s - Error in message, invalid toggle.\n", __FUNCTION__);
  267. remote->stage = 0;
  268. return;
  269. }
  270. keyspan_load_tester(remote, 5);
  271. if ((remote->data.tester & STOP_MASK) == STOP) {
  272. remote->data.tester = remote->data.tester >> 5;
  273. remote->data.bits_left -= 5;
  274. } else {
  275. err("Bad message recieved, no stop bit found.\n");
  276. }
  277. dev_dbg(&remote->udev->dev,
  278. "%s found valid message: system: %d, button: %d, toggle: %d\n",
  279. __FUNCTION__, message.system, message.button, message.toggle);
  280. if (message.toggle != remote->toggle) {
  281. input_regs(remote->input, regs);
  282. input_report_key(remote->input, keyspan_key_table[message.button], 1);
  283. input_report_key(remote->input, keyspan_key_table[message.button], 0);
  284. input_sync(remote->input);
  285. remote->toggle = message.toggle;
  286. }
  287. remote->stage = 0;
  288. break;
  289. }
  290. }
  291. /*
  292. * Routine for sending all the initialization messages to the remote.
  293. */
  294. static int keyspan_setup(struct usb_device* dev)
  295. {
  296. int retval = 0;
  297. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  298. 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0);
  299. if (retval) {
  300. dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n",
  301. __FUNCTION__, retval);
  302. return(retval);
  303. }
  304. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  305. 0x44, 0x40, 0x0, 0x0, NULL, 0, 0);
  306. if (retval) {
  307. dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n",
  308. __FUNCTION__, retval);
  309. return(retval);
  310. }
  311. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  312. 0x22, 0x40, 0x0, 0x0, NULL, 0, 0);
  313. if (retval) {
  314. dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n",
  315. __FUNCTION__, retval);
  316. return(retval);
  317. }
  318. dev_dbg(&dev->dev, "%s - Setup complete.\n", __FUNCTION__);
  319. return(retval);
  320. }
  321. /*
  322. * Routine used to handle a new message that has come in.
  323. */
  324. static void keyspan_irq_recv(struct urb *urb, struct pt_regs *regs)
  325. {
  326. struct usb_keyspan *dev = urb->context;
  327. int retval;
  328. /* Check our status in case we need to bail out early. */
  329. switch (urb->status) {
  330. case 0:
  331. break;
  332. /* Device went away so don't keep trying to read from it. */
  333. case -ECONNRESET:
  334. case -ENOENT:
  335. case -ESHUTDOWN:
  336. return;
  337. default:
  338. goto resubmit;
  339. break;
  340. }
  341. if (debug)
  342. keyspan_print(dev);
  343. keyspan_check_data(dev, regs);
  344. resubmit:
  345. retval = usb_submit_urb(urb, GFP_ATOMIC);
  346. if (retval)
  347. err ("%s - usb_submit_urb failed with result: %d", __FUNCTION__, retval);
  348. }
  349. static int keyspan_open(struct input_dev *dev)
  350. {
  351. struct usb_keyspan *remote = dev->private;
  352. remote->irq_urb->dev = remote->udev;
  353. if (usb_submit_urb(remote->irq_urb, GFP_KERNEL))
  354. return -EIO;
  355. return 0;
  356. }
  357. static void keyspan_close(struct input_dev *dev)
  358. {
  359. struct usb_keyspan *remote = dev->private;
  360. usb_kill_urb(remote->irq_urb);
  361. }
  362. static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface)
  363. {
  364. struct usb_endpoint_descriptor *endpoint;
  365. int i;
  366. for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
  367. endpoint = &iface->endpoint[i].desc;
  368. if ((endpoint->bEndpointAddress & USB_DIR_IN) &&
  369. ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) {
  370. /* we found our interrupt in endpoint */
  371. return endpoint;
  372. }
  373. }
  374. return NULL;
  375. }
  376. /*
  377. * Routine that sets up the driver to handle a specific USB device detected on the bus.
  378. */
  379. static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id)
  380. {
  381. struct usb_device *udev = interface_to_usbdev(interface);
  382. struct usb_endpoint_descriptor *endpoint;
  383. struct usb_keyspan *remote;
  384. struct input_dev *input_dev;
  385. int i, retval;
  386. endpoint = keyspan_get_in_endpoint(interface->cur_altsetting);
  387. if (!endpoint)
  388. return -ENODEV;
  389. remote = kzalloc(sizeof(*remote), GFP_KERNEL);
  390. input_dev = input_allocate_device();
  391. if (!remote || !input_dev) {
  392. retval = -ENOMEM;
  393. goto fail1;
  394. }
  395. remote->udev = udev;
  396. remote->input = input_dev;
  397. remote->interface = interface;
  398. remote->in_endpoint = endpoint;
  399. remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */
  400. remote->in_buffer = usb_buffer_alloc(udev, RECV_SIZE, SLAB_ATOMIC, &remote->in_dma);
  401. if (!remote->in_buffer) {
  402. retval = -ENOMEM;
  403. goto fail1;
  404. }
  405. remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL);
  406. if (!remote->irq_urb) {
  407. retval = -ENOMEM;
  408. goto fail2;
  409. }
  410. retval = keyspan_setup(udev);
  411. if (retval) {
  412. retval = -ENODEV;
  413. goto fail3;
  414. }
  415. if (udev->manufacturer)
  416. strlcpy(remote->name, udev->manufacturer, sizeof(remote->name));
  417. if (udev->product) {
  418. if (udev->manufacturer)
  419. strlcat(remote->name, " ", sizeof(remote->name));
  420. strlcat(remote->name, udev->product, sizeof(remote->name));
  421. }
  422. if (!strlen(remote->name))
  423. snprintf(remote->name, sizeof(remote->name),
  424. "USB Keyspan Remote %04x:%04x",
  425. le16_to_cpu(udev->descriptor.idVendor),
  426. le16_to_cpu(udev->descriptor.idProduct));
  427. usb_make_path(udev, remote->phys, sizeof(remote->phys));
  428. strlcat(remote->phys, "/input0", sizeof(remote->phys));
  429. input_dev->name = remote->name;
  430. input_dev->phys = remote->phys;
  431. usb_to_input_id(udev, &input_dev->id);
  432. input_dev->cdev.dev = &interface->dev;
  433. input_dev->evbit[0] = BIT(EV_KEY); /* We will only report KEY events. */
  434. for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++)
  435. if (keyspan_key_table[i] != KEY_RESERVED)
  436. set_bit(keyspan_key_table[i], input_dev->keybit);
  437. input_dev->private = remote;
  438. input_dev->open = keyspan_open;
  439. input_dev->close = keyspan_close;
  440. /*
  441. * Initialize the URB to access the device. The urb gets sent to the device in keyspan_open()
  442. */
  443. usb_fill_int_urb(remote->irq_urb,
  444. remote->udev, usb_rcvintpipe(remote->udev, remote->in_endpoint->bEndpointAddress),
  445. remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote,
  446. remote->in_endpoint->bInterval);
  447. remote->irq_urb->transfer_dma = remote->in_dma;
  448. remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  449. /* we can register the device now, as it is ready */
  450. input_register_device(remote->input);
  451. /* save our data pointer in this interface device */
  452. usb_set_intfdata(interface, remote);
  453. return 0;
  454. fail3: usb_free_urb(remote->irq_urb);
  455. fail2: usb_buffer_free(udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  456. fail1: kfree(remote);
  457. input_free_device(input_dev);
  458. return retval;
  459. }
  460. /*
  461. * Routine called when a device is disconnected from the USB.
  462. */
  463. static void keyspan_disconnect(struct usb_interface *interface)
  464. {
  465. struct usb_keyspan *remote;
  466. remote = usb_get_intfdata(interface);
  467. usb_set_intfdata(interface, NULL);
  468. if (remote) { /* We have a valid driver structure so clean up everything we allocated. */
  469. input_unregister_device(remote->input);
  470. usb_kill_urb(remote->irq_urb);
  471. usb_free_urb(remote->irq_urb);
  472. usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  473. kfree(remote);
  474. }
  475. }
  476. /*
  477. * Standard driver set up sections
  478. */
  479. static struct usb_driver keyspan_driver =
  480. {
  481. .name = "keyspan_remote",
  482. .probe = keyspan_probe,
  483. .disconnect = keyspan_disconnect,
  484. .id_table = keyspan_table
  485. };
  486. static int __init usb_keyspan_init(void)
  487. {
  488. int result;
  489. /* register this driver with the USB subsystem */
  490. result = usb_register(&keyspan_driver);
  491. if (result)
  492. err("usb_register failed. Error number %d\n", result);
  493. return result;
  494. }
  495. static void __exit usb_keyspan_exit(void)
  496. {
  497. /* deregister this driver with the USB subsystem */
  498. usb_deregister(&keyspan_driver);
  499. }
  500. module_init(usb_keyspan_init);
  501. module_exit(usb_keyspan_exit);
  502. MODULE_DEVICE_TABLE(usb, keyspan_table);
  503. MODULE_AUTHOR(DRIVER_AUTHOR);
  504. MODULE_DESCRIPTION(DRIVER_DESC);
  505. MODULE_LICENSE(DRIVER_LICENSE);