ll_rw_blk.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/bio.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mm.h>
  20. #include <linux/kernel_stat.h>
  21. #include <linux/string.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  24. #include <linux/completion.h>
  25. #include <linux/slab.h>
  26. #include <linux/swap.h>
  27. #include <linux/writeback.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(void *data);
  35. static void blk_unplug_timeout(unsigned long data);
  36. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  37. static void init_request_from_bio(struct request *req, struct bio *bio);
  38. static int __make_request(request_queue_t *q, struct bio *bio);
  39. /*
  40. * For the allocated request tables
  41. */
  42. static kmem_cache_t *request_cachep;
  43. /*
  44. * For queue allocation
  45. */
  46. static kmem_cache_t *requestq_cachep;
  47. /*
  48. * For io context allocations
  49. */
  50. static kmem_cache_t *iocontext_cachep;
  51. static wait_queue_head_t congestion_wqh[2] = {
  52. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  53. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  54. };
  55. /*
  56. * Controlling structure to kblockd
  57. */
  58. static struct workqueue_struct *kblockd_workqueue;
  59. unsigned long blk_max_low_pfn, blk_max_pfn;
  60. EXPORT_SYMBOL(blk_max_low_pfn);
  61. EXPORT_SYMBOL(blk_max_pfn);
  62. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  63. /* Amount of time in which a process may batch requests */
  64. #define BLK_BATCH_TIME (HZ/50UL)
  65. /* Number of requests a "batching" process may submit */
  66. #define BLK_BATCH_REQ 32
  67. /*
  68. * Return the threshold (number of used requests) at which the queue is
  69. * considered to be congested. It include a little hysteresis to keep the
  70. * context switch rate down.
  71. */
  72. static inline int queue_congestion_on_threshold(struct request_queue *q)
  73. {
  74. return q->nr_congestion_on;
  75. }
  76. /*
  77. * The threshold at which a queue is considered to be uncongested
  78. */
  79. static inline int queue_congestion_off_threshold(struct request_queue *q)
  80. {
  81. return q->nr_congestion_off;
  82. }
  83. static void blk_queue_congestion_threshold(struct request_queue *q)
  84. {
  85. int nr;
  86. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  87. if (nr > q->nr_requests)
  88. nr = q->nr_requests;
  89. q->nr_congestion_on = nr;
  90. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  91. if (nr < 1)
  92. nr = 1;
  93. q->nr_congestion_off = nr;
  94. }
  95. /*
  96. * A queue has just exitted congestion. Note this in the global counter of
  97. * congested queues, and wake up anyone who was waiting for requests to be
  98. * put back.
  99. */
  100. static void clear_queue_congested(request_queue_t *q, int rw)
  101. {
  102. enum bdi_state bit;
  103. wait_queue_head_t *wqh = &congestion_wqh[rw];
  104. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  105. clear_bit(bit, &q->backing_dev_info.state);
  106. smp_mb__after_clear_bit();
  107. if (waitqueue_active(wqh))
  108. wake_up(wqh);
  109. }
  110. /*
  111. * A queue has just entered congestion. Flag that in the queue's VM-visible
  112. * state flags and increment the global gounter of congested queues.
  113. */
  114. static void set_queue_congested(request_queue_t *q, int rw)
  115. {
  116. enum bdi_state bit;
  117. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  118. set_bit(bit, &q->backing_dev_info.state);
  119. }
  120. /**
  121. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  122. * @bdev: device
  123. *
  124. * Locates the passed device's request queue and returns the address of its
  125. * backing_dev_info
  126. *
  127. * Will return NULL if the request queue cannot be located.
  128. */
  129. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  130. {
  131. struct backing_dev_info *ret = NULL;
  132. request_queue_t *q = bdev_get_queue(bdev);
  133. if (q)
  134. ret = &q->backing_dev_info;
  135. return ret;
  136. }
  137. EXPORT_SYMBOL(blk_get_backing_dev_info);
  138. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  139. {
  140. q->activity_fn = fn;
  141. q->activity_data = data;
  142. }
  143. EXPORT_SYMBOL(blk_queue_activity_fn);
  144. /**
  145. * blk_queue_prep_rq - set a prepare_request function for queue
  146. * @q: queue
  147. * @pfn: prepare_request function
  148. *
  149. * It's possible for a queue to register a prepare_request callback which
  150. * is invoked before the request is handed to the request_fn. The goal of
  151. * the function is to prepare a request for I/O, it can be used to build a
  152. * cdb from the request data for instance.
  153. *
  154. */
  155. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  156. {
  157. q->prep_rq_fn = pfn;
  158. }
  159. EXPORT_SYMBOL(blk_queue_prep_rq);
  160. /**
  161. * blk_queue_merge_bvec - set a merge_bvec function for queue
  162. * @q: queue
  163. * @mbfn: merge_bvec_fn
  164. *
  165. * Usually queues have static limitations on the max sectors or segments that
  166. * we can put in a request. Stacking drivers may have some settings that
  167. * are dynamic, and thus we have to query the queue whether it is ok to
  168. * add a new bio_vec to a bio at a given offset or not. If the block device
  169. * has such limitations, it needs to register a merge_bvec_fn to control
  170. * the size of bio's sent to it. Note that a block device *must* allow a
  171. * single page to be added to an empty bio. The block device driver may want
  172. * to use the bio_split() function to deal with these bio's. By default
  173. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  174. * honored.
  175. */
  176. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  177. {
  178. q->merge_bvec_fn = mbfn;
  179. }
  180. EXPORT_SYMBOL(blk_queue_merge_bvec);
  181. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  182. {
  183. q->softirq_done_fn = fn;
  184. }
  185. EXPORT_SYMBOL(blk_queue_softirq_done);
  186. /**
  187. * blk_queue_make_request - define an alternate make_request function for a device
  188. * @q: the request queue for the device to be affected
  189. * @mfn: the alternate make_request function
  190. *
  191. * Description:
  192. * The normal way for &struct bios to be passed to a device
  193. * driver is for them to be collected into requests on a request
  194. * queue, and then to allow the device driver to select requests
  195. * off that queue when it is ready. This works well for many block
  196. * devices. However some block devices (typically virtual devices
  197. * such as md or lvm) do not benefit from the processing on the
  198. * request queue, and are served best by having the requests passed
  199. * directly to them. This can be achieved by providing a function
  200. * to blk_queue_make_request().
  201. *
  202. * Caveat:
  203. * The driver that does this *must* be able to deal appropriately
  204. * with buffers in "highmemory". This can be accomplished by either calling
  205. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  206. * blk_queue_bounce() to create a buffer in normal memory.
  207. **/
  208. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  209. {
  210. /*
  211. * set defaults
  212. */
  213. q->nr_requests = BLKDEV_MAX_RQ;
  214. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  215. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  216. q->make_request_fn = mfn;
  217. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  218. q->backing_dev_info.state = 0;
  219. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  220. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  221. blk_queue_hardsect_size(q, 512);
  222. blk_queue_dma_alignment(q, 511);
  223. blk_queue_congestion_threshold(q);
  224. q->nr_batching = BLK_BATCH_REQ;
  225. q->unplug_thresh = 4; /* hmm */
  226. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  227. if (q->unplug_delay == 0)
  228. q->unplug_delay = 1;
  229. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  230. q->unplug_timer.function = blk_unplug_timeout;
  231. q->unplug_timer.data = (unsigned long)q;
  232. /*
  233. * by default assume old behaviour and bounce for any highmem page
  234. */
  235. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  236. blk_queue_activity_fn(q, NULL, NULL);
  237. }
  238. EXPORT_SYMBOL(blk_queue_make_request);
  239. static inline void rq_init(request_queue_t *q, struct request *rq)
  240. {
  241. INIT_LIST_HEAD(&rq->queuelist);
  242. INIT_LIST_HEAD(&rq->donelist);
  243. rq->errors = 0;
  244. rq->rq_status = RQ_ACTIVE;
  245. rq->bio = rq->biotail = NULL;
  246. rq->ioprio = 0;
  247. rq->buffer = NULL;
  248. rq->ref_count = 1;
  249. rq->q = q;
  250. rq->waiting = NULL;
  251. rq->special = NULL;
  252. rq->data_len = 0;
  253. rq->data = NULL;
  254. rq->nr_phys_segments = 0;
  255. rq->sense = NULL;
  256. rq->end_io = NULL;
  257. rq->end_io_data = NULL;
  258. rq->completion_data = NULL;
  259. }
  260. /**
  261. * blk_queue_ordered - does this queue support ordered writes
  262. * @q: the request queue
  263. * @ordered: one of QUEUE_ORDERED_*
  264. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  265. *
  266. * Description:
  267. * For journalled file systems, doing ordered writes on a commit
  268. * block instead of explicitly doing wait_on_buffer (which is bad
  269. * for performance) can be a big win. Block drivers supporting this
  270. * feature should call this function and indicate so.
  271. *
  272. **/
  273. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  274. prepare_flush_fn *prepare_flush_fn)
  275. {
  276. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  277. prepare_flush_fn == NULL) {
  278. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  279. return -EINVAL;
  280. }
  281. if (ordered != QUEUE_ORDERED_NONE &&
  282. ordered != QUEUE_ORDERED_DRAIN &&
  283. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  284. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  285. ordered != QUEUE_ORDERED_TAG &&
  286. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  287. ordered != QUEUE_ORDERED_TAG_FUA) {
  288. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  289. return -EINVAL;
  290. }
  291. q->ordered = ordered;
  292. q->next_ordered = ordered;
  293. q->prepare_flush_fn = prepare_flush_fn;
  294. return 0;
  295. }
  296. EXPORT_SYMBOL(blk_queue_ordered);
  297. /**
  298. * blk_queue_issue_flush_fn - set function for issuing a flush
  299. * @q: the request queue
  300. * @iff: the function to be called issuing the flush
  301. *
  302. * Description:
  303. * If a driver supports issuing a flush command, the support is notified
  304. * to the block layer by defining it through this call.
  305. *
  306. **/
  307. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  308. {
  309. q->issue_flush_fn = iff;
  310. }
  311. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  312. /*
  313. * Cache flushing for ordered writes handling
  314. */
  315. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  316. {
  317. if (!q->ordseq)
  318. return 0;
  319. return 1 << ffz(q->ordseq);
  320. }
  321. unsigned blk_ordered_req_seq(struct request *rq)
  322. {
  323. request_queue_t *q = rq->q;
  324. BUG_ON(q->ordseq == 0);
  325. if (rq == &q->pre_flush_rq)
  326. return QUEUE_ORDSEQ_PREFLUSH;
  327. if (rq == &q->bar_rq)
  328. return QUEUE_ORDSEQ_BAR;
  329. if (rq == &q->post_flush_rq)
  330. return QUEUE_ORDSEQ_POSTFLUSH;
  331. if ((rq->flags & REQ_ORDERED_COLOR) ==
  332. (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
  333. return QUEUE_ORDSEQ_DRAIN;
  334. else
  335. return QUEUE_ORDSEQ_DONE;
  336. }
  337. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  338. {
  339. struct request *rq;
  340. int uptodate;
  341. if (error && !q->orderr)
  342. q->orderr = error;
  343. BUG_ON(q->ordseq & seq);
  344. q->ordseq |= seq;
  345. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  346. return;
  347. /*
  348. * Okay, sequence complete.
  349. */
  350. rq = q->orig_bar_rq;
  351. uptodate = q->orderr ? q->orderr : 1;
  352. q->ordseq = 0;
  353. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  354. end_that_request_last(rq, uptodate);
  355. }
  356. static void pre_flush_end_io(struct request *rq, int error)
  357. {
  358. elv_completed_request(rq->q, rq);
  359. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  360. }
  361. static void bar_end_io(struct request *rq, int error)
  362. {
  363. elv_completed_request(rq->q, rq);
  364. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  365. }
  366. static void post_flush_end_io(struct request *rq, int error)
  367. {
  368. elv_completed_request(rq->q, rq);
  369. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  370. }
  371. static void queue_flush(request_queue_t *q, unsigned which)
  372. {
  373. struct request *rq;
  374. rq_end_io_fn *end_io;
  375. if (which == QUEUE_ORDERED_PREFLUSH) {
  376. rq = &q->pre_flush_rq;
  377. end_io = pre_flush_end_io;
  378. } else {
  379. rq = &q->post_flush_rq;
  380. end_io = post_flush_end_io;
  381. }
  382. rq_init(q, rq);
  383. rq->flags = REQ_HARDBARRIER;
  384. rq->elevator_private = NULL;
  385. rq->rq_disk = q->bar_rq.rq_disk;
  386. rq->rl = NULL;
  387. rq->end_io = end_io;
  388. q->prepare_flush_fn(q, rq);
  389. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  390. }
  391. static inline struct request *start_ordered(request_queue_t *q,
  392. struct request *rq)
  393. {
  394. q->bi_size = 0;
  395. q->orderr = 0;
  396. q->ordered = q->next_ordered;
  397. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  398. /*
  399. * Prep proxy barrier request.
  400. */
  401. blkdev_dequeue_request(rq);
  402. q->orig_bar_rq = rq;
  403. rq = &q->bar_rq;
  404. rq_init(q, rq);
  405. rq->flags = bio_data_dir(q->orig_bar_rq->bio);
  406. rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  407. rq->elevator_private = NULL;
  408. rq->rl = NULL;
  409. init_request_from_bio(rq, q->orig_bar_rq->bio);
  410. rq->end_io = bar_end_io;
  411. /*
  412. * Queue ordered sequence. As we stack them at the head, we
  413. * need to queue in reverse order. Note that we rely on that
  414. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  415. * request gets inbetween ordered sequence.
  416. */
  417. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  418. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  419. else
  420. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  421. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  422. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  423. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  424. rq = &q->pre_flush_rq;
  425. } else
  426. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  427. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  428. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  429. else
  430. rq = NULL;
  431. return rq;
  432. }
  433. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  434. {
  435. struct request *rq = *rqp, *allowed_rq;
  436. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  437. if (!q->ordseq) {
  438. if (!is_barrier)
  439. return 1;
  440. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  441. *rqp = start_ordered(q, rq);
  442. return 1;
  443. } else {
  444. /*
  445. * This can happen when the queue switches to
  446. * ORDERED_NONE while this request is on it.
  447. */
  448. blkdev_dequeue_request(rq);
  449. end_that_request_first(rq, -EOPNOTSUPP,
  450. rq->hard_nr_sectors);
  451. end_that_request_last(rq, -EOPNOTSUPP);
  452. *rqp = NULL;
  453. return 0;
  454. }
  455. }
  456. if (q->ordered & QUEUE_ORDERED_TAG) {
  457. if (is_barrier && rq != &q->bar_rq)
  458. *rqp = NULL;
  459. return 1;
  460. }
  461. switch (blk_ordered_cur_seq(q)) {
  462. case QUEUE_ORDSEQ_PREFLUSH:
  463. allowed_rq = &q->pre_flush_rq;
  464. break;
  465. case QUEUE_ORDSEQ_BAR:
  466. allowed_rq = &q->bar_rq;
  467. break;
  468. case QUEUE_ORDSEQ_POSTFLUSH:
  469. allowed_rq = &q->post_flush_rq;
  470. break;
  471. default:
  472. allowed_rq = NULL;
  473. break;
  474. }
  475. if (rq != allowed_rq &&
  476. (blk_fs_request(rq) || rq == &q->pre_flush_rq ||
  477. rq == &q->post_flush_rq))
  478. *rqp = NULL;
  479. return 1;
  480. }
  481. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  482. {
  483. request_queue_t *q = bio->bi_private;
  484. struct bio_vec *bvec;
  485. int i;
  486. /*
  487. * This is dry run, restore bio_sector and size. We'll finish
  488. * this request again with the original bi_end_io after an
  489. * error occurs or post flush is complete.
  490. */
  491. q->bi_size += bytes;
  492. if (bio->bi_size)
  493. return 1;
  494. /* Rewind bvec's */
  495. bio->bi_idx = 0;
  496. bio_for_each_segment(bvec, bio, i) {
  497. bvec->bv_len += bvec->bv_offset;
  498. bvec->bv_offset = 0;
  499. }
  500. /* Reset bio */
  501. set_bit(BIO_UPTODATE, &bio->bi_flags);
  502. bio->bi_size = q->bi_size;
  503. bio->bi_sector -= (q->bi_size >> 9);
  504. q->bi_size = 0;
  505. return 0;
  506. }
  507. static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
  508. unsigned int nbytes, int error)
  509. {
  510. request_queue_t *q = rq->q;
  511. bio_end_io_t *endio;
  512. void *private;
  513. if (&q->bar_rq != rq)
  514. return 0;
  515. /*
  516. * Okay, this is the barrier request in progress, dry finish it.
  517. */
  518. if (error && !q->orderr)
  519. q->orderr = error;
  520. endio = bio->bi_end_io;
  521. private = bio->bi_private;
  522. bio->bi_end_io = flush_dry_bio_endio;
  523. bio->bi_private = q;
  524. bio_endio(bio, nbytes, error);
  525. bio->bi_end_io = endio;
  526. bio->bi_private = private;
  527. return 1;
  528. }
  529. /**
  530. * blk_queue_bounce_limit - set bounce buffer limit for queue
  531. * @q: the request queue for the device
  532. * @dma_addr: bus address limit
  533. *
  534. * Description:
  535. * Different hardware can have different requirements as to what pages
  536. * it can do I/O directly to. A low level driver can call
  537. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  538. * buffers for doing I/O to pages residing above @page. By default
  539. * the block layer sets this to the highest numbered "low" memory page.
  540. **/
  541. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  542. {
  543. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  544. /*
  545. * set appropriate bounce gfp mask -- unfortunately we don't have a
  546. * full 4GB zone, so we have to resort to low memory for any bounces.
  547. * ISA has its own < 16MB zone.
  548. */
  549. if (bounce_pfn < blk_max_low_pfn) {
  550. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  551. init_emergency_isa_pool();
  552. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  553. } else
  554. q->bounce_gfp = GFP_NOIO;
  555. q->bounce_pfn = bounce_pfn;
  556. }
  557. EXPORT_SYMBOL(blk_queue_bounce_limit);
  558. /**
  559. * blk_queue_max_sectors - set max sectors for a request for this queue
  560. * @q: the request queue for the device
  561. * @max_sectors: max sectors in the usual 512b unit
  562. *
  563. * Description:
  564. * Enables a low level driver to set an upper limit on the size of
  565. * received requests.
  566. **/
  567. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  568. {
  569. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  570. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  571. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  572. }
  573. if (BLK_DEF_MAX_SECTORS > max_sectors)
  574. q->max_hw_sectors = q->max_sectors = max_sectors;
  575. else {
  576. q->max_sectors = BLK_DEF_MAX_SECTORS;
  577. q->max_hw_sectors = max_sectors;
  578. }
  579. }
  580. EXPORT_SYMBOL(blk_queue_max_sectors);
  581. /**
  582. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  583. * @q: the request queue for the device
  584. * @max_segments: max number of segments
  585. *
  586. * Description:
  587. * Enables a low level driver to set an upper limit on the number of
  588. * physical data segments in a request. This would be the largest sized
  589. * scatter list the driver could handle.
  590. **/
  591. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  592. {
  593. if (!max_segments) {
  594. max_segments = 1;
  595. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  596. }
  597. q->max_phys_segments = max_segments;
  598. }
  599. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  600. /**
  601. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  602. * @q: the request queue for the device
  603. * @max_segments: max number of segments
  604. *
  605. * Description:
  606. * Enables a low level driver to set an upper limit on the number of
  607. * hw data segments in a request. This would be the largest number of
  608. * address/length pairs the host adapter can actually give as once
  609. * to the device.
  610. **/
  611. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  612. {
  613. if (!max_segments) {
  614. max_segments = 1;
  615. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  616. }
  617. q->max_hw_segments = max_segments;
  618. }
  619. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  620. /**
  621. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  622. * @q: the request queue for the device
  623. * @max_size: max size of segment in bytes
  624. *
  625. * Description:
  626. * Enables a low level driver to set an upper limit on the size of a
  627. * coalesced segment
  628. **/
  629. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  630. {
  631. if (max_size < PAGE_CACHE_SIZE) {
  632. max_size = PAGE_CACHE_SIZE;
  633. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  634. }
  635. q->max_segment_size = max_size;
  636. }
  637. EXPORT_SYMBOL(blk_queue_max_segment_size);
  638. /**
  639. * blk_queue_hardsect_size - set hardware sector size for the queue
  640. * @q: the request queue for the device
  641. * @size: the hardware sector size, in bytes
  642. *
  643. * Description:
  644. * This should typically be set to the lowest possible sector size
  645. * that the hardware can operate on (possible without reverting to
  646. * even internal read-modify-write operations). Usually the default
  647. * of 512 covers most hardware.
  648. **/
  649. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  650. {
  651. q->hardsect_size = size;
  652. }
  653. EXPORT_SYMBOL(blk_queue_hardsect_size);
  654. /*
  655. * Returns the minimum that is _not_ zero, unless both are zero.
  656. */
  657. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  658. /**
  659. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  660. * @t: the stacking driver (top)
  661. * @b: the underlying device (bottom)
  662. **/
  663. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  664. {
  665. /* zero is "infinity" */
  666. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  667. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  668. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  669. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  670. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  671. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  672. }
  673. EXPORT_SYMBOL(blk_queue_stack_limits);
  674. /**
  675. * blk_queue_segment_boundary - set boundary rules for segment merging
  676. * @q: the request queue for the device
  677. * @mask: the memory boundary mask
  678. **/
  679. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  680. {
  681. if (mask < PAGE_CACHE_SIZE - 1) {
  682. mask = PAGE_CACHE_SIZE - 1;
  683. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  684. }
  685. q->seg_boundary_mask = mask;
  686. }
  687. EXPORT_SYMBOL(blk_queue_segment_boundary);
  688. /**
  689. * blk_queue_dma_alignment - set dma length and memory alignment
  690. * @q: the request queue for the device
  691. * @mask: alignment mask
  692. *
  693. * description:
  694. * set required memory and length aligment for direct dma transactions.
  695. * this is used when buiding direct io requests for the queue.
  696. *
  697. **/
  698. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  699. {
  700. q->dma_alignment = mask;
  701. }
  702. EXPORT_SYMBOL(blk_queue_dma_alignment);
  703. /**
  704. * blk_queue_find_tag - find a request by its tag and queue
  705. * @q: The request queue for the device
  706. * @tag: The tag of the request
  707. *
  708. * Notes:
  709. * Should be used when a device returns a tag and you want to match
  710. * it with a request.
  711. *
  712. * no locks need be held.
  713. **/
  714. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  715. {
  716. struct blk_queue_tag *bqt = q->queue_tags;
  717. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  718. return NULL;
  719. return bqt->tag_index[tag];
  720. }
  721. EXPORT_SYMBOL(blk_queue_find_tag);
  722. /**
  723. * __blk_queue_free_tags - release tag maintenance info
  724. * @q: the request queue for the device
  725. *
  726. * Notes:
  727. * blk_cleanup_queue() will take care of calling this function, if tagging
  728. * has been used. So there's no need to call this directly.
  729. **/
  730. static void __blk_queue_free_tags(request_queue_t *q)
  731. {
  732. struct blk_queue_tag *bqt = q->queue_tags;
  733. if (!bqt)
  734. return;
  735. if (atomic_dec_and_test(&bqt->refcnt)) {
  736. BUG_ON(bqt->busy);
  737. BUG_ON(!list_empty(&bqt->busy_list));
  738. kfree(bqt->tag_index);
  739. bqt->tag_index = NULL;
  740. kfree(bqt->tag_map);
  741. bqt->tag_map = NULL;
  742. kfree(bqt);
  743. }
  744. q->queue_tags = NULL;
  745. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  746. }
  747. /**
  748. * blk_queue_free_tags - release tag maintenance info
  749. * @q: the request queue for the device
  750. *
  751. * Notes:
  752. * This is used to disabled tagged queuing to a device, yet leave
  753. * queue in function.
  754. **/
  755. void blk_queue_free_tags(request_queue_t *q)
  756. {
  757. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  758. }
  759. EXPORT_SYMBOL(blk_queue_free_tags);
  760. static int
  761. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  762. {
  763. struct request **tag_index;
  764. unsigned long *tag_map;
  765. int nr_ulongs;
  766. if (depth > q->nr_requests * 2) {
  767. depth = q->nr_requests * 2;
  768. printk(KERN_ERR "%s: adjusted depth to %d\n",
  769. __FUNCTION__, depth);
  770. }
  771. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  772. if (!tag_index)
  773. goto fail;
  774. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  775. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  776. if (!tag_map)
  777. goto fail;
  778. memset(tag_index, 0, depth * sizeof(struct request *));
  779. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  780. tags->real_max_depth = depth;
  781. tags->max_depth = depth;
  782. tags->tag_index = tag_index;
  783. tags->tag_map = tag_map;
  784. return 0;
  785. fail:
  786. kfree(tag_index);
  787. return -ENOMEM;
  788. }
  789. /**
  790. * blk_queue_init_tags - initialize the queue tag info
  791. * @q: the request queue for the device
  792. * @depth: the maximum queue depth supported
  793. * @tags: the tag to use
  794. **/
  795. int blk_queue_init_tags(request_queue_t *q, int depth,
  796. struct blk_queue_tag *tags)
  797. {
  798. int rc;
  799. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  800. if (!tags && !q->queue_tags) {
  801. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  802. if (!tags)
  803. goto fail;
  804. if (init_tag_map(q, tags, depth))
  805. goto fail;
  806. INIT_LIST_HEAD(&tags->busy_list);
  807. tags->busy = 0;
  808. atomic_set(&tags->refcnt, 1);
  809. } else if (q->queue_tags) {
  810. if ((rc = blk_queue_resize_tags(q, depth)))
  811. return rc;
  812. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  813. return 0;
  814. } else
  815. atomic_inc(&tags->refcnt);
  816. /*
  817. * assign it, all done
  818. */
  819. q->queue_tags = tags;
  820. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  821. return 0;
  822. fail:
  823. kfree(tags);
  824. return -ENOMEM;
  825. }
  826. EXPORT_SYMBOL(blk_queue_init_tags);
  827. /**
  828. * blk_queue_resize_tags - change the queueing depth
  829. * @q: the request queue for the device
  830. * @new_depth: the new max command queueing depth
  831. *
  832. * Notes:
  833. * Must be called with the queue lock held.
  834. **/
  835. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  836. {
  837. struct blk_queue_tag *bqt = q->queue_tags;
  838. struct request **tag_index;
  839. unsigned long *tag_map;
  840. int max_depth, nr_ulongs;
  841. if (!bqt)
  842. return -ENXIO;
  843. /*
  844. * if we already have large enough real_max_depth. just
  845. * adjust max_depth. *NOTE* as requests with tag value
  846. * between new_depth and real_max_depth can be in-flight, tag
  847. * map can not be shrunk blindly here.
  848. */
  849. if (new_depth <= bqt->real_max_depth) {
  850. bqt->max_depth = new_depth;
  851. return 0;
  852. }
  853. /*
  854. * save the old state info, so we can copy it back
  855. */
  856. tag_index = bqt->tag_index;
  857. tag_map = bqt->tag_map;
  858. max_depth = bqt->real_max_depth;
  859. if (init_tag_map(q, bqt, new_depth))
  860. return -ENOMEM;
  861. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  862. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  863. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  864. kfree(tag_index);
  865. kfree(tag_map);
  866. return 0;
  867. }
  868. EXPORT_SYMBOL(blk_queue_resize_tags);
  869. /**
  870. * blk_queue_end_tag - end tag operations for a request
  871. * @q: the request queue for the device
  872. * @rq: the request that has completed
  873. *
  874. * Description:
  875. * Typically called when end_that_request_first() returns 0, meaning
  876. * all transfers have been done for a request. It's important to call
  877. * this function before end_that_request_last(), as that will put the
  878. * request back on the free list thus corrupting the internal tag list.
  879. *
  880. * Notes:
  881. * queue lock must be held.
  882. **/
  883. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  884. {
  885. struct blk_queue_tag *bqt = q->queue_tags;
  886. int tag = rq->tag;
  887. BUG_ON(tag == -1);
  888. if (unlikely(tag >= bqt->real_max_depth))
  889. /*
  890. * This can happen after tag depth has been reduced.
  891. * FIXME: how about a warning or info message here?
  892. */
  893. return;
  894. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  895. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  896. __FUNCTION__, tag);
  897. return;
  898. }
  899. list_del_init(&rq->queuelist);
  900. rq->flags &= ~REQ_QUEUED;
  901. rq->tag = -1;
  902. if (unlikely(bqt->tag_index[tag] == NULL))
  903. printk(KERN_ERR "%s: tag %d is missing\n",
  904. __FUNCTION__, tag);
  905. bqt->tag_index[tag] = NULL;
  906. bqt->busy--;
  907. }
  908. EXPORT_SYMBOL(blk_queue_end_tag);
  909. /**
  910. * blk_queue_start_tag - find a free tag and assign it
  911. * @q: the request queue for the device
  912. * @rq: the block request that needs tagging
  913. *
  914. * Description:
  915. * This can either be used as a stand-alone helper, or possibly be
  916. * assigned as the queue &prep_rq_fn (in which case &struct request
  917. * automagically gets a tag assigned). Note that this function
  918. * assumes that any type of request can be queued! if this is not
  919. * true for your device, you must check the request type before
  920. * calling this function. The request will also be removed from
  921. * the request queue, so it's the drivers responsibility to readd
  922. * it if it should need to be restarted for some reason.
  923. *
  924. * Notes:
  925. * queue lock must be held.
  926. **/
  927. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  928. {
  929. struct blk_queue_tag *bqt = q->queue_tags;
  930. int tag;
  931. if (unlikely((rq->flags & REQ_QUEUED))) {
  932. printk(KERN_ERR
  933. "%s: request %p for device [%s] already tagged %d",
  934. __FUNCTION__, rq,
  935. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  936. BUG();
  937. }
  938. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  939. if (tag >= bqt->max_depth)
  940. return 1;
  941. __set_bit(tag, bqt->tag_map);
  942. rq->flags |= REQ_QUEUED;
  943. rq->tag = tag;
  944. bqt->tag_index[tag] = rq;
  945. blkdev_dequeue_request(rq);
  946. list_add(&rq->queuelist, &bqt->busy_list);
  947. bqt->busy++;
  948. return 0;
  949. }
  950. EXPORT_SYMBOL(blk_queue_start_tag);
  951. /**
  952. * blk_queue_invalidate_tags - invalidate all pending tags
  953. * @q: the request queue for the device
  954. *
  955. * Description:
  956. * Hardware conditions may dictate a need to stop all pending requests.
  957. * In this case, we will safely clear the block side of the tag queue and
  958. * readd all requests to the request queue in the right order.
  959. *
  960. * Notes:
  961. * queue lock must be held.
  962. **/
  963. void blk_queue_invalidate_tags(request_queue_t *q)
  964. {
  965. struct blk_queue_tag *bqt = q->queue_tags;
  966. struct list_head *tmp, *n;
  967. struct request *rq;
  968. list_for_each_safe(tmp, n, &bqt->busy_list) {
  969. rq = list_entry_rq(tmp);
  970. if (rq->tag == -1) {
  971. printk(KERN_ERR
  972. "%s: bad tag found on list\n", __FUNCTION__);
  973. list_del_init(&rq->queuelist);
  974. rq->flags &= ~REQ_QUEUED;
  975. } else
  976. blk_queue_end_tag(q, rq);
  977. rq->flags &= ~REQ_STARTED;
  978. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  979. }
  980. }
  981. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  982. static const char * const rq_flags[] = {
  983. "REQ_RW",
  984. "REQ_FAILFAST",
  985. "REQ_SORTED",
  986. "REQ_SOFTBARRIER",
  987. "REQ_HARDBARRIER",
  988. "REQ_FUA",
  989. "REQ_CMD",
  990. "REQ_NOMERGE",
  991. "REQ_STARTED",
  992. "REQ_DONTPREP",
  993. "REQ_QUEUED",
  994. "REQ_ELVPRIV",
  995. "REQ_PC",
  996. "REQ_BLOCK_PC",
  997. "REQ_SENSE",
  998. "REQ_FAILED",
  999. "REQ_QUIET",
  1000. "REQ_SPECIAL",
  1001. "REQ_DRIVE_CMD",
  1002. "REQ_DRIVE_TASK",
  1003. "REQ_DRIVE_TASKFILE",
  1004. "REQ_PREEMPT",
  1005. "REQ_PM_SUSPEND",
  1006. "REQ_PM_RESUME",
  1007. "REQ_PM_SHUTDOWN",
  1008. "REQ_ORDERED_COLOR",
  1009. };
  1010. void blk_dump_rq_flags(struct request *rq, char *msg)
  1011. {
  1012. int bit;
  1013. printk("%s: dev %s: flags = ", msg,
  1014. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  1015. bit = 0;
  1016. do {
  1017. if (rq->flags & (1 << bit))
  1018. printk("%s ", rq_flags[bit]);
  1019. bit++;
  1020. } while (bit < __REQ_NR_BITS);
  1021. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1022. rq->nr_sectors,
  1023. rq->current_nr_sectors);
  1024. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1025. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  1026. printk("cdb: ");
  1027. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1028. printk("%02x ", rq->cmd[bit]);
  1029. printk("\n");
  1030. }
  1031. }
  1032. EXPORT_SYMBOL(blk_dump_rq_flags);
  1033. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1034. {
  1035. struct bio_vec *bv, *bvprv = NULL;
  1036. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1037. int high, highprv = 1;
  1038. if (unlikely(!bio->bi_io_vec))
  1039. return;
  1040. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1041. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1042. bio_for_each_segment(bv, bio, i) {
  1043. /*
  1044. * the trick here is making sure that a high page is never
  1045. * considered part of another segment, since that might
  1046. * change with the bounce page.
  1047. */
  1048. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1049. if (high || highprv)
  1050. goto new_hw_segment;
  1051. if (cluster) {
  1052. if (seg_size + bv->bv_len > q->max_segment_size)
  1053. goto new_segment;
  1054. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1055. goto new_segment;
  1056. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1057. goto new_segment;
  1058. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1059. goto new_hw_segment;
  1060. seg_size += bv->bv_len;
  1061. hw_seg_size += bv->bv_len;
  1062. bvprv = bv;
  1063. continue;
  1064. }
  1065. new_segment:
  1066. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1067. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1068. hw_seg_size += bv->bv_len;
  1069. } else {
  1070. new_hw_segment:
  1071. if (hw_seg_size > bio->bi_hw_front_size)
  1072. bio->bi_hw_front_size = hw_seg_size;
  1073. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1074. nr_hw_segs++;
  1075. }
  1076. nr_phys_segs++;
  1077. bvprv = bv;
  1078. seg_size = bv->bv_len;
  1079. highprv = high;
  1080. }
  1081. if (hw_seg_size > bio->bi_hw_back_size)
  1082. bio->bi_hw_back_size = hw_seg_size;
  1083. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1084. bio->bi_hw_front_size = hw_seg_size;
  1085. bio->bi_phys_segments = nr_phys_segs;
  1086. bio->bi_hw_segments = nr_hw_segs;
  1087. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1088. }
  1089. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1090. struct bio *nxt)
  1091. {
  1092. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1093. return 0;
  1094. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1095. return 0;
  1096. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1097. return 0;
  1098. /*
  1099. * bio and nxt are contigous in memory, check if the queue allows
  1100. * these two to be merged into one
  1101. */
  1102. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1103. return 1;
  1104. return 0;
  1105. }
  1106. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1107. struct bio *nxt)
  1108. {
  1109. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1110. blk_recount_segments(q, bio);
  1111. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1112. blk_recount_segments(q, nxt);
  1113. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1114. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1115. return 0;
  1116. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1117. return 0;
  1118. return 1;
  1119. }
  1120. /*
  1121. * map a request to scatterlist, return number of sg entries setup. Caller
  1122. * must make sure sg can hold rq->nr_phys_segments entries
  1123. */
  1124. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1125. {
  1126. struct bio_vec *bvec, *bvprv;
  1127. struct bio *bio;
  1128. int nsegs, i, cluster;
  1129. nsegs = 0;
  1130. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1131. /*
  1132. * for each bio in rq
  1133. */
  1134. bvprv = NULL;
  1135. rq_for_each_bio(bio, rq) {
  1136. /*
  1137. * for each segment in bio
  1138. */
  1139. bio_for_each_segment(bvec, bio, i) {
  1140. int nbytes = bvec->bv_len;
  1141. if (bvprv && cluster) {
  1142. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1143. goto new_segment;
  1144. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1145. goto new_segment;
  1146. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1147. goto new_segment;
  1148. sg[nsegs - 1].length += nbytes;
  1149. } else {
  1150. new_segment:
  1151. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1152. sg[nsegs].page = bvec->bv_page;
  1153. sg[nsegs].length = nbytes;
  1154. sg[nsegs].offset = bvec->bv_offset;
  1155. nsegs++;
  1156. }
  1157. bvprv = bvec;
  1158. } /* segments in bio */
  1159. } /* bios in rq */
  1160. return nsegs;
  1161. }
  1162. EXPORT_SYMBOL(blk_rq_map_sg);
  1163. /*
  1164. * the standard queue merge functions, can be overridden with device
  1165. * specific ones if so desired
  1166. */
  1167. static inline int ll_new_mergeable(request_queue_t *q,
  1168. struct request *req,
  1169. struct bio *bio)
  1170. {
  1171. int nr_phys_segs = bio_phys_segments(q, bio);
  1172. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1173. req->flags |= REQ_NOMERGE;
  1174. if (req == q->last_merge)
  1175. q->last_merge = NULL;
  1176. return 0;
  1177. }
  1178. /*
  1179. * A hw segment is just getting larger, bump just the phys
  1180. * counter.
  1181. */
  1182. req->nr_phys_segments += nr_phys_segs;
  1183. return 1;
  1184. }
  1185. static inline int ll_new_hw_segment(request_queue_t *q,
  1186. struct request *req,
  1187. struct bio *bio)
  1188. {
  1189. int nr_hw_segs = bio_hw_segments(q, bio);
  1190. int nr_phys_segs = bio_phys_segments(q, bio);
  1191. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1192. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1193. req->flags |= REQ_NOMERGE;
  1194. if (req == q->last_merge)
  1195. q->last_merge = NULL;
  1196. return 0;
  1197. }
  1198. /*
  1199. * This will form the start of a new hw segment. Bump both
  1200. * counters.
  1201. */
  1202. req->nr_hw_segments += nr_hw_segs;
  1203. req->nr_phys_segments += nr_phys_segs;
  1204. return 1;
  1205. }
  1206. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1207. struct bio *bio)
  1208. {
  1209. unsigned short max_sectors;
  1210. int len;
  1211. if (unlikely(blk_pc_request(req)))
  1212. max_sectors = q->max_hw_sectors;
  1213. else
  1214. max_sectors = q->max_sectors;
  1215. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1216. req->flags |= REQ_NOMERGE;
  1217. if (req == q->last_merge)
  1218. q->last_merge = NULL;
  1219. return 0;
  1220. }
  1221. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1222. blk_recount_segments(q, req->biotail);
  1223. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1224. blk_recount_segments(q, bio);
  1225. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1226. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1227. !BIOVEC_VIRT_OVERSIZE(len)) {
  1228. int mergeable = ll_new_mergeable(q, req, bio);
  1229. if (mergeable) {
  1230. if (req->nr_hw_segments == 1)
  1231. req->bio->bi_hw_front_size = len;
  1232. if (bio->bi_hw_segments == 1)
  1233. bio->bi_hw_back_size = len;
  1234. }
  1235. return mergeable;
  1236. }
  1237. return ll_new_hw_segment(q, req, bio);
  1238. }
  1239. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1240. struct bio *bio)
  1241. {
  1242. unsigned short max_sectors;
  1243. int len;
  1244. if (unlikely(blk_pc_request(req)))
  1245. max_sectors = q->max_hw_sectors;
  1246. else
  1247. max_sectors = q->max_sectors;
  1248. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1249. req->flags |= REQ_NOMERGE;
  1250. if (req == q->last_merge)
  1251. q->last_merge = NULL;
  1252. return 0;
  1253. }
  1254. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1255. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1256. blk_recount_segments(q, bio);
  1257. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1258. blk_recount_segments(q, req->bio);
  1259. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1260. !BIOVEC_VIRT_OVERSIZE(len)) {
  1261. int mergeable = ll_new_mergeable(q, req, bio);
  1262. if (mergeable) {
  1263. if (bio->bi_hw_segments == 1)
  1264. bio->bi_hw_front_size = len;
  1265. if (req->nr_hw_segments == 1)
  1266. req->biotail->bi_hw_back_size = len;
  1267. }
  1268. return mergeable;
  1269. }
  1270. return ll_new_hw_segment(q, req, bio);
  1271. }
  1272. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1273. struct request *next)
  1274. {
  1275. int total_phys_segments;
  1276. int total_hw_segments;
  1277. /*
  1278. * First check if the either of the requests are re-queued
  1279. * requests. Can't merge them if they are.
  1280. */
  1281. if (req->special || next->special)
  1282. return 0;
  1283. /*
  1284. * Will it become too large?
  1285. */
  1286. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1287. return 0;
  1288. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1289. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1290. total_phys_segments--;
  1291. if (total_phys_segments > q->max_phys_segments)
  1292. return 0;
  1293. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1294. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1295. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1296. /*
  1297. * propagate the combined length to the end of the requests
  1298. */
  1299. if (req->nr_hw_segments == 1)
  1300. req->bio->bi_hw_front_size = len;
  1301. if (next->nr_hw_segments == 1)
  1302. next->biotail->bi_hw_back_size = len;
  1303. total_hw_segments--;
  1304. }
  1305. if (total_hw_segments > q->max_hw_segments)
  1306. return 0;
  1307. /* Merge is OK... */
  1308. req->nr_phys_segments = total_phys_segments;
  1309. req->nr_hw_segments = total_hw_segments;
  1310. return 1;
  1311. }
  1312. /*
  1313. * "plug" the device if there are no outstanding requests: this will
  1314. * force the transfer to start only after we have put all the requests
  1315. * on the list.
  1316. *
  1317. * This is called with interrupts off and no requests on the queue and
  1318. * with the queue lock held.
  1319. */
  1320. void blk_plug_device(request_queue_t *q)
  1321. {
  1322. WARN_ON(!irqs_disabled());
  1323. /*
  1324. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1325. * which will restart the queueing
  1326. */
  1327. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1328. return;
  1329. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1330. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1331. }
  1332. EXPORT_SYMBOL(blk_plug_device);
  1333. /*
  1334. * remove the queue from the plugged list, if present. called with
  1335. * queue lock held and interrupts disabled.
  1336. */
  1337. int blk_remove_plug(request_queue_t *q)
  1338. {
  1339. WARN_ON(!irqs_disabled());
  1340. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1341. return 0;
  1342. del_timer(&q->unplug_timer);
  1343. return 1;
  1344. }
  1345. EXPORT_SYMBOL(blk_remove_plug);
  1346. /*
  1347. * remove the plug and let it rip..
  1348. */
  1349. void __generic_unplug_device(request_queue_t *q)
  1350. {
  1351. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1352. return;
  1353. if (!blk_remove_plug(q))
  1354. return;
  1355. q->request_fn(q);
  1356. }
  1357. EXPORT_SYMBOL(__generic_unplug_device);
  1358. /**
  1359. * generic_unplug_device - fire a request queue
  1360. * @q: The &request_queue_t in question
  1361. *
  1362. * Description:
  1363. * Linux uses plugging to build bigger requests queues before letting
  1364. * the device have at them. If a queue is plugged, the I/O scheduler
  1365. * is still adding and merging requests on the queue. Once the queue
  1366. * gets unplugged, the request_fn defined for the queue is invoked and
  1367. * transfers started.
  1368. **/
  1369. void generic_unplug_device(request_queue_t *q)
  1370. {
  1371. spin_lock_irq(q->queue_lock);
  1372. __generic_unplug_device(q);
  1373. spin_unlock_irq(q->queue_lock);
  1374. }
  1375. EXPORT_SYMBOL(generic_unplug_device);
  1376. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1377. struct page *page)
  1378. {
  1379. request_queue_t *q = bdi->unplug_io_data;
  1380. /*
  1381. * devices don't necessarily have an ->unplug_fn defined
  1382. */
  1383. if (q->unplug_fn)
  1384. q->unplug_fn(q);
  1385. }
  1386. static void blk_unplug_work(void *data)
  1387. {
  1388. request_queue_t *q = data;
  1389. q->unplug_fn(q);
  1390. }
  1391. static void blk_unplug_timeout(unsigned long data)
  1392. {
  1393. request_queue_t *q = (request_queue_t *)data;
  1394. kblockd_schedule_work(&q->unplug_work);
  1395. }
  1396. /**
  1397. * blk_start_queue - restart a previously stopped queue
  1398. * @q: The &request_queue_t in question
  1399. *
  1400. * Description:
  1401. * blk_start_queue() will clear the stop flag on the queue, and call
  1402. * the request_fn for the queue if it was in a stopped state when
  1403. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1404. **/
  1405. void blk_start_queue(request_queue_t *q)
  1406. {
  1407. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1408. /*
  1409. * one level of recursion is ok and is much faster than kicking
  1410. * the unplug handling
  1411. */
  1412. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1413. q->request_fn(q);
  1414. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1415. } else {
  1416. blk_plug_device(q);
  1417. kblockd_schedule_work(&q->unplug_work);
  1418. }
  1419. }
  1420. EXPORT_SYMBOL(blk_start_queue);
  1421. /**
  1422. * blk_stop_queue - stop a queue
  1423. * @q: The &request_queue_t in question
  1424. *
  1425. * Description:
  1426. * The Linux block layer assumes that a block driver will consume all
  1427. * entries on the request queue when the request_fn strategy is called.
  1428. * Often this will not happen, because of hardware limitations (queue
  1429. * depth settings). If a device driver gets a 'queue full' response,
  1430. * or if it simply chooses not to queue more I/O at one point, it can
  1431. * call this function to prevent the request_fn from being called until
  1432. * the driver has signalled it's ready to go again. This happens by calling
  1433. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1434. **/
  1435. void blk_stop_queue(request_queue_t *q)
  1436. {
  1437. blk_remove_plug(q);
  1438. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1439. }
  1440. EXPORT_SYMBOL(blk_stop_queue);
  1441. /**
  1442. * blk_sync_queue - cancel any pending callbacks on a queue
  1443. * @q: the queue
  1444. *
  1445. * Description:
  1446. * The block layer may perform asynchronous callback activity
  1447. * on a queue, such as calling the unplug function after a timeout.
  1448. * A block device may call blk_sync_queue to ensure that any
  1449. * such activity is cancelled, thus allowing it to release resources
  1450. * the the callbacks might use. The caller must already have made sure
  1451. * that its ->make_request_fn will not re-add plugging prior to calling
  1452. * this function.
  1453. *
  1454. */
  1455. void blk_sync_queue(struct request_queue *q)
  1456. {
  1457. del_timer_sync(&q->unplug_timer);
  1458. kblockd_flush();
  1459. }
  1460. EXPORT_SYMBOL(blk_sync_queue);
  1461. /**
  1462. * blk_run_queue - run a single device queue
  1463. * @q: The queue to run
  1464. */
  1465. void blk_run_queue(struct request_queue *q)
  1466. {
  1467. unsigned long flags;
  1468. spin_lock_irqsave(q->queue_lock, flags);
  1469. blk_remove_plug(q);
  1470. if (!elv_queue_empty(q))
  1471. q->request_fn(q);
  1472. spin_unlock_irqrestore(q->queue_lock, flags);
  1473. }
  1474. EXPORT_SYMBOL(blk_run_queue);
  1475. /**
  1476. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1477. * @q: the request queue to be released
  1478. *
  1479. * Description:
  1480. * blk_cleanup_queue is the pair to blk_init_queue() or
  1481. * blk_queue_make_request(). It should be called when a request queue is
  1482. * being released; typically when a block device is being de-registered.
  1483. * Currently, its primary task it to free all the &struct request
  1484. * structures that were allocated to the queue and the queue itself.
  1485. *
  1486. * Caveat:
  1487. * Hopefully the low level driver will have finished any
  1488. * outstanding requests first...
  1489. **/
  1490. void blk_cleanup_queue(request_queue_t * q)
  1491. {
  1492. struct request_list *rl = &q->rq;
  1493. if (!atomic_dec_and_test(&q->refcnt))
  1494. return;
  1495. if (q->elevator)
  1496. elevator_exit(q->elevator);
  1497. blk_sync_queue(q);
  1498. if (rl->rq_pool)
  1499. mempool_destroy(rl->rq_pool);
  1500. if (q->queue_tags)
  1501. __blk_queue_free_tags(q);
  1502. kmem_cache_free(requestq_cachep, q);
  1503. }
  1504. EXPORT_SYMBOL(blk_cleanup_queue);
  1505. static int blk_init_free_list(request_queue_t *q)
  1506. {
  1507. struct request_list *rl = &q->rq;
  1508. rl->count[READ] = rl->count[WRITE] = 0;
  1509. rl->starved[READ] = rl->starved[WRITE] = 0;
  1510. rl->elvpriv = 0;
  1511. init_waitqueue_head(&rl->wait[READ]);
  1512. init_waitqueue_head(&rl->wait[WRITE]);
  1513. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1514. mempool_free_slab, request_cachep, q->node);
  1515. if (!rl->rq_pool)
  1516. return -ENOMEM;
  1517. return 0;
  1518. }
  1519. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1520. {
  1521. return blk_alloc_queue_node(gfp_mask, -1);
  1522. }
  1523. EXPORT_SYMBOL(blk_alloc_queue);
  1524. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1525. {
  1526. request_queue_t *q;
  1527. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1528. if (!q)
  1529. return NULL;
  1530. memset(q, 0, sizeof(*q));
  1531. init_timer(&q->unplug_timer);
  1532. atomic_set(&q->refcnt, 1);
  1533. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1534. q->backing_dev_info.unplug_io_data = q;
  1535. return q;
  1536. }
  1537. EXPORT_SYMBOL(blk_alloc_queue_node);
  1538. /**
  1539. * blk_init_queue - prepare a request queue for use with a block device
  1540. * @rfn: The function to be called to process requests that have been
  1541. * placed on the queue.
  1542. * @lock: Request queue spin lock
  1543. *
  1544. * Description:
  1545. * If a block device wishes to use the standard request handling procedures,
  1546. * which sorts requests and coalesces adjacent requests, then it must
  1547. * call blk_init_queue(). The function @rfn will be called when there
  1548. * are requests on the queue that need to be processed. If the device
  1549. * supports plugging, then @rfn may not be called immediately when requests
  1550. * are available on the queue, but may be called at some time later instead.
  1551. * Plugged queues are generally unplugged when a buffer belonging to one
  1552. * of the requests on the queue is needed, or due to memory pressure.
  1553. *
  1554. * @rfn is not required, or even expected, to remove all requests off the
  1555. * queue, but only as many as it can handle at a time. If it does leave
  1556. * requests on the queue, it is responsible for arranging that the requests
  1557. * get dealt with eventually.
  1558. *
  1559. * The queue spin lock must be held while manipulating the requests on the
  1560. * request queue.
  1561. *
  1562. * Function returns a pointer to the initialized request queue, or NULL if
  1563. * it didn't succeed.
  1564. *
  1565. * Note:
  1566. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1567. * when the block device is deactivated (such as at module unload).
  1568. **/
  1569. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1570. {
  1571. return blk_init_queue_node(rfn, lock, -1);
  1572. }
  1573. EXPORT_SYMBOL(blk_init_queue);
  1574. request_queue_t *
  1575. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1576. {
  1577. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1578. if (!q)
  1579. return NULL;
  1580. q->node = node_id;
  1581. if (blk_init_free_list(q))
  1582. goto out_init;
  1583. /*
  1584. * if caller didn't supply a lock, they get per-queue locking with
  1585. * our embedded lock
  1586. */
  1587. if (!lock) {
  1588. spin_lock_init(&q->__queue_lock);
  1589. lock = &q->__queue_lock;
  1590. }
  1591. q->request_fn = rfn;
  1592. q->back_merge_fn = ll_back_merge_fn;
  1593. q->front_merge_fn = ll_front_merge_fn;
  1594. q->merge_requests_fn = ll_merge_requests_fn;
  1595. q->prep_rq_fn = NULL;
  1596. q->unplug_fn = generic_unplug_device;
  1597. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1598. q->queue_lock = lock;
  1599. blk_queue_segment_boundary(q, 0xffffffff);
  1600. blk_queue_make_request(q, __make_request);
  1601. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1602. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1603. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1604. /*
  1605. * all done
  1606. */
  1607. if (!elevator_init(q, NULL)) {
  1608. blk_queue_congestion_threshold(q);
  1609. return q;
  1610. }
  1611. blk_cleanup_queue(q);
  1612. out_init:
  1613. kmem_cache_free(requestq_cachep, q);
  1614. return NULL;
  1615. }
  1616. EXPORT_SYMBOL(blk_init_queue_node);
  1617. int blk_get_queue(request_queue_t *q)
  1618. {
  1619. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1620. atomic_inc(&q->refcnt);
  1621. return 0;
  1622. }
  1623. return 1;
  1624. }
  1625. EXPORT_SYMBOL(blk_get_queue);
  1626. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1627. {
  1628. if (rq->flags & REQ_ELVPRIV)
  1629. elv_put_request(q, rq);
  1630. mempool_free(rq, q->rq.rq_pool);
  1631. }
  1632. static inline struct request *
  1633. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1634. int priv, gfp_t gfp_mask)
  1635. {
  1636. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1637. if (!rq)
  1638. return NULL;
  1639. /*
  1640. * first three bits are identical in rq->flags and bio->bi_rw,
  1641. * see bio.h and blkdev.h
  1642. */
  1643. rq->flags = rw;
  1644. if (priv) {
  1645. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1646. mempool_free(rq, q->rq.rq_pool);
  1647. return NULL;
  1648. }
  1649. rq->flags |= REQ_ELVPRIV;
  1650. }
  1651. return rq;
  1652. }
  1653. /*
  1654. * ioc_batching returns true if the ioc is a valid batching request and
  1655. * should be given priority access to a request.
  1656. */
  1657. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1658. {
  1659. if (!ioc)
  1660. return 0;
  1661. /*
  1662. * Make sure the process is able to allocate at least 1 request
  1663. * even if the batch times out, otherwise we could theoretically
  1664. * lose wakeups.
  1665. */
  1666. return ioc->nr_batch_requests == q->nr_batching ||
  1667. (ioc->nr_batch_requests > 0
  1668. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1669. }
  1670. /*
  1671. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1672. * will cause the process to be a "batcher" on all queues in the system. This
  1673. * is the behaviour we want though - once it gets a wakeup it should be given
  1674. * a nice run.
  1675. */
  1676. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1677. {
  1678. if (!ioc || ioc_batching(q, ioc))
  1679. return;
  1680. ioc->nr_batch_requests = q->nr_batching;
  1681. ioc->last_waited = jiffies;
  1682. }
  1683. static void __freed_request(request_queue_t *q, int rw)
  1684. {
  1685. struct request_list *rl = &q->rq;
  1686. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1687. clear_queue_congested(q, rw);
  1688. if (rl->count[rw] + 1 <= q->nr_requests) {
  1689. if (waitqueue_active(&rl->wait[rw]))
  1690. wake_up(&rl->wait[rw]);
  1691. blk_clear_queue_full(q, rw);
  1692. }
  1693. }
  1694. /*
  1695. * A request has just been released. Account for it, update the full and
  1696. * congestion status, wake up any waiters. Called under q->queue_lock.
  1697. */
  1698. static void freed_request(request_queue_t *q, int rw, int priv)
  1699. {
  1700. struct request_list *rl = &q->rq;
  1701. rl->count[rw]--;
  1702. if (priv)
  1703. rl->elvpriv--;
  1704. __freed_request(q, rw);
  1705. if (unlikely(rl->starved[rw ^ 1]))
  1706. __freed_request(q, rw ^ 1);
  1707. }
  1708. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1709. /*
  1710. * Get a free request, queue_lock must be held.
  1711. * Returns NULL on failure, with queue_lock held.
  1712. * Returns !NULL on success, with queue_lock *not held*.
  1713. */
  1714. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1715. gfp_t gfp_mask)
  1716. {
  1717. struct request *rq = NULL;
  1718. struct request_list *rl = &q->rq;
  1719. struct io_context *ioc = NULL;
  1720. int may_queue, priv;
  1721. may_queue = elv_may_queue(q, rw, bio);
  1722. if (may_queue == ELV_MQUEUE_NO)
  1723. goto rq_starved;
  1724. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1725. if (rl->count[rw]+1 >= q->nr_requests) {
  1726. ioc = current_io_context(GFP_ATOMIC);
  1727. /*
  1728. * The queue will fill after this allocation, so set
  1729. * it as full, and mark this process as "batching".
  1730. * This process will be allowed to complete a batch of
  1731. * requests, others will be blocked.
  1732. */
  1733. if (!blk_queue_full(q, rw)) {
  1734. ioc_set_batching(q, ioc);
  1735. blk_set_queue_full(q, rw);
  1736. } else {
  1737. if (may_queue != ELV_MQUEUE_MUST
  1738. && !ioc_batching(q, ioc)) {
  1739. /*
  1740. * The queue is full and the allocating
  1741. * process is not a "batcher", and not
  1742. * exempted by the IO scheduler
  1743. */
  1744. goto out;
  1745. }
  1746. }
  1747. }
  1748. set_queue_congested(q, rw);
  1749. }
  1750. /*
  1751. * Only allow batching queuers to allocate up to 50% over the defined
  1752. * limit of requests, otherwise we could have thousands of requests
  1753. * allocated with any setting of ->nr_requests
  1754. */
  1755. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1756. goto out;
  1757. rl->count[rw]++;
  1758. rl->starved[rw] = 0;
  1759. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1760. if (priv)
  1761. rl->elvpriv++;
  1762. spin_unlock_irq(q->queue_lock);
  1763. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1764. if (unlikely(!rq)) {
  1765. /*
  1766. * Allocation failed presumably due to memory. Undo anything
  1767. * we might have messed up.
  1768. *
  1769. * Allocating task should really be put onto the front of the
  1770. * wait queue, but this is pretty rare.
  1771. */
  1772. spin_lock_irq(q->queue_lock);
  1773. freed_request(q, rw, priv);
  1774. /*
  1775. * in the very unlikely event that allocation failed and no
  1776. * requests for this direction was pending, mark us starved
  1777. * so that freeing of a request in the other direction will
  1778. * notice us. another possible fix would be to split the
  1779. * rq mempool into READ and WRITE
  1780. */
  1781. rq_starved:
  1782. if (unlikely(rl->count[rw] == 0))
  1783. rl->starved[rw] = 1;
  1784. goto out;
  1785. }
  1786. /*
  1787. * ioc may be NULL here, and ioc_batching will be false. That's
  1788. * OK, if the queue is under the request limit then requests need
  1789. * not count toward the nr_batch_requests limit. There will always
  1790. * be some limit enforced by BLK_BATCH_TIME.
  1791. */
  1792. if (ioc_batching(q, ioc))
  1793. ioc->nr_batch_requests--;
  1794. rq_init(q, rq);
  1795. rq->rl = rl;
  1796. out:
  1797. return rq;
  1798. }
  1799. /*
  1800. * No available requests for this queue, unplug the device and wait for some
  1801. * requests to become available.
  1802. *
  1803. * Called with q->queue_lock held, and returns with it unlocked.
  1804. */
  1805. static struct request *get_request_wait(request_queue_t *q, int rw,
  1806. struct bio *bio)
  1807. {
  1808. struct request *rq;
  1809. rq = get_request(q, rw, bio, GFP_NOIO);
  1810. while (!rq) {
  1811. DEFINE_WAIT(wait);
  1812. struct request_list *rl = &q->rq;
  1813. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1814. TASK_UNINTERRUPTIBLE);
  1815. rq = get_request(q, rw, bio, GFP_NOIO);
  1816. if (!rq) {
  1817. struct io_context *ioc;
  1818. __generic_unplug_device(q);
  1819. spin_unlock_irq(q->queue_lock);
  1820. io_schedule();
  1821. /*
  1822. * After sleeping, we become a "batching" process and
  1823. * will be able to allocate at least one request, and
  1824. * up to a big batch of them for a small period time.
  1825. * See ioc_batching, ioc_set_batching
  1826. */
  1827. ioc = current_io_context(GFP_NOIO);
  1828. ioc_set_batching(q, ioc);
  1829. spin_lock_irq(q->queue_lock);
  1830. }
  1831. finish_wait(&rl->wait[rw], &wait);
  1832. }
  1833. return rq;
  1834. }
  1835. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1836. {
  1837. struct request *rq;
  1838. BUG_ON(rw != READ && rw != WRITE);
  1839. spin_lock_irq(q->queue_lock);
  1840. if (gfp_mask & __GFP_WAIT) {
  1841. rq = get_request_wait(q, rw, NULL);
  1842. } else {
  1843. rq = get_request(q, rw, NULL, gfp_mask);
  1844. if (!rq)
  1845. spin_unlock_irq(q->queue_lock);
  1846. }
  1847. /* q->queue_lock is unlocked at this point */
  1848. return rq;
  1849. }
  1850. EXPORT_SYMBOL(blk_get_request);
  1851. /**
  1852. * blk_requeue_request - put a request back on queue
  1853. * @q: request queue where request should be inserted
  1854. * @rq: request to be inserted
  1855. *
  1856. * Description:
  1857. * Drivers often keep queueing requests until the hardware cannot accept
  1858. * more, when that condition happens we need to put the request back
  1859. * on the queue. Must be called with queue lock held.
  1860. */
  1861. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1862. {
  1863. if (blk_rq_tagged(rq))
  1864. blk_queue_end_tag(q, rq);
  1865. elv_requeue_request(q, rq);
  1866. }
  1867. EXPORT_SYMBOL(blk_requeue_request);
  1868. /**
  1869. * blk_insert_request - insert a special request in to a request queue
  1870. * @q: request queue where request should be inserted
  1871. * @rq: request to be inserted
  1872. * @at_head: insert request at head or tail of queue
  1873. * @data: private data
  1874. *
  1875. * Description:
  1876. * Many block devices need to execute commands asynchronously, so they don't
  1877. * block the whole kernel from preemption during request execution. This is
  1878. * accomplished normally by inserting aritficial requests tagged as
  1879. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1880. * scheduled for actual execution by the request queue.
  1881. *
  1882. * We have the option of inserting the head or the tail of the queue.
  1883. * Typically we use the tail for new ioctls and so forth. We use the head
  1884. * of the queue for things like a QUEUE_FULL message from a device, or a
  1885. * host that is unable to accept a particular command.
  1886. */
  1887. void blk_insert_request(request_queue_t *q, struct request *rq,
  1888. int at_head, void *data)
  1889. {
  1890. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1891. unsigned long flags;
  1892. /*
  1893. * tell I/O scheduler that this isn't a regular read/write (ie it
  1894. * must not attempt merges on this) and that it acts as a soft
  1895. * barrier
  1896. */
  1897. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1898. rq->special = data;
  1899. spin_lock_irqsave(q->queue_lock, flags);
  1900. /*
  1901. * If command is tagged, release the tag
  1902. */
  1903. if (blk_rq_tagged(rq))
  1904. blk_queue_end_tag(q, rq);
  1905. drive_stat_acct(rq, rq->nr_sectors, 1);
  1906. __elv_add_request(q, rq, where, 0);
  1907. if (blk_queue_plugged(q))
  1908. __generic_unplug_device(q);
  1909. else
  1910. q->request_fn(q);
  1911. spin_unlock_irqrestore(q->queue_lock, flags);
  1912. }
  1913. EXPORT_SYMBOL(blk_insert_request);
  1914. /**
  1915. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1916. * @q: request queue where request should be inserted
  1917. * @rq: request structure to fill
  1918. * @ubuf: the user buffer
  1919. * @len: length of user data
  1920. *
  1921. * Description:
  1922. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1923. * a kernel bounce buffer is used.
  1924. *
  1925. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1926. * still in process context.
  1927. *
  1928. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1929. * before being submitted to the device, as pages mapped may be out of
  1930. * reach. It's the callers responsibility to make sure this happens. The
  1931. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1932. * unmapping.
  1933. */
  1934. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1935. unsigned int len)
  1936. {
  1937. unsigned long uaddr;
  1938. struct bio *bio;
  1939. int reading;
  1940. if (len > (q->max_hw_sectors << 9))
  1941. return -EINVAL;
  1942. if (!len || !ubuf)
  1943. return -EINVAL;
  1944. reading = rq_data_dir(rq) == READ;
  1945. /*
  1946. * if alignment requirement is satisfied, map in user pages for
  1947. * direct dma. else, set up kernel bounce buffers
  1948. */
  1949. uaddr = (unsigned long) ubuf;
  1950. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1951. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1952. else
  1953. bio = bio_copy_user(q, uaddr, len, reading);
  1954. if (!IS_ERR(bio)) {
  1955. rq->bio = rq->biotail = bio;
  1956. blk_rq_bio_prep(q, rq, bio);
  1957. rq->buffer = rq->data = NULL;
  1958. rq->data_len = len;
  1959. return 0;
  1960. }
  1961. /*
  1962. * bio is the err-ptr
  1963. */
  1964. return PTR_ERR(bio);
  1965. }
  1966. EXPORT_SYMBOL(blk_rq_map_user);
  1967. /**
  1968. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1969. * @q: request queue where request should be inserted
  1970. * @rq: request to map data to
  1971. * @iov: pointer to the iovec
  1972. * @iov_count: number of elements in the iovec
  1973. *
  1974. * Description:
  1975. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1976. * a kernel bounce buffer is used.
  1977. *
  1978. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1979. * still in process context.
  1980. *
  1981. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1982. * before being submitted to the device, as pages mapped may be out of
  1983. * reach. It's the callers responsibility to make sure this happens. The
  1984. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1985. * unmapping.
  1986. */
  1987. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1988. struct sg_iovec *iov, int iov_count)
  1989. {
  1990. struct bio *bio;
  1991. if (!iov || iov_count <= 0)
  1992. return -EINVAL;
  1993. /* we don't allow misaligned data like bio_map_user() does. If the
  1994. * user is using sg, they're expected to know the alignment constraints
  1995. * and respect them accordingly */
  1996. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1997. if (IS_ERR(bio))
  1998. return PTR_ERR(bio);
  1999. rq->bio = rq->biotail = bio;
  2000. blk_rq_bio_prep(q, rq, bio);
  2001. rq->buffer = rq->data = NULL;
  2002. rq->data_len = bio->bi_size;
  2003. return 0;
  2004. }
  2005. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2006. /**
  2007. * blk_rq_unmap_user - unmap a request with user data
  2008. * @bio: bio to be unmapped
  2009. * @ulen: length of user buffer
  2010. *
  2011. * Description:
  2012. * Unmap a bio previously mapped by blk_rq_map_user().
  2013. */
  2014. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2015. {
  2016. int ret = 0;
  2017. if (bio) {
  2018. if (bio_flagged(bio, BIO_USER_MAPPED))
  2019. bio_unmap_user(bio);
  2020. else
  2021. ret = bio_uncopy_user(bio);
  2022. }
  2023. return 0;
  2024. }
  2025. EXPORT_SYMBOL(blk_rq_unmap_user);
  2026. /**
  2027. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2028. * @q: request queue where request should be inserted
  2029. * @rq: request to fill
  2030. * @kbuf: the kernel buffer
  2031. * @len: length of user data
  2032. * @gfp_mask: memory allocation flags
  2033. */
  2034. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2035. unsigned int len, gfp_t gfp_mask)
  2036. {
  2037. struct bio *bio;
  2038. if (len > (q->max_hw_sectors << 9))
  2039. return -EINVAL;
  2040. if (!len || !kbuf)
  2041. return -EINVAL;
  2042. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2043. if (IS_ERR(bio))
  2044. return PTR_ERR(bio);
  2045. if (rq_data_dir(rq) == WRITE)
  2046. bio->bi_rw |= (1 << BIO_RW);
  2047. rq->bio = rq->biotail = bio;
  2048. blk_rq_bio_prep(q, rq, bio);
  2049. rq->buffer = rq->data = NULL;
  2050. rq->data_len = len;
  2051. return 0;
  2052. }
  2053. EXPORT_SYMBOL(blk_rq_map_kern);
  2054. /**
  2055. * blk_execute_rq_nowait - insert a request into queue for execution
  2056. * @q: queue to insert the request in
  2057. * @bd_disk: matching gendisk
  2058. * @rq: request to insert
  2059. * @at_head: insert request at head or tail of queue
  2060. * @done: I/O completion handler
  2061. *
  2062. * Description:
  2063. * Insert a fully prepared request at the back of the io scheduler queue
  2064. * for execution. Don't wait for completion.
  2065. */
  2066. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2067. struct request *rq, int at_head,
  2068. rq_end_io_fn *done)
  2069. {
  2070. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2071. rq->rq_disk = bd_disk;
  2072. rq->flags |= REQ_NOMERGE;
  2073. rq->end_io = done;
  2074. elv_add_request(q, rq, where, 1);
  2075. generic_unplug_device(q);
  2076. }
  2077. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2078. /**
  2079. * blk_execute_rq - insert a request into queue for execution
  2080. * @q: queue to insert the request in
  2081. * @bd_disk: matching gendisk
  2082. * @rq: request to insert
  2083. * @at_head: insert request at head or tail of queue
  2084. *
  2085. * Description:
  2086. * Insert a fully prepared request at the back of the io scheduler queue
  2087. * for execution and wait for completion.
  2088. */
  2089. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2090. struct request *rq, int at_head)
  2091. {
  2092. DECLARE_COMPLETION(wait);
  2093. char sense[SCSI_SENSE_BUFFERSIZE];
  2094. int err = 0;
  2095. /*
  2096. * we need an extra reference to the request, so we can look at
  2097. * it after io completion
  2098. */
  2099. rq->ref_count++;
  2100. if (!rq->sense) {
  2101. memset(sense, 0, sizeof(sense));
  2102. rq->sense = sense;
  2103. rq->sense_len = 0;
  2104. }
  2105. rq->waiting = &wait;
  2106. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2107. wait_for_completion(&wait);
  2108. rq->waiting = NULL;
  2109. if (rq->errors)
  2110. err = -EIO;
  2111. return err;
  2112. }
  2113. EXPORT_SYMBOL(blk_execute_rq);
  2114. /**
  2115. * blkdev_issue_flush - queue a flush
  2116. * @bdev: blockdev to issue flush for
  2117. * @error_sector: error sector
  2118. *
  2119. * Description:
  2120. * Issue a flush for the block device in question. Caller can supply
  2121. * room for storing the error offset in case of a flush error, if they
  2122. * wish to. Caller must run wait_for_completion() on its own.
  2123. */
  2124. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2125. {
  2126. request_queue_t *q;
  2127. if (bdev->bd_disk == NULL)
  2128. return -ENXIO;
  2129. q = bdev_get_queue(bdev);
  2130. if (!q)
  2131. return -ENXIO;
  2132. if (!q->issue_flush_fn)
  2133. return -EOPNOTSUPP;
  2134. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2135. }
  2136. EXPORT_SYMBOL(blkdev_issue_flush);
  2137. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2138. {
  2139. int rw = rq_data_dir(rq);
  2140. if (!blk_fs_request(rq) || !rq->rq_disk)
  2141. return;
  2142. if (!new_io) {
  2143. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2144. } else {
  2145. disk_round_stats(rq->rq_disk);
  2146. rq->rq_disk->in_flight++;
  2147. }
  2148. }
  2149. /*
  2150. * add-request adds a request to the linked list.
  2151. * queue lock is held and interrupts disabled, as we muck with the
  2152. * request queue list.
  2153. */
  2154. static inline void add_request(request_queue_t * q, struct request * req)
  2155. {
  2156. drive_stat_acct(req, req->nr_sectors, 1);
  2157. if (q->activity_fn)
  2158. q->activity_fn(q->activity_data, rq_data_dir(req));
  2159. /*
  2160. * elevator indicated where it wants this request to be
  2161. * inserted at elevator_merge time
  2162. */
  2163. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2164. }
  2165. /*
  2166. * disk_round_stats() - Round off the performance stats on a struct
  2167. * disk_stats.
  2168. *
  2169. * The average IO queue length and utilisation statistics are maintained
  2170. * by observing the current state of the queue length and the amount of
  2171. * time it has been in this state for.
  2172. *
  2173. * Normally, that accounting is done on IO completion, but that can result
  2174. * in more than a second's worth of IO being accounted for within any one
  2175. * second, leading to >100% utilisation. To deal with that, we call this
  2176. * function to do a round-off before returning the results when reading
  2177. * /proc/diskstats. This accounts immediately for all queue usage up to
  2178. * the current jiffies and restarts the counters again.
  2179. */
  2180. void disk_round_stats(struct gendisk *disk)
  2181. {
  2182. unsigned long now = jiffies;
  2183. if (now == disk->stamp)
  2184. return;
  2185. if (disk->in_flight) {
  2186. __disk_stat_add(disk, time_in_queue,
  2187. disk->in_flight * (now - disk->stamp));
  2188. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2189. }
  2190. disk->stamp = now;
  2191. }
  2192. /*
  2193. * queue lock must be held
  2194. */
  2195. void __blk_put_request(request_queue_t *q, struct request *req)
  2196. {
  2197. struct request_list *rl = req->rl;
  2198. if (unlikely(!q))
  2199. return;
  2200. if (unlikely(--req->ref_count))
  2201. return;
  2202. elv_completed_request(q, req);
  2203. req->rq_status = RQ_INACTIVE;
  2204. req->rl = NULL;
  2205. /*
  2206. * Request may not have originated from ll_rw_blk. if not,
  2207. * it didn't come out of our reserved rq pools
  2208. */
  2209. if (rl) {
  2210. int rw = rq_data_dir(req);
  2211. int priv = req->flags & REQ_ELVPRIV;
  2212. BUG_ON(!list_empty(&req->queuelist));
  2213. blk_free_request(q, req);
  2214. freed_request(q, rw, priv);
  2215. }
  2216. }
  2217. EXPORT_SYMBOL_GPL(__blk_put_request);
  2218. void blk_put_request(struct request *req)
  2219. {
  2220. unsigned long flags;
  2221. request_queue_t *q = req->q;
  2222. /*
  2223. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2224. * following if (q) test.
  2225. */
  2226. if (q) {
  2227. spin_lock_irqsave(q->queue_lock, flags);
  2228. __blk_put_request(q, req);
  2229. spin_unlock_irqrestore(q->queue_lock, flags);
  2230. }
  2231. }
  2232. EXPORT_SYMBOL(blk_put_request);
  2233. /**
  2234. * blk_end_sync_rq - executes a completion event on a request
  2235. * @rq: request to complete
  2236. * @error: end io status of the request
  2237. */
  2238. void blk_end_sync_rq(struct request *rq, int error)
  2239. {
  2240. struct completion *waiting = rq->waiting;
  2241. rq->waiting = NULL;
  2242. __blk_put_request(rq->q, rq);
  2243. /*
  2244. * complete last, if this is a stack request the process (and thus
  2245. * the rq pointer) could be invalid right after this complete()
  2246. */
  2247. complete(waiting);
  2248. }
  2249. EXPORT_SYMBOL(blk_end_sync_rq);
  2250. /**
  2251. * blk_congestion_wait - wait for a queue to become uncongested
  2252. * @rw: READ or WRITE
  2253. * @timeout: timeout in jiffies
  2254. *
  2255. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2256. * If no queues are congested then just wait for the next request to be
  2257. * returned.
  2258. */
  2259. long blk_congestion_wait(int rw, long timeout)
  2260. {
  2261. long ret;
  2262. DEFINE_WAIT(wait);
  2263. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2264. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2265. ret = io_schedule_timeout(timeout);
  2266. finish_wait(wqh, &wait);
  2267. return ret;
  2268. }
  2269. EXPORT_SYMBOL(blk_congestion_wait);
  2270. /*
  2271. * Has to be called with the request spinlock acquired
  2272. */
  2273. static int attempt_merge(request_queue_t *q, struct request *req,
  2274. struct request *next)
  2275. {
  2276. if (!rq_mergeable(req) || !rq_mergeable(next))
  2277. return 0;
  2278. /*
  2279. * not contigious
  2280. */
  2281. if (req->sector + req->nr_sectors != next->sector)
  2282. return 0;
  2283. if (rq_data_dir(req) != rq_data_dir(next)
  2284. || req->rq_disk != next->rq_disk
  2285. || next->waiting || next->special)
  2286. return 0;
  2287. /*
  2288. * If we are allowed to merge, then append bio list
  2289. * from next to rq and release next. merge_requests_fn
  2290. * will have updated segment counts, update sector
  2291. * counts here.
  2292. */
  2293. if (!q->merge_requests_fn(q, req, next))
  2294. return 0;
  2295. /*
  2296. * At this point we have either done a back merge
  2297. * or front merge. We need the smaller start_time of
  2298. * the merged requests to be the current request
  2299. * for accounting purposes.
  2300. */
  2301. if (time_after(req->start_time, next->start_time))
  2302. req->start_time = next->start_time;
  2303. req->biotail->bi_next = next->bio;
  2304. req->biotail = next->biotail;
  2305. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2306. elv_merge_requests(q, req, next);
  2307. if (req->rq_disk) {
  2308. disk_round_stats(req->rq_disk);
  2309. req->rq_disk->in_flight--;
  2310. }
  2311. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2312. __blk_put_request(q, next);
  2313. return 1;
  2314. }
  2315. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2316. {
  2317. struct request *next = elv_latter_request(q, rq);
  2318. if (next)
  2319. return attempt_merge(q, rq, next);
  2320. return 0;
  2321. }
  2322. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2323. {
  2324. struct request *prev = elv_former_request(q, rq);
  2325. if (prev)
  2326. return attempt_merge(q, prev, rq);
  2327. return 0;
  2328. }
  2329. static void init_request_from_bio(struct request *req, struct bio *bio)
  2330. {
  2331. req->flags |= REQ_CMD;
  2332. /*
  2333. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2334. */
  2335. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2336. req->flags |= REQ_FAILFAST;
  2337. /*
  2338. * REQ_BARRIER implies no merging, but lets make it explicit
  2339. */
  2340. if (unlikely(bio_barrier(bio)))
  2341. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2342. req->errors = 0;
  2343. req->hard_sector = req->sector = bio->bi_sector;
  2344. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2345. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2346. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2347. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2348. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2349. req->waiting = NULL;
  2350. req->bio = req->biotail = bio;
  2351. req->ioprio = bio_prio(bio);
  2352. req->rq_disk = bio->bi_bdev->bd_disk;
  2353. req->start_time = jiffies;
  2354. }
  2355. static int __make_request(request_queue_t *q, struct bio *bio)
  2356. {
  2357. struct request *req;
  2358. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2359. unsigned short prio;
  2360. sector_t sector;
  2361. sector = bio->bi_sector;
  2362. nr_sectors = bio_sectors(bio);
  2363. cur_nr_sectors = bio_cur_sectors(bio);
  2364. prio = bio_prio(bio);
  2365. rw = bio_data_dir(bio);
  2366. sync = bio_sync(bio);
  2367. /*
  2368. * low level driver can indicate that it wants pages above a
  2369. * certain limit bounced to low memory (ie for highmem, or even
  2370. * ISA dma in theory)
  2371. */
  2372. blk_queue_bounce(q, &bio);
  2373. spin_lock_prefetch(q->queue_lock);
  2374. barrier = bio_barrier(bio);
  2375. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2376. err = -EOPNOTSUPP;
  2377. goto end_io;
  2378. }
  2379. spin_lock_irq(q->queue_lock);
  2380. if (unlikely(barrier) || elv_queue_empty(q))
  2381. goto get_rq;
  2382. el_ret = elv_merge(q, &req, bio);
  2383. switch (el_ret) {
  2384. case ELEVATOR_BACK_MERGE:
  2385. BUG_ON(!rq_mergeable(req));
  2386. if (!q->back_merge_fn(q, req, bio))
  2387. break;
  2388. req->biotail->bi_next = bio;
  2389. req->biotail = bio;
  2390. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2391. req->ioprio = ioprio_best(req->ioprio, prio);
  2392. drive_stat_acct(req, nr_sectors, 0);
  2393. if (!attempt_back_merge(q, req))
  2394. elv_merged_request(q, req);
  2395. goto out;
  2396. case ELEVATOR_FRONT_MERGE:
  2397. BUG_ON(!rq_mergeable(req));
  2398. if (!q->front_merge_fn(q, req, bio))
  2399. break;
  2400. bio->bi_next = req->bio;
  2401. req->bio = bio;
  2402. /*
  2403. * may not be valid. if the low level driver said
  2404. * it didn't need a bounce buffer then it better
  2405. * not touch req->buffer either...
  2406. */
  2407. req->buffer = bio_data(bio);
  2408. req->current_nr_sectors = cur_nr_sectors;
  2409. req->hard_cur_sectors = cur_nr_sectors;
  2410. req->sector = req->hard_sector = sector;
  2411. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2412. req->ioprio = ioprio_best(req->ioprio, prio);
  2413. drive_stat_acct(req, nr_sectors, 0);
  2414. if (!attempt_front_merge(q, req))
  2415. elv_merged_request(q, req);
  2416. goto out;
  2417. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2418. default:
  2419. ;
  2420. }
  2421. get_rq:
  2422. /*
  2423. * Grab a free request. This is might sleep but can not fail.
  2424. * Returns with the queue unlocked.
  2425. */
  2426. req = get_request_wait(q, rw, bio);
  2427. /*
  2428. * After dropping the lock and possibly sleeping here, our request
  2429. * may now be mergeable after it had proven unmergeable (above).
  2430. * We don't worry about that case for efficiency. It won't happen
  2431. * often, and the elevators are able to handle it.
  2432. */
  2433. init_request_from_bio(req, bio);
  2434. spin_lock_irq(q->queue_lock);
  2435. if (elv_queue_empty(q))
  2436. blk_plug_device(q);
  2437. add_request(q, req);
  2438. out:
  2439. if (sync)
  2440. __generic_unplug_device(q);
  2441. spin_unlock_irq(q->queue_lock);
  2442. return 0;
  2443. end_io:
  2444. bio_endio(bio, nr_sectors << 9, err);
  2445. return 0;
  2446. }
  2447. /*
  2448. * If bio->bi_dev is a partition, remap the location
  2449. */
  2450. static inline void blk_partition_remap(struct bio *bio)
  2451. {
  2452. struct block_device *bdev = bio->bi_bdev;
  2453. if (bdev != bdev->bd_contains) {
  2454. struct hd_struct *p = bdev->bd_part;
  2455. const int rw = bio_data_dir(bio);
  2456. p->sectors[rw] += bio_sectors(bio);
  2457. p->ios[rw]++;
  2458. bio->bi_sector += p->start_sect;
  2459. bio->bi_bdev = bdev->bd_contains;
  2460. }
  2461. }
  2462. static void handle_bad_sector(struct bio *bio)
  2463. {
  2464. char b[BDEVNAME_SIZE];
  2465. printk(KERN_INFO "attempt to access beyond end of device\n");
  2466. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2467. bdevname(bio->bi_bdev, b),
  2468. bio->bi_rw,
  2469. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2470. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2471. set_bit(BIO_EOF, &bio->bi_flags);
  2472. }
  2473. /**
  2474. * generic_make_request: hand a buffer to its device driver for I/O
  2475. * @bio: The bio describing the location in memory and on the device.
  2476. *
  2477. * generic_make_request() is used to make I/O requests of block
  2478. * devices. It is passed a &struct bio, which describes the I/O that needs
  2479. * to be done.
  2480. *
  2481. * generic_make_request() does not return any status. The
  2482. * success/failure status of the request, along with notification of
  2483. * completion, is delivered asynchronously through the bio->bi_end_io
  2484. * function described (one day) else where.
  2485. *
  2486. * The caller of generic_make_request must make sure that bi_io_vec
  2487. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2488. * set to describe the device address, and the
  2489. * bi_end_io and optionally bi_private are set to describe how
  2490. * completion notification should be signaled.
  2491. *
  2492. * generic_make_request and the drivers it calls may use bi_next if this
  2493. * bio happens to be merged with someone else, and may change bi_dev and
  2494. * bi_sector for remaps as it sees fit. So the values of these fields
  2495. * should NOT be depended on after the call to generic_make_request.
  2496. */
  2497. void generic_make_request(struct bio *bio)
  2498. {
  2499. request_queue_t *q;
  2500. sector_t maxsector;
  2501. int ret, nr_sectors = bio_sectors(bio);
  2502. might_sleep();
  2503. /* Test device or partition size, when known. */
  2504. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2505. if (maxsector) {
  2506. sector_t sector = bio->bi_sector;
  2507. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2508. /*
  2509. * This may well happen - the kernel calls bread()
  2510. * without checking the size of the device, e.g., when
  2511. * mounting a device.
  2512. */
  2513. handle_bad_sector(bio);
  2514. goto end_io;
  2515. }
  2516. }
  2517. /*
  2518. * Resolve the mapping until finished. (drivers are
  2519. * still free to implement/resolve their own stacking
  2520. * by explicitly returning 0)
  2521. *
  2522. * NOTE: we don't repeat the blk_size check for each new device.
  2523. * Stacking drivers are expected to know what they are doing.
  2524. */
  2525. do {
  2526. char b[BDEVNAME_SIZE];
  2527. q = bdev_get_queue(bio->bi_bdev);
  2528. if (!q) {
  2529. printk(KERN_ERR
  2530. "generic_make_request: Trying to access "
  2531. "nonexistent block-device %s (%Lu)\n",
  2532. bdevname(bio->bi_bdev, b),
  2533. (long long) bio->bi_sector);
  2534. end_io:
  2535. bio_endio(bio, bio->bi_size, -EIO);
  2536. break;
  2537. }
  2538. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2539. printk("bio too big device %s (%u > %u)\n",
  2540. bdevname(bio->bi_bdev, b),
  2541. bio_sectors(bio),
  2542. q->max_hw_sectors);
  2543. goto end_io;
  2544. }
  2545. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2546. goto end_io;
  2547. /*
  2548. * If this device has partitions, remap block n
  2549. * of partition p to block n+start(p) of the disk.
  2550. */
  2551. blk_partition_remap(bio);
  2552. ret = q->make_request_fn(q, bio);
  2553. } while (ret);
  2554. }
  2555. EXPORT_SYMBOL(generic_make_request);
  2556. /**
  2557. * submit_bio: submit a bio to the block device layer for I/O
  2558. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2559. * @bio: The &struct bio which describes the I/O
  2560. *
  2561. * submit_bio() is very similar in purpose to generic_make_request(), and
  2562. * uses that function to do most of the work. Both are fairly rough
  2563. * interfaces, @bio must be presetup and ready for I/O.
  2564. *
  2565. */
  2566. void submit_bio(int rw, struct bio *bio)
  2567. {
  2568. int count = bio_sectors(bio);
  2569. BIO_BUG_ON(!bio->bi_size);
  2570. BIO_BUG_ON(!bio->bi_io_vec);
  2571. bio->bi_rw |= rw;
  2572. if (rw & WRITE)
  2573. mod_page_state(pgpgout, count);
  2574. else
  2575. mod_page_state(pgpgin, count);
  2576. if (unlikely(block_dump)) {
  2577. char b[BDEVNAME_SIZE];
  2578. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2579. current->comm, current->pid,
  2580. (rw & WRITE) ? "WRITE" : "READ",
  2581. (unsigned long long)bio->bi_sector,
  2582. bdevname(bio->bi_bdev,b));
  2583. }
  2584. generic_make_request(bio);
  2585. }
  2586. EXPORT_SYMBOL(submit_bio);
  2587. static void blk_recalc_rq_segments(struct request *rq)
  2588. {
  2589. struct bio *bio, *prevbio = NULL;
  2590. int nr_phys_segs, nr_hw_segs;
  2591. unsigned int phys_size, hw_size;
  2592. request_queue_t *q = rq->q;
  2593. if (!rq->bio)
  2594. return;
  2595. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2596. rq_for_each_bio(bio, rq) {
  2597. /* Force bio hw/phys segs to be recalculated. */
  2598. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2599. nr_phys_segs += bio_phys_segments(q, bio);
  2600. nr_hw_segs += bio_hw_segments(q, bio);
  2601. if (prevbio) {
  2602. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2603. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2604. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2605. pseg <= q->max_segment_size) {
  2606. nr_phys_segs--;
  2607. phys_size += prevbio->bi_size + bio->bi_size;
  2608. } else
  2609. phys_size = 0;
  2610. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2611. hseg <= q->max_segment_size) {
  2612. nr_hw_segs--;
  2613. hw_size += prevbio->bi_size + bio->bi_size;
  2614. } else
  2615. hw_size = 0;
  2616. }
  2617. prevbio = bio;
  2618. }
  2619. rq->nr_phys_segments = nr_phys_segs;
  2620. rq->nr_hw_segments = nr_hw_segs;
  2621. }
  2622. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2623. {
  2624. if (blk_fs_request(rq)) {
  2625. rq->hard_sector += nsect;
  2626. rq->hard_nr_sectors -= nsect;
  2627. /*
  2628. * Move the I/O submission pointers ahead if required.
  2629. */
  2630. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2631. (rq->sector <= rq->hard_sector)) {
  2632. rq->sector = rq->hard_sector;
  2633. rq->nr_sectors = rq->hard_nr_sectors;
  2634. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2635. rq->current_nr_sectors = rq->hard_cur_sectors;
  2636. rq->buffer = bio_data(rq->bio);
  2637. }
  2638. /*
  2639. * if total number of sectors is less than the first segment
  2640. * size, something has gone terribly wrong
  2641. */
  2642. if (rq->nr_sectors < rq->current_nr_sectors) {
  2643. printk("blk: request botched\n");
  2644. rq->nr_sectors = rq->current_nr_sectors;
  2645. }
  2646. }
  2647. }
  2648. static int __end_that_request_first(struct request *req, int uptodate,
  2649. int nr_bytes)
  2650. {
  2651. int total_bytes, bio_nbytes, error, next_idx = 0;
  2652. struct bio *bio;
  2653. /*
  2654. * extend uptodate bool to allow < 0 value to be direct io error
  2655. */
  2656. error = 0;
  2657. if (end_io_error(uptodate))
  2658. error = !uptodate ? -EIO : uptodate;
  2659. /*
  2660. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2661. * sense key with us all the way through
  2662. */
  2663. if (!blk_pc_request(req))
  2664. req->errors = 0;
  2665. if (!uptodate) {
  2666. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2667. printk("end_request: I/O error, dev %s, sector %llu\n",
  2668. req->rq_disk ? req->rq_disk->disk_name : "?",
  2669. (unsigned long long)req->sector);
  2670. }
  2671. if (blk_fs_request(req) && req->rq_disk) {
  2672. const int rw = rq_data_dir(req);
  2673. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2674. }
  2675. total_bytes = bio_nbytes = 0;
  2676. while ((bio = req->bio) != NULL) {
  2677. int nbytes;
  2678. if (nr_bytes >= bio->bi_size) {
  2679. req->bio = bio->bi_next;
  2680. nbytes = bio->bi_size;
  2681. if (!ordered_bio_endio(req, bio, nbytes, error))
  2682. bio_endio(bio, nbytes, error);
  2683. next_idx = 0;
  2684. bio_nbytes = 0;
  2685. } else {
  2686. int idx = bio->bi_idx + next_idx;
  2687. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2688. blk_dump_rq_flags(req, "__end_that");
  2689. printk("%s: bio idx %d >= vcnt %d\n",
  2690. __FUNCTION__,
  2691. bio->bi_idx, bio->bi_vcnt);
  2692. break;
  2693. }
  2694. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2695. BIO_BUG_ON(nbytes > bio->bi_size);
  2696. /*
  2697. * not a complete bvec done
  2698. */
  2699. if (unlikely(nbytes > nr_bytes)) {
  2700. bio_nbytes += nr_bytes;
  2701. total_bytes += nr_bytes;
  2702. break;
  2703. }
  2704. /*
  2705. * advance to the next vector
  2706. */
  2707. next_idx++;
  2708. bio_nbytes += nbytes;
  2709. }
  2710. total_bytes += nbytes;
  2711. nr_bytes -= nbytes;
  2712. if ((bio = req->bio)) {
  2713. /*
  2714. * end more in this run, or just return 'not-done'
  2715. */
  2716. if (unlikely(nr_bytes <= 0))
  2717. break;
  2718. }
  2719. }
  2720. /*
  2721. * completely done
  2722. */
  2723. if (!req->bio)
  2724. return 0;
  2725. /*
  2726. * if the request wasn't completed, update state
  2727. */
  2728. if (bio_nbytes) {
  2729. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2730. bio_endio(bio, bio_nbytes, error);
  2731. bio->bi_idx += next_idx;
  2732. bio_iovec(bio)->bv_offset += nr_bytes;
  2733. bio_iovec(bio)->bv_len -= nr_bytes;
  2734. }
  2735. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2736. blk_recalc_rq_segments(req);
  2737. return 1;
  2738. }
  2739. /**
  2740. * end_that_request_first - end I/O on a request
  2741. * @req: the request being processed
  2742. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2743. * @nr_sectors: number of sectors to end I/O on
  2744. *
  2745. * Description:
  2746. * Ends I/O on a number of sectors attached to @req, and sets it up
  2747. * for the next range of segments (if any) in the cluster.
  2748. *
  2749. * Return:
  2750. * 0 - we are done with this request, call end_that_request_last()
  2751. * 1 - still buffers pending for this request
  2752. **/
  2753. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2754. {
  2755. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2756. }
  2757. EXPORT_SYMBOL(end_that_request_first);
  2758. /**
  2759. * end_that_request_chunk - end I/O on a request
  2760. * @req: the request being processed
  2761. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2762. * @nr_bytes: number of bytes to complete
  2763. *
  2764. * Description:
  2765. * Ends I/O on a number of bytes attached to @req, and sets it up
  2766. * for the next range of segments (if any). Like end_that_request_first(),
  2767. * but deals with bytes instead of sectors.
  2768. *
  2769. * Return:
  2770. * 0 - we are done with this request, call end_that_request_last()
  2771. * 1 - still buffers pending for this request
  2772. **/
  2773. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2774. {
  2775. return __end_that_request_first(req, uptodate, nr_bytes);
  2776. }
  2777. EXPORT_SYMBOL(end_that_request_chunk);
  2778. /*
  2779. * splice the completion data to a local structure and hand off to
  2780. * process_completion_queue() to complete the requests
  2781. */
  2782. static void blk_done_softirq(struct softirq_action *h)
  2783. {
  2784. struct list_head *cpu_list;
  2785. LIST_HEAD(local_list);
  2786. local_irq_disable();
  2787. cpu_list = &__get_cpu_var(blk_cpu_done);
  2788. list_splice_init(cpu_list, &local_list);
  2789. local_irq_enable();
  2790. while (!list_empty(&local_list)) {
  2791. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2792. list_del_init(&rq->donelist);
  2793. rq->q->softirq_done_fn(rq);
  2794. }
  2795. }
  2796. #ifdef CONFIG_HOTPLUG_CPU
  2797. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2798. void *hcpu)
  2799. {
  2800. /*
  2801. * If a CPU goes away, splice its entries to the current CPU
  2802. * and trigger a run of the softirq
  2803. */
  2804. if (action == CPU_DEAD) {
  2805. int cpu = (unsigned long) hcpu;
  2806. local_irq_disable();
  2807. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2808. &__get_cpu_var(blk_cpu_done));
  2809. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2810. local_irq_enable();
  2811. }
  2812. return NOTIFY_OK;
  2813. }
  2814. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2815. .notifier_call = blk_cpu_notify,
  2816. };
  2817. #endif /* CONFIG_HOTPLUG_CPU */
  2818. /**
  2819. * blk_complete_request - end I/O on a request
  2820. * @req: the request being processed
  2821. *
  2822. * Description:
  2823. * Ends all I/O on a request. It does not handle partial completions,
  2824. * unless the driver actually implements this in its completionc callback
  2825. * through requeueing. Theh actual completion happens out-of-order,
  2826. * through a softirq handler. The user must have registered a completion
  2827. * callback through blk_queue_softirq_done().
  2828. **/
  2829. void blk_complete_request(struct request *req)
  2830. {
  2831. struct list_head *cpu_list;
  2832. unsigned long flags;
  2833. BUG_ON(!req->q->softirq_done_fn);
  2834. local_irq_save(flags);
  2835. cpu_list = &__get_cpu_var(blk_cpu_done);
  2836. list_add_tail(&req->donelist, cpu_list);
  2837. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2838. local_irq_restore(flags);
  2839. }
  2840. EXPORT_SYMBOL(blk_complete_request);
  2841. /*
  2842. * queue lock must be held
  2843. */
  2844. void end_that_request_last(struct request *req, int uptodate)
  2845. {
  2846. struct gendisk *disk = req->rq_disk;
  2847. int error;
  2848. /*
  2849. * extend uptodate bool to allow < 0 value to be direct io error
  2850. */
  2851. error = 0;
  2852. if (end_io_error(uptodate))
  2853. error = !uptodate ? -EIO : uptodate;
  2854. if (unlikely(laptop_mode) && blk_fs_request(req))
  2855. laptop_io_completion();
  2856. if (disk && blk_fs_request(req)) {
  2857. unsigned long duration = jiffies - req->start_time;
  2858. const int rw = rq_data_dir(req);
  2859. __disk_stat_inc(disk, ios[rw]);
  2860. __disk_stat_add(disk, ticks[rw], duration);
  2861. disk_round_stats(disk);
  2862. disk->in_flight--;
  2863. }
  2864. if (req->end_io)
  2865. req->end_io(req, error);
  2866. else
  2867. __blk_put_request(req->q, req);
  2868. }
  2869. EXPORT_SYMBOL(end_that_request_last);
  2870. void end_request(struct request *req, int uptodate)
  2871. {
  2872. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2873. add_disk_randomness(req->rq_disk);
  2874. blkdev_dequeue_request(req);
  2875. end_that_request_last(req, uptodate);
  2876. }
  2877. }
  2878. EXPORT_SYMBOL(end_request);
  2879. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2880. {
  2881. /* first three bits are identical in rq->flags and bio->bi_rw */
  2882. rq->flags |= (bio->bi_rw & 7);
  2883. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2884. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2885. rq->current_nr_sectors = bio_cur_sectors(bio);
  2886. rq->hard_cur_sectors = rq->current_nr_sectors;
  2887. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2888. rq->buffer = bio_data(bio);
  2889. rq->bio = rq->biotail = bio;
  2890. }
  2891. EXPORT_SYMBOL(blk_rq_bio_prep);
  2892. int kblockd_schedule_work(struct work_struct *work)
  2893. {
  2894. return queue_work(kblockd_workqueue, work);
  2895. }
  2896. EXPORT_SYMBOL(kblockd_schedule_work);
  2897. void kblockd_flush(void)
  2898. {
  2899. flush_workqueue(kblockd_workqueue);
  2900. }
  2901. EXPORT_SYMBOL(kblockd_flush);
  2902. int __init blk_dev_init(void)
  2903. {
  2904. int i;
  2905. kblockd_workqueue = create_workqueue("kblockd");
  2906. if (!kblockd_workqueue)
  2907. panic("Failed to create kblockd\n");
  2908. request_cachep = kmem_cache_create("blkdev_requests",
  2909. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2910. requestq_cachep = kmem_cache_create("blkdev_queue",
  2911. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2912. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2913. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2914. for (i = 0; i < NR_CPUS; i++)
  2915. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  2916. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  2917. #ifdef CONFIG_HOTPLUG_CPU
  2918. register_cpu_notifier(&blk_cpu_notifier);
  2919. #endif
  2920. blk_max_low_pfn = max_low_pfn;
  2921. blk_max_pfn = max_pfn;
  2922. return 0;
  2923. }
  2924. /*
  2925. * IO Context helper functions
  2926. */
  2927. void put_io_context(struct io_context *ioc)
  2928. {
  2929. if (ioc == NULL)
  2930. return;
  2931. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2932. if (atomic_dec_and_test(&ioc->refcount)) {
  2933. if (ioc->aic && ioc->aic->dtor)
  2934. ioc->aic->dtor(ioc->aic);
  2935. if (ioc->cic && ioc->cic->dtor)
  2936. ioc->cic->dtor(ioc->cic);
  2937. kmem_cache_free(iocontext_cachep, ioc);
  2938. }
  2939. }
  2940. EXPORT_SYMBOL(put_io_context);
  2941. /* Called by the exitting task */
  2942. void exit_io_context(void)
  2943. {
  2944. unsigned long flags;
  2945. struct io_context *ioc;
  2946. local_irq_save(flags);
  2947. task_lock(current);
  2948. ioc = current->io_context;
  2949. current->io_context = NULL;
  2950. ioc->task = NULL;
  2951. task_unlock(current);
  2952. local_irq_restore(flags);
  2953. if (ioc->aic && ioc->aic->exit)
  2954. ioc->aic->exit(ioc->aic);
  2955. if (ioc->cic && ioc->cic->exit)
  2956. ioc->cic->exit(ioc->cic);
  2957. put_io_context(ioc);
  2958. }
  2959. /*
  2960. * If the current task has no IO context then create one and initialise it.
  2961. * Otherwise, return its existing IO context.
  2962. *
  2963. * This returned IO context doesn't have a specifically elevated refcount,
  2964. * but since the current task itself holds a reference, the context can be
  2965. * used in general code, so long as it stays within `current` context.
  2966. */
  2967. struct io_context *current_io_context(gfp_t gfp_flags)
  2968. {
  2969. struct task_struct *tsk = current;
  2970. struct io_context *ret;
  2971. ret = tsk->io_context;
  2972. if (likely(ret))
  2973. return ret;
  2974. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2975. if (ret) {
  2976. atomic_set(&ret->refcount, 1);
  2977. ret->task = current;
  2978. ret->set_ioprio = NULL;
  2979. ret->last_waited = jiffies; /* doesn't matter... */
  2980. ret->nr_batch_requests = 0; /* because this is 0 */
  2981. ret->aic = NULL;
  2982. ret->cic = NULL;
  2983. tsk->io_context = ret;
  2984. }
  2985. return ret;
  2986. }
  2987. EXPORT_SYMBOL(current_io_context);
  2988. /*
  2989. * If the current task has no IO context then create one and initialise it.
  2990. * If it does have a context, take a ref on it.
  2991. *
  2992. * This is always called in the context of the task which submitted the I/O.
  2993. */
  2994. struct io_context *get_io_context(gfp_t gfp_flags)
  2995. {
  2996. struct io_context *ret;
  2997. ret = current_io_context(gfp_flags);
  2998. if (likely(ret))
  2999. atomic_inc(&ret->refcount);
  3000. return ret;
  3001. }
  3002. EXPORT_SYMBOL(get_io_context);
  3003. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3004. {
  3005. struct io_context *src = *psrc;
  3006. struct io_context *dst = *pdst;
  3007. if (src) {
  3008. BUG_ON(atomic_read(&src->refcount) == 0);
  3009. atomic_inc(&src->refcount);
  3010. put_io_context(dst);
  3011. *pdst = src;
  3012. }
  3013. }
  3014. EXPORT_SYMBOL(copy_io_context);
  3015. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3016. {
  3017. struct io_context *temp;
  3018. temp = *ioc1;
  3019. *ioc1 = *ioc2;
  3020. *ioc2 = temp;
  3021. }
  3022. EXPORT_SYMBOL(swap_io_context);
  3023. /*
  3024. * sysfs parts below
  3025. */
  3026. struct queue_sysfs_entry {
  3027. struct attribute attr;
  3028. ssize_t (*show)(struct request_queue *, char *);
  3029. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3030. };
  3031. static ssize_t
  3032. queue_var_show(unsigned int var, char *page)
  3033. {
  3034. return sprintf(page, "%d\n", var);
  3035. }
  3036. static ssize_t
  3037. queue_var_store(unsigned long *var, const char *page, size_t count)
  3038. {
  3039. char *p = (char *) page;
  3040. *var = simple_strtoul(p, &p, 10);
  3041. return count;
  3042. }
  3043. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3044. {
  3045. return queue_var_show(q->nr_requests, (page));
  3046. }
  3047. static ssize_t
  3048. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3049. {
  3050. struct request_list *rl = &q->rq;
  3051. int ret = queue_var_store(&q->nr_requests, page, count);
  3052. if (q->nr_requests < BLKDEV_MIN_RQ)
  3053. q->nr_requests = BLKDEV_MIN_RQ;
  3054. blk_queue_congestion_threshold(q);
  3055. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3056. set_queue_congested(q, READ);
  3057. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3058. clear_queue_congested(q, READ);
  3059. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3060. set_queue_congested(q, WRITE);
  3061. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3062. clear_queue_congested(q, WRITE);
  3063. if (rl->count[READ] >= q->nr_requests) {
  3064. blk_set_queue_full(q, READ);
  3065. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3066. blk_clear_queue_full(q, READ);
  3067. wake_up(&rl->wait[READ]);
  3068. }
  3069. if (rl->count[WRITE] >= q->nr_requests) {
  3070. blk_set_queue_full(q, WRITE);
  3071. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3072. blk_clear_queue_full(q, WRITE);
  3073. wake_up(&rl->wait[WRITE]);
  3074. }
  3075. return ret;
  3076. }
  3077. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3078. {
  3079. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3080. return queue_var_show(ra_kb, (page));
  3081. }
  3082. static ssize_t
  3083. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3084. {
  3085. unsigned long ra_kb;
  3086. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3087. spin_lock_irq(q->queue_lock);
  3088. if (ra_kb > (q->max_sectors >> 1))
  3089. ra_kb = (q->max_sectors >> 1);
  3090. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3091. spin_unlock_irq(q->queue_lock);
  3092. return ret;
  3093. }
  3094. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3095. {
  3096. int max_sectors_kb = q->max_sectors >> 1;
  3097. return queue_var_show(max_sectors_kb, (page));
  3098. }
  3099. static ssize_t
  3100. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3101. {
  3102. unsigned long max_sectors_kb,
  3103. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3104. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3105. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3106. int ra_kb;
  3107. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3108. return -EINVAL;
  3109. /*
  3110. * Take the queue lock to update the readahead and max_sectors
  3111. * values synchronously:
  3112. */
  3113. spin_lock_irq(q->queue_lock);
  3114. /*
  3115. * Trim readahead window as well, if necessary:
  3116. */
  3117. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3118. if (ra_kb > max_sectors_kb)
  3119. q->backing_dev_info.ra_pages =
  3120. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3121. q->max_sectors = max_sectors_kb << 1;
  3122. spin_unlock_irq(q->queue_lock);
  3123. return ret;
  3124. }
  3125. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3126. {
  3127. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3128. return queue_var_show(max_hw_sectors_kb, (page));
  3129. }
  3130. static struct queue_sysfs_entry queue_requests_entry = {
  3131. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3132. .show = queue_requests_show,
  3133. .store = queue_requests_store,
  3134. };
  3135. static struct queue_sysfs_entry queue_ra_entry = {
  3136. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3137. .show = queue_ra_show,
  3138. .store = queue_ra_store,
  3139. };
  3140. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3141. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3142. .show = queue_max_sectors_show,
  3143. .store = queue_max_sectors_store,
  3144. };
  3145. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3146. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3147. .show = queue_max_hw_sectors_show,
  3148. };
  3149. static struct queue_sysfs_entry queue_iosched_entry = {
  3150. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3151. .show = elv_iosched_show,
  3152. .store = elv_iosched_store,
  3153. };
  3154. static struct attribute *default_attrs[] = {
  3155. &queue_requests_entry.attr,
  3156. &queue_ra_entry.attr,
  3157. &queue_max_hw_sectors_entry.attr,
  3158. &queue_max_sectors_entry.attr,
  3159. &queue_iosched_entry.attr,
  3160. NULL,
  3161. };
  3162. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3163. static ssize_t
  3164. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3165. {
  3166. struct queue_sysfs_entry *entry = to_queue(attr);
  3167. struct request_queue *q;
  3168. q = container_of(kobj, struct request_queue, kobj);
  3169. if (!entry->show)
  3170. return -EIO;
  3171. return entry->show(q, page);
  3172. }
  3173. static ssize_t
  3174. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3175. const char *page, size_t length)
  3176. {
  3177. struct queue_sysfs_entry *entry = to_queue(attr);
  3178. struct request_queue *q;
  3179. q = container_of(kobj, struct request_queue, kobj);
  3180. if (!entry->store)
  3181. return -EIO;
  3182. return entry->store(q, page, length);
  3183. }
  3184. static struct sysfs_ops queue_sysfs_ops = {
  3185. .show = queue_attr_show,
  3186. .store = queue_attr_store,
  3187. };
  3188. static struct kobj_type queue_ktype = {
  3189. .sysfs_ops = &queue_sysfs_ops,
  3190. .default_attrs = default_attrs,
  3191. };
  3192. int blk_register_queue(struct gendisk *disk)
  3193. {
  3194. int ret;
  3195. request_queue_t *q = disk->queue;
  3196. if (!q || !q->request_fn)
  3197. return -ENXIO;
  3198. q->kobj.parent = kobject_get(&disk->kobj);
  3199. if (!q->kobj.parent)
  3200. return -EBUSY;
  3201. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3202. q->kobj.ktype = &queue_ktype;
  3203. ret = kobject_register(&q->kobj);
  3204. if (ret < 0)
  3205. return ret;
  3206. ret = elv_register_queue(q);
  3207. if (ret) {
  3208. kobject_unregister(&q->kobj);
  3209. return ret;
  3210. }
  3211. return 0;
  3212. }
  3213. void blk_unregister_queue(struct gendisk *disk)
  3214. {
  3215. request_queue_t *q = disk->queue;
  3216. if (q && q->request_fn) {
  3217. elv_unregister_queue(q);
  3218. kobject_unregister(&q->kobj);
  3219. kobject_put(&disk->kobj);
  3220. }
  3221. }