data.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. /*
  26. * Lock ordering for the change of data block address:
  27. * ->data_page
  28. * ->node_page
  29. * update block addresses in the node page
  30. */
  31. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  32. {
  33. struct f2fs_node *rn;
  34. __le32 *addr_array;
  35. struct page *node_page = dn->node_page;
  36. unsigned int ofs_in_node = dn->ofs_in_node;
  37. f2fs_wait_on_page_writeback(node_page, NODE, false);
  38. rn = F2FS_NODE(node_page);
  39. /* Get physical address of data block */
  40. addr_array = blkaddr_in_node(rn);
  41. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  42. set_page_dirty(node_page);
  43. }
  44. int reserve_new_block(struct dnode_of_data *dn)
  45. {
  46. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  47. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  48. return -EPERM;
  49. if (!inc_valid_block_count(sbi, dn->inode, 1))
  50. return -ENOSPC;
  51. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  52. __set_data_blkaddr(dn, NEW_ADDR);
  53. dn->data_blkaddr = NEW_ADDR;
  54. sync_inode_page(dn);
  55. return 0;
  56. }
  57. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  58. struct buffer_head *bh_result)
  59. {
  60. struct f2fs_inode_info *fi = F2FS_I(inode);
  61. #ifdef CONFIG_F2FS_STAT_FS
  62. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  63. #endif
  64. pgoff_t start_fofs, end_fofs;
  65. block_t start_blkaddr;
  66. read_lock(&fi->ext.ext_lock);
  67. if (fi->ext.len == 0) {
  68. read_unlock(&fi->ext.ext_lock);
  69. return 0;
  70. }
  71. #ifdef CONFIG_F2FS_STAT_FS
  72. sbi->total_hit_ext++;
  73. #endif
  74. start_fofs = fi->ext.fofs;
  75. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  76. start_blkaddr = fi->ext.blk_addr;
  77. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  78. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  79. size_t count;
  80. clear_buffer_new(bh_result);
  81. map_bh(bh_result, inode->i_sb,
  82. start_blkaddr + pgofs - start_fofs);
  83. count = end_fofs - pgofs + 1;
  84. if (count < (UINT_MAX >> blkbits))
  85. bh_result->b_size = (count << blkbits);
  86. else
  87. bh_result->b_size = UINT_MAX;
  88. #ifdef CONFIG_F2FS_STAT_FS
  89. sbi->read_hit_ext++;
  90. #endif
  91. read_unlock(&fi->ext.ext_lock);
  92. return 1;
  93. }
  94. read_unlock(&fi->ext.ext_lock);
  95. return 0;
  96. }
  97. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  98. {
  99. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  100. pgoff_t fofs, start_fofs, end_fofs;
  101. block_t start_blkaddr, end_blkaddr;
  102. BUG_ON(blk_addr == NEW_ADDR);
  103. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  104. /* Update the page address in the parent node */
  105. __set_data_blkaddr(dn, blk_addr);
  106. write_lock(&fi->ext.ext_lock);
  107. start_fofs = fi->ext.fofs;
  108. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  109. start_blkaddr = fi->ext.blk_addr;
  110. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  111. /* Drop and initialize the matched extent */
  112. if (fi->ext.len == 1 && fofs == start_fofs)
  113. fi->ext.len = 0;
  114. /* Initial extent */
  115. if (fi->ext.len == 0) {
  116. if (blk_addr != NULL_ADDR) {
  117. fi->ext.fofs = fofs;
  118. fi->ext.blk_addr = blk_addr;
  119. fi->ext.len = 1;
  120. }
  121. goto end_update;
  122. }
  123. /* Front merge */
  124. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  125. fi->ext.fofs--;
  126. fi->ext.blk_addr--;
  127. fi->ext.len++;
  128. goto end_update;
  129. }
  130. /* Back merge */
  131. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  132. fi->ext.len++;
  133. goto end_update;
  134. }
  135. /* Split the existing extent */
  136. if (fi->ext.len > 1 &&
  137. fofs >= start_fofs && fofs <= end_fofs) {
  138. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  139. fi->ext.len = fofs - start_fofs;
  140. } else {
  141. fi->ext.fofs = fofs + 1;
  142. fi->ext.blk_addr = start_blkaddr +
  143. fofs - start_fofs + 1;
  144. fi->ext.len -= fofs - start_fofs + 1;
  145. }
  146. goto end_update;
  147. }
  148. write_unlock(&fi->ext.ext_lock);
  149. return;
  150. end_update:
  151. write_unlock(&fi->ext.ext_lock);
  152. sync_inode_page(dn);
  153. }
  154. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  155. {
  156. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  157. struct address_space *mapping = inode->i_mapping;
  158. struct dnode_of_data dn;
  159. struct page *page;
  160. int err;
  161. page = find_get_page(mapping, index);
  162. if (page && PageUptodate(page))
  163. return page;
  164. f2fs_put_page(page, 0);
  165. set_new_dnode(&dn, inode, NULL, NULL, 0);
  166. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  167. if (err)
  168. return ERR_PTR(err);
  169. f2fs_put_dnode(&dn);
  170. if (dn.data_blkaddr == NULL_ADDR)
  171. return ERR_PTR(-ENOENT);
  172. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  173. if (dn.data_blkaddr == NEW_ADDR)
  174. return ERR_PTR(-EINVAL);
  175. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  176. if (!page)
  177. return ERR_PTR(-ENOMEM);
  178. if (PageUptodate(page)) {
  179. unlock_page(page);
  180. return page;
  181. }
  182. err = f2fs_readpage(sbi, page, dn.data_blkaddr,
  183. sync ? READ_SYNC : READA);
  184. if (sync) {
  185. wait_on_page_locked(page);
  186. if (!PageUptodate(page)) {
  187. f2fs_put_page(page, 0);
  188. return ERR_PTR(-EIO);
  189. }
  190. }
  191. return page;
  192. }
  193. /*
  194. * If it tries to access a hole, return an error.
  195. * Because, the callers, functions in dir.c and GC, should be able to know
  196. * whether this page exists or not.
  197. */
  198. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  199. {
  200. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  201. struct address_space *mapping = inode->i_mapping;
  202. struct dnode_of_data dn;
  203. struct page *page;
  204. int err;
  205. repeat:
  206. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  207. if (!page)
  208. return ERR_PTR(-ENOMEM);
  209. set_new_dnode(&dn, inode, NULL, NULL, 0);
  210. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  211. if (err) {
  212. f2fs_put_page(page, 1);
  213. return ERR_PTR(err);
  214. }
  215. f2fs_put_dnode(&dn);
  216. if (dn.data_blkaddr == NULL_ADDR) {
  217. f2fs_put_page(page, 1);
  218. return ERR_PTR(-ENOENT);
  219. }
  220. if (PageUptodate(page))
  221. return page;
  222. /*
  223. * A new dentry page is allocated but not able to be written, since its
  224. * new inode page couldn't be allocated due to -ENOSPC.
  225. * In such the case, its blkaddr can be remained as NEW_ADDR.
  226. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  227. */
  228. if (dn.data_blkaddr == NEW_ADDR) {
  229. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  230. SetPageUptodate(page);
  231. return page;
  232. }
  233. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  234. if (err)
  235. return ERR_PTR(err);
  236. lock_page(page);
  237. if (!PageUptodate(page)) {
  238. f2fs_put_page(page, 1);
  239. return ERR_PTR(-EIO);
  240. }
  241. if (page->mapping != mapping) {
  242. f2fs_put_page(page, 1);
  243. goto repeat;
  244. }
  245. return page;
  246. }
  247. /*
  248. * Caller ensures that this data page is never allocated.
  249. * A new zero-filled data page is allocated in the page cache.
  250. *
  251. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  252. * mutex_unlock_op().
  253. * Note that, npage is set only by make_empty_dir.
  254. */
  255. struct page *get_new_data_page(struct inode *inode,
  256. struct page *npage, pgoff_t index, bool new_i_size)
  257. {
  258. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  259. struct address_space *mapping = inode->i_mapping;
  260. struct page *page;
  261. struct dnode_of_data dn;
  262. int err;
  263. set_new_dnode(&dn, inode, npage, npage, 0);
  264. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  265. if (err)
  266. return ERR_PTR(err);
  267. if (dn.data_blkaddr == NULL_ADDR) {
  268. if (reserve_new_block(&dn)) {
  269. if (!npage)
  270. f2fs_put_dnode(&dn);
  271. return ERR_PTR(-ENOSPC);
  272. }
  273. }
  274. if (!npage)
  275. f2fs_put_dnode(&dn);
  276. repeat:
  277. page = grab_cache_page(mapping, index);
  278. if (!page)
  279. return ERR_PTR(-ENOMEM);
  280. if (PageUptodate(page))
  281. return page;
  282. if (dn.data_blkaddr == NEW_ADDR) {
  283. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  284. SetPageUptodate(page);
  285. } else {
  286. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  287. if (err)
  288. return ERR_PTR(err);
  289. lock_page(page);
  290. if (!PageUptodate(page)) {
  291. f2fs_put_page(page, 1);
  292. return ERR_PTR(-EIO);
  293. }
  294. if (page->mapping != mapping) {
  295. f2fs_put_page(page, 1);
  296. goto repeat;
  297. }
  298. }
  299. if (new_i_size &&
  300. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  301. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  302. /* Only the directory inode sets new_i_size */
  303. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  304. mark_inode_dirty_sync(inode);
  305. }
  306. return page;
  307. }
  308. static void read_end_io(struct bio *bio, int err)
  309. {
  310. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  311. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  312. do {
  313. struct page *page = bvec->bv_page;
  314. if (--bvec >= bio->bi_io_vec)
  315. prefetchw(&bvec->bv_page->flags);
  316. if (uptodate) {
  317. SetPageUptodate(page);
  318. } else {
  319. ClearPageUptodate(page);
  320. SetPageError(page);
  321. }
  322. unlock_page(page);
  323. } while (bvec >= bio->bi_io_vec);
  324. bio_put(bio);
  325. }
  326. /*
  327. * Fill the locked page with data located in the block address.
  328. * Return unlocked page.
  329. */
  330. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  331. block_t blk_addr, int type)
  332. {
  333. struct block_device *bdev = sbi->sb->s_bdev;
  334. struct bio *bio;
  335. trace_f2fs_readpage(page, blk_addr, type);
  336. down_read(&sbi->bio_sem);
  337. /* Allocate a new bio */
  338. bio = f2fs_bio_alloc(bdev, 1);
  339. /* Initialize the bio */
  340. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  341. bio->bi_end_io = read_end_io;
  342. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  343. bio_put(bio);
  344. up_read(&sbi->bio_sem);
  345. f2fs_put_page(page, 1);
  346. return -EFAULT;
  347. }
  348. submit_bio(type, bio);
  349. up_read(&sbi->bio_sem);
  350. return 0;
  351. }
  352. /*
  353. * This function should be used by the data read flow only where it
  354. * does not check the "create" flag that indicates block allocation.
  355. * The reason for this special functionality is to exploit VFS readahead
  356. * mechanism.
  357. */
  358. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  359. struct buffer_head *bh_result, int create)
  360. {
  361. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  362. unsigned maxblocks = bh_result->b_size >> blkbits;
  363. struct dnode_of_data dn;
  364. pgoff_t pgofs;
  365. int err;
  366. /* Get the page offset from the block offset(iblock) */
  367. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  368. if (check_extent_cache(inode, pgofs, bh_result)) {
  369. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  370. return 0;
  371. }
  372. /* When reading holes, we need its node page */
  373. set_new_dnode(&dn, inode, NULL, NULL, 0);
  374. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  375. if (err) {
  376. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  377. return (err == -ENOENT) ? 0 : err;
  378. }
  379. /* It does not support data allocation */
  380. BUG_ON(create);
  381. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  382. int i;
  383. unsigned int end_offset;
  384. end_offset = IS_INODE(dn.node_page) ?
  385. ADDRS_PER_INODE :
  386. ADDRS_PER_BLOCK;
  387. clear_buffer_new(bh_result);
  388. /* Give more consecutive addresses for the read ahead */
  389. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  390. if (((datablock_addr(dn.node_page,
  391. dn.ofs_in_node + i))
  392. != (dn.data_blkaddr + i)) || maxblocks == i)
  393. break;
  394. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  395. bh_result->b_size = (i << blkbits);
  396. }
  397. f2fs_put_dnode(&dn);
  398. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  399. return 0;
  400. }
  401. static int f2fs_read_data_page(struct file *file, struct page *page)
  402. {
  403. return mpage_readpage(page, get_data_block_ro);
  404. }
  405. static int f2fs_read_data_pages(struct file *file,
  406. struct address_space *mapping,
  407. struct list_head *pages, unsigned nr_pages)
  408. {
  409. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  410. }
  411. int do_write_data_page(struct page *page)
  412. {
  413. struct inode *inode = page->mapping->host;
  414. block_t old_blk_addr, new_blk_addr;
  415. struct dnode_of_data dn;
  416. int err = 0;
  417. set_new_dnode(&dn, inode, NULL, NULL, 0);
  418. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  419. if (err)
  420. return err;
  421. old_blk_addr = dn.data_blkaddr;
  422. /* This page is already truncated */
  423. if (old_blk_addr == NULL_ADDR)
  424. goto out_writepage;
  425. set_page_writeback(page);
  426. /*
  427. * If current allocation needs SSR,
  428. * it had better in-place writes for updated data.
  429. */
  430. if (unlikely(old_blk_addr != NEW_ADDR &&
  431. !is_cold_data(page) &&
  432. need_inplace_update(inode))) {
  433. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  434. old_blk_addr);
  435. } else {
  436. write_data_page(inode, page, &dn,
  437. old_blk_addr, &new_blk_addr);
  438. update_extent_cache(new_blk_addr, &dn);
  439. }
  440. out_writepage:
  441. f2fs_put_dnode(&dn);
  442. return err;
  443. }
  444. static int f2fs_write_data_page(struct page *page,
  445. struct writeback_control *wbc)
  446. {
  447. struct inode *inode = page->mapping->host;
  448. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  449. loff_t i_size = i_size_read(inode);
  450. const pgoff_t end_index = ((unsigned long long) i_size)
  451. >> PAGE_CACHE_SHIFT;
  452. unsigned offset;
  453. bool need_balance_fs = false;
  454. int err = 0;
  455. if (page->index < end_index)
  456. goto write;
  457. /*
  458. * If the offset is out-of-range of file size,
  459. * this page does not have to be written to disk.
  460. */
  461. offset = i_size & (PAGE_CACHE_SIZE - 1);
  462. if ((page->index >= end_index + 1) || !offset) {
  463. if (S_ISDIR(inode->i_mode)) {
  464. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  465. inode_dec_dirty_dents(inode);
  466. }
  467. goto out;
  468. }
  469. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  470. write:
  471. if (sbi->por_doing) {
  472. err = AOP_WRITEPAGE_ACTIVATE;
  473. goto redirty_out;
  474. }
  475. /* Dentry blocks are controlled by checkpoint */
  476. if (S_ISDIR(inode->i_mode)) {
  477. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  478. inode_dec_dirty_dents(inode);
  479. err = do_write_data_page(page);
  480. } else {
  481. int ilock = mutex_lock_op(sbi);
  482. err = do_write_data_page(page);
  483. mutex_unlock_op(sbi, ilock);
  484. need_balance_fs = true;
  485. }
  486. if (err == -ENOENT)
  487. goto out;
  488. else if (err)
  489. goto redirty_out;
  490. if (wbc->for_reclaim)
  491. f2fs_submit_bio(sbi, DATA, true);
  492. clear_cold_data(page);
  493. out:
  494. unlock_page(page);
  495. if (need_balance_fs)
  496. f2fs_balance_fs(sbi);
  497. return 0;
  498. redirty_out:
  499. wbc->pages_skipped++;
  500. set_page_dirty(page);
  501. return err;
  502. }
  503. #define MAX_DESIRED_PAGES_WP 4096
  504. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  505. void *data)
  506. {
  507. struct address_space *mapping = data;
  508. int ret = mapping->a_ops->writepage(page, wbc);
  509. mapping_set_error(mapping, ret);
  510. return ret;
  511. }
  512. static int f2fs_write_data_pages(struct address_space *mapping,
  513. struct writeback_control *wbc)
  514. {
  515. struct inode *inode = mapping->host;
  516. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  517. bool locked = false;
  518. int ret;
  519. long excess_nrtw = 0, desired_nrtw;
  520. /* deal with chardevs and other special file */
  521. if (!mapping->a_ops->writepage)
  522. return 0;
  523. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  524. desired_nrtw = MAX_DESIRED_PAGES_WP;
  525. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  526. wbc->nr_to_write = desired_nrtw;
  527. }
  528. if (!S_ISDIR(inode->i_mode)) {
  529. mutex_lock(&sbi->writepages);
  530. locked = true;
  531. }
  532. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  533. if (locked)
  534. mutex_unlock(&sbi->writepages);
  535. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  536. remove_dirty_dir_inode(inode);
  537. wbc->nr_to_write -= excess_nrtw;
  538. return ret;
  539. }
  540. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  541. loff_t pos, unsigned len, unsigned flags,
  542. struct page **pagep, void **fsdata)
  543. {
  544. struct inode *inode = mapping->host;
  545. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  546. struct page *page;
  547. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  548. struct dnode_of_data dn;
  549. int err = 0;
  550. int ilock;
  551. f2fs_balance_fs(sbi);
  552. repeat:
  553. page = grab_cache_page_write_begin(mapping, index, flags);
  554. if (!page)
  555. return -ENOMEM;
  556. *pagep = page;
  557. ilock = mutex_lock_op(sbi);
  558. set_new_dnode(&dn, inode, NULL, NULL, 0);
  559. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  560. if (err)
  561. goto err;
  562. if (dn.data_blkaddr == NULL_ADDR)
  563. err = reserve_new_block(&dn);
  564. f2fs_put_dnode(&dn);
  565. if (err)
  566. goto err;
  567. mutex_unlock_op(sbi, ilock);
  568. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  569. return 0;
  570. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  571. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  572. unsigned end = start + len;
  573. /* Reading beyond i_size is simple: memset to zero */
  574. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  575. goto out;
  576. }
  577. if (dn.data_blkaddr == NEW_ADDR) {
  578. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  579. } else {
  580. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  581. if (err)
  582. return err;
  583. lock_page(page);
  584. if (!PageUptodate(page)) {
  585. f2fs_put_page(page, 1);
  586. return -EIO;
  587. }
  588. if (page->mapping != mapping) {
  589. f2fs_put_page(page, 1);
  590. goto repeat;
  591. }
  592. }
  593. out:
  594. SetPageUptodate(page);
  595. clear_cold_data(page);
  596. return 0;
  597. err:
  598. mutex_unlock_op(sbi, ilock);
  599. f2fs_put_page(page, 1);
  600. return err;
  601. }
  602. static int f2fs_write_end(struct file *file,
  603. struct address_space *mapping,
  604. loff_t pos, unsigned len, unsigned copied,
  605. struct page *page, void *fsdata)
  606. {
  607. struct inode *inode = page->mapping->host;
  608. SetPageUptodate(page);
  609. set_page_dirty(page);
  610. if (pos + copied > i_size_read(inode)) {
  611. i_size_write(inode, pos + copied);
  612. mark_inode_dirty(inode);
  613. update_inode_page(inode);
  614. }
  615. unlock_page(page);
  616. page_cache_release(page);
  617. return copied;
  618. }
  619. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  620. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  621. {
  622. struct file *file = iocb->ki_filp;
  623. struct inode *inode = file->f_mapping->host;
  624. if (rw == WRITE)
  625. return 0;
  626. /* Needs synchronization with the cleaner */
  627. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  628. get_data_block_ro);
  629. }
  630. static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
  631. unsigned int length)
  632. {
  633. struct inode *inode = page->mapping->host;
  634. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  635. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  636. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  637. inode_dec_dirty_dents(inode);
  638. }
  639. ClearPagePrivate(page);
  640. }
  641. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  642. {
  643. ClearPagePrivate(page);
  644. return 1;
  645. }
  646. static int f2fs_set_data_page_dirty(struct page *page)
  647. {
  648. struct address_space *mapping = page->mapping;
  649. struct inode *inode = mapping->host;
  650. SetPageUptodate(page);
  651. if (!PageDirty(page)) {
  652. __set_page_dirty_nobuffers(page);
  653. set_dirty_dir_page(inode, page);
  654. return 1;
  655. }
  656. return 0;
  657. }
  658. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  659. {
  660. return generic_block_bmap(mapping, block, get_data_block_ro);
  661. }
  662. const struct address_space_operations f2fs_dblock_aops = {
  663. .readpage = f2fs_read_data_page,
  664. .readpages = f2fs_read_data_pages,
  665. .writepage = f2fs_write_data_page,
  666. .writepages = f2fs_write_data_pages,
  667. .write_begin = f2fs_write_begin,
  668. .write_end = f2fs_write_end,
  669. .set_page_dirty = f2fs_set_data_page_dirty,
  670. .invalidatepage = f2fs_invalidate_data_page,
  671. .releasepage = f2fs_release_data_page,
  672. .direct_IO = f2fs_direct_IO,
  673. .bmap = f2fs_bmap,
  674. };