kvm_main.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <asm/processor.h>
  42. #include <asm/msr.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static DEFINE_SPINLOCK(kvm_lock);
  49. static LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kvm_x86_ops *kvm_x86_ops;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  56. static struct kvm_stats_debugfs_item {
  57. const char *name;
  58. int offset;
  59. struct dentry *dentry;
  60. } debugfs_entries[] = {
  61. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  62. { "pf_guest", STAT_OFFSET(pf_guest) },
  63. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  64. { "invlpg", STAT_OFFSET(invlpg) },
  65. { "exits", STAT_OFFSET(exits) },
  66. { "io_exits", STAT_OFFSET(io_exits) },
  67. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  68. { "signal_exits", STAT_OFFSET(signal_exits) },
  69. { "irq_window", STAT_OFFSET(irq_window_exits) },
  70. { "halt_exits", STAT_OFFSET(halt_exits) },
  71. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  72. { "request_irq", STAT_OFFSET(request_irq_exits) },
  73. { "irq_exits", STAT_OFFSET(irq_exits) },
  74. { "light_exits", STAT_OFFSET(light_exits) },
  75. { "efer_reload", STAT_OFFSET(efer_reload) },
  76. { NULL }
  77. };
  78. static struct dentry *debugfs_dir;
  79. #define MAX_IO_MSRS 256
  80. #define CR0_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  82. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  83. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  84. #define CR4_RESERVED_BITS \
  85. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  86. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  87. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  89. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  90. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  91. #ifdef CONFIG_X86_64
  92. // LDT or TSS descriptor in the GDT. 16 bytes.
  93. struct segment_descriptor_64 {
  94. struct segment_descriptor s;
  95. u32 base_higher;
  96. u32 pad_zero;
  97. };
  98. #endif
  99. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  100. unsigned long arg);
  101. unsigned long segment_base(u16 selector)
  102. {
  103. struct descriptor_table gdt;
  104. struct segment_descriptor *d;
  105. unsigned long table_base;
  106. typedef unsigned long ul;
  107. unsigned long v;
  108. if (selector == 0)
  109. return 0;
  110. asm ("sgdt %0" : "=m"(gdt));
  111. table_base = gdt.base;
  112. if (selector & 4) { /* from ldt */
  113. u16 ldt_selector;
  114. asm ("sldt %0" : "=g"(ldt_selector));
  115. table_base = segment_base(ldt_selector);
  116. }
  117. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  118. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  119. #ifdef CONFIG_X86_64
  120. if (d->system == 0
  121. && (d->type == 2 || d->type == 9 || d->type == 11))
  122. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  123. #endif
  124. return v;
  125. }
  126. EXPORT_SYMBOL_GPL(segment_base);
  127. static inline int valid_vcpu(int n)
  128. {
  129. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  130. }
  131. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  132. {
  133. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  134. return;
  135. vcpu->guest_fpu_loaded = 1;
  136. fx_save(&vcpu->host_fx_image);
  137. fx_restore(&vcpu->guest_fx_image);
  138. }
  139. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  140. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  141. {
  142. if (!vcpu->guest_fpu_loaded)
  143. return;
  144. vcpu->guest_fpu_loaded = 0;
  145. fx_save(&vcpu->guest_fx_image);
  146. fx_restore(&vcpu->host_fx_image);
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  149. /*
  150. * Switches to specified vcpu, until a matching vcpu_put()
  151. */
  152. static void vcpu_load(struct kvm_vcpu *vcpu)
  153. {
  154. int cpu;
  155. mutex_lock(&vcpu->mutex);
  156. cpu = get_cpu();
  157. preempt_notifier_register(&vcpu->preempt_notifier);
  158. kvm_x86_ops->vcpu_load(vcpu, cpu);
  159. put_cpu();
  160. }
  161. static void vcpu_put(struct kvm_vcpu *vcpu)
  162. {
  163. preempt_disable();
  164. kvm_x86_ops->vcpu_put(vcpu);
  165. preempt_notifier_unregister(&vcpu->preempt_notifier);
  166. preempt_enable();
  167. mutex_unlock(&vcpu->mutex);
  168. }
  169. static void ack_flush(void *_completed)
  170. {
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. cpus_clear(cpus);
  178. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  179. vcpu = kvm->vcpus[i];
  180. if (!vcpu)
  181. continue;
  182. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  183. continue;
  184. cpu = vcpu->cpu;
  185. if (cpu != -1 && cpu != raw_smp_processor_id())
  186. cpu_set(cpu, cpus);
  187. }
  188. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  189. }
  190. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  191. {
  192. struct page *page;
  193. int r;
  194. mutex_init(&vcpu->mutex);
  195. vcpu->cpu = -1;
  196. vcpu->mmu.root_hpa = INVALID_PAGE;
  197. vcpu->kvm = kvm;
  198. vcpu->vcpu_id = id;
  199. if (!irqchip_in_kernel(kvm) || id == 0)
  200. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  201. else
  202. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  203. init_waitqueue_head(&vcpu->wq);
  204. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  205. if (!page) {
  206. r = -ENOMEM;
  207. goto fail;
  208. }
  209. vcpu->run = page_address(page);
  210. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  211. if (!page) {
  212. r = -ENOMEM;
  213. goto fail_free_run;
  214. }
  215. vcpu->pio_data = page_address(page);
  216. r = kvm_mmu_create(vcpu);
  217. if (r < 0)
  218. goto fail_free_pio_data;
  219. return 0;
  220. fail_free_pio_data:
  221. free_page((unsigned long)vcpu->pio_data);
  222. fail_free_run:
  223. free_page((unsigned long)vcpu->run);
  224. fail:
  225. return -ENOMEM;
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  228. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  229. {
  230. kvm_free_lapic(vcpu);
  231. kvm_mmu_destroy(vcpu);
  232. free_page((unsigned long)vcpu->pio_data);
  233. free_page((unsigned long)vcpu->run);
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  236. static struct kvm *kvm_create_vm(void)
  237. {
  238. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  239. if (!kvm)
  240. return ERR_PTR(-ENOMEM);
  241. kvm_io_bus_init(&kvm->pio_bus);
  242. mutex_init(&kvm->lock);
  243. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  244. kvm_io_bus_init(&kvm->mmio_bus);
  245. spin_lock(&kvm_lock);
  246. list_add(&kvm->vm_list, &vm_list);
  247. spin_unlock(&kvm_lock);
  248. return kvm;
  249. }
  250. /*
  251. * Free any memory in @free but not in @dont.
  252. */
  253. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  254. struct kvm_memory_slot *dont)
  255. {
  256. int i;
  257. if (!dont || free->phys_mem != dont->phys_mem)
  258. if (free->phys_mem) {
  259. for (i = 0; i < free->npages; ++i)
  260. if (free->phys_mem[i])
  261. __free_page(free->phys_mem[i]);
  262. vfree(free->phys_mem);
  263. }
  264. if (!dont || free->rmap != dont->rmap)
  265. vfree(free->rmap);
  266. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  267. vfree(free->dirty_bitmap);
  268. free->phys_mem = NULL;
  269. free->npages = 0;
  270. free->dirty_bitmap = NULL;
  271. }
  272. static void kvm_free_physmem(struct kvm *kvm)
  273. {
  274. int i;
  275. for (i = 0; i < kvm->nmemslots; ++i)
  276. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  277. }
  278. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  279. {
  280. int i;
  281. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  282. if (vcpu->pio.guest_pages[i]) {
  283. __free_page(vcpu->pio.guest_pages[i]);
  284. vcpu->pio.guest_pages[i] = NULL;
  285. }
  286. }
  287. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  288. {
  289. vcpu_load(vcpu);
  290. kvm_mmu_unload(vcpu);
  291. vcpu_put(vcpu);
  292. }
  293. static void kvm_free_vcpus(struct kvm *kvm)
  294. {
  295. unsigned int i;
  296. /*
  297. * Unpin any mmu pages first.
  298. */
  299. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  300. if (kvm->vcpus[i])
  301. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  302. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  303. if (kvm->vcpus[i]) {
  304. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  305. kvm->vcpus[i] = NULL;
  306. }
  307. }
  308. }
  309. static void kvm_destroy_vm(struct kvm *kvm)
  310. {
  311. spin_lock(&kvm_lock);
  312. list_del(&kvm->vm_list);
  313. spin_unlock(&kvm_lock);
  314. kvm_io_bus_destroy(&kvm->pio_bus);
  315. kvm_io_bus_destroy(&kvm->mmio_bus);
  316. kfree(kvm->vpic);
  317. kfree(kvm->vioapic);
  318. kvm_free_vcpus(kvm);
  319. kvm_free_physmem(kvm);
  320. kfree(kvm);
  321. }
  322. static int kvm_vm_release(struct inode *inode, struct file *filp)
  323. {
  324. struct kvm *kvm = filp->private_data;
  325. kvm_destroy_vm(kvm);
  326. return 0;
  327. }
  328. static void inject_gp(struct kvm_vcpu *vcpu)
  329. {
  330. kvm_x86_ops->inject_gp(vcpu, 0);
  331. }
  332. /*
  333. * Load the pae pdptrs. Return true is they are all valid.
  334. */
  335. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  336. {
  337. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  338. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  339. int i;
  340. int ret;
  341. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  342. mutex_lock(&vcpu->kvm->lock);
  343. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  344. offset * sizeof(u64), sizeof(pdpte));
  345. if (ret < 0) {
  346. ret = 0;
  347. goto out;
  348. }
  349. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  350. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  351. ret = 0;
  352. goto out;
  353. }
  354. }
  355. ret = 1;
  356. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  357. out:
  358. mutex_unlock(&vcpu->kvm->lock);
  359. return ret;
  360. }
  361. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  362. {
  363. if (cr0 & CR0_RESERVED_BITS) {
  364. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  365. cr0, vcpu->cr0);
  366. inject_gp(vcpu);
  367. return;
  368. }
  369. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  370. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  371. inject_gp(vcpu);
  372. return;
  373. }
  374. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  375. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  376. "and a clear PE flag\n");
  377. inject_gp(vcpu);
  378. return;
  379. }
  380. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  381. #ifdef CONFIG_X86_64
  382. if ((vcpu->shadow_efer & EFER_LME)) {
  383. int cs_db, cs_l;
  384. if (!is_pae(vcpu)) {
  385. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  386. "in long mode while PAE is disabled\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  391. if (cs_l) {
  392. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  393. "in long mode while CS.L == 1\n");
  394. inject_gp(vcpu);
  395. return;
  396. }
  397. } else
  398. #endif
  399. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  400. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  401. "reserved bits\n");
  402. inject_gp(vcpu);
  403. return;
  404. }
  405. }
  406. kvm_x86_ops->set_cr0(vcpu, cr0);
  407. vcpu->cr0 = cr0;
  408. mutex_lock(&vcpu->kvm->lock);
  409. kvm_mmu_reset_context(vcpu);
  410. mutex_unlock(&vcpu->kvm->lock);
  411. return;
  412. }
  413. EXPORT_SYMBOL_GPL(set_cr0);
  414. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  415. {
  416. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  417. }
  418. EXPORT_SYMBOL_GPL(lmsw);
  419. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  420. {
  421. if (cr4 & CR4_RESERVED_BITS) {
  422. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  423. inject_gp(vcpu);
  424. return;
  425. }
  426. if (is_long_mode(vcpu)) {
  427. if (!(cr4 & X86_CR4_PAE)) {
  428. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  429. "in long mode\n");
  430. inject_gp(vcpu);
  431. return;
  432. }
  433. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  434. && !load_pdptrs(vcpu, vcpu->cr3)) {
  435. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  436. inject_gp(vcpu);
  437. return;
  438. }
  439. if (cr4 & X86_CR4_VMXE) {
  440. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  441. inject_gp(vcpu);
  442. return;
  443. }
  444. kvm_x86_ops->set_cr4(vcpu, cr4);
  445. vcpu->cr4 = cr4;
  446. mutex_lock(&vcpu->kvm->lock);
  447. kvm_mmu_reset_context(vcpu);
  448. mutex_unlock(&vcpu->kvm->lock);
  449. }
  450. EXPORT_SYMBOL_GPL(set_cr4);
  451. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  452. {
  453. if (is_long_mode(vcpu)) {
  454. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  455. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  456. inject_gp(vcpu);
  457. return;
  458. }
  459. } else {
  460. if (is_pae(vcpu)) {
  461. if (cr3 & CR3_PAE_RESERVED_BITS) {
  462. printk(KERN_DEBUG
  463. "set_cr3: #GP, reserved bits\n");
  464. inject_gp(vcpu);
  465. return;
  466. }
  467. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  468. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  469. "reserved bits\n");
  470. inject_gp(vcpu);
  471. return;
  472. }
  473. }
  474. /*
  475. * We don't check reserved bits in nonpae mode, because
  476. * this isn't enforced, and VMware depends on this.
  477. */
  478. }
  479. mutex_lock(&vcpu->kvm->lock);
  480. /*
  481. * Does the new cr3 value map to physical memory? (Note, we
  482. * catch an invalid cr3 even in real-mode, because it would
  483. * cause trouble later on when we turn on paging anyway.)
  484. *
  485. * A real CPU would silently accept an invalid cr3 and would
  486. * attempt to use it - with largely undefined (and often hard
  487. * to debug) behavior on the guest side.
  488. */
  489. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  490. inject_gp(vcpu);
  491. else {
  492. vcpu->cr3 = cr3;
  493. vcpu->mmu.new_cr3(vcpu);
  494. }
  495. mutex_unlock(&vcpu->kvm->lock);
  496. }
  497. EXPORT_SYMBOL_GPL(set_cr3);
  498. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  499. {
  500. if (cr8 & CR8_RESERVED_BITS) {
  501. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  502. inject_gp(vcpu);
  503. return;
  504. }
  505. if (irqchip_in_kernel(vcpu->kvm))
  506. kvm_lapic_set_tpr(vcpu, cr8);
  507. else
  508. vcpu->cr8 = cr8;
  509. }
  510. EXPORT_SYMBOL_GPL(set_cr8);
  511. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  512. {
  513. if (irqchip_in_kernel(vcpu->kvm))
  514. return kvm_lapic_get_cr8(vcpu);
  515. else
  516. return vcpu->cr8;
  517. }
  518. EXPORT_SYMBOL_GPL(get_cr8);
  519. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  520. {
  521. if (irqchip_in_kernel(vcpu->kvm))
  522. return vcpu->apic_base;
  523. else
  524. return vcpu->apic_base;
  525. }
  526. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  527. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  528. {
  529. /* TODO: reserve bits check */
  530. if (irqchip_in_kernel(vcpu->kvm))
  531. kvm_lapic_set_base(vcpu, data);
  532. else
  533. vcpu->apic_base = data;
  534. }
  535. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  536. void fx_init(struct kvm_vcpu *vcpu)
  537. {
  538. unsigned after_mxcsr_mask;
  539. /* Initialize guest FPU by resetting ours and saving into guest's */
  540. preempt_disable();
  541. fx_save(&vcpu->host_fx_image);
  542. fpu_init();
  543. fx_save(&vcpu->guest_fx_image);
  544. fx_restore(&vcpu->host_fx_image);
  545. preempt_enable();
  546. vcpu->cr0 |= X86_CR0_ET;
  547. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  548. vcpu->guest_fx_image.mxcsr = 0x1f80;
  549. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  550. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  551. }
  552. EXPORT_SYMBOL_GPL(fx_init);
  553. /*
  554. * Allocate some memory and give it an address in the guest physical address
  555. * space.
  556. *
  557. * Discontiguous memory is allowed, mostly for framebuffers.
  558. */
  559. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  560. struct kvm_memory_region *mem)
  561. {
  562. int r;
  563. gfn_t base_gfn;
  564. unsigned long npages;
  565. unsigned long i;
  566. struct kvm_memory_slot *memslot;
  567. struct kvm_memory_slot old, new;
  568. r = -EINVAL;
  569. /* General sanity checks */
  570. if (mem->memory_size & (PAGE_SIZE - 1))
  571. goto out;
  572. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  573. goto out;
  574. if (mem->slot >= KVM_MEMORY_SLOTS)
  575. goto out;
  576. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  577. goto out;
  578. memslot = &kvm->memslots[mem->slot];
  579. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  580. npages = mem->memory_size >> PAGE_SHIFT;
  581. if (!npages)
  582. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  583. mutex_lock(&kvm->lock);
  584. new = old = *memslot;
  585. new.base_gfn = base_gfn;
  586. new.npages = npages;
  587. new.flags = mem->flags;
  588. /* Disallow changing a memory slot's size. */
  589. r = -EINVAL;
  590. if (npages && old.npages && npages != old.npages)
  591. goto out_unlock;
  592. /* Check for overlaps */
  593. r = -EEXIST;
  594. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  595. struct kvm_memory_slot *s = &kvm->memslots[i];
  596. if (s == memslot)
  597. continue;
  598. if (!((base_gfn + npages <= s->base_gfn) ||
  599. (base_gfn >= s->base_gfn + s->npages)))
  600. goto out_unlock;
  601. }
  602. /* Deallocate if slot is being removed */
  603. if (!npages)
  604. new.phys_mem = NULL;
  605. /* Free page dirty bitmap if unneeded */
  606. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  607. new.dirty_bitmap = NULL;
  608. r = -ENOMEM;
  609. /* Allocate if a slot is being created */
  610. if (npages && !new.phys_mem) {
  611. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  612. if (!new.phys_mem)
  613. goto out_unlock;
  614. new.rmap = vmalloc(npages * sizeof(struct page*));
  615. if (!new.rmap)
  616. goto out_unlock;
  617. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  618. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  619. for (i = 0; i < npages; ++i) {
  620. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  621. | __GFP_ZERO);
  622. if (!new.phys_mem[i])
  623. goto out_unlock;
  624. }
  625. }
  626. /* Allocate page dirty bitmap if needed */
  627. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  628. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  629. new.dirty_bitmap = vmalloc(dirty_bytes);
  630. if (!new.dirty_bitmap)
  631. goto out_unlock;
  632. memset(new.dirty_bitmap, 0, dirty_bytes);
  633. }
  634. if (mem->slot >= kvm->nmemslots)
  635. kvm->nmemslots = mem->slot + 1;
  636. if (!kvm->n_requested_mmu_pages) {
  637. unsigned int n_pages;
  638. if (npages) {
  639. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  640. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  641. n_pages);
  642. } else {
  643. unsigned int nr_mmu_pages;
  644. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  645. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  646. nr_mmu_pages = max(nr_mmu_pages,
  647. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  648. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  649. }
  650. }
  651. *memslot = new;
  652. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  653. kvm_flush_remote_tlbs(kvm);
  654. mutex_unlock(&kvm->lock);
  655. kvm_free_physmem_slot(&old, &new);
  656. return 0;
  657. out_unlock:
  658. mutex_unlock(&kvm->lock);
  659. kvm_free_physmem_slot(&new, &old);
  660. out:
  661. return r;
  662. }
  663. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  664. u32 kvm_nr_mmu_pages)
  665. {
  666. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  667. return -EINVAL;
  668. mutex_lock(&kvm->lock);
  669. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  670. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  671. mutex_unlock(&kvm->lock);
  672. return 0;
  673. }
  674. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  675. {
  676. return kvm->n_alloc_mmu_pages;
  677. }
  678. /*
  679. * Get (and clear) the dirty memory log for a memory slot.
  680. */
  681. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  682. struct kvm_dirty_log *log)
  683. {
  684. struct kvm_memory_slot *memslot;
  685. int r, i;
  686. int n;
  687. unsigned long any = 0;
  688. mutex_lock(&kvm->lock);
  689. r = -EINVAL;
  690. if (log->slot >= KVM_MEMORY_SLOTS)
  691. goto out;
  692. memslot = &kvm->memslots[log->slot];
  693. r = -ENOENT;
  694. if (!memslot->dirty_bitmap)
  695. goto out;
  696. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  697. for (i = 0; !any && i < n/sizeof(long); ++i)
  698. any = memslot->dirty_bitmap[i];
  699. r = -EFAULT;
  700. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  701. goto out;
  702. /* If nothing is dirty, don't bother messing with page tables. */
  703. if (any) {
  704. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  705. kvm_flush_remote_tlbs(kvm);
  706. memset(memslot->dirty_bitmap, 0, n);
  707. }
  708. r = 0;
  709. out:
  710. mutex_unlock(&kvm->lock);
  711. return r;
  712. }
  713. /*
  714. * Set a new alias region. Aliases map a portion of physical memory into
  715. * another portion. This is useful for memory windows, for example the PC
  716. * VGA region.
  717. */
  718. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  719. struct kvm_memory_alias *alias)
  720. {
  721. int r, n;
  722. struct kvm_mem_alias *p;
  723. r = -EINVAL;
  724. /* General sanity checks */
  725. if (alias->memory_size & (PAGE_SIZE - 1))
  726. goto out;
  727. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  728. goto out;
  729. if (alias->slot >= KVM_ALIAS_SLOTS)
  730. goto out;
  731. if (alias->guest_phys_addr + alias->memory_size
  732. < alias->guest_phys_addr)
  733. goto out;
  734. if (alias->target_phys_addr + alias->memory_size
  735. < alias->target_phys_addr)
  736. goto out;
  737. mutex_lock(&kvm->lock);
  738. p = &kvm->aliases[alias->slot];
  739. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  740. p->npages = alias->memory_size >> PAGE_SHIFT;
  741. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  742. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  743. if (kvm->aliases[n - 1].npages)
  744. break;
  745. kvm->naliases = n;
  746. kvm_mmu_zap_all(kvm);
  747. mutex_unlock(&kvm->lock);
  748. return 0;
  749. out:
  750. return r;
  751. }
  752. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  753. {
  754. int r;
  755. r = 0;
  756. switch (chip->chip_id) {
  757. case KVM_IRQCHIP_PIC_MASTER:
  758. memcpy (&chip->chip.pic,
  759. &pic_irqchip(kvm)->pics[0],
  760. sizeof(struct kvm_pic_state));
  761. break;
  762. case KVM_IRQCHIP_PIC_SLAVE:
  763. memcpy (&chip->chip.pic,
  764. &pic_irqchip(kvm)->pics[1],
  765. sizeof(struct kvm_pic_state));
  766. break;
  767. case KVM_IRQCHIP_IOAPIC:
  768. memcpy (&chip->chip.ioapic,
  769. ioapic_irqchip(kvm),
  770. sizeof(struct kvm_ioapic_state));
  771. break;
  772. default:
  773. r = -EINVAL;
  774. break;
  775. }
  776. return r;
  777. }
  778. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  779. {
  780. int r;
  781. r = 0;
  782. switch (chip->chip_id) {
  783. case KVM_IRQCHIP_PIC_MASTER:
  784. memcpy (&pic_irqchip(kvm)->pics[0],
  785. &chip->chip.pic,
  786. sizeof(struct kvm_pic_state));
  787. break;
  788. case KVM_IRQCHIP_PIC_SLAVE:
  789. memcpy (&pic_irqchip(kvm)->pics[1],
  790. &chip->chip.pic,
  791. sizeof(struct kvm_pic_state));
  792. break;
  793. case KVM_IRQCHIP_IOAPIC:
  794. memcpy (ioapic_irqchip(kvm),
  795. &chip->chip.ioapic,
  796. sizeof(struct kvm_ioapic_state));
  797. break;
  798. default:
  799. r = -EINVAL;
  800. break;
  801. }
  802. kvm_pic_update_irq(pic_irqchip(kvm));
  803. return r;
  804. }
  805. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  806. {
  807. int i;
  808. struct kvm_mem_alias *alias;
  809. for (i = 0; i < kvm->naliases; ++i) {
  810. alias = &kvm->aliases[i];
  811. if (gfn >= alias->base_gfn
  812. && gfn < alias->base_gfn + alias->npages)
  813. return alias->target_gfn + gfn - alias->base_gfn;
  814. }
  815. return gfn;
  816. }
  817. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  818. {
  819. int i;
  820. for (i = 0; i < kvm->nmemslots; ++i) {
  821. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  822. if (gfn >= memslot->base_gfn
  823. && gfn < memslot->base_gfn + memslot->npages)
  824. return memslot;
  825. }
  826. return NULL;
  827. }
  828. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  829. {
  830. gfn = unalias_gfn(kvm, gfn);
  831. return __gfn_to_memslot(kvm, gfn);
  832. }
  833. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  834. {
  835. struct kvm_memory_slot *slot;
  836. gfn = unalias_gfn(kvm, gfn);
  837. slot = __gfn_to_memslot(kvm, gfn);
  838. if (!slot)
  839. return NULL;
  840. return slot->phys_mem[gfn - slot->base_gfn];
  841. }
  842. EXPORT_SYMBOL_GPL(gfn_to_page);
  843. static int next_segment(unsigned long len, int offset)
  844. {
  845. if (len > PAGE_SIZE - offset)
  846. return PAGE_SIZE - offset;
  847. else
  848. return len;
  849. }
  850. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  851. int len)
  852. {
  853. void *page_virt;
  854. struct page *page;
  855. page = gfn_to_page(kvm, gfn);
  856. if (!page)
  857. return -EFAULT;
  858. page_virt = kmap_atomic(page, KM_USER0);
  859. memcpy(data, page_virt + offset, len);
  860. kunmap_atomic(page_virt, KM_USER0);
  861. return 0;
  862. }
  863. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  864. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  865. {
  866. gfn_t gfn = gpa >> PAGE_SHIFT;
  867. int seg;
  868. int offset = offset_in_page(gpa);
  869. int ret;
  870. while ((seg = next_segment(len, offset)) != 0) {
  871. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  872. if (ret < 0)
  873. return ret;
  874. offset = 0;
  875. len -= seg;
  876. data += seg;
  877. ++gfn;
  878. }
  879. return 0;
  880. }
  881. EXPORT_SYMBOL_GPL(kvm_read_guest);
  882. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  883. int offset, int len)
  884. {
  885. void *page_virt;
  886. struct page *page;
  887. page = gfn_to_page(kvm, gfn);
  888. if (!page)
  889. return -EFAULT;
  890. page_virt = kmap_atomic(page, KM_USER0);
  891. memcpy(page_virt + offset, data, len);
  892. kunmap_atomic(page_virt, KM_USER0);
  893. mark_page_dirty(kvm, gfn);
  894. return 0;
  895. }
  896. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  897. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  898. unsigned long len)
  899. {
  900. gfn_t gfn = gpa >> PAGE_SHIFT;
  901. int seg;
  902. int offset = offset_in_page(gpa);
  903. int ret;
  904. while ((seg = next_segment(len, offset)) != 0) {
  905. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  906. if (ret < 0)
  907. return ret;
  908. offset = 0;
  909. len -= seg;
  910. data += seg;
  911. ++gfn;
  912. }
  913. return 0;
  914. }
  915. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  916. {
  917. void *page_virt;
  918. struct page *page;
  919. page = gfn_to_page(kvm, gfn);
  920. if (!page)
  921. return -EFAULT;
  922. page_virt = kmap_atomic(page, KM_USER0);
  923. memset(page_virt + offset, 0, len);
  924. kunmap_atomic(page_virt, KM_USER0);
  925. return 0;
  926. }
  927. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  928. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  929. {
  930. gfn_t gfn = gpa >> PAGE_SHIFT;
  931. int seg;
  932. int offset = offset_in_page(gpa);
  933. int ret;
  934. while ((seg = next_segment(len, offset)) != 0) {
  935. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  936. if (ret < 0)
  937. return ret;
  938. offset = 0;
  939. len -= seg;
  940. ++gfn;
  941. }
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  945. /* WARNING: Does not work on aliased pages. */
  946. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  947. {
  948. struct kvm_memory_slot *memslot;
  949. memslot = __gfn_to_memslot(kvm, gfn);
  950. if (memslot && memslot->dirty_bitmap) {
  951. unsigned long rel_gfn = gfn - memslot->base_gfn;
  952. /* avoid RMW */
  953. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  954. set_bit(rel_gfn, memslot->dirty_bitmap);
  955. }
  956. }
  957. int emulator_read_std(unsigned long addr,
  958. void *val,
  959. unsigned int bytes,
  960. struct kvm_vcpu *vcpu)
  961. {
  962. void *data = val;
  963. while (bytes) {
  964. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  965. unsigned offset = addr & (PAGE_SIZE-1);
  966. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  967. int ret;
  968. if (gpa == UNMAPPED_GVA)
  969. return X86EMUL_PROPAGATE_FAULT;
  970. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  971. if (ret < 0)
  972. return X86EMUL_UNHANDLEABLE;
  973. bytes -= tocopy;
  974. data += tocopy;
  975. addr += tocopy;
  976. }
  977. return X86EMUL_CONTINUE;
  978. }
  979. EXPORT_SYMBOL_GPL(emulator_read_std);
  980. static int emulator_write_std(unsigned long addr,
  981. const void *val,
  982. unsigned int bytes,
  983. struct kvm_vcpu *vcpu)
  984. {
  985. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  986. return X86EMUL_UNHANDLEABLE;
  987. }
  988. /*
  989. * Only apic need an MMIO device hook, so shortcut now..
  990. */
  991. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  992. gpa_t addr)
  993. {
  994. struct kvm_io_device *dev;
  995. if (vcpu->apic) {
  996. dev = &vcpu->apic->dev;
  997. if (dev->in_range(dev, addr))
  998. return dev;
  999. }
  1000. return NULL;
  1001. }
  1002. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1003. gpa_t addr)
  1004. {
  1005. struct kvm_io_device *dev;
  1006. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1007. if (dev == NULL)
  1008. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1009. return dev;
  1010. }
  1011. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1012. gpa_t addr)
  1013. {
  1014. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1015. }
  1016. static int emulator_read_emulated(unsigned long addr,
  1017. void *val,
  1018. unsigned int bytes,
  1019. struct kvm_vcpu *vcpu)
  1020. {
  1021. struct kvm_io_device *mmio_dev;
  1022. gpa_t gpa;
  1023. if (vcpu->mmio_read_completed) {
  1024. memcpy(val, vcpu->mmio_data, bytes);
  1025. vcpu->mmio_read_completed = 0;
  1026. return X86EMUL_CONTINUE;
  1027. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1028. == X86EMUL_CONTINUE)
  1029. return X86EMUL_CONTINUE;
  1030. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1031. if (gpa == UNMAPPED_GVA)
  1032. return X86EMUL_PROPAGATE_FAULT;
  1033. /*
  1034. * Is this MMIO handled locally?
  1035. */
  1036. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1037. if (mmio_dev) {
  1038. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1039. return X86EMUL_CONTINUE;
  1040. }
  1041. vcpu->mmio_needed = 1;
  1042. vcpu->mmio_phys_addr = gpa;
  1043. vcpu->mmio_size = bytes;
  1044. vcpu->mmio_is_write = 0;
  1045. return X86EMUL_UNHANDLEABLE;
  1046. }
  1047. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1048. const void *val, int bytes)
  1049. {
  1050. int ret;
  1051. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1052. if (ret < 0)
  1053. return 0;
  1054. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1055. return 1;
  1056. }
  1057. static int emulator_write_emulated_onepage(unsigned long addr,
  1058. const void *val,
  1059. unsigned int bytes,
  1060. struct kvm_vcpu *vcpu)
  1061. {
  1062. struct kvm_io_device *mmio_dev;
  1063. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1064. if (gpa == UNMAPPED_GVA) {
  1065. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1066. return X86EMUL_PROPAGATE_FAULT;
  1067. }
  1068. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1069. return X86EMUL_CONTINUE;
  1070. /*
  1071. * Is this MMIO handled locally?
  1072. */
  1073. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1074. if (mmio_dev) {
  1075. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1076. return X86EMUL_CONTINUE;
  1077. }
  1078. vcpu->mmio_needed = 1;
  1079. vcpu->mmio_phys_addr = gpa;
  1080. vcpu->mmio_size = bytes;
  1081. vcpu->mmio_is_write = 1;
  1082. memcpy(vcpu->mmio_data, val, bytes);
  1083. return X86EMUL_CONTINUE;
  1084. }
  1085. int emulator_write_emulated(unsigned long addr,
  1086. const void *val,
  1087. unsigned int bytes,
  1088. struct kvm_vcpu *vcpu)
  1089. {
  1090. /* Crossing a page boundary? */
  1091. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1092. int rc, now;
  1093. now = -addr & ~PAGE_MASK;
  1094. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1095. if (rc != X86EMUL_CONTINUE)
  1096. return rc;
  1097. addr += now;
  1098. val += now;
  1099. bytes -= now;
  1100. }
  1101. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1102. }
  1103. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1104. static int emulator_cmpxchg_emulated(unsigned long addr,
  1105. const void *old,
  1106. const void *new,
  1107. unsigned int bytes,
  1108. struct kvm_vcpu *vcpu)
  1109. {
  1110. static int reported;
  1111. if (!reported) {
  1112. reported = 1;
  1113. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1114. }
  1115. return emulator_write_emulated(addr, new, bytes, vcpu);
  1116. }
  1117. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1118. {
  1119. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1120. }
  1121. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1122. {
  1123. return X86EMUL_CONTINUE;
  1124. }
  1125. int emulate_clts(struct kvm_vcpu *vcpu)
  1126. {
  1127. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1128. return X86EMUL_CONTINUE;
  1129. }
  1130. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1131. {
  1132. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1133. switch (dr) {
  1134. case 0 ... 3:
  1135. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1136. return X86EMUL_CONTINUE;
  1137. default:
  1138. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1139. return X86EMUL_UNHANDLEABLE;
  1140. }
  1141. }
  1142. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1143. {
  1144. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1145. int exception;
  1146. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1147. if (exception) {
  1148. /* FIXME: better handling */
  1149. return X86EMUL_UNHANDLEABLE;
  1150. }
  1151. return X86EMUL_CONTINUE;
  1152. }
  1153. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1154. {
  1155. static int reported;
  1156. u8 opcodes[4];
  1157. unsigned long rip = vcpu->rip;
  1158. unsigned long rip_linear;
  1159. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1160. if (reported)
  1161. return;
  1162. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1163. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1164. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1165. reported = 1;
  1166. }
  1167. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1168. struct x86_emulate_ops emulate_ops = {
  1169. .read_std = emulator_read_std,
  1170. .write_std = emulator_write_std,
  1171. .read_emulated = emulator_read_emulated,
  1172. .write_emulated = emulator_write_emulated,
  1173. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1174. };
  1175. int emulate_instruction(struct kvm_vcpu *vcpu,
  1176. struct kvm_run *run,
  1177. unsigned long cr2,
  1178. u16 error_code,
  1179. int no_decode)
  1180. {
  1181. int r;
  1182. vcpu->mmio_fault_cr2 = cr2;
  1183. kvm_x86_ops->cache_regs(vcpu);
  1184. vcpu->mmio_is_write = 0;
  1185. vcpu->pio.string = 0;
  1186. if (!no_decode) {
  1187. int cs_db, cs_l;
  1188. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1189. vcpu->emulate_ctxt.vcpu = vcpu;
  1190. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1191. vcpu->emulate_ctxt.cr2 = cr2;
  1192. vcpu->emulate_ctxt.mode =
  1193. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1194. ? X86EMUL_MODE_REAL : cs_l
  1195. ? X86EMUL_MODE_PROT64 : cs_db
  1196. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1197. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1198. vcpu->emulate_ctxt.cs_base = 0;
  1199. vcpu->emulate_ctxt.ds_base = 0;
  1200. vcpu->emulate_ctxt.es_base = 0;
  1201. vcpu->emulate_ctxt.ss_base = 0;
  1202. } else {
  1203. vcpu->emulate_ctxt.cs_base =
  1204. get_segment_base(vcpu, VCPU_SREG_CS);
  1205. vcpu->emulate_ctxt.ds_base =
  1206. get_segment_base(vcpu, VCPU_SREG_DS);
  1207. vcpu->emulate_ctxt.es_base =
  1208. get_segment_base(vcpu, VCPU_SREG_ES);
  1209. vcpu->emulate_ctxt.ss_base =
  1210. get_segment_base(vcpu, VCPU_SREG_SS);
  1211. }
  1212. vcpu->emulate_ctxt.gs_base =
  1213. get_segment_base(vcpu, VCPU_SREG_GS);
  1214. vcpu->emulate_ctxt.fs_base =
  1215. get_segment_base(vcpu, VCPU_SREG_FS);
  1216. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1217. if (r) {
  1218. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1219. return EMULATE_DONE;
  1220. return EMULATE_FAIL;
  1221. }
  1222. }
  1223. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1224. if (vcpu->pio.string)
  1225. return EMULATE_DO_MMIO;
  1226. if ((r || vcpu->mmio_is_write) && run) {
  1227. run->exit_reason = KVM_EXIT_MMIO;
  1228. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1229. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1230. run->mmio.len = vcpu->mmio_size;
  1231. run->mmio.is_write = vcpu->mmio_is_write;
  1232. }
  1233. if (r) {
  1234. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1235. return EMULATE_DONE;
  1236. if (!vcpu->mmio_needed) {
  1237. kvm_report_emulation_failure(vcpu, "mmio");
  1238. return EMULATE_FAIL;
  1239. }
  1240. return EMULATE_DO_MMIO;
  1241. }
  1242. kvm_x86_ops->decache_regs(vcpu);
  1243. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1244. if (vcpu->mmio_is_write) {
  1245. vcpu->mmio_needed = 0;
  1246. return EMULATE_DO_MMIO;
  1247. }
  1248. return EMULATE_DONE;
  1249. }
  1250. EXPORT_SYMBOL_GPL(emulate_instruction);
  1251. /*
  1252. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1253. */
  1254. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1255. {
  1256. DECLARE_WAITQUEUE(wait, current);
  1257. add_wait_queue(&vcpu->wq, &wait);
  1258. /*
  1259. * We will block until either an interrupt or a signal wakes us up
  1260. */
  1261. while (!kvm_cpu_has_interrupt(vcpu)
  1262. && !signal_pending(current)
  1263. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1264. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1265. set_current_state(TASK_INTERRUPTIBLE);
  1266. vcpu_put(vcpu);
  1267. schedule();
  1268. vcpu_load(vcpu);
  1269. }
  1270. __set_current_state(TASK_RUNNING);
  1271. remove_wait_queue(&vcpu->wq, &wait);
  1272. }
  1273. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1274. {
  1275. ++vcpu->stat.halt_exits;
  1276. if (irqchip_in_kernel(vcpu->kvm)) {
  1277. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1278. kvm_vcpu_block(vcpu);
  1279. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1280. return -EINTR;
  1281. return 1;
  1282. } else {
  1283. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1284. return 0;
  1285. }
  1286. }
  1287. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1288. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1289. {
  1290. unsigned long nr, a0, a1, a2, a3, ret;
  1291. kvm_x86_ops->cache_regs(vcpu);
  1292. nr = vcpu->regs[VCPU_REGS_RAX];
  1293. a0 = vcpu->regs[VCPU_REGS_RBX];
  1294. a1 = vcpu->regs[VCPU_REGS_RCX];
  1295. a2 = vcpu->regs[VCPU_REGS_RDX];
  1296. a3 = vcpu->regs[VCPU_REGS_RSI];
  1297. if (!is_long_mode(vcpu)) {
  1298. nr &= 0xFFFFFFFF;
  1299. a0 &= 0xFFFFFFFF;
  1300. a1 &= 0xFFFFFFFF;
  1301. a2 &= 0xFFFFFFFF;
  1302. a3 &= 0xFFFFFFFF;
  1303. }
  1304. switch (nr) {
  1305. default:
  1306. ret = -KVM_ENOSYS;
  1307. break;
  1308. }
  1309. vcpu->regs[VCPU_REGS_RAX] = ret;
  1310. kvm_x86_ops->decache_regs(vcpu);
  1311. return 0;
  1312. }
  1313. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1314. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1315. {
  1316. char instruction[3];
  1317. int ret = 0;
  1318. mutex_lock(&vcpu->kvm->lock);
  1319. /*
  1320. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1321. * to ensure that the updated hypercall appears atomically across all
  1322. * VCPUs.
  1323. */
  1324. kvm_mmu_zap_all(vcpu->kvm);
  1325. kvm_x86_ops->cache_regs(vcpu);
  1326. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1327. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1328. != X86EMUL_CONTINUE)
  1329. ret = -EFAULT;
  1330. mutex_unlock(&vcpu->kvm->lock);
  1331. return ret;
  1332. }
  1333. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1334. {
  1335. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1336. }
  1337. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1338. {
  1339. struct descriptor_table dt = { limit, base };
  1340. kvm_x86_ops->set_gdt(vcpu, &dt);
  1341. }
  1342. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1343. {
  1344. struct descriptor_table dt = { limit, base };
  1345. kvm_x86_ops->set_idt(vcpu, &dt);
  1346. }
  1347. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1348. unsigned long *rflags)
  1349. {
  1350. lmsw(vcpu, msw);
  1351. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1352. }
  1353. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1354. {
  1355. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1356. switch (cr) {
  1357. case 0:
  1358. return vcpu->cr0;
  1359. case 2:
  1360. return vcpu->cr2;
  1361. case 3:
  1362. return vcpu->cr3;
  1363. case 4:
  1364. return vcpu->cr4;
  1365. default:
  1366. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1367. return 0;
  1368. }
  1369. }
  1370. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1371. unsigned long *rflags)
  1372. {
  1373. switch (cr) {
  1374. case 0:
  1375. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1376. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1377. break;
  1378. case 2:
  1379. vcpu->cr2 = val;
  1380. break;
  1381. case 3:
  1382. set_cr3(vcpu, val);
  1383. break;
  1384. case 4:
  1385. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1386. break;
  1387. default:
  1388. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1389. }
  1390. }
  1391. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1392. {
  1393. u64 data;
  1394. switch (msr) {
  1395. case 0xc0010010: /* SYSCFG */
  1396. case 0xc0010015: /* HWCR */
  1397. case MSR_IA32_PLATFORM_ID:
  1398. case MSR_IA32_P5_MC_ADDR:
  1399. case MSR_IA32_P5_MC_TYPE:
  1400. case MSR_IA32_MC0_CTL:
  1401. case MSR_IA32_MCG_STATUS:
  1402. case MSR_IA32_MCG_CAP:
  1403. case MSR_IA32_MC0_MISC:
  1404. case MSR_IA32_MC0_MISC+4:
  1405. case MSR_IA32_MC0_MISC+8:
  1406. case MSR_IA32_MC0_MISC+12:
  1407. case MSR_IA32_MC0_MISC+16:
  1408. case MSR_IA32_UCODE_REV:
  1409. case MSR_IA32_PERF_STATUS:
  1410. case MSR_IA32_EBL_CR_POWERON:
  1411. /* MTRR registers */
  1412. case 0xfe:
  1413. case 0x200 ... 0x2ff:
  1414. data = 0;
  1415. break;
  1416. case 0xcd: /* fsb frequency */
  1417. data = 3;
  1418. break;
  1419. case MSR_IA32_APICBASE:
  1420. data = kvm_get_apic_base(vcpu);
  1421. break;
  1422. case MSR_IA32_MISC_ENABLE:
  1423. data = vcpu->ia32_misc_enable_msr;
  1424. break;
  1425. #ifdef CONFIG_X86_64
  1426. case MSR_EFER:
  1427. data = vcpu->shadow_efer;
  1428. break;
  1429. #endif
  1430. default:
  1431. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1432. return 1;
  1433. }
  1434. *pdata = data;
  1435. return 0;
  1436. }
  1437. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1438. /*
  1439. * Reads an msr value (of 'msr_index') into 'pdata'.
  1440. * Returns 0 on success, non-0 otherwise.
  1441. * Assumes vcpu_load() was already called.
  1442. */
  1443. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1444. {
  1445. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1446. }
  1447. #ifdef CONFIG_X86_64
  1448. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1449. {
  1450. if (efer & EFER_RESERVED_BITS) {
  1451. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1452. efer);
  1453. inject_gp(vcpu);
  1454. return;
  1455. }
  1456. if (is_paging(vcpu)
  1457. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1458. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1459. inject_gp(vcpu);
  1460. return;
  1461. }
  1462. kvm_x86_ops->set_efer(vcpu, efer);
  1463. efer &= ~EFER_LMA;
  1464. efer |= vcpu->shadow_efer & EFER_LMA;
  1465. vcpu->shadow_efer = efer;
  1466. }
  1467. #endif
  1468. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1469. {
  1470. switch (msr) {
  1471. #ifdef CONFIG_X86_64
  1472. case MSR_EFER:
  1473. set_efer(vcpu, data);
  1474. break;
  1475. #endif
  1476. case MSR_IA32_MC0_STATUS:
  1477. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1478. __FUNCTION__, data);
  1479. break;
  1480. case MSR_IA32_MCG_STATUS:
  1481. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1482. __FUNCTION__, data);
  1483. break;
  1484. case MSR_IA32_UCODE_REV:
  1485. case MSR_IA32_UCODE_WRITE:
  1486. case 0x200 ... 0x2ff: /* MTRRs */
  1487. break;
  1488. case MSR_IA32_APICBASE:
  1489. kvm_set_apic_base(vcpu, data);
  1490. break;
  1491. case MSR_IA32_MISC_ENABLE:
  1492. vcpu->ia32_misc_enable_msr = data;
  1493. break;
  1494. default:
  1495. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1496. return 1;
  1497. }
  1498. return 0;
  1499. }
  1500. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1501. /*
  1502. * Writes msr value into into the appropriate "register".
  1503. * Returns 0 on success, non-0 otherwise.
  1504. * Assumes vcpu_load() was already called.
  1505. */
  1506. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1507. {
  1508. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1509. }
  1510. void kvm_resched(struct kvm_vcpu *vcpu)
  1511. {
  1512. if (!need_resched())
  1513. return;
  1514. cond_resched();
  1515. }
  1516. EXPORT_SYMBOL_GPL(kvm_resched);
  1517. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1518. {
  1519. int i;
  1520. u32 function;
  1521. struct kvm_cpuid_entry *e, *best;
  1522. kvm_x86_ops->cache_regs(vcpu);
  1523. function = vcpu->regs[VCPU_REGS_RAX];
  1524. vcpu->regs[VCPU_REGS_RAX] = 0;
  1525. vcpu->regs[VCPU_REGS_RBX] = 0;
  1526. vcpu->regs[VCPU_REGS_RCX] = 0;
  1527. vcpu->regs[VCPU_REGS_RDX] = 0;
  1528. best = NULL;
  1529. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1530. e = &vcpu->cpuid_entries[i];
  1531. if (e->function == function) {
  1532. best = e;
  1533. break;
  1534. }
  1535. /*
  1536. * Both basic or both extended?
  1537. */
  1538. if (((e->function ^ function) & 0x80000000) == 0)
  1539. if (!best || e->function > best->function)
  1540. best = e;
  1541. }
  1542. if (best) {
  1543. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1544. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1545. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1546. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1547. }
  1548. kvm_x86_ops->decache_regs(vcpu);
  1549. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1550. }
  1551. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1552. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1553. {
  1554. void *p = vcpu->pio_data;
  1555. void *q;
  1556. unsigned bytes;
  1557. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1558. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1559. PAGE_KERNEL);
  1560. if (!q) {
  1561. free_pio_guest_pages(vcpu);
  1562. return -ENOMEM;
  1563. }
  1564. q += vcpu->pio.guest_page_offset;
  1565. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1566. if (vcpu->pio.in)
  1567. memcpy(q, p, bytes);
  1568. else
  1569. memcpy(p, q, bytes);
  1570. q -= vcpu->pio.guest_page_offset;
  1571. vunmap(q);
  1572. free_pio_guest_pages(vcpu);
  1573. return 0;
  1574. }
  1575. static int complete_pio(struct kvm_vcpu *vcpu)
  1576. {
  1577. struct kvm_pio_request *io = &vcpu->pio;
  1578. long delta;
  1579. int r;
  1580. kvm_x86_ops->cache_regs(vcpu);
  1581. if (!io->string) {
  1582. if (io->in)
  1583. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1584. io->size);
  1585. } else {
  1586. if (io->in) {
  1587. r = pio_copy_data(vcpu);
  1588. if (r) {
  1589. kvm_x86_ops->cache_regs(vcpu);
  1590. return r;
  1591. }
  1592. }
  1593. delta = 1;
  1594. if (io->rep) {
  1595. delta *= io->cur_count;
  1596. /*
  1597. * The size of the register should really depend on
  1598. * current address size.
  1599. */
  1600. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1601. }
  1602. if (io->down)
  1603. delta = -delta;
  1604. delta *= io->size;
  1605. if (io->in)
  1606. vcpu->regs[VCPU_REGS_RDI] += delta;
  1607. else
  1608. vcpu->regs[VCPU_REGS_RSI] += delta;
  1609. }
  1610. kvm_x86_ops->decache_regs(vcpu);
  1611. io->count -= io->cur_count;
  1612. io->cur_count = 0;
  1613. return 0;
  1614. }
  1615. static void kernel_pio(struct kvm_io_device *pio_dev,
  1616. struct kvm_vcpu *vcpu,
  1617. void *pd)
  1618. {
  1619. /* TODO: String I/O for in kernel device */
  1620. mutex_lock(&vcpu->kvm->lock);
  1621. if (vcpu->pio.in)
  1622. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1623. vcpu->pio.size,
  1624. pd);
  1625. else
  1626. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1627. vcpu->pio.size,
  1628. pd);
  1629. mutex_unlock(&vcpu->kvm->lock);
  1630. }
  1631. static void pio_string_write(struct kvm_io_device *pio_dev,
  1632. struct kvm_vcpu *vcpu)
  1633. {
  1634. struct kvm_pio_request *io = &vcpu->pio;
  1635. void *pd = vcpu->pio_data;
  1636. int i;
  1637. mutex_lock(&vcpu->kvm->lock);
  1638. for (i = 0; i < io->cur_count; i++) {
  1639. kvm_iodevice_write(pio_dev, io->port,
  1640. io->size,
  1641. pd);
  1642. pd += io->size;
  1643. }
  1644. mutex_unlock(&vcpu->kvm->lock);
  1645. }
  1646. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1647. int size, unsigned port)
  1648. {
  1649. struct kvm_io_device *pio_dev;
  1650. vcpu->run->exit_reason = KVM_EXIT_IO;
  1651. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1652. vcpu->run->io.size = vcpu->pio.size = size;
  1653. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1654. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1655. vcpu->run->io.port = vcpu->pio.port = port;
  1656. vcpu->pio.in = in;
  1657. vcpu->pio.string = 0;
  1658. vcpu->pio.down = 0;
  1659. vcpu->pio.guest_page_offset = 0;
  1660. vcpu->pio.rep = 0;
  1661. kvm_x86_ops->cache_regs(vcpu);
  1662. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1663. kvm_x86_ops->decache_regs(vcpu);
  1664. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1665. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1666. if (pio_dev) {
  1667. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1668. complete_pio(vcpu);
  1669. return 1;
  1670. }
  1671. return 0;
  1672. }
  1673. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1674. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1675. int size, unsigned long count, int down,
  1676. gva_t address, int rep, unsigned port)
  1677. {
  1678. unsigned now, in_page;
  1679. int i, ret = 0;
  1680. int nr_pages = 1;
  1681. struct page *page;
  1682. struct kvm_io_device *pio_dev;
  1683. vcpu->run->exit_reason = KVM_EXIT_IO;
  1684. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1685. vcpu->run->io.size = vcpu->pio.size = size;
  1686. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1687. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1688. vcpu->run->io.port = vcpu->pio.port = port;
  1689. vcpu->pio.in = in;
  1690. vcpu->pio.string = 1;
  1691. vcpu->pio.down = down;
  1692. vcpu->pio.guest_page_offset = offset_in_page(address);
  1693. vcpu->pio.rep = rep;
  1694. if (!count) {
  1695. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1696. return 1;
  1697. }
  1698. if (!down)
  1699. in_page = PAGE_SIZE - offset_in_page(address);
  1700. else
  1701. in_page = offset_in_page(address) + size;
  1702. now = min(count, (unsigned long)in_page / size);
  1703. if (!now) {
  1704. /*
  1705. * String I/O straddles page boundary. Pin two guest pages
  1706. * so that we satisfy atomicity constraints. Do just one
  1707. * transaction to avoid complexity.
  1708. */
  1709. nr_pages = 2;
  1710. now = 1;
  1711. }
  1712. if (down) {
  1713. /*
  1714. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1715. */
  1716. pr_unimpl(vcpu, "guest string pio down\n");
  1717. inject_gp(vcpu);
  1718. return 1;
  1719. }
  1720. vcpu->run->io.count = now;
  1721. vcpu->pio.cur_count = now;
  1722. if (vcpu->pio.cur_count == vcpu->pio.count)
  1723. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1724. for (i = 0; i < nr_pages; ++i) {
  1725. mutex_lock(&vcpu->kvm->lock);
  1726. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1727. if (page)
  1728. get_page(page);
  1729. vcpu->pio.guest_pages[i] = page;
  1730. mutex_unlock(&vcpu->kvm->lock);
  1731. if (!page) {
  1732. inject_gp(vcpu);
  1733. free_pio_guest_pages(vcpu);
  1734. return 1;
  1735. }
  1736. }
  1737. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1738. if (!vcpu->pio.in) {
  1739. /* string PIO write */
  1740. ret = pio_copy_data(vcpu);
  1741. if (ret >= 0 && pio_dev) {
  1742. pio_string_write(pio_dev, vcpu);
  1743. complete_pio(vcpu);
  1744. if (vcpu->pio.count == 0)
  1745. ret = 1;
  1746. }
  1747. } else if (pio_dev)
  1748. pr_unimpl(vcpu, "no string pio read support yet, "
  1749. "port %x size %d count %ld\n",
  1750. port, size, count);
  1751. return ret;
  1752. }
  1753. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1754. /*
  1755. * Check if userspace requested an interrupt window, and that the
  1756. * interrupt window is open.
  1757. *
  1758. * No need to exit to userspace if we already have an interrupt queued.
  1759. */
  1760. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1761. struct kvm_run *kvm_run)
  1762. {
  1763. return (!vcpu->irq_summary &&
  1764. kvm_run->request_interrupt_window &&
  1765. vcpu->interrupt_window_open &&
  1766. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1767. }
  1768. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1769. struct kvm_run *kvm_run)
  1770. {
  1771. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1772. kvm_run->cr8 = get_cr8(vcpu);
  1773. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1774. if (irqchip_in_kernel(vcpu->kvm))
  1775. kvm_run->ready_for_interrupt_injection = 1;
  1776. else
  1777. kvm_run->ready_for_interrupt_injection =
  1778. (vcpu->interrupt_window_open &&
  1779. vcpu->irq_summary == 0);
  1780. }
  1781. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1782. {
  1783. int r;
  1784. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1785. printk("vcpu %d received sipi with vector # %x\n",
  1786. vcpu->vcpu_id, vcpu->sipi_vector);
  1787. kvm_lapic_reset(vcpu);
  1788. kvm_x86_ops->vcpu_reset(vcpu);
  1789. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1790. }
  1791. preempted:
  1792. if (vcpu->guest_debug.enabled)
  1793. kvm_x86_ops->guest_debug_pre(vcpu);
  1794. again:
  1795. r = kvm_mmu_reload(vcpu);
  1796. if (unlikely(r))
  1797. goto out;
  1798. preempt_disable();
  1799. kvm_x86_ops->prepare_guest_switch(vcpu);
  1800. kvm_load_guest_fpu(vcpu);
  1801. local_irq_disable();
  1802. if (signal_pending(current)) {
  1803. local_irq_enable();
  1804. preempt_enable();
  1805. r = -EINTR;
  1806. kvm_run->exit_reason = KVM_EXIT_INTR;
  1807. ++vcpu->stat.signal_exits;
  1808. goto out;
  1809. }
  1810. if (irqchip_in_kernel(vcpu->kvm))
  1811. kvm_x86_ops->inject_pending_irq(vcpu);
  1812. else if (!vcpu->mmio_read_completed)
  1813. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1814. vcpu->guest_mode = 1;
  1815. kvm_guest_enter();
  1816. if (vcpu->requests)
  1817. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1818. kvm_x86_ops->tlb_flush(vcpu);
  1819. kvm_x86_ops->run(vcpu, kvm_run);
  1820. vcpu->guest_mode = 0;
  1821. local_irq_enable();
  1822. ++vcpu->stat.exits;
  1823. /*
  1824. * We must have an instruction between local_irq_enable() and
  1825. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1826. * the interrupt shadow. The stat.exits increment will do nicely.
  1827. * But we need to prevent reordering, hence this barrier():
  1828. */
  1829. barrier();
  1830. kvm_guest_exit();
  1831. preempt_enable();
  1832. /*
  1833. * Profile KVM exit RIPs:
  1834. */
  1835. if (unlikely(prof_on == KVM_PROFILING)) {
  1836. kvm_x86_ops->cache_regs(vcpu);
  1837. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1838. }
  1839. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1840. if (r > 0) {
  1841. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1842. r = -EINTR;
  1843. kvm_run->exit_reason = KVM_EXIT_INTR;
  1844. ++vcpu->stat.request_irq_exits;
  1845. goto out;
  1846. }
  1847. if (!need_resched()) {
  1848. ++vcpu->stat.light_exits;
  1849. goto again;
  1850. }
  1851. }
  1852. out:
  1853. if (r > 0) {
  1854. kvm_resched(vcpu);
  1855. goto preempted;
  1856. }
  1857. post_kvm_run_save(vcpu, kvm_run);
  1858. return r;
  1859. }
  1860. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1861. {
  1862. int r;
  1863. sigset_t sigsaved;
  1864. vcpu_load(vcpu);
  1865. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1866. kvm_vcpu_block(vcpu);
  1867. vcpu_put(vcpu);
  1868. return -EAGAIN;
  1869. }
  1870. if (vcpu->sigset_active)
  1871. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1872. /* re-sync apic's tpr */
  1873. if (!irqchip_in_kernel(vcpu->kvm))
  1874. set_cr8(vcpu, kvm_run->cr8);
  1875. if (vcpu->pio.cur_count) {
  1876. r = complete_pio(vcpu);
  1877. if (r)
  1878. goto out;
  1879. }
  1880. if (vcpu->mmio_needed) {
  1881. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1882. vcpu->mmio_read_completed = 1;
  1883. vcpu->mmio_needed = 0;
  1884. r = emulate_instruction(vcpu, kvm_run,
  1885. vcpu->mmio_fault_cr2, 0, 1);
  1886. if (r == EMULATE_DO_MMIO) {
  1887. /*
  1888. * Read-modify-write. Back to userspace.
  1889. */
  1890. r = 0;
  1891. goto out;
  1892. }
  1893. }
  1894. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1895. kvm_x86_ops->cache_regs(vcpu);
  1896. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1897. kvm_x86_ops->decache_regs(vcpu);
  1898. }
  1899. r = __vcpu_run(vcpu, kvm_run);
  1900. out:
  1901. if (vcpu->sigset_active)
  1902. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1903. vcpu_put(vcpu);
  1904. return r;
  1905. }
  1906. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1907. struct kvm_regs *regs)
  1908. {
  1909. vcpu_load(vcpu);
  1910. kvm_x86_ops->cache_regs(vcpu);
  1911. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1912. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1913. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1914. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1915. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1916. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1917. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1918. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1919. #ifdef CONFIG_X86_64
  1920. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1921. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1922. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1923. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1924. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1925. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1926. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1927. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1928. #endif
  1929. regs->rip = vcpu->rip;
  1930. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1931. /*
  1932. * Don't leak debug flags in case they were set for guest debugging
  1933. */
  1934. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1935. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1936. vcpu_put(vcpu);
  1937. return 0;
  1938. }
  1939. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1940. struct kvm_regs *regs)
  1941. {
  1942. vcpu_load(vcpu);
  1943. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1944. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1945. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1946. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1947. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1948. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1949. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1950. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1951. #ifdef CONFIG_X86_64
  1952. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1953. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1954. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1955. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1956. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1957. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1958. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1959. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1960. #endif
  1961. vcpu->rip = regs->rip;
  1962. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1963. kvm_x86_ops->decache_regs(vcpu);
  1964. vcpu_put(vcpu);
  1965. return 0;
  1966. }
  1967. static void get_segment(struct kvm_vcpu *vcpu,
  1968. struct kvm_segment *var, int seg)
  1969. {
  1970. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1971. }
  1972. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1973. struct kvm_sregs *sregs)
  1974. {
  1975. struct descriptor_table dt;
  1976. int pending_vec;
  1977. vcpu_load(vcpu);
  1978. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1979. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1980. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1981. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1982. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1983. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1984. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1985. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1986. kvm_x86_ops->get_idt(vcpu, &dt);
  1987. sregs->idt.limit = dt.limit;
  1988. sregs->idt.base = dt.base;
  1989. kvm_x86_ops->get_gdt(vcpu, &dt);
  1990. sregs->gdt.limit = dt.limit;
  1991. sregs->gdt.base = dt.base;
  1992. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1993. sregs->cr0 = vcpu->cr0;
  1994. sregs->cr2 = vcpu->cr2;
  1995. sregs->cr3 = vcpu->cr3;
  1996. sregs->cr4 = vcpu->cr4;
  1997. sregs->cr8 = get_cr8(vcpu);
  1998. sregs->efer = vcpu->shadow_efer;
  1999. sregs->apic_base = kvm_get_apic_base(vcpu);
  2000. if (irqchip_in_kernel(vcpu->kvm)) {
  2001. memset(sregs->interrupt_bitmap, 0,
  2002. sizeof sregs->interrupt_bitmap);
  2003. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2004. if (pending_vec >= 0)
  2005. set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
  2006. } else
  2007. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2008. sizeof sregs->interrupt_bitmap);
  2009. vcpu_put(vcpu);
  2010. return 0;
  2011. }
  2012. static void set_segment(struct kvm_vcpu *vcpu,
  2013. struct kvm_segment *var, int seg)
  2014. {
  2015. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2016. }
  2017. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2018. struct kvm_sregs *sregs)
  2019. {
  2020. int mmu_reset_needed = 0;
  2021. int i, pending_vec, max_bits;
  2022. struct descriptor_table dt;
  2023. vcpu_load(vcpu);
  2024. dt.limit = sregs->idt.limit;
  2025. dt.base = sregs->idt.base;
  2026. kvm_x86_ops->set_idt(vcpu, &dt);
  2027. dt.limit = sregs->gdt.limit;
  2028. dt.base = sregs->gdt.base;
  2029. kvm_x86_ops->set_gdt(vcpu, &dt);
  2030. vcpu->cr2 = sregs->cr2;
  2031. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2032. vcpu->cr3 = sregs->cr3;
  2033. set_cr8(vcpu, sregs->cr8);
  2034. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2035. #ifdef CONFIG_X86_64
  2036. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2037. #endif
  2038. kvm_set_apic_base(vcpu, sregs->apic_base);
  2039. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2040. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2041. vcpu->cr0 = sregs->cr0;
  2042. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2043. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2044. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2045. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2046. load_pdptrs(vcpu, vcpu->cr3);
  2047. if (mmu_reset_needed)
  2048. kvm_mmu_reset_context(vcpu);
  2049. if (!irqchip_in_kernel(vcpu->kvm)) {
  2050. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2051. sizeof vcpu->irq_pending);
  2052. vcpu->irq_summary = 0;
  2053. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2054. if (vcpu->irq_pending[i])
  2055. __set_bit(i, &vcpu->irq_summary);
  2056. } else {
  2057. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2058. pending_vec = find_first_bit(
  2059. (const unsigned long *)sregs->interrupt_bitmap,
  2060. max_bits);
  2061. /* Only pending external irq is handled here */
  2062. if (pending_vec < max_bits) {
  2063. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2064. printk("Set back pending irq %d\n", pending_vec);
  2065. }
  2066. }
  2067. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2068. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2069. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2070. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2071. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2072. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2073. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2074. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2075. vcpu_put(vcpu);
  2076. return 0;
  2077. }
  2078. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2079. {
  2080. struct kvm_segment cs;
  2081. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2082. *db = cs.db;
  2083. *l = cs.l;
  2084. }
  2085. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2086. /*
  2087. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  2088. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  2089. *
  2090. * This list is modified at module load time to reflect the
  2091. * capabilities of the host cpu.
  2092. */
  2093. static u32 msrs_to_save[] = {
  2094. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  2095. MSR_K6_STAR,
  2096. #ifdef CONFIG_X86_64
  2097. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  2098. #endif
  2099. MSR_IA32_TIME_STAMP_COUNTER,
  2100. };
  2101. static unsigned num_msrs_to_save;
  2102. static u32 emulated_msrs[] = {
  2103. MSR_IA32_MISC_ENABLE,
  2104. };
  2105. static __init void kvm_init_msr_list(void)
  2106. {
  2107. u32 dummy[2];
  2108. unsigned i, j;
  2109. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2110. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2111. continue;
  2112. if (j < i)
  2113. msrs_to_save[j] = msrs_to_save[i];
  2114. j++;
  2115. }
  2116. num_msrs_to_save = j;
  2117. }
  2118. /*
  2119. * Adapt set_msr() to msr_io()'s calling convention
  2120. */
  2121. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  2122. {
  2123. return kvm_set_msr(vcpu, index, *data);
  2124. }
  2125. /*
  2126. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2127. *
  2128. * @return number of msrs set successfully.
  2129. */
  2130. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2131. struct kvm_msr_entry *entries,
  2132. int (*do_msr)(struct kvm_vcpu *vcpu,
  2133. unsigned index, u64 *data))
  2134. {
  2135. int i;
  2136. vcpu_load(vcpu);
  2137. for (i = 0; i < msrs->nmsrs; ++i)
  2138. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2139. break;
  2140. vcpu_put(vcpu);
  2141. return i;
  2142. }
  2143. /*
  2144. * Read or write a bunch of msrs. Parameters are user addresses.
  2145. *
  2146. * @return number of msrs set successfully.
  2147. */
  2148. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2149. int (*do_msr)(struct kvm_vcpu *vcpu,
  2150. unsigned index, u64 *data),
  2151. int writeback)
  2152. {
  2153. struct kvm_msrs msrs;
  2154. struct kvm_msr_entry *entries;
  2155. int r, n;
  2156. unsigned size;
  2157. r = -EFAULT;
  2158. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2159. goto out;
  2160. r = -E2BIG;
  2161. if (msrs.nmsrs >= MAX_IO_MSRS)
  2162. goto out;
  2163. r = -ENOMEM;
  2164. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2165. entries = vmalloc(size);
  2166. if (!entries)
  2167. goto out;
  2168. r = -EFAULT;
  2169. if (copy_from_user(entries, user_msrs->entries, size))
  2170. goto out_free;
  2171. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2172. if (r < 0)
  2173. goto out_free;
  2174. r = -EFAULT;
  2175. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2176. goto out_free;
  2177. r = n;
  2178. out_free:
  2179. vfree(entries);
  2180. out:
  2181. return r;
  2182. }
  2183. /*
  2184. * Translate a guest virtual address to a guest physical address.
  2185. */
  2186. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2187. struct kvm_translation *tr)
  2188. {
  2189. unsigned long vaddr = tr->linear_address;
  2190. gpa_t gpa;
  2191. vcpu_load(vcpu);
  2192. mutex_lock(&vcpu->kvm->lock);
  2193. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2194. tr->physical_address = gpa;
  2195. tr->valid = gpa != UNMAPPED_GVA;
  2196. tr->writeable = 1;
  2197. tr->usermode = 0;
  2198. mutex_unlock(&vcpu->kvm->lock);
  2199. vcpu_put(vcpu);
  2200. return 0;
  2201. }
  2202. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2203. struct kvm_interrupt *irq)
  2204. {
  2205. if (irq->irq < 0 || irq->irq >= 256)
  2206. return -EINVAL;
  2207. if (irqchip_in_kernel(vcpu->kvm))
  2208. return -ENXIO;
  2209. vcpu_load(vcpu);
  2210. set_bit(irq->irq, vcpu->irq_pending);
  2211. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2212. vcpu_put(vcpu);
  2213. return 0;
  2214. }
  2215. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2216. struct kvm_debug_guest *dbg)
  2217. {
  2218. int r;
  2219. vcpu_load(vcpu);
  2220. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2221. vcpu_put(vcpu);
  2222. return r;
  2223. }
  2224. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2225. unsigned long address,
  2226. int *type)
  2227. {
  2228. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2229. unsigned long pgoff;
  2230. struct page *page;
  2231. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2232. if (pgoff == 0)
  2233. page = virt_to_page(vcpu->run);
  2234. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2235. page = virt_to_page(vcpu->pio_data);
  2236. else
  2237. return NOPAGE_SIGBUS;
  2238. get_page(page);
  2239. if (type != NULL)
  2240. *type = VM_FAULT_MINOR;
  2241. return page;
  2242. }
  2243. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2244. .nopage = kvm_vcpu_nopage,
  2245. };
  2246. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2247. {
  2248. vma->vm_ops = &kvm_vcpu_vm_ops;
  2249. return 0;
  2250. }
  2251. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2252. {
  2253. struct kvm_vcpu *vcpu = filp->private_data;
  2254. fput(vcpu->kvm->filp);
  2255. return 0;
  2256. }
  2257. static struct file_operations kvm_vcpu_fops = {
  2258. .release = kvm_vcpu_release,
  2259. .unlocked_ioctl = kvm_vcpu_ioctl,
  2260. .compat_ioctl = kvm_vcpu_ioctl,
  2261. .mmap = kvm_vcpu_mmap,
  2262. };
  2263. /*
  2264. * Allocates an inode for the vcpu.
  2265. */
  2266. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2267. {
  2268. int fd, r;
  2269. struct inode *inode;
  2270. struct file *file;
  2271. r = anon_inode_getfd(&fd, &inode, &file,
  2272. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2273. if (r)
  2274. return r;
  2275. atomic_inc(&vcpu->kvm->filp->f_count);
  2276. return fd;
  2277. }
  2278. /*
  2279. * Creates some virtual cpus. Good luck creating more than one.
  2280. */
  2281. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2282. {
  2283. int r;
  2284. struct kvm_vcpu *vcpu;
  2285. if (!valid_vcpu(n))
  2286. return -EINVAL;
  2287. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2288. if (IS_ERR(vcpu))
  2289. return PTR_ERR(vcpu);
  2290. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2291. /* We do fxsave: this must be aligned. */
  2292. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2293. vcpu_load(vcpu);
  2294. r = kvm_mmu_setup(vcpu);
  2295. vcpu_put(vcpu);
  2296. if (r < 0)
  2297. goto free_vcpu;
  2298. mutex_lock(&kvm->lock);
  2299. if (kvm->vcpus[n]) {
  2300. r = -EEXIST;
  2301. mutex_unlock(&kvm->lock);
  2302. goto mmu_unload;
  2303. }
  2304. kvm->vcpus[n] = vcpu;
  2305. mutex_unlock(&kvm->lock);
  2306. /* Now it's all set up, let userspace reach it */
  2307. r = create_vcpu_fd(vcpu);
  2308. if (r < 0)
  2309. goto unlink;
  2310. return r;
  2311. unlink:
  2312. mutex_lock(&kvm->lock);
  2313. kvm->vcpus[n] = NULL;
  2314. mutex_unlock(&kvm->lock);
  2315. mmu_unload:
  2316. vcpu_load(vcpu);
  2317. kvm_mmu_unload(vcpu);
  2318. vcpu_put(vcpu);
  2319. free_vcpu:
  2320. kvm_x86_ops->vcpu_free(vcpu);
  2321. return r;
  2322. }
  2323. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2324. {
  2325. u64 efer;
  2326. int i;
  2327. struct kvm_cpuid_entry *e, *entry;
  2328. rdmsrl(MSR_EFER, efer);
  2329. entry = NULL;
  2330. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2331. e = &vcpu->cpuid_entries[i];
  2332. if (e->function == 0x80000001) {
  2333. entry = e;
  2334. break;
  2335. }
  2336. }
  2337. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2338. entry->edx &= ~(1 << 20);
  2339. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2340. }
  2341. }
  2342. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2343. struct kvm_cpuid *cpuid,
  2344. struct kvm_cpuid_entry __user *entries)
  2345. {
  2346. int r;
  2347. r = -E2BIG;
  2348. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2349. goto out;
  2350. r = -EFAULT;
  2351. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2352. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2353. goto out;
  2354. vcpu->cpuid_nent = cpuid->nent;
  2355. cpuid_fix_nx_cap(vcpu);
  2356. return 0;
  2357. out:
  2358. return r;
  2359. }
  2360. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2361. {
  2362. if (sigset) {
  2363. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2364. vcpu->sigset_active = 1;
  2365. vcpu->sigset = *sigset;
  2366. } else
  2367. vcpu->sigset_active = 0;
  2368. return 0;
  2369. }
  2370. /*
  2371. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2372. * we have asm/x86/processor.h
  2373. */
  2374. struct fxsave {
  2375. u16 cwd;
  2376. u16 swd;
  2377. u16 twd;
  2378. u16 fop;
  2379. u64 rip;
  2380. u64 rdp;
  2381. u32 mxcsr;
  2382. u32 mxcsr_mask;
  2383. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2384. #ifdef CONFIG_X86_64
  2385. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2386. #else
  2387. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2388. #endif
  2389. };
  2390. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2391. {
  2392. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2393. vcpu_load(vcpu);
  2394. memcpy(fpu->fpr, fxsave->st_space, 128);
  2395. fpu->fcw = fxsave->cwd;
  2396. fpu->fsw = fxsave->swd;
  2397. fpu->ftwx = fxsave->twd;
  2398. fpu->last_opcode = fxsave->fop;
  2399. fpu->last_ip = fxsave->rip;
  2400. fpu->last_dp = fxsave->rdp;
  2401. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2402. vcpu_put(vcpu);
  2403. return 0;
  2404. }
  2405. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2406. {
  2407. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2408. vcpu_load(vcpu);
  2409. memcpy(fxsave->st_space, fpu->fpr, 128);
  2410. fxsave->cwd = fpu->fcw;
  2411. fxsave->swd = fpu->fsw;
  2412. fxsave->twd = fpu->ftwx;
  2413. fxsave->fop = fpu->last_opcode;
  2414. fxsave->rip = fpu->last_ip;
  2415. fxsave->rdp = fpu->last_dp;
  2416. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2417. vcpu_put(vcpu);
  2418. return 0;
  2419. }
  2420. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2421. struct kvm_lapic_state *s)
  2422. {
  2423. vcpu_load(vcpu);
  2424. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2425. vcpu_put(vcpu);
  2426. return 0;
  2427. }
  2428. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2429. struct kvm_lapic_state *s)
  2430. {
  2431. vcpu_load(vcpu);
  2432. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2433. kvm_apic_post_state_restore(vcpu);
  2434. vcpu_put(vcpu);
  2435. return 0;
  2436. }
  2437. static long kvm_vcpu_ioctl(struct file *filp,
  2438. unsigned int ioctl, unsigned long arg)
  2439. {
  2440. struct kvm_vcpu *vcpu = filp->private_data;
  2441. void __user *argp = (void __user *)arg;
  2442. int r = -EINVAL;
  2443. switch (ioctl) {
  2444. case KVM_RUN:
  2445. r = -EINVAL;
  2446. if (arg)
  2447. goto out;
  2448. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2449. break;
  2450. case KVM_GET_REGS: {
  2451. struct kvm_regs kvm_regs;
  2452. memset(&kvm_regs, 0, sizeof kvm_regs);
  2453. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2454. if (r)
  2455. goto out;
  2456. r = -EFAULT;
  2457. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2458. goto out;
  2459. r = 0;
  2460. break;
  2461. }
  2462. case KVM_SET_REGS: {
  2463. struct kvm_regs kvm_regs;
  2464. r = -EFAULT;
  2465. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2466. goto out;
  2467. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2468. if (r)
  2469. goto out;
  2470. r = 0;
  2471. break;
  2472. }
  2473. case KVM_GET_SREGS: {
  2474. struct kvm_sregs kvm_sregs;
  2475. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2476. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2477. if (r)
  2478. goto out;
  2479. r = -EFAULT;
  2480. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2481. goto out;
  2482. r = 0;
  2483. break;
  2484. }
  2485. case KVM_SET_SREGS: {
  2486. struct kvm_sregs kvm_sregs;
  2487. r = -EFAULT;
  2488. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2489. goto out;
  2490. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2491. if (r)
  2492. goto out;
  2493. r = 0;
  2494. break;
  2495. }
  2496. case KVM_TRANSLATE: {
  2497. struct kvm_translation tr;
  2498. r = -EFAULT;
  2499. if (copy_from_user(&tr, argp, sizeof tr))
  2500. goto out;
  2501. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2502. if (r)
  2503. goto out;
  2504. r = -EFAULT;
  2505. if (copy_to_user(argp, &tr, sizeof tr))
  2506. goto out;
  2507. r = 0;
  2508. break;
  2509. }
  2510. case KVM_INTERRUPT: {
  2511. struct kvm_interrupt irq;
  2512. r = -EFAULT;
  2513. if (copy_from_user(&irq, argp, sizeof irq))
  2514. goto out;
  2515. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2516. if (r)
  2517. goto out;
  2518. r = 0;
  2519. break;
  2520. }
  2521. case KVM_DEBUG_GUEST: {
  2522. struct kvm_debug_guest dbg;
  2523. r = -EFAULT;
  2524. if (copy_from_user(&dbg, argp, sizeof dbg))
  2525. goto out;
  2526. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2527. if (r)
  2528. goto out;
  2529. r = 0;
  2530. break;
  2531. }
  2532. case KVM_GET_MSRS:
  2533. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2534. break;
  2535. case KVM_SET_MSRS:
  2536. r = msr_io(vcpu, argp, do_set_msr, 0);
  2537. break;
  2538. case KVM_SET_CPUID: {
  2539. struct kvm_cpuid __user *cpuid_arg = argp;
  2540. struct kvm_cpuid cpuid;
  2541. r = -EFAULT;
  2542. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2543. goto out;
  2544. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2545. if (r)
  2546. goto out;
  2547. break;
  2548. }
  2549. case KVM_SET_SIGNAL_MASK: {
  2550. struct kvm_signal_mask __user *sigmask_arg = argp;
  2551. struct kvm_signal_mask kvm_sigmask;
  2552. sigset_t sigset, *p;
  2553. p = NULL;
  2554. if (argp) {
  2555. r = -EFAULT;
  2556. if (copy_from_user(&kvm_sigmask, argp,
  2557. sizeof kvm_sigmask))
  2558. goto out;
  2559. r = -EINVAL;
  2560. if (kvm_sigmask.len != sizeof sigset)
  2561. goto out;
  2562. r = -EFAULT;
  2563. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2564. sizeof sigset))
  2565. goto out;
  2566. p = &sigset;
  2567. }
  2568. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2569. break;
  2570. }
  2571. case KVM_GET_FPU: {
  2572. struct kvm_fpu fpu;
  2573. memset(&fpu, 0, sizeof fpu);
  2574. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2575. if (r)
  2576. goto out;
  2577. r = -EFAULT;
  2578. if (copy_to_user(argp, &fpu, sizeof fpu))
  2579. goto out;
  2580. r = 0;
  2581. break;
  2582. }
  2583. case KVM_SET_FPU: {
  2584. struct kvm_fpu fpu;
  2585. r = -EFAULT;
  2586. if (copy_from_user(&fpu, argp, sizeof fpu))
  2587. goto out;
  2588. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2589. if (r)
  2590. goto out;
  2591. r = 0;
  2592. break;
  2593. }
  2594. case KVM_GET_LAPIC: {
  2595. struct kvm_lapic_state lapic;
  2596. memset(&lapic, 0, sizeof lapic);
  2597. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2598. if (r)
  2599. goto out;
  2600. r = -EFAULT;
  2601. if (copy_to_user(argp, &lapic, sizeof lapic))
  2602. goto out;
  2603. r = 0;
  2604. break;
  2605. }
  2606. case KVM_SET_LAPIC: {
  2607. struct kvm_lapic_state lapic;
  2608. r = -EFAULT;
  2609. if (copy_from_user(&lapic, argp, sizeof lapic))
  2610. goto out;
  2611. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2612. if (r)
  2613. goto out;
  2614. r = 0;
  2615. break;
  2616. }
  2617. default:
  2618. ;
  2619. }
  2620. out:
  2621. return r;
  2622. }
  2623. static long kvm_vm_ioctl(struct file *filp,
  2624. unsigned int ioctl, unsigned long arg)
  2625. {
  2626. struct kvm *kvm = filp->private_data;
  2627. void __user *argp = (void __user *)arg;
  2628. int r = -EINVAL;
  2629. switch (ioctl) {
  2630. case KVM_CREATE_VCPU:
  2631. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2632. if (r < 0)
  2633. goto out;
  2634. break;
  2635. case KVM_SET_MEMORY_REGION: {
  2636. struct kvm_memory_region kvm_mem;
  2637. r = -EFAULT;
  2638. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2639. goto out;
  2640. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2641. if (r)
  2642. goto out;
  2643. break;
  2644. }
  2645. case KVM_SET_NR_MMU_PAGES:
  2646. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2647. if (r)
  2648. goto out;
  2649. break;
  2650. case KVM_GET_NR_MMU_PAGES:
  2651. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2652. break;
  2653. case KVM_GET_DIRTY_LOG: {
  2654. struct kvm_dirty_log log;
  2655. r = -EFAULT;
  2656. if (copy_from_user(&log, argp, sizeof log))
  2657. goto out;
  2658. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2659. if (r)
  2660. goto out;
  2661. break;
  2662. }
  2663. case KVM_SET_MEMORY_ALIAS: {
  2664. struct kvm_memory_alias alias;
  2665. r = -EFAULT;
  2666. if (copy_from_user(&alias, argp, sizeof alias))
  2667. goto out;
  2668. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2669. if (r)
  2670. goto out;
  2671. break;
  2672. }
  2673. case KVM_CREATE_IRQCHIP:
  2674. r = -ENOMEM;
  2675. kvm->vpic = kvm_create_pic(kvm);
  2676. if (kvm->vpic) {
  2677. r = kvm_ioapic_init(kvm);
  2678. if (r) {
  2679. kfree(kvm->vpic);
  2680. kvm->vpic = NULL;
  2681. goto out;
  2682. }
  2683. }
  2684. else
  2685. goto out;
  2686. break;
  2687. case KVM_IRQ_LINE: {
  2688. struct kvm_irq_level irq_event;
  2689. r = -EFAULT;
  2690. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2691. goto out;
  2692. if (irqchip_in_kernel(kvm)) {
  2693. mutex_lock(&kvm->lock);
  2694. if (irq_event.irq < 16)
  2695. kvm_pic_set_irq(pic_irqchip(kvm),
  2696. irq_event.irq,
  2697. irq_event.level);
  2698. kvm_ioapic_set_irq(kvm->vioapic,
  2699. irq_event.irq,
  2700. irq_event.level);
  2701. mutex_unlock(&kvm->lock);
  2702. r = 0;
  2703. }
  2704. break;
  2705. }
  2706. case KVM_GET_IRQCHIP: {
  2707. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2708. struct kvm_irqchip chip;
  2709. r = -EFAULT;
  2710. if (copy_from_user(&chip, argp, sizeof chip))
  2711. goto out;
  2712. r = -ENXIO;
  2713. if (!irqchip_in_kernel(kvm))
  2714. goto out;
  2715. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2716. if (r)
  2717. goto out;
  2718. r = -EFAULT;
  2719. if (copy_to_user(argp, &chip, sizeof chip))
  2720. goto out;
  2721. r = 0;
  2722. break;
  2723. }
  2724. case KVM_SET_IRQCHIP: {
  2725. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2726. struct kvm_irqchip chip;
  2727. r = -EFAULT;
  2728. if (copy_from_user(&chip, argp, sizeof chip))
  2729. goto out;
  2730. r = -ENXIO;
  2731. if (!irqchip_in_kernel(kvm))
  2732. goto out;
  2733. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2734. if (r)
  2735. goto out;
  2736. r = 0;
  2737. break;
  2738. }
  2739. default:
  2740. ;
  2741. }
  2742. out:
  2743. return r;
  2744. }
  2745. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2746. unsigned long address,
  2747. int *type)
  2748. {
  2749. struct kvm *kvm = vma->vm_file->private_data;
  2750. unsigned long pgoff;
  2751. struct page *page;
  2752. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2753. page = gfn_to_page(kvm, pgoff);
  2754. if (!page)
  2755. return NOPAGE_SIGBUS;
  2756. get_page(page);
  2757. if (type != NULL)
  2758. *type = VM_FAULT_MINOR;
  2759. return page;
  2760. }
  2761. static struct vm_operations_struct kvm_vm_vm_ops = {
  2762. .nopage = kvm_vm_nopage,
  2763. };
  2764. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2765. {
  2766. vma->vm_ops = &kvm_vm_vm_ops;
  2767. return 0;
  2768. }
  2769. static struct file_operations kvm_vm_fops = {
  2770. .release = kvm_vm_release,
  2771. .unlocked_ioctl = kvm_vm_ioctl,
  2772. .compat_ioctl = kvm_vm_ioctl,
  2773. .mmap = kvm_vm_mmap,
  2774. };
  2775. static int kvm_dev_ioctl_create_vm(void)
  2776. {
  2777. int fd, r;
  2778. struct inode *inode;
  2779. struct file *file;
  2780. struct kvm *kvm;
  2781. kvm = kvm_create_vm();
  2782. if (IS_ERR(kvm))
  2783. return PTR_ERR(kvm);
  2784. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2785. if (r) {
  2786. kvm_destroy_vm(kvm);
  2787. return r;
  2788. }
  2789. kvm->filp = file;
  2790. return fd;
  2791. }
  2792. static long kvm_dev_ioctl(struct file *filp,
  2793. unsigned int ioctl, unsigned long arg)
  2794. {
  2795. void __user *argp = (void __user *)arg;
  2796. long r = -EINVAL;
  2797. switch (ioctl) {
  2798. case KVM_GET_API_VERSION:
  2799. r = -EINVAL;
  2800. if (arg)
  2801. goto out;
  2802. r = KVM_API_VERSION;
  2803. break;
  2804. case KVM_CREATE_VM:
  2805. r = -EINVAL;
  2806. if (arg)
  2807. goto out;
  2808. r = kvm_dev_ioctl_create_vm();
  2809. break;
  2810. case KVM_GET_MSR_INDEX_LIST: {
  2811. struct kvm_msr_list __user *user_msr_list = argp;
  2812. struct kvm_msr_list msr_list;
  2813. unsigned n;
  2814. r = -EFAULT;
  2815. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2816. goto out;
  2817. n = msr_list.nmsrs;
  2818. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2819. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2820. goto out;
  2821. r = -E2BIG;
  2822. if (n < num_msrs_to_save)
  2823. goto out;
  2824. r = -EFAULT;
  2825. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2826. num_msrs_to_save * sizeof(u32)))
  2827. goto out;
  2828. if (copy_to_user(user_msr_list->indices
  2829. + num_msrs_to_save * sizeof(u32),
  2830. &emulated_msrs,
  2831. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2832. goto out;
  2833. r = 0;
  2834. break;
  2835. }
  2836. case KVM_CHECK_EXTENSION: {
  2837. int ext = (long)argp;
  2838. switch (ext) {
  2839. case KVM_CAP_IRQCHIP:
  2840. case KVM_CAP_HLT:
  2841. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2842. r = 1;
  2843. break;
  2844. default:
  2845. r = 0;
  2846. break;
  2847. }
  2848. break;
  2849. }
  2850. case KVM_GET_VCPU_MMAP_SIZE:
  2851. r = -EINVAL;
  2852. if (arg)
  2853. goto out;
  2854. r = 2 * PAGE_SIZE;
  2855. break;
  2856. default:
  2857. ;
  2858. }
  2859. out:
  2860. return r;
  2861. }
  2862. static struct file_operations kvm_chardev_ops = {
  2863. .unlocked_ioctl = kvm_dev_ioctl,
  2864. .compat_ioctl = kvm_dev_ioctl,
  2865. };
  2866. static struct miscdevice kvm_dev = {
  2867. KVM_MINOR,
  2868. "kvm",
  2869. &kvm_chardev_ops,
  2870. };
  2871. /*
  2872. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2873. * cached on it.
  2874. */
  2875. static void decache_vcpus_on_cpu(int cpu)
  2876. {
  2877. struct kvm *vm;
  2878. struct kvm_vcpu *vcpu;
  2879. int i;
  2880. spin_lock(&kvm_lock);
  2881. list_for_each_entry(vm, &vm_list, vm_list)
  2882. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2883. vcpu = vm->vcpus[i];
  2884. if (!vcpu)
  2885. continue;
  2886. /*
  2887. * If the vcpu is locked, then it is running on some
  2888. * other cpu and therefore it is not cached on the
  2889. * cpu in question.
  2890. *
  2891. * If it's not locked, check the last cpu it executed
  2892. * on.
  2893. */
  2894. if (mutex_trylock(&vcpu->mutex)) {
  2895. if (vcpu->cpu == cpu) {
  2896. kvm_x86_ops->vcpu_decache(vcpu);
  2897. vcpu->cpu = -1;
  2898. }
  2899. mutex_unlock(&vcpu->mutex);
  2900. }
  2901. }
  2902. spin_unlock(&kvm_lock);
  2903. }
  2904. static void hardware_enable(void *junk)
  2905. {
  2906. int cpu = raw_smp_processor_id();
  2907. if (cpu_isset(cpu, cpus_hardware_enabled))
  2908. return;
  2909. cpu_set(cpu, cpus_hardware_enabled);
  2910. kvm_x86_ops->hardware_enable(NULL);
  2911. }
  2912. static void hardware_disable(void *junk)
  2913. {
  2914. int cpu = raw_smp_processor_id();
  2915. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2916. return;
  2917. cpu_clear(cpu, cpus_hardware_enabled);
  2918. decache_vcpus_on_cpu(cpu);
  2919. kvm_x86_ops->hardware_disable(NULL);
  2920. }
  2921. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2922. void *v)
  2923. {
  2924. int cpu = (long)v;
  2925. switch (val) {
  2926. case CPU_DYING:
  2927. case CPU_DYING_FROZEN:
  2928. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2929. cpu);
  2930. hardware_disable(NULL);
  2931. break;
  2932. case CPU_UP_CANCELED:
  2933. case CPU_UP_CANCELED_FROZEN:
  2934. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2935. cpu);
  2936. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2937. break;
  2938. case CPU_ONLINE:
  2939. case CPU_ONLINE_FROZEN:
  2940. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2941. cpu);
  2942. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2943. break;
  2944. }
  2945. return NOTIFY_OK;
  2946. }
  2947. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2948. void *v)
  2949. {
  2950. if (val == SYS_RESTART) {
  2951. /*
  2952. * Some (well, at least mine) BIOSes hang on reboot if
  2953. * in vmx root mode.
  2954. */
  2955. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2956. on_each_cpu(hardware_disable, NULL, 0, 1);
  2957. }
  2958. return NOTIFY_OK;
  2959. }
  2960. static struct notifier_block kvm_reboot_notifier = {
  2961. .notifier_call = kvm_reboot,
  2962. .priority = 0,
  2963. };
  2964. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2965. {
  2966. memset(bus, 0, sizeof(*bus));
  2967. }
  2968. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2969. {
  2970. int i;
  2971. for (i = 0; i < bus->dev_count; i++) {
  2972. struct kvm_io_device *pos = bus->devs[i];
  2973. kvm_iodevice_destructor(pos);
  2974. }
  2975. }
  2976. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2977. {
  2978. int i;
  2979. for (i = 0; i < bus->dev_count; i++) {
  2980. struct kvm_io_device *pos = bus->devs[i];
  2981. if (pos->in_range(pos, addr))
  2982. return pos;
  2983. }
  2984. return NULL;
  2985. }
  2986. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2987. {
  2988. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2989. bus->devs[bus->dev_count++] = dev;
  2990. }
  2991. static struct notifier_block kvm_cpu_notifier = {
  2992. .notifier_call = kvm_cpu_hotplug,
  2993. .priority = 20, /* must be > scheduler priority */
  2994. };
  2995. static u64 stat_get(void *_offset)
  2996. {
  2997. unsigned offset = (long)_offset;
  2998. u64 total = 0;
  2999. struct kvm *kvm;
  3000. struct kvm_vcpu *vcpu;
  3001. int i;
  3002. spin_lock(&kvm_lock);
  3003. list_for_each_entry(kvm, &vm_list, vm_list)
  3004. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3005. vcpu = kvm->vcpus[i];
  3006. if (vcpu)
  3007. total += *(u32 *)((void *)vcpu + offset);
  3008. }
  3009. spin_unlock(&kvm_lock);
  3010. return total;
  3011. }
  3012. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  3013. static __init void kvm_init_debug(void)
  3014. {
  3015. struct kvm_stats_debugfs_item *p;
  3016. debugfs_dir = debugfs_create_dir("kvm", NULL);
  3017. for (p = debugfs_entries; p->name; ++p)
  3018. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  3019. (void *)(long)p->offset,
  3020. &stat_fops);
  3021. }
  3022. static void kvm_exit_debug(void)
  3023. {
  3024. struct kvm_stats_debugfs_item *p;
  3025. for (p = debugfs_entries; p->name; ++p)
  3026. debugfs_remove(p->dentry);
  3027. debugfs_remove(debugfs_dir);
  3028. }
  3029. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  3030. {
  3031. hardware_disable(NULL);
  3032. return 0;
  3033. }
  3034. static int kvm_resume(struct sys_device *dev)
  3035. {
  3036. hardware_enable(NULL);
  3037. return 0;
  3038. }
  3039. static struct sysdev_class kvm_sysdev_class = {
  3040. .name = "kvm",
  3041. .suspend = kvm_suspend,
  3042. .resume = kvm_resume,
  3043. };
  3044. static struct sys_device kvm_sysdev = {
  3045. .id = 0,
  3046. .cls = &kvm_sysdev_class,
  3047. };
  3048. hpa_t bad_page_address;
  3049. static inline
  3050. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  3051. {
  3052. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  3053. }
  3054. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  3055. {
  3056. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3057. kvm_x86_ops->vcpu_load(vcpu, cpu);
  3058. }
  3059. static void kvm_sched_out(struct preempt_notifier *pn,
  3060. struct task_struct *next)
  3061. {
  3062. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  3063. kvm_x86_ops->vcpu_put(vcpu);
  3064. }
  3065. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  3066. struct module *module)
  3067. {
  3068. int r;
  3069. int cpu;
  3070. if (kvm_x86_ops) {
  3071. printk(KERN_ERR "kvm: already loaded the other module\n");
  3072. return -EEXIST;
  3073. }
  3074. if (!ops->cpu_has_kvm_support()) {
  3075. printk(KERN_ERR "kvm: no hardware support\n");
  3076. return -EOPNOTSUPP;
  3077. }
  3078. if (ops->disabled_by_bios()) {
  3079. printk(KERN_ERR "kvm: disabled by bios\n");
  3080. return -EOPNOTSUPP;
  3081. }
  3082. kvm_x86_ops = ops;
  3083. r = kvm_x86_ops->hardware_setup();
  3084. if (r < 0)
  3085. goto out;
  3086. for_each_online_cpu(cpu) {
  3087. smp_call_function_single(cpu,
  3088. kvm_x86_ops->check_processor_compatibility,
  3089. &r, 0, 1);
  3090. if (r < 0)
  3091. goto out_free_0;
  3092. }
  3093. on_each_cpu(hardware_enable, NULL, 0, 1);
  3094. r = register_cpu_notifier(&kvm_cpu_notifier);
  3095. if (r)
  3096. goto out_free_1;
  3097. register_reboot_notifier(&kvm_reboot_notifier);
  3098. r = sysdev_class_register(&kvm_sysdev_class);
  3099. if (r)
  3100. goto out_free_2;
  3101. r = sysdev_register(&kvm_sysdev);
  3102. if (r)
  3103. goto out_free_3;
  3104. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  3105. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  3106. __alignof__(struct kvm_vcpu), 0, 0);
  3107. if (!kvm_vcpu_cache) {
  3108. r = -ENOMEM;
  3109. goto out_free_4;
  3110. }
  3111. kvm_chardev_ops.owner = module;
  3112. r = misc_register(&kvm_dev);
  3113. if (r) {
  3114. printk (KERN_ERR "kvm: misc device register failed\n");
  3115. goto out_free;
  3116. }
  3117. kvm_preempt_ops.sched_in = kvm_sched_in;
  3118. kvm_preempt_ops.sched_out = kvm_sched_out;
  3119. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3120. return 0;
  3121. out_free:
  3122. kmem_cache_destroy(kvm_vcpu_cache);
  3123. out_free_4:
  3124. sysdev_unregister(&kvm_sysdev);
  3125. out_free_3:
  3126. sysdev_class_unregister(&kvm_sysdev_class);
  3127. out_free_2:
  3128. unregister_reboot_notifier(&kvm_reboot_notifier);
  3129. unregister_cpu_notifier(&kvm_cpu_notifier);
  3130. out_free_1:
  3131. on_each_cpu(hardware_disable, NULL, 0, 1);
  3132. out_free_0:
  3133. kvm_x86_ops->hardware_unsetup();
  3134. out:
  3135. kvm_x86_ops = NULL;
  3136. return r;
  3137. }
  3138. void kvm_exit_x86(void)
  3139. {
  3140. misc_deregister(&kvm_dev);
  3141. kmem_cache_destroy(kvm_vcpu_cache);
  3142. sysdev_unregister(&kvm_sysdev);
  3143. sysdev_class_unregister(&kvm_sysdev_class);
  3144. unregister_reboot_notifier(&kvm_reboot_notifier);
  3145. unregister_cpu_notifier(&kvm_cpu_notifier);
  3146. on_each_cpu(hardware_disable, NULL, 0, 1);
  3147. kvm_x86_ops->hardware_unsetup();
  3148. kvm_x86_ops = NULL;
  3149. }
  3150. static __init int kvm_init(void)
  3151. {
  3152. static struct page *bad_page;
  3153. int r;
  3154. r = kvm_mmu_module_init();
  3155. if (r)
  3156. goto out4;
  3157. kvm_init_debug();
  3158. kvm_init_msr_list();
  3159. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  3160. r = -ENOMEM;
  3161. goto out;
  3162. }
  3163. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  3164. memset(__va(bad_page_address), 0, PAGE_SIZE);
  3165. return 0;
  3166. out:
  3167. kvm_exit_debug();
  3168. kvm_mmu_module_exit();
  3169. out4:
  3170. return r;
  3171. }
  3172. static __exit void kvm_exit(void)
  3173. {
  3174. kvm_exit_debug();
  3175. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3176. kvm_mmu_module_exit();
  3177. }
  3178. module_init(kvm_init)
  3179. module_exit(kvm_exit)
  3180. EXPORT_SYMBOL_GPL(kvm_init_x86);
  3181. EXPORT_SYMBOL_GPL(kvm_exit_x86);