ioremap.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. /*
  2. * arch/sh/mm/ioremap.c
  3. *
  4. * (C) Copyright 1995 1996 Linus Torvalds
  5. * (C) Copyright 2005 - 2010 Paul Mundt
  6. *
  7. * Re-map IO memory to kernel address space so that we can access it.
  8. * This is needed for high PCI addresses that aren't mapped in the
  9. * 640k-1MB IO memory area on PC's
  10. *
  11. * This file is subject to the terms and conditions of the GNU General
  12. * Public License. See the file "COPYING" in the main directory of this
  13. * archive for more details.
  14. */
  15. #include <linux/vmalloc.h>
  16. #include <linux/module.h>
  17. #include <linux/mm.h>
  18. #include <linux/pci.h>
  19. #include <linux/io.h>
  20. #include <asm/page.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/addrspace.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/mmu.h>
  26. /*
  27. * Remap an arbitrary physical address space into the kernel virtual
  28. * address space. Needed when the kernel wants to access high addresses
  29. * directly.
  30. *
  31. * NOTE! We need to allow non-page-aligned mappings too: we will obviously
  32. * have to convert them into an offset in a page-aligned mapping, but the
  33. * caller shouldn't need to know that small detail.
  34. */
  35. void __iomem * __init_refok
  36. __ioremap_caller(unsigned long phys_addr, unsigned long size,
  37. pgprot_t pgprot, void *caller)
  38. {
  39. struct vm_struct *area;
  40. unsigned long offset, last_addr, addr, orig_addr;
  41. /* Don't allow wraparound or zero size */
  42. last_addr = phys_addr + size - 1;
  43. if (!size || last_addr < phys_addr)
  44. return NULL;
  45. /*
  46. * If we're in the fixed PCI memory range, mapping through page
  47. * tables is not only pointless, but also fundamentally broken.
  48. * Just return the physical address instead.
  49. *
  50. * For boards that map a small PCI memory aperture somewhere in
  51. * P1/P2 space, ioremap() will already do the right thing,
  52. * and we'll never get this far.
  53. */
  54. if (is_pci_memory_fixed_range(phys_addr, size))
  55. return (void __iomem *)phys_addr;
  56. /*
  57. * Mappings have to be page-aligned
  58. */
  59. offset = phys_addr & ~PAGE_MASK;
  60. phys_addr &= PAGE_MASK;
  61. size = PAGE_ALIGN(last_addr+1) - phys_addr;
  62. /*
  63. * If we can't yet use the regular approach, go the fixmap route.
  64. */
  65. if (!mem_init_done)
  66. return ioremap_fixed(phys_addr, size, pgprot);
  67. /*
  68. * Ok, go for it..
  69. */
  70. area = get_vm_area_caller(size, VM_IOREMAP, caller);
  71. if (!area)
  72. return NULL;
  73. area->phys_addr = phys_addr;
  74. orig_addr = addr = (unsigned long)area->addr;
  75. #ifdef CONFIG_PMB
  76. /*
  77. * First try to remap through the PMB once a valid VMA has been
  78. * established. Smaller allocations (or the rest of the size
  79. * remaining after a PMB mapping due to the size not being
  80. * perfectly aligned on a PMB size boundary) are then mapped
  81. * through the UTLB using conventional page tables.
  82. *
  83. * PMB entries are all pre-faulted.
  84. */
  85. if (unlikely(phys_addr >= P1SEG)) {
  86. unsigned long mapped;
  87. mapped = pmb_remap(addr, phys_addr, size, pgprot_val(pgprot));
  88. if (likely(mapped)) {
  89. addr += mapped;
  90. phys_addr += mapped;
  91. size -= mapped;
  92. }
  93. }
  94. #endif
  95. if (likely(size))
  96. if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
  97. vunmap((void *)orig_addr);
  98. return NULL;
  99. }
  100. return (void __iomem *)(offset + (char *)orig_addr);
  101. }
  102. EXPORT_SYMBOL(__ioremap_caller);
  103. /*
  104. * Simple checks for non-translatable mappings.
  105. */
  106. static inline int iomapping_nontranslatable(unsigned long offset)
  107. {
  108. #ifdef CONFIG_29BIT
  109. /*
  110. * In 29-bit mode this includes the fixed P1/P2 areas, as well as
  111. * parts of P3.
  112. */
  113. if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX)
  114. return 1;
  115. #endif
  116. if (is_pci_memory_fixed_range(offset, 0))
  117. return 1;
  118. return 0;
  119. }
  120. void __iounmap(void __iomem *addr)
  121. {
  122. unsigned long vaddr = (unsigned long __force)addr;
  123. struct vm_struct *p;
  124. /*
  125. * Nothing to do if there is no translatable mapping.
  126. */
  127. if (iomapping_nontranslatable(vaddr))
  128. return;
  129. /*
  130. * There's no VMA if it's from an early fixed mapping.
  131. */
  132. if (iounmap_fixed(addr) == 0)
  133. return;
  134. #ifdef CONFIG_PMB
  135. /*
  136. * Purge any PMB entries that may have been established for this
  137. * mapping, then proceed with conventional VMA teardown.
  138. *
  139. * XXX: Note that due to the way that remove_vm_area() does
  140. * matching of the resultant VMA, we aren't able to fast-forward
  141. * the address past the PMB space until the end of the VMA where
  142. * the page tables reside. As such, unmap_vm_area() will be
  143. * forced to linearly scan over the area until it finds the page
  144. * tables where PTEs that need to be unmapped actually reside,
  145. * which is far from optimal. Perhaps we need to use a separate
  146. * VMA for the PMB mappings?
  147. * -- PFM.
  148. */
  149. pmb_unmap(vaddr);
  150. #endif
  151. p = remove_vm_area((void *)(vaddr & PAGE_MASK));
  152. if (!p) {
  153. printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
  154. return;
  155. }
  156. kfree(p);
  157. }
  158. EXPORT_SYMBOL(__iounmap);