sh_eth.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include "sh_eth.h"
  33. /* CPU <-> EDMAC endian convert */
  34. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  35. {
  36. switch (mdp->edmac_endian) {
  37. case EDMAC_LITTLE_ENDIAN:
  38. return cpu_to_le32(x);
  39. case EDMAC_BIG_ENDIAN:
  40. return cpu_to_be32(x);
  41. }
  42. return x;
  43. }
  44. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  45. {
  46. switch (mdp->edmac_endian) {
  47. case EDMAC_LITTLE_ENDIAN:
  48. return le32_to_cpu(x);
  49. case EDMAC_BIG_ENDIAN:
  50. return be32_to_cpu(x);
  51. }
  52. return x;
  53. }
  54. /*
  55. * Program the hardware MAC address from dev->dev_addr.
  56. */
  57. static void update_mac_address(struct net_device *ndev)
  58. {
  59. u32 ioaddr = ndev->base_addr;
  60. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  61. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  62. ioaddr + MAHR);
  63. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  64. ioaddr + MALR);
  65. }
  66. /*
  67. * Get MAC address from SuperH MAC address register
  68. *
  69. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  70. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  71. * When you want use this device, you must set MAC address in bootloader.
  72. *
  73. */
  74. static void read_mac_address(struct net_device *ndev)
  75. {
  76. u32 ioaddr = ndev->base_addr;
  77. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  78. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  79. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  80. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  81. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  82. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  83. }
  84. struct bb_info {
  85. struct mdiobb_ctrl ctrl;
  86. u32 addr;
  87. u32 mmd_msk;/* MMD */
  88. u32 mdo_msk;
  89. u32 mdi_msk;
  90. u32 mdc_msk;
  91. };
  92. /* PHY bit set */
  93. static void bb_set(u32 addr, u32 msk)
  94. {
  95. ctrl_outl(ctrl_inl(addr) | msk, addr);
  96. }
  97. /* PHY bit clear */
  98. static void bb_clr(u32 addr, u32 msk)
  99. {
  100. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  101. }
  102. /* PHY bit read */
  103. static int bb_read(u32 addr, u32 msk)
  104. {
  105. return (ctrl_inl(addr) & msk) != 0;
  106. }
  107. /* Data I/O pin control */
  108. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  109. {
  110. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  111. if (bit)
  112. bb_set(bitbang->addr, bitbang->mmd_msk);
  113. else
  114. bb_clr(bitbang->addr, bitbang->mmd_msk);
  115. }
  116. /* Set bit data*/
  117. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  118. {
  119. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  120. if (bit)
  121. bb_set(bitbang->addr, bitbang->mdo_msk);
  122. else
  123. bb_clr(bitbang->addr, bitbang->mdo_msk);
  124. }
  125. /* Get bit data*/
  126. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  127. {
  128. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  129. return bb_read(bitbang->addr, bitbang->mdi_msk);
  130. }
  131. /* MDC pin control */
  132. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  133. {
  134. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  135. if (bit)
  136. bb_set(bitbang->addr, bitbang->mdc_msk);
  137. else
  138. bb_clr(bitbang->addr, bitbang->mdc_msk);
  139. }
  140. /* mdio bus control struct */
  141. static struct mdiobb_ops bb_ops = {
  142. .owner = THIS_MODULE,
  143. .set_mdc = sh_mdc_ctrl,
  144. .set_mdio_dir = sh_mmd_ctrl,
  145. .set_mdio_data = sh_set_mdio,
  146. .get_mdio_data = sh_get_mdio,
  147. };
  148. /* Chip Reset */
  149. static void sh_eth_reset(struct net_device *ndev)
  150. {
  151. u32 ioaddr = ndev->base_addr;
  152. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  153. int cnt = 100;
  154. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  155. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  156. while (cnt > 0) {
  157. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  158. break;
  159. mdelay(1);
  160. cnt--;
  161. }
  162. if (cnt < 0)
  163. printk(KERN_ERR "Device reset fail\n");
  164. /* Table Init */
  165. ctrl_outl(0x0, ioaddr + TDLAR);
  166. ctrl_outl(0x0, ioaddr + TDFAR);
  167. ctrl_outl(0x0, ioaddr + TDFXR);
  168. ctrl_outl(0x0, ioaddr + TDFFR);
  169. ctrl_outl(0x0, ioaddr + RDLAR);
  170. ctrl_outl(0x0, ioaddr + RDFAR);
  171. ctrl_outl(0x0, ioaddr + RDFXR);
  172. ctrl_outl(0x0, ioaddr + RDFFR);
  173. #else
  174. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  175. mdelay(3);
  176. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  177. #endif
  178. }
  179. /* free skb and descriptor buffer */
  180. static void sh_eth_ring_free(struct net_device *ndev)
  181. {
  182. struct sh_eth_private *mdp = netdev_priv(ndev);
  183. int i;
  184. /* Free Rx skb ringbuffer */
  185. if (mdp->rx_skbuff) {
  186. for (i = 0; i < RX_RING_SIZE; i++) {
  187. if (mdp->rx_skbuff[i])
  188. dev_kfree_skb(mdp->rx_skbuff[i]);
  189. }
  190. }
  191. kfree(mdp->rx_skbuff);
  192. /* Free Tx skb ringbuffer */
  193. if (mdp->tx_skbuff) {
  194. for (i = 0; i < TX_RING_SIZE; i++) {
  195. if (mdp->tx_skbuff[i])
  196. dev_kfree_skb(mdp->tx_skbuff[i]);
  197. }
  198. }
  199. kfree(mdp->tx_skbuff);
  200. }
  201. /* format skb and descriptor buffer */
  202. static void sh_eth_ring_format(struct net_device *ndev)
  203. {
  204. u32 ioaddr = ndev->base_addr, reserve = 0;
  205. struct sh_eth_private *mdp = netdev_priv(ndev);
  206. int i;
  207. struct sk_buff *skb;
  208. struct sh_eth_rxdesc *rxdesc = NULL;
  209. struct sh_eth_txdesc *txdesc = NULL;
  210. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  211. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  212. mdp->cur_rx = mdp->cur_tx = 0;
  213. mdp->dirty_rx = mdp->dirty_tx = 0;
  214. memset(mdp->rx_ring, 0, rx_ringsize);
  215. /* build Rx ring buffer */
  216. for (i = 0; i < RX_RING_SIZE; i++) {
  217. /* skb */
  218. mdp->rx_skbuff[i] = NULL;
  219. skb = dev_alloc_skb(mdp->rx_buf_sz);
  220. mdp->rx_skbuff[i] = skb;
  221. if (skb == NULL)
  222. break;
  223. skb->dev = ndev; /* Mark as being used by this device. */
  224. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  225. reserve = SH7763_SKB_ALIGN
  226. - ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
  227. if (reserve)
  228. skb_reserve(skb, reserve);
  229. #else
  230. skb_reserve(skb, RX_OFFSET);
  231. #endif
  232. /* RX descriptor */
  233. rxdesc = &mdp->rx_ring[i];
  234. rxdesc->addr = (u32)skb->data & ~0x3UL;
  235. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  236. /* The size of the buffer is 16 byte boundary. */
  237. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  238. /* Rx descriptor address set */
  239. if (i == 0) {
  240. ctrl_outl((u32)rxdesc, ioaddr + RDLAR);
  241. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  242. ctrl_outl((u32)rxdesc, ioaddr + RDFAR);
  243. #endif
  244. }
  245. }
  246. /* Rx descriptor address set */
  247. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  248. ctrl_outl((u32)rxdesc, ioaddr + RDFXR);
  249. ctrl_outl(0x1, ioaddr + RDFFR);
  250. #endif
  251. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  252. /* Mark the last entry as wrapping the ring. */
  253. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  254. memset(mdp->tx_ring, 0, tx_ringsize);
  255. /* build Tx ring buffer */
  256. for (i = 0; i < TX_RING_SIZE; i++) {
  257. mdp->tx_skbuff[i] = NULL;
  258. txdesc = &mdp->tx_ring[i];
  259. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  260. txdesc->buffer_length = 0;
  261. if (i == 0) {
  262. /* Tx descriptor address set */
  263. ctrl_outl((u32)txdesc, ioaddr + TDLAR);
  264. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  265. ctrl_outl((u32)txdesc, ioaddr + TDFAR);
  266. #endif
  267. }
  268. }
  269. /* Tx descriptor address set */
  270. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  271. ctrl_outl((u32)txdesc, ioaddr + TDFXR);
  272. ctrl_outl(0x1, ioaddr + TDFFR);
  273. #endif
  274. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  275. }
  276. /* Get skb and descriptor buffer */
  277. static int sh_eth_ring_init(struct net_device *ndev)
  278. {
  279. struct sh_eth_private *mdp = netdev_priv(ndev);
  280. int rx_ringsize, tx_ringsize, ret = 0;
  281. /*
  282. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  283. * card needs room to do 8 byte alignment, +2 so we can reserve
  284. * the first 2 bytes, and +16 gets room for the status word from the
  285. * card.
  286. */
  287. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  288. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  289. /* Allocate RX and TX skb rings */
  290. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  291. GFP_KERNEL);
  292. if (!mdp->rx_skbuff) {
  293. printk(KERN_ERR "%s: Cannot allocate Rx skb\n", ndev->name);
  294. ret = -ENOMEM;
  295. return ret;
  296. }
  297. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  298. GFP_KERNEL);
  299. if (!mdp->tx_skbuff) {
  300. printk(KERN_ERR "%s: Cannot allocate Tx skb\n", ndev->name);
  301. ret = -ENOMEM;
  302. goto skb_ring_free;
  303. }
  304. /* Allocate all Rx descriptors. */
  305. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  306. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  307. GFP_KERNEL);
  308. if (!mdp->rx_ring) {
  309. printk(KERN_ERR "%s: Cannot allocate Rx Ring (size %d bytes)\n",
  310. ndev->name, rx_ringsize);
  311. ret = -ENOMEM;
  312. goto desc_ring_free;
  313. }
  314. mdp->dirty_rx = 0;
  315. /* Allocate all Tx descriptors. */
  316. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  317. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  318. GFP_KERNEL);
  319. if (!mdp->tx_ring) {
  320. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  321. ndev->name, tx_ringsize);
  322. ret = -ENOMEM;
  323. goto desc_ring_free;
  324. }
  325. return ret;
  326. desc_ring_free:
  327. /* free DMA buffer */
  328. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  329. skb_ring_free:
  330. /* Free Rx and Tx skb ring buffer */
  331. sh_eth_ring_free(ndev);
  332. return ret;
  333. }
  334. static int sh_eth_dev_init(struct net_device *ndev)
  335. {
  336. int ret = 0;
  337. struct sh_eth_private *mdp = netdev_priv(ndev);
  338. u32 ioaddr = ndev->base_addr;
  339. u_int32_t rx_int_var, tx_int_var;
  340. u32 val;
  341. /* Soft Reset */
  342. sh_eth_reset(ndev);
  343. /* Descriptor format */
  344. sh_eth_ring_format(ndev);
  345. ctrl_outl(RPADIR_INIT, ioaddr + RPADIR);
  346. /* all sh_eth int mask */
  347. ctrl_outl(0, ioaddr + EESIPR);
  348. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  349. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  350. #else
  351. ctrl_outl(0, ioaddr + EDMR); /* Endian change */
  352. #endif
  353. /* FIFO size set */
  354. ctrl_outl((FIFO_SIZE_T | FIFO_SIZE_R), ioaddr + FDR);
  355. ctrl_outl(0, ioaddr + TFTR);
  356. /* Frame recv control */
  357. ctrl_outl(0, ioaddr + RMCR);
  358. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  359. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  360. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  361. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  362. /* Burst sycle set */
  363. ctrl_outl(0x800, ioaddr + BCULR);
  364. #endif
  365. ctrl_outl((FIFO_F_D_RFF | FIFO_F_D_RFD), ioaddr + FCFTR);
  366. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  367. ctrl_outl(0, ioaddr + TRIMD);
  368. #endif
  369. /* Recv frame limit set register */
  370. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  371. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  372. ctrl_outl((DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff), ioaddr + EESIPR);
  373. /* PAUSE Prohibition */
  374. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  375. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  376. ctrl_outl(val, ioaddr + ECMR);
  377. /* E-MAC Status Register clear */
  378. ctrl_outl(ECSR_INIT, ioaddr + ECSR);
  379. /* E-MAC Interrupt Enable register */
  380. ctrl_outl(ECSIPR_INIT, ioaddr + ECSIPR);
  381. /* Set MAC address */
  382. update_mac_address(ndev);
  383. /* mask reset */
  384. #if defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  385. ctrl_outl(APR_AP, ioaddr + APR);
  386. ctrl_outl(MPR_MP, ioaddr + MPR);
  387. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  388. #endif
  389. #if defined(CONFIG_CPU_SUBTYPE_SH7710)
  390. ctrl_outl(BCFR_UNLIMITED, ioaddr + BCFR);
  391. #endif
  392. /* Setting the Rx mode will start the Rx process. */
  393. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  394. netif_start_queue(ndev);
  395. return ret;
  396. }
  397. /* free Tx skb function */
  398. static int sh_eth_txfree(struct net_device *ndev)
  399. {
  400. struct sh_eth_private *mdp = netdev_priv(ndev);
  401. struct sh_eth_txdesc *txdesc;
  402. int freeNum = 0;
  403. int entry = 0;
  404. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  405. entry = mdp->dirty_tx % TX_RING_SIZE;
  406. txdesc = &mdp->tx_ring[entry];
  407. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  408. break;
  409. /* Free the original skb. */
  410. if (mdp->tx_skbuff[entry]) {
  411. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  412. mdp->tx_skbuff[entry] = NULL;
  413. freeNum++;
  414. }
  415. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  416. if (entry >= TX_RING_SIZE - 1)
  417. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  418. mdp->stats.tx_packets++;
  419. mdp->stats.tx_bytes += txdesc->buffer_length;
  420. }
  421. return freeNum;
  422. }
  423. /* Packet receive function */
  424. static int sh_eth_rx(struct net_device *ndev)
  425. {
  426. struct sh_eth_private *mdp = netdev_priv(ndev);
  427. struct sh_eth_rxdesc *rxdesc;
  428. int entry = mdp->cur_rx % RX_RING_SIZE;
  429. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  430. struct sk_buff *skb;
  431. u16 pkt_len = 0;
  432. u32 desc_status, reserve = 0;
  433. rxdesc = &mdp->rx_ring[entry];
  434. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  435. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  436. pkt_len = rxdesc->frame_length;
  437. if (--boguscnt < 0)
  438. break;
  439. if (!(desc_status & RDFEND))
  440. mdp->stats.rx_length_errors++;
  441. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  442. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  443. mdp->stats.rx_errors++;
  444. if (desc_status & RD_RFS1)
  445. mdp->stats.rx_crc_errors++;
  446. if (desc_status & RD_RFS2)
  447. mdp->stats.rx_frame_errors++;
  448. if (desc_status & RD_RFS3)
  449. mdp->stats.rx_length_errors++;
  450. if (desc_status & RD_RFS4)
  451. mdp->stats.rx_length_errors++;
  452. if (desc_status & RD_RFS6)
  453. mdp->stats.rx_missed_errors++;
  454. if (desc_status & RD_RFS10)
  455. mdp->stats.rx_over_errors++;
  456. } else {
  457. swaps((char *)(rxdesc->addr & ~0x3), pkt_len + 2);
  458. skb = mdp->rx_skbuff[entry];
  459. mdp->rx_skbuff[entry] = NULL;
  460. skb_put(skb, pkt_len);
  461. skb->protocol = eth_type_trans(skb, ndev);
  462. netif_rx(skb);
  463. mdp->stats.rx_packets++;
  464. mdp->stats.rx_bytes += pkt_len;
  465. }
  466. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  467. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  468. }
  469. /* Refill the Rx ring buffers. */
  470. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  471. entry = mdp->dirty_rx % RX_RING_SIZE;
  472. rxdesc = &mdp->rx_ring[entry];
  473. /* The size of the buffer is 16 byte boundary. */
  474. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  475. if (mdp->rx_skbuff[entry] == NULL) {
  476. skb = dev_alloc_skb(mdp->rx_buf_sz);
  477. mdp->rx_skbuff[entry] = skb;
  478. if (skb == NULL)
  479. break; /* Better luck next round. */
  480. skb->dev = ndev;
  481. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  482. reserve = SH7763_SKB_ALIGN
  483. - ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
  484. if (reserve)
  485. skb_reserve(skb, reserve);
  486. #else
  487. skb_reserve(skb, RX_OFFSET);
  488. #endif
  489. skb->ip_summed = CHECKSUM_NONE;
  490. rxdesc->addr = (u32)skb->data & ~0x3UL;
  491. }
  492. if (entry >= RX_RING_SIZE - 1)
  493. rxdesc->status |=
  494. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  495. else
  496. rxdesc->status |=
  497. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  498. }
  499. /* Restart Rx engine if stopped. */
  500. /* If we don't need to check status, don't. -KDU */
  501. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  502. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  503. return 0;
  504. }
  505. /* error control function */
  506. static void sh_eth_error(struct net_device *ndev, int intr_status)
  507. {
  508. struct sh_eth_private *mdp = netdev_priv(ndev);
  509. u32 ioaddr = ndev->base_addr;
  510. u32 felic_stat;
  511. if (intr_status & EESR_ECI) {
  512. felic_stat = ctrl_inl(ioaddr + ECSR);
  513. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  514. if (felic_stat & ECSR_ICD)
  515. mdp->stats.tx_carrier_errors++;
  516. if (felic_stat & ECSR_LCHNG) {
  517. /* Link Changed */
  518. u32 link_stat = (ctrl_inl(ioaddr + PSR));
  519. if (!(link_stat & PHY_ST_LINK)) {
  520. /* Link Down : disable tx and rx */
  521. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  522. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  523. } else {
  524. /* Link Up */
  525. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  526. ~DMAC_M_ECI, ioaddr + EESIPR);
  527. /*clear int */
  528. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  529. ioaddr + ECSR);
  530. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  531. DMAC_M_ECI, ioaddr + EESIPR);
  532. /* enable tx and rx */
  533. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  534. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  535. }
  536. }
  537. }
  538. if (intr_status & EESR_TWB) {
  539. /* Write buck end. unused write back interrupt */
  540. if (intr_status & EESR_TABT) /* Transmit Abort int */
  541. mdp->stats.tx_aborted_errors++;
  542. }
  543. if (intr_status & EESR_RABT) {
  544. /* Receive Abort int */
  545. if (intr_status & EESR_RFRMER) {
  546. /* Receive Frame Overflow int */
  547. mdp->stats.rx_frame_errors++;
  548. printk(KERN_ERR "Receive Frame Overflow\n");
  549. }
  550. }
  551. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  552. if (intr_status & EESR_ADE) {
  553. if (intr_status & EESR_TDE) {
  554. if (intr_status & EESR_TFE)
  555. mdp->stats.tx_fifo_errors++;
  556. }
  557. }
  558. #endif
  559. if (intr_status & EESR_RDE) {
  560. /* Receive Descriptor Empty int */
  561. mdp->stats.rx_over_errors++;
  562. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  563. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  564. printk(KERN_ERR "Receive Descriptor Empty\n");
  565. }
  566. if (intr_status & EESR_RFE) {
  567. /* Receive FIFO Overflow int */
  568. mdp->stats.rx_fifo_errors++;
  569. printk(KERN_ERR "Receive FIFO Overflow\n");
  570. }
  571. if (intr_status & (EESR_TWB | EESR_TABT |
  572. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  573. EESR_ADE |
  574. #endif
  575. EESR_TDE | EESR_TFE)) {
  576. /* Tx error */
  577. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  578. /* dmesg */
  579. printk(KERN_ERR "%s:TX error. status=%8.8x cur_tx=%8.8x ",
  580. ndev->name, intr_status, mdp->cur_tx);
  581. printk(KERN_ERR "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  582. mdp->dirty_tx, (u32) ndev->state, edtrr);
  583. /* dirty buffer free */
  584. sh_eth_txfree(ndev);
  585. /* SH7712 BUG */
  586. if (edtrr ^ EDTRR_TRNS) {
  587. /* tx dma start */
  588. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  589. }
  590. /* wakeup */
  591. netif_wake_queue(ndev);
  592. }
  593. }
  594. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  595. {
  596. struct net_device *ndev = netdev;
  597. struct sh_eth_private *mdp = netdev_priv(ndev);
  598. irqreturn_t ret = IRQ_NONE;
  599. u32 ioaddr, boguscnt = RX_RING_SIZE;
  600. u32 intr_status = 0;
  601. ioaddr = ndev->base_addr;
  602. spin_lock(&mdp->lock);
  603. /* Get interrpt stat */
  604. intr_status = ctrl_inl(ioaddr + EESR);
  605. /* Clear interrupt */
  606. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  607. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  608. TX_CHECK | EESR_ERR_CHECK)) {
  609. ctrl_outl(intr_status, ioaddr + EESR);
  610. ret = IRQ_HANDLED;
  611. } else
  612. goto other_irq;
  613. if (intr_status & (EESR_FRC | /* Frame recv*/
  614. EESR_RMAF | /* Multi cast address recv*/
  615. EESR_RRF | /* Bit frame recv */
  616. EESR_RTLF | /* Long frame recv*/
  617. EESR_RTSF | /* short frame recv */
  618. EESR_PRE | /* PHY-LSI recv error */
  619. EESR_CERF)){ /* recv frame CRC error */
  620. sh_eth_rx(ndev);
  621. }
  622. /* Tx Check */
  623. if (intr_status & TX_CHECK) {
  624. sh_eth_txfree(ndev);
  625. netif_wake_queue(ndev);
  626. }
  627. if (intr_status & EESR_ERR_CHECK)
  628. sh_eth_error(ndev, intr_status);
  629. if (--boguscnt < 0) {
  630. printk(KERN_WARNING
  631. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  632. ndev->name, intr_status);
  633. }
  634. other_irq:
  635. spin_unlock(&mdp->lock);
  636. return ret;
  637. }
  638. static void sh_eth_timer(unsigned long data)
  639. {
  640. struct net_device *ndev = (struct net_device *)data;
  641. struct sh_eth_private *mdp = netdev_priv(ndev);
  642. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  643. }
  644. /* PHY state control function */
  645. static void sh_eth_adjust_link(struct net_device *ndev)
  646. {
  647. struct sh_eth_private *mdp = netdev_priv(ndev);
  648. struct phy_device *phydev = mdp->phydev;
  649. u32 ioaddr = ndev->base_addr;
  650. int new_state = 0;
  651. if (phydev->link != PHY_DOWN) {
  652. if (phydev->duplex != mdp->duplex) {
  653. new_state = 1;
  654. mdp->duplex = phydev->duplex;
  655. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  656. if (mdp->duplex) { /* FULL */
  657. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM,
  658. ioaddr + ECMR);
  659. } else { /* Half */
  660. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM,
  661. ioaddr + ECMR);
  662. }
  663. #endif
  664. }
  665. if (phydev->speed != mdp->speed) {
  666. new_state = 1;
  667. mdp->speed = phydev->speed;
  668. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  669. switch (mdp->speed) {
  670. case 10: /* 10BASE */
  671. ctrl_outl(GECMR_10, ioaddr + GECMR); break;
  672. case 100:/* 100BASE */
  673. ctrl_outl(GECMR_100, ioaddr + GECMR); break;
  674. case 1000: /* 1000BASE */
  675. ctrl_outl(GECMR_1000, ioaddr + GECMR); break;
  676. default:
  677. break;
  678. }
  679. #endif
  680. }
  681. if (mdp->link == PHY_DOWN) {
  682. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  683. | ECMR_DM, ioaddr + ECMR);
  684. new_state = 1;
  685. mdp->link = phydev->link;
  686. }
  687. } else if (mdp->link) {
  688. new_state = 1;
  689. mdp->link = PHY_DOWN;
  690. mdp->speed = 0;
  691. mdp->duplex = -1;
  692. }
  693. if (new_state)
  694. phy_print_status(phydev);
  695. }
  696. /* PHY init function */
  697. static int sh_eth_phy_init(struct net_device *ndev)
  698. {
  699. struct sh_eth_private *mdp = netdev_priv(ndev);
  700. char phy_id[BUS_ID_SIZE];
  701. struct phy_device *phydev = NULL;
  702. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  703. mdp->mii_bus->id , mdp->phy_id);
  704. mdp->link = PHY_DOWN;
  705. mdp->speed = 0;
  706. mdp->duplex = -1;
  707. /* Try connect to PHY */
  708. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  709. 0, PHY_INTERFACE_MODE_MII);
  710. if (IS_ERR(phydev)) {
  711. dev_err(&ndev->dev, "phy_connect failed\n");
  712. return PTR_ERR(phydev);
  713. }
  714. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  715. phydev->addr, phydev->drv->name);
  716. mdp->phydev = phydev;
  717. return 0;
  718. }
  719. /* PHY control start function */
  720. static int sh_eth_phy_start(struct net_device *ndev)
  721. {
  722. struct sh_eth_private *mdp = netdev_priv(ndev);
  723. int ret;
  724. ret = sh_eth_phy_init(ndev);
  725. if (ret)
  726. return ret;
  727. /* reset phy - this also wakes it from PDOWN */
  728. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  729. phy_start(mdp->phydev);
  730. return 0;
  731. }
  732. /* network device open function */
  733. static int sh_eth_open(struct net_device *ndev)
  734. {
  735. int ret = 0;
  736. struct sh_eth_private *mdp = netdev_priv(ndev);
  737. ret = request_irq(ndev->irq, &sh_eth_interrupt,
  738. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
  739. IRQF_SHARED,
  740. #else
  741. 0,
  742. #endif
  743. ndev->name, ndev);
  744. if (ret) {
  745. printk(KERN_ERR "Can not assign IRQ number to %s\n", CARDNAME);
  746. return ret;
  747. }
  748. /* Descriptor set */
  749. ret = sh_eth_ring_init(ndev);
  750. if (ret)
  751. goto out_free_irq;
  752. /* device init */
  753. ret = sh_eth_dev_init(ndev);
  754. if (ret)
  755. goto out_free_irq;
  756. /* PHY control start*/
  757. ret = sh_eth_phy_start(ndev);
  758. if (ret)
  759. goto out_free_irq;
  760. /* Set the timer to check for link beat. */
  761. init_timer(&mdp->timer);
  762. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  763. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  764. return ret;
  765. out_free_irq:
  766. free_irq(ndev->irq, ndev);
  767. return ret;
  768. }
  769. /* Timeout function */
  770. static void sh_eth_tx_timeout(struct net_device *ndev)
  771. {
  772. struct sh_eth_private *mdp = netdev_priv(ndev);
  773. u32 ioaddr = ndev->base_addr;
  774. struct sh_eth_rxdesc *rxdesc;
  775. int i;
  776. netif_stop_queue(ndev);
  777. /* worning message out. */
  778. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  779. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  780. /* tx_errors count up */
  781. mdp->stats.tx_errors++;
  782. /* timer off */
  783. del_timer_sync(&mdp->timer);
  784. /* Free all the skbuffs in the Rx queue. */
  785. for (i = 0; i < RX_RING_SIZE; i++) {
  786. rxdesc = &mdp->rx_ring[i];
  787. rxdesc->status = 0;
  788. rxdesc->addr = 0xBADF00D0;
  789. if (mdp->rx_skbuff[i])
  790. dev_kfree_skb(mdp->rx_skbuff[i]);
  791. mdp->rx_skbuff[i] = NULL;
  792. }
  793. for (i = 0; i < TX_RING_SIZE; i++) {
  794. if (mdp->tx_skbuff[i])
  795. dev_kfree_skb(mdp->tx_skbuff[i]);
  796. mdp->tx_skbuff[i] = NULL;
  797. }
  798. /* device init */
  799. sh_eth_dev_init(ndev);
  800. /* timer on */
  801. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  802. add_timer(&mdp->timer);
  803. }
  804. /* Packet transmit function */
  805. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  806. {
  807. struct sh_eth_private *mdp = netdev_priv(ndev);
  808. struct sh_eth_txdesc *txdesc;
  809. u32 entry;
  810. unsigned long flags;
  811. spin_lock_irqsave(&mdp->lock, flags);
  812. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  813. if (!sh_eth_txfree(ndev)) {
  814. netif_stop_queue(ndev);
  815. spin_unlock_irqrestore(&mdp->lock, flags);
  816. return 1;
  817. }
  818. }
  819. spin_unlock_irqrestore(&mdp->lock, flags);
  820. entry = mdp->cur_tx % TX_RING_SIZE;
  821. mdp->tx_skbuff[entry] = skb;
  822. txdesc = &mdp->tx_ring[entry];
  823. txdesc->addr = (u32)(skb->data);
  824. /* soft swap. */
  825. swaps((char *)(txdesc->addr & ~0x3), skb->len + 2);
  826. /* write back */
  827. __flush_purge_region(skb->data, skb->len);
  828. if (skb->len < ETHERSMALL)
  829. txdesc->buffer_length = ETHERSMALL;
  830. else
  831. txdesc->buffer_length = skb->len;
  832. if (entry >= TX_RING_SIZE - 1)
  833. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  834. else
  835. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  836. mdp->cur_tx++;
  837. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  838. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  839. ndev->trans_start = jiffies;
  840. return 0;
  841. }
  842. /* device close function */
  843. static int sh_eth_close(struct net_device *ndev)
  844. {
  845. struct sh_eth_private *mdp = netdev_priv(ndev);
  846. u32 ioaddr = ndev->base_addr;
  847. int ringsize;
  848. netif_stop_queue(ndev);
  849. /* Disable interrupts by clearing the interrupt mask. */
  850. ctrl_outl(0x0000, ioaddr + EESIPR);
  851. /* Stop the chip's Tx and Rx processes. */
  852. ctrl_outl(0, ioaddr + EDTRR);
  853. ctrl_outl(0, ioaddr + EDRRR);
  854. /* PHY Disconnect */
  855. if (mdp->phydev) {
  856. phy_stop(mdp->phydev);
  857. phy_disconnect(mdp->phydev);
  858. }
  859. free_irq(ndev->irq, ndev);
  860. del_timer_sync(&mdp->timer);
  861. /* Free all the skbuffs in the Rx queue. */
  862. sh_eth_ring_free(ndev);
  863. /* free DMA buffer */
  864. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  865. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  866. /* free DMA buffer */
  867. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  868. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  869. return 0;
  870. }
  871. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  872. {
  873. struct sh_eth_private *mdp = netdev_priv(ndev);
  874. u32 ioaddr = ndev->base_addr;
  875. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  876. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  877. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  878. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  879. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  880. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  881. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  882. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  883. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  884. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  885. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  886. #else
  887. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  888. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  889. #endif
  890. return &mdp->stats;
  891. }
  892. /* ioctl to device funciotn*/
  893. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  894. int cmd)
  895. {
  896. struct sh_eth_private *mdp = netdev_priv(ndev);
  897. struct phy_device *phydev = mdp->phydev;
  898. if (!netif_running(ndev))
  899. return -EINVAL;
  900. if (!phydev)
  901. return -ENODEV;
  902. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  903. }
  904. /* Multicast reception directions set */
  905. static void sh_eth_set_multicast_list(struct net_device *ndev)
  906. {
  907. u32 ioaddr = ndev->base_addr;
  908. if (ndev->flags & IFF_PROMISC) {
  909. /* Set promiscuous. */
  910. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  911. ioaddr + ECMR);
  912. } else {
  913. /* Normal, unicast/broadcast-only mode. */
  914. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  915. ioaddr + ECMR);
  916. }
  917. }
  918. /* SuperH's TSU register init function */
  919. static void sh_eth_tsu_init(u32 ioaddr)
  920. {
  921. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  922. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  923. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  924. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  925. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  926. ctrl_outl(0, ioaddr + TSU_PRISL0);
  927. ctrl_outl(0, ioaddr + TSU_PRISL1);
  928. ctrl_outl(0, ioaddr + TSU_FWSL0);
  929. ctrl_outl(0, ioaddr + TSU_FWSL1);
  930. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  931. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  932. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  933. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  934. #else
  935. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  936. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  937. #endif
  938. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  939. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  940. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  941. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  942. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  943. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  944. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  945. }
  946. /* MDIO bus release function */
  947. static int sh_mdio_release(struct net_device *ndev)
  948. {
  949. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  950. /* unregister mdio bus */
  951. mdiobus_unregister(bus);
  952. /* remove mdio bus info from net_device */
  953. dev_set_drvdata(&ndev->dev, NULL);
  954. /* free bitbang info */
  955. free_mdio_bitbang(bus);
  956. return 0;
  957. }
  958. /* MDIO bus init function */
  959. static int sh_mdio_init(struct net_device *ndev, int id)
  960. {
  961. int ret, i;
  962. struct bb_info *bitbang;
  963. struct sh_eth_private *mdp = netdev_priv(ndev);
  964. /* create bit control struct for PHY */
  965. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  966. if (!bitbang) {
  967. ret = -ENOMEM;
  968. goto out;
  969. }
  970. /* bitbang init */
  971. bitbang->addr = ndev->base_addr + PIR;
  972. bitbang->mdi_msk = 0x08;
  973. bitbang->mdo_msk = 0x04;
  974. bitbang->mmd_msk = 0x02;/* MMD */
  975. bitbang->mdc_msk = 0x01;
  976. bitbang->ctrl.ops = &bb_ops;
  977. /* MII contorller setting */
  978. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  979. if (!mdp->mii_bus) {
  980. ret = -ENOMEM;
  981. goto out_free_bitbang;
  982. }
  983. /* Hook up MII support for ethtool */
  984. mdp->mii_bus->name = "sh_mii";
  985. mdp->mii_bus->parent = &ndev->dev;
  986. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  987. /* PHY IRQ */
  988. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  989. if (!mdp->mii_bus->irq) {
  990. ret = -ENOMEM;
  991. goto out_free_bus;
  992. }
  993. for (i = 0; i < PHY_MAX_ADDR; i++)
  994. mdp->mii_bus->irq[i] = PHY_POLL;
  995. /* regist mdio bus */
  996. ret = mdiobus_register(mdp->mii_bus);
  997. if (ret)
  998. goto out_free_irq;
  999. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1000. return 0;
  1001. out_free_irq:
  1002. kfree(mdp->mii_bus->irq);
  1003. out_free_bus:
  1004. free_mdio_bitbang(mdp->mii_bus);
  1005. out_free_bitbang:
  1006. kfree(bitbang);
  1007. out:
  1008. return ret;
  1009. }
  1010. static int sh_eth_drv_probe(struct platform_device *pdev)
  1011. {
  1012. int ret, i, devno = 0;
  1013. struct resource *res;
  1014. struct net_device *ndev = NULL;
  1015. struct sh_eth_private *mdp;
  1016. struct sh_eth_plat_data *pd;
  1017. /* get base addr */
  1018. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1019. if (unlikely(res == NULL)) {
  1020. dev_err(&pdev->dev, "invalid resource\n");
  1021. ret = -EINVAL;
  1022. goto out;
  1023. }
  1024. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1025. if (!ndev) {
  1026. printk(KERN_ERR "%s: could not allocate device.\n", CARDNAME);
  1027. ret = -ENOMEM;
  1028. goto out;
  1029. }
  1030. /* The sh Ether-specific entries in the device structure. */
  1031. ndev->base_addr = res->start;
  1032. devno = pdev->id;
  1033. if (devno < 0)
  1034. devno = 0;
  1035. ndev->dma = -1;
  1036. ret = platform_get_irq(pdev, 0);
  1037. if (ret < 0) {
  1038. ret = -ENODEV;
  1039. goto out_release;
  1040. }
  1041. ndev->irq = ret;
  1042. SET_NETDEV_DEV(ndev, &pdev->dev);
  1043. /* Fill in the fields of the device structure with ethernet values. */
  1044. ether_setup(ndev);
  1045. mdp = netdev_priv(ndev);
  1046. spin_lock_init(&mdp->lock);
  1047. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1048. /* get PHY ID */
  1049. mdp->phy_id = pd->phy;
  1050. /* EDMAC endian */
  1051. mdp->edmac_endian = pd->edmac_endian;
  1052. /* set function */
  1053. ndev->open = sh_eth_open;
  1054. ndev->hard_start_xmit = sh_eth_start_xmit;
  1055. ndev->stop = sh_eth_close;
  1056. ndev->get_stats = sh_eth_get_stats;
  1057. ndev->set_multicast_list = sh_eth_set_multicast_list;
  1058. ndev->do_ioctl = sh_eth_do_ioctl;
  1059. ndev->tx_timeout = sh_eth_tx_timeout;
  1060. ndev->watchdog_timeo = TX_TIMEOUT;
  1061. mdp->post_rx = POST_RX >> (devno << 1);
  1062. mdp->post_fw = POST_FW >> (devno << 1);
  1063. /* read and set MAC address */
  1064. read_mac_address(ndev);
  1065. /* First device only init */
  1066. if (!devno) {
  1067. #if defined(ARSTR)
  1068. /* reset device */
  1069. ctrl_outl(ARSTR_ARSTR, ARSTR);
  1070. mdelay(1);
  1071. #endif
  1072. #if defined(SH_TSU_ADDR)
  1073. /* TSU init (Init only)*/
  1074. sh_eth_tsu_init(SH_TSU_ADDR);
  1075. #endif
  1076. }
  1077. /* network device register */
  1078. ret = register_netdev(ndev);
  1079. if (ret)
  1080. goto out_release;
  1081. /* mdio bus init */
  1082. ret = sh_mdio_init(ndev, pdev->id);
  1083. if (ret)
  1084. goto out_unregister;
  1085. /* pritnt device infomation */
  1086. printk(KERN_INFO "%s: %s at 0x%x, ",
  1087. ndev->name, CARDNAME, (u32) ndev->base_addr);
  1088. for (i = 0; i < 5; i++)
  1089. printk("%02X:", ndev->dev_addr[i]);
  1090. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1091. platform_set_drvdata(pdev, ndev);
  1092. return ret;
  1093. out_unregister:
  1094. unregister_netdev(ndev);
  1095. out_release:
  1096. /* net_dev free */
  1097. if (ndev)
  1098. free_netdev(ndev);
  1099. out:
  1100. return ret;
  1101. }
  1102. static int sh_eth_drv_remove(struct platform_device *pdev)
  1103. {
  1104. struct net_device *ndev = platform_get_drvdata(pdev);
  1105. sh_mdio_release(ndev);
  1106. unregister_netdev(ndev);
  1107. flush_scheduled_work();
  1108. free_netdev(ndev);
  1109. platform_set_drvdata(pdev, NULL);
  1110. return 0;
  1111. }
  1112. static struct platform_driver sh_eth_driver = {
  1113. .probe = sh_eth_drv_probe,
  1114. .remove = sh_eth_drv_remove,
  1115. .driver = {
  1116. .name = CARDNAME,
  1117. },
  1118. };
  1119. static int __init sh_eth_init(void)
  1120. {
  1121. return platform_driver_register(&sh_eth_driver);
  1122. }
  1123. static void __exit sh_eth_cleanup(void)
  1124. {
  1125. platform_driver_unregister(&sh_eth_driver);
  1126. }
  1127. module_init(sh_eth_init);
  1128. module_exit(sh_eth_cleanup);
  1129. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1130. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1131. MODULE_LICENSE("GPL v2");