skbuff.h 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. #define CHECKSUM_NONE 0
  31. #define CHECKSUM_PARTIAL 1
  32. #define CHECKSUM_UNNECESSARY 2
  33. #define CHECKSUM_COMPLETE 3
  34. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  35. ~(SMP_CACHE_BYTES - 1))
  36. #define SKB_WITH_OVERHEAD(X) \
  37. (((X) - sizeof(struct skb_shared_info)) & \
  38. ~(SMP_CACHE_BYTES - 1))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * B. Checksumming on output.
  61. *
  62. * NONE: skb is checksummed by protocol or csum is not required.
  63. *
  64. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  65. * from skb->h.raw to the end and to record the checksum
  66. * at skb->h.raw+skb->csum.
  67. *
  68. * Device must show its capabilities in dev->features, set
  69. * at device setup time.
  70. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  71. * everything.
  72. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  73. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  74. * TCP/UDP over IPv4. Sigh. Vendors like this
  75. * way by an unknown reason. Though, see comment above
  76. * about CHECKSUM_UNNECESSARY. 8)
  77. *
  78. * Any questions? No questions, good. --ANK
  79. */
  80. struct net_device;
  81. #ifdef CONFIG_NETFILTER
  82. struct nf_conntrack {
  83. atomic_t use;
  84. void (*destroy)(struct nf_conntrack *);
  85. };
  86. #ifdef CONFIG_BRIDGE_NETFILTER
  87. struct nf_bridge_info {
  88. atomic_t use;
  89. struct net_device *physindev;
  90. struct net_device *physoutdev;
  91. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  92. struct net_device *netoutdev;
  93. #endif
  94. unsigned int mask;
  95. unsigned long data[32 / sizeof(unsigned long)];
  96. };
  97. #endif
  98. #endif
  99. struct sk_buff_head {
  100. /* These two members must be first. */
  101. struct sk_buff *next;
  102. struct sk_buff *prev;
  103. __u32 qlen;
  104. spinlock_t lock;
  105. };
  106. struct sk_buff;
  107. /* To allow 64K frame to be packed as single skb without frag_list */
  108. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  109. typedef struct skb_frag_struct skb_frag_t;
  110. struct skb_frag_struct {
  111. struct page *page;
  112. __u16 page_offset;
  113. __u16 size;
  114. };
  115. /* This data is invariant across clones and lives at
  116. * the end of the header data, ie. at skb->end.
  117. */
  118. struct skb_shared_info {
  119. atomic_t dataref;
  120. unsigned short nr_frags;
  121. unsigned short gso_size;
  122. /* Warning: this field is not always filled in (UFO)! */
  123. unsigned short gso_segs;
  124. unsigned short gso_type;
  125. __be32 ip6_frag_id;
  126. struct sk_buff *frag_list;
  127. skb_frag_t frags[MAX_SKB_FRAGS];
  128. };
  129. /* We divide dataref into two halves. The higher 16 bits hold references
  130. * to the payload part of skb->data. The lower 16 bits hold references to
  131. * the entire skb->data. It is up to the users of the skb to agree on
  132. * where the payload starts.
  133. *
  134. * All users must obey the rule that the skb->data reference count must be
  135. * greater than or equal to the payload reference count.
  136. *
  137. * Holding a reference to the payload part means that the user does not
  138. * care about modifications to the header part of skb->data.
  139. */
  140. #define SKB_DATAREF_SHIFT 16
  141. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  142. enum {
  143. SKB_FCLONE_UNAVAILABLE,
  144. SKB_FCLONE_ORIG,
  145. SKB_FCLONE_CLONE,
  146. };
  147. enum {
  148. SKB_GSO_TCPV4 = 1 << 0,
  149. SKB_GSO_UDP = 1 << 1,
  150. /* This indicates the skb is from an untrusted source. */
  151. SKB_GSO_DODGY = 1 << 2,
  152. /* This indicates the tcp segment has CWR set. */
  153. SKB_GSO_TCP_ECN = 1 << 3,
  154. SKB_GSO_TCPV6 = 1 << 4,
  155. };
  156. /**
  157. * struct sk_buff - socket buffer
  158. * @next: Next buffer in list
  159. * @prev: Previous buffer in list
  160. * @sk: Socket we are owned by
  161. * @tstamp: Time we arrived
  162. * @dev: Device we arrived on/are leaving by
  163. * @iif: ifindex of device we arrived on
  164. * @h: Transport layer header
  165. * @nh: Network layer header
  166. * @mac: Link layer header
  167. * @dst: destination entry
  168. * @sp: the security path, used for xfrm
  169. * @cb: Control buffer. Free for use by every layer. Put private vars here
  170. * @len: Length of actual data
  171. * @data_len: Data length
  172. * @mac_len: Length of link layer header
  173. * @csum: Checksum
  174. * @local_df: allow local fragmentation
  175. * @cloned: Head may be cloned (check refcnt to be sure)
  176. * @nohdr: Payload reference only, must not modify header
  177. * @pkt_type: Packet class
  178. * @fclone: skbuff clone status
  179. * @ip_summed: Driver fed us an IP checksum
  180. * @priority: Packet queueing priority
  181. * @users: User count - see {datagram,tcp}.c
  182. * @protocol: Packet protocol from driver
  183. * @truesize: Buffer size
  184. * @head: Head of buffer
  185. * @data: Data head pointer
  186. * @tail: Tail pointer
  187. * @end: End pointer
  188. * @destructor: Destruct function
  189. * @mark: Generic packet mark
  190. * @nfct: Associated connection, if any
  191. * @ipvs_property: skbuff is owned by ipvs
  192. * @nfctinfo: Relationship of this skb to the connection
  193. * @nfct_reasm: netfilter conntrack re-assembly pointer
  194. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  195. * @tc_index: Traffic control index
  196. * @tc_verd: traffic control verdict
  197. * @dma_cookie: a cookie to one of several possible DMA operations
  198. * done by skb DMA functions
  199. * @secmark: security marking
  200. */
  201. struct sk_buff {
  202. /* These two members must be first. */
  203. struct sk_buff *next;
  204. struct sk_buff *prev;
  205. struct sock *sk;
  206. ktime_t tstamp;
  207. struct net_device *dev;
  208. int iif;
  209. /* 4 byte hole on 64 bit*/
  210. union {
  211. struct tcphdr *th;
  212. struct udphdr *uh;
  213. struct icmphdr *icmph;
  214. struct igmphdr *igmph;
  215. struct iphdr *ipiph;
  216. struct ipv6hdr *ipv6h;
  217. unsigned char *raw;
  218. } h;
  219. union {
  220. struct iphdr *iph;
  221. struct ipv6hdr *ipv6h;
  222. struct arphdr *arph;
  223. unsigned char *raw;
  224. } nh;
  225. union {
  226. unsigned char *raw;
  227. } mac;
  228. struct dst_entry *dst;
  229. struct sec_path *sp;
  230. /*
  231. * This is the control buffer. It is free to use for every
  232. * layer. Please put your private variables there. If you
  233. * want to keep them across layers you have to do a skb_clone()
  234. * first. This is owned by whoever has the skb queued ATM.
  235. */
  236. char cb[48];
  237. unsigned int len,
  238. data_len,
  239. mac_len;
  240. union {
  241. __wsum csum;
  242. __u32 csum_offset;
  243. };
  244. __u32 priority;
  245. __u8 local_df:1,
  246. cloned:1,
  247. ip_summed:2,
  248. nohdr:1,
  249. nfctinfo:3;
  250. __u8 pkt_type:3,
  251. fclone:2,
  252. ipvs_property:1;
  253. __be16 protocol;
  254. void (*destructor)(struct sk_buff *skb);
  255. #ifdef CONFIG_NETFILTER
  256. struct nf_conntrack *nfct;
  257. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  258. struct sk_buff *nfct_reasm;
  259. #endif
  260. #ifdef CONFIG_BRIDGE_NETFILTER
  261. struct nf_bridge_info *nf_bridge;
  262. #endif
  263. #endif /* CONFIG_NETFILTER */
  264. #ifdef CONFIG_NET_SCHED
  265. __u16 tc_index; /* traffic control index */
  266. #ifdef CONFIG_NET_CLS_ACT
  267. __u16 tc_verd; /* traffic control verdict */
  268. #endif
  269. #endif
  270. #ifdef CONFIG_NET_DMA
  271. dma_cookie_t dma_cookie;
  272. #endif
  273. #ifdef CONFIG_NETWORK_SECMARK
  274. __u32 secmark;
  275. #endif
  276. __u32 mark;
  277. /* These elements must be at the end, see alloc_skb() for details. */
  278. unsigned int truesize;
  279. atomic_t users;
  280. unsigned char *head,
  281. *data,
  282. *tail,
  283. *end;
  284. };
  285. #ifdef __KERNEL__
  286. /*
  287. * Handling routines are only of interest to the kernel
  288. */
  289. #include <linux/slab.h>
  290. #include <asm/system.h>
  291. extern void kfree_skb(struct sk_buff *skb);
  292. extern void __kfree_skb(struct sk_buff *skb);
  293. extern struct sk_buff *__alloc_skb(unsigned int size,
  294. gfp_t priority, int fclone, int node);
  295. static inline struct sk_buff *alloc_skb(unsigned int size,
  296. gfp_t priority)
  297. {
  298. return __alloc_skb(size, priority, 0, -1);
  299. }
  300. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  301. gfp_t priority)
  302. {
  303. return __alloc_skb(size, priority, 1, -1);
  304. }
  305. extern void kfree_skbmem(struct sk_buff *skb);
  306. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  307. gfp_t priority);
  308. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  309. gfp_t priority);
  310. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  311. gfp_t gfp_mask);
  312. extern int pskb_expand_head(struct sk_buff *skb,
  313. int nhead, int ntail,
  314. gfp_t gfp_mask);
  315. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  316. unsigned int headroom);
  317. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  318. int newheadroom, int newtailroom,
  319. gfp_t priority);
  320. extern int skb_pad(struct sk_buff *skb, int pad);
  321. #define dev_kfree_skb(a) kfree_skb(a)
  322. extern void skb_over_panic(struct sk_buff *skb, int len,
  323. void *here);
  324. extern void skb_under_panic(struct sk_buff *skb, int len,
  325. void *here);
  326. extern void skb_truesize_bug(struct sk_buff *skb);
  327. static inline void skb_truesize_check(struct sk_buff *skb)
  328. {
  329. if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
  330. skb_truesize_bug(skb);
  331. }
  332. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  333. int getfrag(void *from, char *to, int offset,
  334. int len,int odd, struct sk_buff *skb),
  335. void *from, int length);
  336. struct skb_seq_state
  337. {
  338. __u32 lower_offset;
  339. __u32 upper_offset;
  340. __u32 frag_idx;
  341. __u32 stepped_offset;
  342. struct sk_buff *root_skb;
  343. struct sk_buff *cur_skb;
  344. __u8 *frag_data;
  345. };
  346. extern void skb_prepare_seq_read(struct sk_buff *skb,
  347. unsigned int from, unsigned int to,
  348. struct skb_seq_state *st);
  349. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  350. struct skb_seq_state *st);
  351. extern void skb_abort_seq_read(struct skb_seq_state *st);
  352. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  353. unsigned int to, struct ts_config *config,
  354. struct ts_state *state);
  355. /* Internal */
  356. #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
  357. /**
  358. * skb_queue_empty - check if a queue is empty
  359. * @list: queue head
  360. *
  361. * Returns true if the queue is empty, false otherwise.
  362. */
  363. static inline int skb_queue_empty(const struct sk_buff_head *list)
  364. {
  365. return list->next == (struct sk_buff *)list;
  366. }
  367. /**
  368. * skb_get - reference buffer
  369. * @skb: buffer to reference
  370. *
  371. * Makes another reference to a socket buffer and returns a pointer
  372. * to the buffer.
  373. */
  374. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  375. {
  376. atomic_inc(&skb->users);
  377. return skb;
  378. }
  379. /*
  380. * If users == 1, we are the only owner and are can avoid redundant
  381. * atomic change.
  382. */
  383. /**
  384. * skb_cloned - is the buffer a clone
  385. * @skb: buffer to check
  386. *
  387. * Returns true if the buffer was generated with skb_clone() and is
  388. * one of multiple shared copies of the buffer. Cloned buffers are
  389. * shared data so must not be written to under normal circumstances.
  390. */
  391. static inline int skb_cloned(const struct sk_buff *skb)
  392. {
  393. return skb->cloned &&
  394. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  395. }
  396. /**
  397. * skb_header_cloned - is the header a clone
  398. * @skb: buffer to check
  399. *
  400. * Returns true if modifying the header part of the buffer requires
  401. * the data to be copied.
  402. */
  403. static inline int skb_header_cloned(const struct sk_buff *skb)
  404. {
  405. int dataref;
  406. if (!skb->cloned)
  407. return 0;
  408. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  409. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  410. return dataref != 1;
  411. }
  412. /**
  413. * skb_header_release - release reference to header
  414. * @skb: buffer to operate on
  415. *
  416. * Drop a reference to the header part of the buffer. This is done
  417. * by acquiring a payload reference. You must not read from the header
  418. * part of skb->data after this.
  419. */
  420. static inline void skb_header_release(struct sk_buff *skb)
  421. {
  422. BUG_ON(skb->nohdr);
  423. skb->nohdr = 1;
  424. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  425. }
  426. /**
  427. * skb_shared - is the buffer shared
  428. * @skb: buffer to check
  429. *
  430. * Returns true if more than one person has a reference to this
  431. * buffer.
  432. */
  433. static inline int skb_shared(const struct sk_buff *skb)
  434. {
  435. return atomic_read(&skb->users) != 1;
  436. }
  437. /**
  438. * skb_share_check - check if buffer is shared and if so clone it
  439. * @skb: buffer to check
  440. * @pri: priority for memory allocation
  441. *
  442. * If the buffer is shared the buffer is cloned and the old copy
  443. * drops a reference. A new clone with a single reference is returned.
  444. * If the buffer is not shared the original buffer is returned. When
  445. * being called from interrupt status or with spinlocks held pri must
  446. * be GFP_ATOMIC.
  447. *
  448. * NULL is returned on a memory allocation failure.
  449. */
  450. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  451. gfp_t pri)
  452. {
  453. might_sleep_if(pri & __GFP_WAIT);
  454. if (skb_shared(skb)) {
  455. struct sk_buff *nskb = skb_clone(skb, pri);
  456. kfree_skb(skb);
  457. skb = nskb;
  458. }
  459. return skb;
  460. }
  461. /*
  462. * Copy shared buffers into a new sk_buff. We effectively do COW on
  463. * packets to handle cases where we have a local reader and forward
  464. * and a couple of other messy ones. The normal one is tcpdumping
  465. * a packet thats being forwarded.
  466. */
  467. /**
  468. * skb_unshare - make a copy of a shared buffer
  469. * @skb: buffer to check
  470. * @pri: priority for memory allocation
  471. *
  472. * If the socket buffer is a clone then this function creates a new
  473. * copy of the data, drops a reference count on the old copy and returns
  474. * the new copy with the reference count at 1. If the buffer is not a clone
  475. * the original buffer is returned. When called with a spinlock held or
  476. * from interrupt state @pri must be %GFP_ATOMIC
  477. *
  478. * %NULL is returned on a memory allocation failure.
  479. */
  480. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  481. gfp_t pri)
  482. {
  483. might_sleep_if(pri & __GFP_WAIT);
  484. if (skb_cloned(skb)) {
  485. struct sk_buff *nskb = skb_copy(skb, pri);
  486. kfree_skb(skb); /* Free our shared copy */
  487. skb = nskb;
  488. }
  489. return skb;
  490. }
  491. /**
  492. * skb_peek
  493. * @list_: list to peek at
  494. *
  495. * Peek an &sk_buff. Unlike most other operations you _MUST_
  496. * be careful with this one. A peek leaves the buffer on the
  497. * list and someone else may run off with it. You must hold
  498. * the appropriate locks or have a private queue to do this.
  499. *
  500. * Returns %NULL for an empty list or a pointer to the head element.
  501. * The reference count is not incremented and the reference is therefore
  502. * volatile. Use with caution.
  503. */
  504. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  505. {
  506. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  507. if (list == (struct sk_buff *)list_)
  508. list = NULL;
  509. return list;
  510. }
  511. /**
  512. * skb_peek_tail
  513. * @list_: list to peek at
  514. *
  515. * Peek an &sk_buff. Unlike most other operations you _MUST_
  516. * be careful with this one. A peek leaves the buffer on the
  517. * list and someone else may run off with it. You must hold
  518. * the appropriate locks or have a private queue to do this.
  519. *
  520. * Returns %NULL for an empty list or a pointer to the tail element.
  521. * The reference count is not incremented and the reference is therefore
  522. * volatile. Use with caution.
  523. */
  524. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  525. {
  526. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  527. if (list == (struct sk_buff *)list_)
  528. list = NULL;
  529. return list;
  530. }
  531. /**
  532. * skb_queue_len - get queue length
  533. * @list_: list to measure
  534. *
  535. * Return the length of an &sk_buff queue.
  536. */
  537. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  538. {
  539. return list_->qlen;
  540. }
  541. /*
  542. * This function creates a split out lock class for each invocation;
  543. * this is needed for now since a whole lot of users of the skb-queue
  544. * infrastructure in drivers have different locking usage (in hardirq)
  545. * than the networking core (in softirq only). In the long run either the
  546. * network layer or drivers should need annotation to consolidate the
  547. * main types of usage into 3 classes.
  548. */
  549. static inline void skb_queue_head_init(struct sk_buff_head *list)
  550. {
  551. spin_lock_init(&list->lock);
  552. list->prev = list->next = (struct sk_buff *)list;
  553. list->qlen = 0;
  554. }
  555. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  556. struct lock_class_key *class)
  557. {
  558. skb_queue_head_init(list);
  559. lockdep_set_class(&list->lock, class);
  560. }
  561. /*
  562. * Insert an sk_buff at the start of a list.
  563. *
  564. * The "__skb_xxxx()" functions are the non-atomic ones that
  565. * can only be called with interrupts disabled.
  566. */
  567. /**
  568. * __skb_queue_after - queue a buffer at the list head
  569. * @list: list to use
  570. * @prev: place after this buffer
  571. * @newsk: buffer to queue
  572. *
  573. * Queue a buffer int the middle of a list. This function takes no locks
  574. * and you must therefore hold required locks before calling it.
  575. *
  576. * A buffer cannot be placed on two lists at the same time.
  577. */
  578. static inline void __skb_queue_after(struct sk_buff_head *list,
  579. struct sk_buff *prev,
  580. struct sk_buff *newsk)
  581. {
  582. struct sk_buff *next;
  583. list->qlen++;
  584. next = prev->next;
  585. newsk->next = next;
  586. newsk->prev = prev;
  587. next->prev = prev->next = newsk;
  588. }
  589. /**
  590. * __skb_queue_head - queue a buffer at the list head
  591. * @list: list to use
  592. * @newsk: buffer to queue
  593. *
  594. * Queue a buffer at the start of a list. This function takes no locks
  595. * and you must therefore hold required locks before calling it.
  596. *
  597. * A buffer cannot be placed on two lists at the same time.
  598. */
  599. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  600. static inline void __skb_queue_head(struct sk_buff_head *list,
  601. struct sk_buff *newsk)
  602. {
  603. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  604. }
  605. /**
  606. * __skb_queue_tail - queue a buffer at the list tail
  607. * @list: list to use
  608. * @newsk: buffer to queue
  609. *
  610. * Queue a buffer at the end of a list. This function takes no locks
  611. * and you must therefore hold required locks before calling it.
  612. *
  613. * A buffer cannot be placed on two lists at the same time.
  614. */
  615. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  616. static inline void __skb_queue_tail(struct sk_buff_head *list,
  617. struct sk_buff *newsk)
  618. {
  619. struct sk_buff *prev, *next;
  620. list->qlen++;
  621. next = (struct sk_buff *)list;
  622. prev = next->prev;
  623. newsk->next = next;
  624. newsk->prev = prev;
  625. next->prev = prev->next = newsk;
  626. }
  627. /**
  628. * __skb_dequeue - remove from the head of the queue
  629. * @list: list to dequeue from
  630. *
  631. * Remove the head of the list. This function does not take any locks
  632. * so must be used with appropriate locks held only. The head item is
  633. * returned or %NULL if the list is empty.
  634. */
  635. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  636. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  637. {
  638. struct sk_buff *next, *prev, *result;
  639. prev = (struct sk_buff *) list;
  640. next = prev->next;
  641. result = NULL;
  642. if (next != prev) {
  643. result = next;
  644. next = next->next;
  645. list->qlen--;
  646. next->prev = prev;
  647. prev->next = next;
  648. result->next = result->prev = NULL;
  649. }
  650. return result;
  651. }
  652. /*
  653. * Insert a packet on a list.
  654. */
  655. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  656. static inline void __skb_insert(struct sk_buff *newsk,
  657. struct sk_buff *prev, struct sk_buff *next,
  658. struct sk_buff_head *list)
  659. {
  660. newsk->next = next;
  661. newsk->prev = prev;
  662. next->prev = prev->next = newsk;
  663. list->qlen++;
  664. }
  665. /*
  666. * Place a packet after a given packet in a list.
  667. */
  668. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  669. static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  670. {
  671. __skb_insert(newsk, old, old->next, list);
  672. }
  673. /*
  674. * remove sk_buff from list. _Must_ be called atomically, and with
  675. * the list known..
  676. */
  677. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  678. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  679. {
  680. struct sk_buff *next, *prev;
  681. list->qlen--;
  682. next = skb->next;
  683. prev = skb->prev;
  684. skb->next = skb->prev = NULL;
  685. next->prev = prev;
  686. prev->next = next;
  687. }
  688. /* XXX: more streamlined implementation */
  689. /**
  690. * __skb_dequeue_tail - remove from the tail of the queue
  691. * @list: list to dequeue from
  692. *
  693. * Remove the tail of the list. This function does not take any locks
  694. * so must be used with appropriate locks held only. The tail item is
  695. * returned or %NULL if the list is empty.
  696. */
  697. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  698. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  699. {
  700. struct sk_buff *skb = skb_peek_tail(list);
  701. if (skb)
  702. __skb_unlink(skb, list);
  703. return skb;
  704. }
  705. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  706. {
  707. return skb->data_len;
  708. }
  709. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  710. {
  711. return skb->len - skb->data_len;
  712. }
  713. static inline int skb_pagelen(const struct sk_buff *skb)
  714. {
  715. int i, len = 0;
  716. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  717. len += skb_shinfo(skb)->frags[i].size;
  718. return len + skb_headlen(skb);
  719. }
  720. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  721. struct page *page, int off, int size)
  722. {
  723. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  724. frag->page = page;
  725. frag->page_offset = off;
  726. frag->size = size;
  727. skb_shinfo(skb)->nr_frags = i + 1;
  728. }
  729. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  730. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  731. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  732. /*
  733. * Add data to an sk_buff
  734. */
  735. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  736. {
  737. unsigned char *tmp = skb->tail;
  738. SKB_LINEAR_ASSERT(skb);
  739. skb->tail += len;
  740. skb->len += len;
  741. return tmp;
  742. }
  743. /**
  744. * skb_put - add data to a buffer
  745. * @skb: buffer to use
  746. * @len: amount of data to add
  747. *
  748. * This function extends the used data area of the buffer. If this would
  749. * exceed the total buffer size the kernel will panic. A pointer to the
  750. * first byte of the extra data is returned.
  751. */
  752. static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
  753. {
  754. unsigned char *tmp = skb->tail;
  755. SKB_LINEAR_ASSERT(skb);
  756. skb->tail += len;
  757. skb->len += len;
  758. if (unlikely(skb->tail>skb->end))
  759. skb_over_panic(skb, len, current_text_addr());
  760. return tmp;
  761. }
  762. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  763. {
  764. skb->data -= len;
  765. skb->len += len;
  766. return skb->data;
  767. }
  768. /**
  769. * skb_push - add data to the start of a buffer
  770. * @skb: buffer to use
  771. * @len: amount of data to add
  772. *
  773. * This function extends the used data area of the buffer at the buffer
  774. * start. If this would exceed the total buffer headroom the kernel will
  775. * panic. A pointer to the first byte of the extra data is returned.
  776. */
  777. static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  778. {
  779. skb->data -= len;
  780. skb->len += len;
  781. if (unlikely(skb->data<skb->head))
  782. skb_under_panic(skb, len, current_text_addr());
  783. return skb->data;
  784. }
  785. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  786. {
  787. skb->len -= len;
  788. BUG_ON(skb->len < skb->data_len);
  789. return skb->data += len;
  790. }
  791. /**
  792. * skb_pull - remove data from the start of a buffer
  793. * @skb: buffer to use
  794. * @len: amount of data to remove
  795. *
  796. * This function removes data from the start of a buffer, returning
  797. * the memory to the headroom. A pointer to the next data in the buffer
  798. * is returned. Once the data has been pulled future pushes will overwrite
  799. * the old data.
  800. */
  801. static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
  802. {
  803. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  804. }
  805. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  806. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  807. {
  808. if (len > skb_headlen(skb) &&
  809. !__pskb_pull_tail(skb, len-skb_headlen(skb)))
  810. return NULL;
  811. skb->len -= len;
  812. return skb->data += len;
  813. }
  814. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  815. {
  816. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  817. }
  818. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  819. {
  820. if (likely(len <= skb_headlen(skb)))
  821. return 1;
  822. if (unlikely(len > skb->len))
  823. return 0;
  824. return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
  825. }
  826. /**
  827. * skb_headroom - bytes at buffer head
  828. * @skb: buffer to check
  829. *
  830. * Return the number of bytes of free space at the head of an &sk_buff.
  831. */
  832. static inline int skb_headroom(const struct sk_buff *skb)
  833. {
  834. return skb->data - skb->head;
  835. }
  836. /**
  837. * skb_tailroom - bytes at buffer end
  838. * @skb: buffer to check
  839. *
  840. * Return the number of bytes of free space at the tail of an sk_buff
  841. */
  842. static inline int skb_tailroom(const struct sk_buff *skb)
  843. {
  844. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  845. }
  846. /**
  847. * skb_reserve - adjust headroom
  848. * @skb: buffer to alter
  849. * @len: bytes to move
  850. *
  851. * Increase the headroom of an empty &sk_buff by reducing the tail
  852. * room. This is only allowed for an empty buffer.
  853. */
  854. static inline void skb_reserve(struct sk_buff *skb, int len)
  855. {
  856. skb->data += len;
  857. skb->tail += len;
  858. }
  859. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  860. {
  861. return skb->nh.raw;
  862. }
  863. static inline void skb_reset_network_header(struct sk_buff *skb)
  864. {
  865. skb->nh.raw = skb->data;
  866. }
  867. static inline int skb_network_offset(const struct sk_buff *skb)
  868. {
  869. return skb->nh.raw - skb->data;
  870. }
  871. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  872. {
  873. return skb->mac.raw;
  874. }
  875. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  876. {
  877. return skb->mac.raw != NULL;
  878. }
  879. static inline void skb_reset_mac_header(struct sk_buff *skb)
  880. {
  881. skb->mac.raw = skb->data;
  882. }
  883. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  884. {
  885. skb->mac.raw = skb->data + offset;
  886. }
  887. /*
  888. * CPUs often take a performance hit when accessing unaligned memory
  889. * locations. The actual performance hit varies, it can be small if the
  890. * hardware handles it or large if we have to take an exception and fix it
  891. * in software.
  892. *
  893. * Since an ethernet header is 14 bytes network drivers often end up with
  894. * the IP header at an unaligned offset. The IP header can be aligned by
  895. * shifting the start of the packet by 2 bytes. Drivers should do this
  896. * with:
  897. *
  898. * skb_reserve(NET_IP_ALIGN);
  899. *
  900. * The downside to this alignment of the IP header is that the DMA is now
  901. * unaligned. On some architectures the cost of an unaligned DMA is high
  902. * and this cost outweighs the gains made by aligning the IP header.
  903. *
  904. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  905. * to be overridden.
  906. */
  907. #ifndef NET_IP_ALIGN
  908. #define NET_IP_ALIGN 2
  909. #endif
  910. /*
  911. * The networking layer reserves some headroom in skb data (via
  912. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  913. * the header has to grow. In the default case, if the header has to grow
  914. * 16 bytes or less we avoid the reallocation.
  915. *
  916. * Unfortunately this headroom changes the DMA alignment of the resulting
  917. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  918. * on some architectures. An architecture can override this value,
  919. * perhaps setting it to a cacheline in size (since that will maintain
  920. * cacheline alignment of the DMA). It must be a power of 2.
  921. *
  922. * Various parts of the networking layer expect at least 16 bytes of
  923. * headroom, you should not reduce this.
  924. */
  925. #ifndef NET_SKB_PAD
  926. #define NET_SKB_PAD 16
  927. #endif
  928. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  929. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  930. {
  931. if (unlikely(skb->data_len)) {
  932. WARN_ON(1);
  933. return;
  934. }
  935. skb->len = len;
  936. skb->tail = skb->data + len;
  937. }
  938. /**
  939. * skb_trim - remove end from a buffer
  940. * @skb: buffer to alter
  941. * @len: new length
  942. *
  943. * Cut the length of a buffer down by removing data from the tail. If
  944. * the buffer is already under the length specified it is not modified.
  945. * The skb must be linear.
  946. */
  947. static inline void skb_trim(struct sk_buff *skb, unsigned int len)
  948. {
  949. if (skb->len > len)
  950. __skb_trim(skb, len);
  951. }
  952. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  953. {
  954. if (skb->data_len)
  955. return ___pskb_trim(skb, len);
  956. __skb_trim(skb, len);
  957. return 0;
  958. }
  959. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  960. {
  961. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  962. }
  963. /**
  964. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  965. * @skb: buffer to alter
  966. * @len: new length
  967. *
  968. * This is identical to pskb_trim except that the caller knows that
  969. * the skb is not cloned so we should never get an error due to out-
  970. * of-memory.
  971. */
  972. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  973. {
  974. int err = pskb_trim(skb, len);
  975. BUG_ON(err);
  976. }
  977. /**
  978. * skb_orphan - orphan a buffer
  979. * @skb: buffer to orphan
  980. *
  981. * If a buffer currently has an owner then we call the owner's
  982. * destructor function and make the @skb unowned. The buffer continues
  983. * to exist but is no longer charged to its former owner.
  984. */
  985. static inline void skb_orphan(struct sk_buff *skb)
  986. {
  987. if (skb->destructor)
  988. skb->destructor(skb);
  989. skb->destructor = NULL;
  990. skb->sk = NULL;
  991. }
  992. /**
  993. * __skb_queue_purge - empty a list
  994. * @list: list to empty
  995. *
  996. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  997. * the list and one reference dropped. This function does not take the
  998. * list lock and the caller must hold the relevant locks to use it.
  999. */
  1000. extern void skb_queue_purge(struct sk_buff_head *list);
  1001. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1002. {
  1003. struct sk_buff *skb;
  1004. while ((skb = __skb_dequeue(list)) != NULL)
  1005. kfree_skb(skb);
  1006. }
  1007. /**
  1008. * __dev_alloc_skb - allocate an skbuff for receiving
  1009. * @length: length to allocate
  1010. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1011. *
  1012. * Allocate a new &sk_buff and assign it a usage count of one. The
  1013. * buffer has unspecified headroom built in. Users should allocate
  1014. * the headroom they think they need without accounting for the
  1015. * built in space. The built in space is used for optimisations.
  1016. *
  1017. * %NULL is returned if there is no free memory.
  1018. */
  1019. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1020. gfp_t gfp_mask)
  1021. {
  1022. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1023. if (likely(skb))
  1024. skb_reserve(skb, NET_SKB_PAD);
  1025. return skb;
  1026. }
  1027. /**
  1028. * dev_alloc_skb - allocate an skbuff for receiving
  1029. * @length: length to allocate
  1030. *
  1031. * Allocate a new &sk_buff and assign it a usage count of one. The
  1032. * buffer has unspecified headroom built in. Users should allocate
  1033. * the headroom they think they need without accounting for the
  1034. * built in space. The built in space is used for optimisations.
  1035. *
  1036. * %NULL is returned if there is no free memory. Although this function
  1037. * allocates memory it can be called from an interrupt.
  1038. */
  1039. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1040. {
  1041. return __dev_alloc_skb(length, GFP_ATOMIC);
  1042. }
  1043. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1044. unsigned int length, gfp_t gfp_mask);
  1045. /**
  1046. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1047. * @dev: network device to receive on
  1048. * @length: length to allocate
  1049. *
  1050. * Allocate a new &sk_buff and assign it a usage count of one. The
  1051. * buffer has unspecified headroom built in. Users should allocate
  1052. * the headroom they think they need without accounting for the
  1053. * built in space. The built in space is used for optimisations.
  1054. *
  1055. * %NULL is returned if there is no free memory. Although this function
  1056. * allocates memory it can be called from an interrupt.
  1057. */
  1058. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1059. unsigned int length)
  1060. {
  1061. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1062. }
  1063. /**
  1064. * skb_cow - copy header of skb when it is required
  1065. * @skb: buffer to cow
  1066. * @headroom: needed headroom
  1067. *
  1068. * If the skb passed lacks sufficient headroom or its data part
  1069. * is shared, data is reallocated. If reallocation fails, an error
  1070. * is returned and original skb is not changed.
  1071. *
  1072. * The result is skb with writable area skb->head...skb->tail
  1073. * and at least @headroom of space at head.
  1074. */
  1075. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1076. {
  1077. int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
  1078. skb_headroom(skb);
  1079. if (delta < 0)
  1080. delta = 0;
  1081. if (delta || skb_cloned(skb))
  1082. return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
  1083. ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
  1084. return 0;
  1085. }
  1086. /**
  1087. * skb_padto - pad an skbuff up to a minimal size
  1088. * @skb: buffer to pad
  1089. * @len: minimal length
  1090. *
  1091. * Pads up a buffer to ensure the trailing bytes exist and are
  1092. * blanked. If the buffer already contains sufficient data it
  1093. * is untouched. Otherwise it is extended. Returns zero on
  1094. * success. The skb is freed on error.
  1095. */
  1096. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1097. {
  1098. unsigned int size = skb->len;
  1099. if (likely(size >= len))
  1100. return 0;
  1101. return skb_pad(skb, len-size);
  1102. }
  1103. static inline int skb_add_data(struct sk_buff *skb,
  1104. char __user *from, int copy)
  1105. {
  1106. const int off = skb->len;
  1107. if (skb->ip_summed == CHECKSUM_NONE) {
  1108. int err = 0;
  1109. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1110. copy, 0, &err);
  1111. if (!err) {
  1112. skb->csum = csum_block_add(skb->csum, csum, off);
  1113. return 0;
  1114. }
  1115. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1116. return 0;
  1117. __skb_trim(skb, off);
  1118. return -EFAULT;
  1119. }
  1120. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1121. struct page *page, int off)
  1122. {
  1123. if (i) {
  1124. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1125. return page == frag->page &&
  1126. off == frag->page_offset + frag->size;
  1127. }
  1128. return 0;
  1129. }
  1130. static inline int __skb_linearize(struct sk_buff *skb)
  1131. {
  1132. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1133. }
  1134. /**
  1135. * skb_linearize - convert paged skb to linear one
  1136. * @skb: buffer to linarize
  1137. *
  1138. * If there is no free memory -ENOMEM is returned, otherwise zero
  1139. * is returned and the old skb data released.
  1140. */
  1141. static inline int skb_linearize(struct sk_buff *skb)
  1142. {
  1143. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1144. }
  1145. /**
  1146. * skb_linearize_cow - make sure skb is linear and writable
  1147. * @skb: buffer to process
  1148. *
  1149. * If there is no free memory -ENOMEM is returned, otherwise zero
  1150. * is returned and the old skb data released.
  1151. */
  1152. static inline int skb_linearize_cow(struct sk_buff *skb)
  1153. {
  1154. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1155. __skb_linearize(skb) : 0;
  1156. }
  1157. /**
  1158. * skb_postpull_rcsum - update checksum for received skb after pull
  1159. * @skb: buffer to update
  1160. * @start: start of data before pull
  1161. * @len: length of data pulled
  1162. *
  1163. * After doing a pull on a received packet, you need to call this to
  1164. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1165. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1166. */
  1167. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1168. const void *start, unsigned int len)
  1169. {
  1170. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1171. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1172. }
  1173. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1174. /**
  1175. * pskb_trim_rcsum - trim received skb and update checksum
  1176. * @skb: buffer to trim
  1177. * @len: new length
  1178. *
  1179. * This is exactly the same as pskb_trim except that it ensures the
  1180. * checksum of received packets are still valid after the operation.
  1181. */
  1182. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1183. {
  1184. if (likely(len >= skb->len))
  1185. return 0;
  1186. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1187. skb->ip_summed = CHECKSUM_NONE;
  1188. return __pskb_trim(skb, len);
  1189. }
  1190. #define skb_queue_walk(queue, skb) \
  1191. for (skb = (queue)->next; \
  1192. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1193. skb = skb->next)
  1194. #define skb_queue_reverse_walk(queue, skb) \
  1195. for (skb = (queue)->prev; \
  1196. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1197. skb = skb->prev)
  1198. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1199. int noblock, int *err);
  1200. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1201. struct poll_table_struct *wait);
  1202. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1203. int offset, struct iovec *to,
  1204. int size);
  1205. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1206. int hlen,
  1207. struct iovec *iov);
  1208. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1209. extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1210. unsigned int flags);
  1211. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1212. int len, __wsum csum);
  1213. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1214. void *to, int len);
  1215. extern int skb_store_bits(const struct sk_buff *skb, int offset,
  1216. void *from, int len);
  1217. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1218. int offset, u8 *to, int len,
  1219. __wsum csum);
  1220. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1221. extern void skb_split(struct sk_buff *skb,
  1222. struct sk_buff *skb1, const u32 len);
  1223. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1224. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1225. int len, void *buffer)
  1226. {
  1227. int hlen = skb_headlen(skb);
  1228. if (hlen - offset >= len)
  1229. return skb->data + offset;
  1230. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1231. return NULL;
  1232. return buffer;
  1233. }
  1234. extern void skb_init(void);
  1235. extern void skb_add_mtu(int mtu);
  1236. /**
  1237. * skb_get_timestamp - get timestamp from a skb
  1238. * @skb: skb to get stamp from
  1239. * @stamp: pointer to struct timeval to store stamp in
  1240. *
  1241. * Timestamps are stored in the skb as offsets to a base timestamp.
  1242. * This function converts the offset back to a struct timeval and stores
  1243. * it in stamp.
  1244. */
  1245. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1246. {
  1247. *stamp = ktime_to_timeval(skb->tstamp);
  1248. }
  1249. static inline void __net_timestamp(struct sk_buff *skb)
  1250. {
  1251. skb->tstamp = ktime_get_real();
  1252. }
  1253. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1254. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1255. /**
  1256. * skb_checksum_complete - Calculate checksum of an entire packet
  1257. * @skb: packet to process
  1258. *
  1259. * This function calculates the checksum over the entire packet plus
  1260. * the value of skb->csum. The latter can be used to supply the
  1261. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1262. * checksum.
  1263. *
  1264. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1265. * this function can be used to verify that checksum on received
  1266. * packets. In that case the function should return zero if the
  1267. * checksum is correct. In particular, this function will return zero
  1268. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1269. * hardware has already verified the correctness of the checksum.
  1270. */
  1271. static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
  1272. {
  1273. return skb->ip_summed != CHECKSUM_UNNECESSARY &&
  1274. __skb_checksum_complete(skb);
  1275. }
  1276. #ifdef CONFIG_NETFILTER
  1277. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1278. {
  1279. if (nfct && atomic_dec_and_test(&nfct->use))
  1280. nfct->destroy(nfct);
  1281. }
  1282. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1283. {
  1284. if (nfct)
  1285. atomic_inc(&nfct->use);
  1286. }
  1287. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1288. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1289. {
  1290. if (skb)
  1291. atomic_inc(&skb->users);
  1292. }
  1293. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1294. {
  1295. if (skb)
  1296. kfree_skb(skb);
  1297. }
  1298. #endif
  1299. #ifdef CONFIG_BRIDGE_NETFILTER
  1300. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1301. {
  1302. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1303. kfree(nf_bridge);
  1304. }
  1305. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1306. {
  1307. if (nf_bridge)
  1308. atomic_inc(&nf_bridge->use);
  1309. }
  1310. #endif /* CONFIG_BRIDGE_NETFILTER */
  1311. static inline void nf_reset(struct sk_buff *skb)
  1312. {
  1313. nf_conntrack_put(skb->nfct);
  1314. skb->nfct = NULL;
  1315. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1316. nf_conntrack_put_reasm(skb->nfct_reasm);
  1317. skb->nfct_reasm = NULL;
  1318. #endif
  1319. #ifdef CONFIG_BRIDGE_NETFILTER
  1320. nf_bridge_put(skb->nf_bridge);
  1321. skb->nf_bridge = NULL;
  1322. #endif
  1323. }
  1324. #else /* CONFIG_NETFILTER */
  1325. static inline void nf_reset(struct sk_buff *skb) {}
  1326. #endif /* CONFIG_NETFILTER */
  1327. #ifdef CONFIG_NETWORK_SECMARK
  1328. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1329. {
  1330. to->secmark = from->secmark;
  1331. }
  1332. static inline void skb_init_secmark(struct sk_buff *skb)
  1333. {
  1334. skb->secmark = 0;
  1335. }
  1336. #else
  1337. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1338. { }
  1339. static inline void skb_init_secmark(struct sk_buff *skb)
  1340. { }
  1341. #endif
  1342. static inline int skb_is_gso(const struct sk_buff *skb)
  1343. {
  1344. return skb_shinfo(skb)->gso_size;
  1345. }
  1346. #endif /* __KERNEL__ */
  1347. #endif /* _LINUX_SKBUFF_H */