sched.c 228 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. tg = p->user->tg;
  308. #elif defined(CONFIG_CGROUP_SCHED)
  309. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  310. struct task_group, css);
  311. #else
  312. tg = &init_task_group;
  313. #endif
  314. return tg;
  315. }
  316. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  318. {
  319. #ifdef CONFIG_FAIR_GROUP_SCHED
  320. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  321. p->se.parent = task_group(p)->se[cpu];
  322. #endif
  323. #ifdef CONFIG_RT_GROUP_SCHED
  324. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  325. p->rt.parent = task_group(p)->rt_se[cpu];
  326. #endif
  327. }
  328. #else
  329. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  330. static inline struct task_group *task_group(struct task_struct *p)
  331. {
  332. return NULL;
  333. }
  334. #endif /* CONFIG_GROUP_SCHED */
  335. /* CFS-related fields in a runqueue */
  336. struct cfs_rq {
  337. struct load_weight load;
  338. unsigned long nr_running;
  339. u64 exec_clock;
  340. u64 min_vruntime;
  341. struct rb_root tasks_timeline;
  342. struct rb_node *rb_leftmost;
  343. struct list_head tasks;
  344. struct list_head *balance_iterator;
  345. /*
  346. * 'curr' points to currently running entity on this cfs_rq.
  347. * It is set to NULL otherwise (i.e when none are currently running).
  348. */
  349. struct sched_entity *curr, *next, *last;
  350. unsigned int nr_spread_over;
  351. #ifdef CONFIG_FAIR_GROUP_SCHED
  352. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  353. /*
  354. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  355. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  356. * (like users, containers etc.)
  357. *
  358. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  359. * list is used during load balance.
  360. */
  361. struct list_head leaf_cfs_rq_list;
  362. struct task_group *tg; /* group that "owns" this runqueue */
  363. #ifdef CONFIG_SMP
  364. /*
  365. * the part of load.weight contributed by tasks
  366. */
  367. unsigned long task_weight;
  368. /*
  369. * h_load = weight * f(tg)
  370. *
  371. * Where f(tg) is the recursive weight fraction assigned to
  372. * this group.
  373. */
  374. unsigned long h_load;
  375. /*
  376. * this cpu's part of tg->shares
  377. */
  378. unsigned long shares;
  379. /*
  380. * load.weight at the time we set shares
  381. */
  382. unsigned long rq_weight;
  383. #endif
  384. #endif
  385. };
  386. /* Real-Time classes' related field in a runqueue: */
  387. struct rt_rq {
  388. struct rt_prio_array active;
  389. unsigned long rt_nr_running;
  390. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  391. int highest_prio; /* highest queued rt task prio */
  392. #endif
  393. #ifdef CONFIG_SMP
  394. unsigned long rt_nr_migratory;
  395. int overloaded;
  396. #endif
  397. int rt_throttled;
  398. u64 rt_time;
  399. u64 rt_runtime;
  400. /* Nests inside the rq lock: */
  401. spinlock_t rt_runtime_lock;
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. unsigned long rt_nr_boosted;
  404. struct rq *rq;
  405. struct list_head leaf_rt_rq_list;
  406. struct task_group *tg;
  407. struct sched_rt_entity *rt_se;
  408. #endif
  409. };
  410. #ifdef CONFIG_SMP
  411. /*
  412. * We add the notion of a root-domain which will be used to define per-domain
  413. * variables. Each exclusive cpuset essentially defines an island domain by
  414. * fully partitioning the member cpus from any other cpuset. Whenever a new
  415. * exclusive cpuset is created, we also create and attach a new root-domain
  416. * object.
  417. *
  418. */
  419. struct root_domain {
  420. atomic_t refcount;
  421. cpumask_var_t span;
  422. cpumask_var_t online;
  423. /*
  424. * The "RT overload" flag: it gets set if a CPU has more than
  425. * one runnable RT task.
  426. */
  427. cpumask_var_t rto_mask;
  428. atomic_t rto_count;
  429. #ifdef CONFIG_SMP
  430. struct cpupri cpupri;
  431. #endif
  432. };
  433. /*
  434. * By default the system creates a single root-domain with all cpus as
  435. * members (mimicking the global state we have today).
  436. */
  437. static struct root_domain def_root_domain;
  438. #endif
  439. /*
  440. * This is the main, per-CPU runqueue data structure.
  441. *
  442. * Locking rule: those places that want to lock multiple runqueues
  443. * (such as the load balancing or the thread migration code), lock
  444. * acquire operations must be ordered by ascending &runqueue.
  445. */
  446. struct rq {
  447. /* runqueue lock: */
  448. spinlock_t lock;
  449. /*
  450. * nr_running and cpu_load should be in the same cacheline because
  451. * remote CPUs use both these fields when doing load calculation.
  452. */
  453. unsigned long nr_running;
  454. #define CPU_LOAD_IDX_MAX 5
  455. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  456. unsigned char idle_at_tick;
  457. #ifdef CONFIG_NO_HZ
  458. unsigned long last_tick_seen;
  459. unsigned char in_nohz_recently;
  460. #endif
  461. /* capture load from *all* tasks on this cpu: */
  462. struct load_weight load;
  463. unsigned long nr_load_updates;
  464. u64 nr_switches;
  465. struct cfs_rq cfs;
  466. struct rt_rq rt;
  467. #ifdef CONFIG_FAIR_GROUP_SCHED
  468. /* list of leaf cfs_rq on this cpu: */
  469. struct list_head leaf_cfs_rq_list;
  470. #endif
  471. #ifdef CONFIG_RT_GROUP_SCHED
  472. struct list_head leaf_rt_rq_list;
  473. #endif
  474. /*
  475. * This is part of a global counter where only the total sum
  476. * over all CPUs matters. A task can increase this counter on
  477. * one CPU and if it got migrated afterwards it may decrease
  478. * it on another CPU. Always updated under the runqueue lock:
  479. */
  480. unsigned long nr_uninterruptible;
  481. struct task_struct *curr, *idle;
  482. unsigned long next_balance;
  483. struct mm_struct *prev_mm;
  484. u64 clock;
  485. atomic_t nr_iowait;
  486. #ifdef CONFIG_SMP
  487. struct root_domain *rd;
  488. struct sched_domain *sd;
  489. /* For active balancing */
  490. int active_balance;
  491. int push_cpu;
  492. /* cpu of this runqueue: */
  493. int cpu;
  494. int online;
  495. unsigned long avg_load_per_task;
  496. struct task_struct *migration_thread;
  497. struct list_head migration_queue;
  498. #endif
  499. #ifdef CONFIG_SCHED_HRTICK
  500. #ifdef CONFIG_SMP
  501. int hrtick_csd_pending;
  502. struct call_single_data hrtick_csd;
  503. #endif
  504. struct hrtimer hrtick_timer;
  505. #endif
  506. #ifdef CONFIG_SCHEDSTATS
  507. /* latency stats */
  508. struct sched_info rq_sched_info;
  509. /* sys_sched_yield() stats */
  510. unsigned int yld_exp_empty;
  511. unsigned int yld_act_empty;
  512. unsigned int yld_both_empty;
  513. unsigned int yld_count;
  514. /* schedule() stats */
  515. unsigned int sched_switch;
  516. unsigned int sched_count;
  517. unsigned int sched_goidle;
  518. /* try_to_wake_up() stats */
  519. unsigned int ttwu_count;
  520. unsigned int ttwu_local;
  521. /* BKL stats */
  522. unsigned int bkl_count;
  523. #endif
  524. };
  525. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  526. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  527. {
  528. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  529. }
  530. static inline int cpu_of(struct rq *rq)
  531. {
  532. #ifdef CONFIG_SMP
  533. return rq->cpu;
  534. #else
  535. return 0;
  536. #endif
  537. }
  538. /*
  539. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  540. * See detach_destroy_domains: synchronize_sched for details.
  541. *
  542. * The domain tree of any CPU may only be accessed from within
  543. * preempt-disabled sections.
  544. */
  545. #define for_each_domain(cpu, __sd) \
  546. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  547. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  548. #define this_rq() (&__get_cpu_var(runqueues))
  549. #define task_rq(p) cpu_rq(task_cpu(p))
  550. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  551. static inline void update_rq_clock(struct rq *rq)
  552. {
  553. rq->clock = sched_clock_cpu(cpu_of(rq));
  554. }
  555. /*
  556. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  557. */
  558. #ifdef CONFIG_SCHED_DEBUG
  559. # define const_debug __read_mostly
  560. #else
  561. # define const_debug static const
  562. #endif
  563. /**
  564. * runqueue_is_locked
  565. *
  566. * Returns true if the current cpu runqueue is locked.
  567. * This interface allows printk to be called with the runqueue lock
  568. * held and know whether or not it is OK to wake up the klogd.
  569. */
  570. int runqueue_is_locked(void)
  571. {
  572. int cpu = get_cpu();
  573. struct rq *rq = cpu_rq(cpu);
  574. int ret;
  575. ret = spin_is_locked(&rq->lock);
  576. put_cpu();
  577. return ret;
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. filp->f_pos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. /*
  676. * Inject some fuzzyness into changing the per-cpu group shares
  677. * this avoids remote rq-locks at the expense of fairness.
  678. * default: 4
  679. */
  680. unsigned int sysctl_sched_shares_thresh = 4;
  681. /*
  682. * period over which we measure -rt task cpu usage in us.
  683. * default: 1s
  684. */
  685. unsigned int sysctl_sched_rt_period = 1000000;
  686. static __read_mostly int scheduler_running;
  687. /*
  688. * part of the period that we allow rt tasks to run in us.
  689. * default: 0.95s
  690. */
  691. int sysctl_sched_rt_runtime = 950000;
  692. static inline u64 global_rt_period(void)
  693. {
  694. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  695. }
  696. static inline u64 global_rt_runtime(void)
  697. {
  698. if (sysctl_sched_rt_runtime < 0)
  699. return RUNTIME_INF;
  700. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  701. }
  702. #ifndef prepare_arch_switch
  703. # define prepare_arch_switch(next) do { } while (0)
  704. #endif
  705. #ifndef finish_arch_switch
  706. # define finish_arch_switch(prev) do { } while (0)
  707. #endif
  708. static inline int task_current(struct rq *rq, struct task_struct *p)
  709. {
  710. return rq->curr == p;
  711. }
  712. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  713. static inline int task_running(struct rq *rq, struct task_struct *p)
  714. {
  715. return task_current(rq, p);
  716. }
  717. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  718. {
  719. }
  720. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  721. {
  722. #ifdef CONFIG_DEBUG_SPINLOCK
  723. /* this is a valid case when another task releases the spinlock */
  724. rq->lock.owner = current;
  725. #endif
  726. /*
  727. * If we are tracking spinlock dependencies then we have to
  728. * fix up the runqueue lock - which gets 'carried over' from
  729. * prev into current:
  730. */
  731. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  732. spin_unlock_irq(&rq->lock);
  733. }
  734. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  735. static inline int task_running(struct rq *rq, struct task_struct *p)
  736. {
  737. #ifdef CONFIG_SMP
  738. return p->oncpu;
  739. #else
  740. return task_current(rq, p);
  741. #endif
  742. }
  743. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  744. {
  745. #ifdef CONFIG_SMP
  746. /*
  747. * We can optimise this out completely for !SMP, because the
  748. * SMP rebalancing from interrupt is the only thing that cares
  749. * here.
  750. */
  751. next->oncpu = 1;
  752. #endif
  753. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  754. spin_unlock_irq(&rq->lock);
  755. #else
  756. spin_unlock(&rq->lock);
  757. #endif
  758. }
  759. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  760. {
  761. #ifdef CONFIG_SMP
  762. /*
  763. * After ->oncpu is cleared, the task can be moved to a different CPU.
  764. * We must ensure this doesn't happen until the switch is completely
  765. * finished.
  766. */
  767. smp_wmb();
  768. prev->oncpu = 0;
  769. #endif
  770. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  771. local_irq_enable();
  772. #endif
  773. }
  774. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  775. /*
  776. * __task_rq_lock - lock the runqueue a given task resides on.
  777. * Must be called interrupts disabled.
  778. */
  779. static inline struct rq *__task_rq_lock(struct task_struct *p)
  780. __acquires(rq->lock)
  781. {
  782. for (;;) {
  783. struct rq *rq = task_rq(p);
  784. spin_lock(&rq->lock);
  785. if (likely(rq == task_rq(p)))
  786. return rq;
  787. spin_unlock(&rq->lock);
  788. }
  789. }
  790. /*
  791. * task_rq_lock - lock the runqueue a given task resides on and disable
  792. * interrupts. Note the ordering: we can safely lookup the task_rq without
  793. * explicitly disabling preemption.
  794. */
  795. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  796. __acquires(rq->lock)
  797. {
  798. struct rq *rq;
  799. for (;;) {
  800. local_irq_save(*flags);
  801. rq = task_rq(p);
  802. spin_lock(&rq->lock);
  803. if (likely(rq == task_rq(p)))
  804. return rq;
  805. spin_unlock_irqrestore(&rq->lock, *flags);
  806. }
  807. }
  808. void task_rq_unlock_wait(struct task_struct *p)
  809. {
  810. struct rq *rq = task_rq(p);
  811. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  812. spin_unlock_wait(&rq->lock);
  813. }
  814. static void __task_rq_unlock(struct rq *rq)
  815. __releases(rq->lock)
  816. {
  817. spin_unlock(&rq->lock);
  818. }
  819. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  820. __releases(rq->lock)
  821. {
  822. spin_unlock_irqrestore(&rq->lock, *flags);
  823. }
  824. /*
  825. * this_rq_lock - lock this runqueue and disable interrupts.
  826. */
  827. static struct rq *this_rq_lock(void)
  828. __acquires(rq->lock)
  829. {
  830. struct rq *rq;
  831. local_irq_disable();
  832. rq = this_rq();
  833. spin_lock(&rq->lock);
  834. return rq;
  835. }
  836. #ifdef CONFIG_SCHED_HRTICK
  837. /*
  838. * Use HR-timers to deliver accurate preemption points.
  839. *
  840. * Its all a bit involved since we cannot program an hrt while holding the
  841. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  842. * reschedule event.
  843. *
  844. * When we get rescheduled we reprogram the hrtick_timer outside of the
  845. * rq->lock.
  846. */
  847. /*
  848. * Use hrtick when:
  849. * - enabled by features
  850. * - hrtimer is actually high res
  851. */
  852. static inline int hrtick_enabled(struct rq *rq)
  853. {
  854. if (!sched_feat(HRTICK))
  855. return 0;
  856. if (!cpu_active(cpu_of(rq)))
  857. return 0;
  858. return hrtimer_is_hres_active(&rq->hrtick_timer);
  859. }
  860. static void hrtick_clear(struct rq *rq)
  861. {
  862. if (hrtimer_active(&rq->hrtick_timer))
  863. hrtimer_cancel(&rq->hrtick_timer);
  864. }
  865. /*
  866. * High-resolution timer tick.
  867. * Runs from hardirq context with interrupts disabled.
  868. */
  869. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  870. {
  871. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  872. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  873. spin_lock(&rq->lock);
  874. update_rq_clock(rq);
  875. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  876. spin_unlock(&rq->lock);
  877. return HRTIMER_NORESTART;
  878. }
  879. #ifdef CONFIG_SMP
  880. /*
  881. * called from hardirq (IPI) context
  882. */
  883. static void __hrtick_start(void *arg)
  884. {
  885. struct rq *rq = arg;
  886. spin_lock(&rq->lock);
  887. hrtimer_restart(&rq->hrtick_timer);
  888. rq->hrtick_csd_pending = 0;
  889. spin_unlock(&rq->lock);
  890. }
  891. /*
  892. * Called to set the hrtick timer state.
  893. *
  894. * called with rq->lock held and irqs disabled
  895. */
  896. static void hrtick_start(struct rq *rq, u64 delay)
  897. {
  898. struct hrtimer *timer = &rq->hrtick_timer;
  899. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  900. hrtimer_set_expires(timer, time);
  901. if (rq == this_rq()) {
  902. hrtimer_restart(timer);
  903. } else if (!rq->hrtick_csd_pending) {
  904. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  905. rq->hrtick_csd_pending = 1;
  906. }
  907. }
  908. static int
  909. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  910. {
  911. int cpu = (int)(long)hcpu;
  912. switch (action) {
  913. case CPU_UP_CANCELED:
  914. case CPU_UP_CANCELED_FROZEN:
  915. case CPU_DOWN_PREPARE:
  916. case CPU_DOWN_PREPARE_FROZEN:
  917. case CPU_DEAD:
  918. case CPU_DEAD_FROZEN:
  919. hrtick_clear(cpu_rq(cpu));
  920. return NOTIFY_OK;
  921. }
  922. return NOTIFY_DONE;
  923. }
  924. static __init void init_hrtick(void)
  925. {
  926. hotcpu_notifier(hotplug_hrtick, 0);
  927. }
  928. #else
  929. /*
  930. * Called to set the hrtick timer state.
  931. *
  932. * called with rq->lock held and irqs disabled
  933. */
  934. static void hrtick_start(struct rq *rq, u64 delay)
  935. {
  936. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  937. }
  938. static inline void init_hrtick(void)
  939. {
  940. }
  941. #endif /* CONFIG_SMP */
  942. static void init_rq_hrtick(struct rq *rq)
  943. {
  944. #ifdef CONFIG_SMP
  945. rq->hrtick_csd_pending = 0;
  946. rq->hrtick_csd.flags = 0;
  947. rq->hrtick_csd.func = __hrtick_start;
  948. rq->hrtick_csd.info = rq;
  949. #endif
  950. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  951. rq->hrtick_timer.function = hrtick;
  952. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  953. }
  954. #else /* CONFIG_SCHED_HRTICK */
  955. static inline void hrtick_clear(struct rq *rq)
  956. {
  957. }
  958. static inline void init_rq_hrtick(struct rq *rq)
  959. {
  960. }
  961. static inline void init_hrtick(void)
  962. {
  963. }
  964. #endif /* CONFIG_SCHED_HRTICK */
  965. /*
  966. * resched_task - mark a task 'to be rescheduled now'.
  967. *
  968. * On UP this means the setting of the need_resched flag, on SMP it
  969. * might also involve a cross-CPU call to trigger the scheduler on
  970. * the target CPU.
  971. */
  972. #ifdef CONFIG_SMP
  973. #ifndef tsk_is_polling
  974. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  975. #endif
  976. static void resched_task(struct task_struct *p)
  977. {
  978. int cpu;
  979. assert_spin_locked(&task_rq(p)->lock);
  980. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  981. return;
  982. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  983. cpu = task_cpu(p);
  984. if (cpu == smp_processor_id())
  985. return;
  986. /* NEED_RESCHED must be visible before we test polling */
  987. smp_mb();
  988. if (!tsk_is_polling(p))
  989. smp_send_reschedule(cpu);
  990. }
  991. static void resched_cpu(int cpu)
  992. {
  993. struct rq *rq = cpu_rq(cpu);
  994. unsigned long flags;
  995. if (!spin_trylock_irqsave(&rq->lock, flags))
  996. return;
  997. resched_task(cpu_curr(cpu));
  998. spin_unlock_irqrestore(&rq->lock, flags);
  999. }
  1000. #ifdef CONFIG_NO_HZ
  1001. /*
  1002. * When add_timer_on() enqueues a timer into the timer wheel of an
  1003. * idle CPU then this timer might expire before the next timer event
  1004. * which is scheduled to wake up that CPU. In case of a completely
  1005. * idle system the next event might even be infinite time into the
  1006. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1007. * leaves the inner idle loop so the newly added timer is taken into
  1008. * account when the CPU goes back to idle and evaluates the timer
  1009. * wheel for the next timer event.
  1010. */
  1011. void wake_up_idle_cpu(int cpu)
  1012. {
  1013. struct rq *rq = cpu_rq(cpu);
  1014. if (cpu == smp_processor_id())
  1015. return;
  1016. /*
  1017. * This is safe, as this function is called with the timer
  1018. * wheel base lock of (cpu) held. When the CPU is on the way
  1019. * to idle and has not yet set rq->curr to idle then it will
  1020. * be serialized on the timer wheel base lock and take the new
  1021. * timer into account automatically.
  1022. */
  1023. if (rq->curr != rq->idle)
  1024. return;
  1025. /*
  1026. * We can set TIF_RESCHED on the idle task of the other CPU
  1027. * lockless. The worst case is that the other CPU runs the
  1028. * idle task through an additional NOOP schedule()
  1029. */
  1030. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1031. /* NEED_RESCHED must be visible before we test polling */
  1032. smp_mb();
  1033. if (!tsk_is_polling(rq->idle))
  1034. smp_send_reschedule(cpu);
  1035. }
  1036. #endif /* CONFIG_NO_HZ */
  1037. #else /* !CONFIG_SMP */
  1038. static void resched_task(struct task_struct *p)
  1039. {
  1040. assert_spin_locked(&task_rq(p)->lock);
  1041. set_tsk_need_resched(p);
  1042. }
  1043. #endif /* CONFIG_SMP */
  1044. #if BITS_PER_LONG == 32
  1045. # define WMULT_CONST (~0UL)
  1046. #else
  1047. # define WMULT_CONST (1UL << 32)
  1048. #endif
  1049. #define WMULT_SHIFT 32
  1050. /*
  1051. * Shift right and round:
  1052. */
  1053. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1054. /*
  1055. * delta *= weight / lw
  1056. */
  1057. static unsigned long
  1058. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1059. struct load_weight *lw)
  1060. {
  1061. u64 tmp;
  1062. if (!lw->inv_weight) {
  1063. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1064. lw->inv_weight = 1;
  1065. else
  1066. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1067. / (lw->weight+1);
  1068. }
  1069. tmp = (u64)delta_exec * weight;
  1070. /*
  1071. * Check whether we'd overflow the 64-bit multiplication:
  1072. */
  1073. if (unlikely(tmp > WMULT_CONST))
  1074. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1075. WMULT_SHIFT/2);
  1076. else
  1077. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1078. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1079. }
  1080. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1081. {
  1082. lw->weight += inc;
  1083. lw->inv_weight = 0;
  1084. }
  1085. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1086. {
  1087. lw->weight -= dec;
  1088. lw->inv_weight = 0;
  1089. }
  1090. /*
  1091. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1092. * of tasks with abnormal "nice" values across CPUs the contribution that
  1093. * each task makes to its run queue's load is weighted according to its
  1094. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1095. * scaled version of the new time slice allocation that they receive on time
  1096. * slice expiry etc.
  1097. */
  1098. #define WEIGHT_IDLEPRIO 2
  1099. #define WMULT_IDLEPRIO (1 << 31)
  1100. /*
  1101. * Nice levels are multiplicative, with a gentle 10% change for every
  1102. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1103. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1104. * that remained on nice 0.
  1105. *
  1106. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1107. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1108. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1109. * If a task goes up by ~10% and another task goes down by ~10% then
  1110. * the relative distance between them is ~25%.)
  1111. */
  1112. static const int prio_to_weight[40] = {
  1113. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1114. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1115. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1116. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1117. /* 0 */ 1024, 820, 655, 526, 423,
  1118. /* 5 */ 335, 272, 215, 172, 137,
  1119. /* 10 */ 110, 87, 70, 56, 45,
  1120. /* 15 */ 36, 29, 23, 18, 15,
  1121. };
  1122. /*
  1123. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1124. *
  1125. * In cases where the weight does not change often, we can use the
  1126. * precalculated inverse to speed up arithmetics by turning divisions
  1127. * into multiplications:
  1128. */
  1129. static const u32 prio_to_wmult[40] = {
  1130. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1131. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1132. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1133. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1134. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1135. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1136. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1137. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1138. };
  1139. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1140. /*
  1141. * runqueue iterator, to support SMP load-balancing between different
  1142. * scheduling classes, without having to expose their internal data
  1143. * structures to the load-balancing proper:
  1144. */
  1145. struct rq_iterator {
  1146. void *arg;
  1147. struct task_struct *(*start)(void *);
  1148. struct task_struct *(*next)(void *);
  1149. };
  1150. #ifdef CONFIG_SMP
  1151. static unsigned long
  1152. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1153. unsigned long max_load_move, struct sched_domain *sd,
  1154. enum cpu_idle_type idle, int *all_pinned,
  1155. int *this_best_prio, struct rq_iterator *iterator);
  1156. static int
  1157. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1158. struct sched_domain *sd, enum cpu_idle_type idle,
  1159. struct rq_iterator *iterator);
  1160. #endif
  1161. #ifdef CONFIG_CGROUP_CPUACCT
  1162. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1163. #else
  1164. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1165. #endif
  1166. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1167. {
  1168. update_load_add(&rq->load, load);
  1169. }
  1170. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1171. {
  1172. update_load_sub(&rq->load, load);
  1173. }
  1174. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1175. typedef int (*tg_visitor)(struct task_group *, void *);
  1176. /*
  1177. * Iterate the full tree, calling @down when first entering a node and @up when
  1178. * leaving it for the final time.
  1179. */
  1180. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1181. {
  1182. struct task_group *parent, *child;
  1183. int ret;
  1184. rcu_read_lock();
  1185. parent = &root_task_group;
  1186. down:
  1187. ret = (*down)(parent, data);
  1188. if (ret)
  1189. goto out_unlock;
  1190. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1191. parent = child;
  1192. goto down;
  1193. up:
  1194. continue;
  1195. }
  1196. ret = (*up)(parent, data);
  1197. if (ret)
  1198. goto out_unlock;
  1199. child = parent;
  1200. parent = parent->parent;
  1201. if (parent)
  1202. goto up;
  1203. out_unlock:
  1204. rcu_read_unlock();
  1205. return ret;
  1206. }
  1207. static int tg_nop(struct task_group *tg, void *data)
  1208. {
  1209. return 0;
  1210. }
  1211. #endif
  1212. #ifdef CONFIG_SMP
  1213. static unsigned long source_load(int cpu, int type);
  1214. static unsigned long target_load(int cpu, int type);
  1215. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1216. static unsigned long cpu_avg_load_per_task(int cpu)
  1217. {
  1218. struct rq *rq = cpu_rq(cpu);
  1219. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1220. if (nr_running)
  1221. rq->avg_load_per_task = rq->load.weight / nr_running;
  1222. else
  1223. rq->avg_load_per_task = 0;
  1224. return rq->avg_load_per_task;
  1225. }
  1226. #ifdef CONFIG_FAIR_GROUP_SCHED
  1227. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1228. /*
  1229. * Calculate and set the cpu's group shares.
  1230. */
  1231. static void
  1232. update_group_shares_cpu(struct task_group *tg, int cpu,
  1233. unsigned long sd_shares, unsigned long sd_rq_weight)
  1234. {
  1235. unsigned long shares;
  1236. unsigned long rq_weight;
  1237. if (!tg->se[cpu])
  1238. return;
  1239. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1240. /*
  1241. * \Sum shares * rq_weight
  1242. * shares = -----------------------
  1243. * \Sum rq_weight
  1244. *
  1245. */
  1246. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1247. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1248. if (abs(shares - tg->se[cpu]->load.weight) >
  1249. sysctl_sched_shares_thresh) {
  1250. struct rq *rq = cpu_rq(cpu);
  1251. unsigned long flags;
  1252. spin_lock_irqsave(&rq->lock, flags);
  1253. tg->cfs_rq[cpu]->shares = shares;
  1254. __set_se_shares(tg->se[cpu], shares);
  1255. spin_unlock_irqrestore(&rq->lock, flags);
  1256. }
  1257. }
  1258. /*
  1259. * Re-compute the task group their per cpu shares over the given domain.
  1260. * This needs to be done in a bottom-up fashion because the rq weight of a
  1261. * parent group depends on the shares of its child groups.
  1262. */
  1263. static int tg_shares_up(struct task_group *tg, void *data)
  1264. {
  1265. unsigned long weight, rq_weight = 0;
  1266. unsigned long shares = 0;
  1267. struct sched_domain *sd = data;
  1268. int i;
  1269. for_each_cpu(i, sched_domain_span(sd)) {
  1270. /*
  1271. * If there are currently no tasks on the cpu pretend there
  1272. * is one of average load so that when a new task gets to
  1273. * run here it will not get delayed by group starvation.
  1274. */
  1275. weight = tg->cfs_rq[i]->load.weight;
  1276. if (!weight)
  1277. weight = NICE_0_LOAD;
  1278. tg->cfs_rq[i]->rq_weight = weight;
  1279. rq_weight += weight;
  1280. shares += tg->cfs_rq[i]->shares;
  1281. }
  1282. if ((!shares && rq_weight) || shares > tg->shares)
  1283. shares = tg->shares;
  1284. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1285. shares = tg->shares;
  1286. for_each_cpu(i, sched_domain_span(sd))
  1287. update_group_shares_cpu(tg, i, shares, rq_weight);
  1288. return 0;
  1289. }
  1290. /*
  1291. * Compute the cpu's hierarchical load factor for each task group.
  1292. * This needs to be done in a top-down fashion because the load of a child
  1293. * group is a fraction of its parents load.
  1294. */
  1295. static int tg_load_down(struct task_group *tg, void *data)
  1296. {
  1297. unsigned long load;
  1298. long cpu = (long)data;
  1299. if (!tg->parent) {
  1300. load = cpu_rq(cpu)->load.weight;
  1301. } else {
  1302. load = tg->parent->cfs_rq[cpu]->h_load;
  1303. load *= tg->cfs_rq[cpu]->shares;
  1304. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1305. }
  1306. tg->cfs_rq[cpu]->h_load = load;
  1307. return 0;
  1308. }
  1309. static void update_shares(struct sched_domain *sd)
  1310. {
  1311. u64 now = cpu_clock(raw_smp_processor_id());
  1312. s64 elapsed = now - sd->last_update;
  1313. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1314. sd->last_update = now;
  1315. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1316. }
  1317. }
  1318. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1319. {
  1320. spin_unlock(&rq->lock);
  1321. update_shares(sd);
  1322. spin_lock(&rq->lock);
  1323. }
  1324. static void update_h_load(long cpu)
  1325. {
  1326. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1327. }
  1328. #else
  1329. static inline void update_shares(struct sched_domain *sd)
  1330. {
  1331. }
  1332. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1333. {
  1334. }
  1335. #endif
  1336. /*
  1337. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1338. */
  1339. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1340. __releases(this_rq->lock)
  1341. __acquires(busiest->lock)
  1342. __acquires(this_rq->lock)
  1343. {
  1344. int ret = 0;
  1345. if (unlikely(!irqs_disabled())) {
  1346. /* printk() doesn't work good under rq->lock */
  1347. spin_unlock(&this_rq->lock);
  1348. BUG_ON(1);
  1349. }
  1350. if (unlikely(!spin_trylock(&busiest->lock))) {
  1351. if (busiest < this_rq) {
  1352. spin_unlock(&this_rq->lock);
  1353. spin_lock(&busiest->lock);
  1354. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1355. ret = 1;
  1356. } else
  1357. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1358. }
  1359. return ret;
  1360. }
  1361. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1362. __releases(busiest->lock)
  1363. {
  1364. spin_unlock(&busiest->lock);
  1365. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1366. }
  1367. #endif
  1368. #ifdef CONFIG_FAIR_GROUP_SCHED
  1369. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1370. {
  1371. #ifdef CONFIG_SMP
  1372. cfs_rq->shares = shares;
  1373. #endif
  1374. }
  1375. #endif
  1376. #include "sched_stats.h"
  1377. #include "sched_idletask.c"
  1378. #include "sched_fair.c"
  1379. #include "sched_rt.c"
  1380. #ifdef CONFIG_SCHED_DEBUG
  1381. # include "sched_debug.c"
  1382. #endif
  1383. #define sched_class_highest (&rt_sched_class)
  1384. #define for_each_class(class) \
  1385. for (class = sched_class_highest; class; class = class->next)
  1386. static void inc_nr_running(struct rq *rq)
  1387. {
  1388. rq->nr_running++;
  1389. }
  1390. static void dec_nr_running(struct rq *rq)
  1391. {
  1392. rq->nr_running--;
  1393. }
  1394. static void set_load_weight(struct task_struct *p)
  1395. {
  1396. if (task_has_rt_policy(p)) {
  1397. p->se.load.weight = prio_to_weight[0] * 2;
  1398. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1399. return;
  1400. }
  1401. /*
  1402. * SCHED_IDLE tasks get minimal weight:
  1403. */
  1404. if (p->policy == SCHED_IDLE) {
  1405. p->se.load.weight = WEIGHT_IDLEPRIO;
  1406. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1407. return;
  1408. }
  1409. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1410. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1411. }
  1412. static void update_avg(u64 *avg, u64 sample)
  1413. {
  1414. s64 diff = sample - *avg;
  1415. *avg += diff >> 3;
  1416. }
  1417. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1418. {
  1419. sched_info_queued(p);
  1420. p->sched_class->enqueue_task(rq, p, wakeup);
  1421. p->se.on_rq = 1;
  1422. }
  1423. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1424. {
  1425. if (sleep && p->se.last_wakeup) {
  1426. update_avg(&p->se.avg_overlap,
  1427. p->se.sum_exec_runtime - p->se.last_wakeup);
  1428. p->se.last_wakeup = 0;
  1429. }
  1430. sched_info_dequeued(p);
  1431. p->sched_class->dequeue_task(rq, p, sleep);
  1432. p->se.on_rq = 0;
  1433. }
  1434. /*
  1435. * __normal_prio - return the priority that is based on the static prio
  1436. */
  1437. static inline int __normal_prio(struct task_struct *p)
  1438. {
  1439. return p->static_prio;
  1440. }
  1441. /*
  1442. * Calculate the expected normal priority: i.e. priority
  1443. * without taking RT-inheritance into account. Might be
  1444. * boosted by interactivity modifiers. Changes upon fork,
  1445. * setprio syscalls, and whenever the interactivity
  1446. * estimator recalculates.
  1447. */
  1448. static inline int normal_prio(struct task_struct *p)
  1449. {
  1450. int prio;
  1451. if (task_has_rt_policy(p))
  1452. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1453. else
  1454. prio = __normal_prio(p);
  1455. return prio;
  1456. }
  1457. /*
  1458. * Calculate the current priority, i.e. the priority
  1459. * taken into account by the scheduler. This value might
  1460. * be boosted by RT tasks, or might be boosted by
  1461. * interactivity modifiers. Will be RT if the task got
  1462. * RT-boosted. If not then it returns p->normal_prio.
  1463. */
  1464. static int effective_prio(struct task_struct *p)
  1465. {
  1466. p->normal_prio = normal_prio(p);
  1467. /*
  1468. * If we are RT tasks or we were boosted to RT priority,
  1469. * keep the priority unchanged. Otherwise, update priority
  1470. * to the normal priority:
  1471. */
  1472. if (!rt_prio(p->prio))
  1473. return p->normal_prio;
  1474. return p->prio;
  1475. }
  1476. /*
  1477. * activate_task - move a task to the runqueue.
  1478. */
  1479. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1480. {
  1481. if (task_contributes_to_load(p))
  1482. rq->nr_uninterruptible--;
  1483. enqueue_task(rq, p, wakeup);
  1484. inc_nr_running(rq);
  1485. }
  1486. /*
  1487. * deactivate_task - remove a task from the runqueue.
  1488. */
  1489. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1490. {
  1491. if (task_contributes_to_load(p))
  1492. rq->nr_uninterruptible++;
  1493. dequeue_task(rq, p, sleep);
  1494. dec_nr_running(rq);
  1495. }
  1496. /**
  1497. * task_curr - is this task currently executing on a CPU?
  1498. * @p: the task in question.
  1499. */
  1500. inline int task_curr(const struct task_struct *p)
  1501. {
  1502. return cpu_curr(task_cpu(p)) == p;
  1503. }
  1504. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1505. {
  1506. set_task_rq(p, cpu);
  1507. #ifdef CONFIG_SMP
  1508. /*
  1509. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1510. * successfuly executed on another CPU. We must ensure that updates of
  1511. * per-task data have been completed by this moment.
  1512. */
  1513. smp_wmb();
  1514. task_thread_info(p)->cpu = cpu;
  1515. #endif
  1516. }
  1517. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1518. const struct sched_class *prev_class,
  1519. int oldprio, int running)
  1520. {
  1521. if (prev_class != p->sched_class) {
  1522. if (prev_class->switched_from)
  1523. prev_class->switched_from(rq, p, running);
  1524. p->sched_class->switched_to(rq, p, running);
  1525. } else
  1526. p->sched_class->prio_changed(rq, p, oldprio, running);
  1527. }
  1528. #ifdef CONFIG_SMP
  1529. /* Used instead of source_load when we know the type == 0 */
  1530. static unsigned long weighted_cpuload(const int cpu)
  1531. {
  1532. return cpu_rq(cpu)->load.weight;
  1533. }
  1534. /*
  1535. * Is this task likely cache-hot:
  1536. */
  1537. static int
  1538. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1539. {
  1540. s64 delta;
  1541. /*
  1542. * Buddy candidates are cache hot:
  1543. */
  1544. if (sched_feat(CACHE_HOT_BUDDY) &&
  1545. (&p->se == cfs_rq_of(&p->se)->next ||
  1546. &p->se == cfs_rq_of(&p->se)->last))
  1547. return 1;
  1548. if (p->sched_class != &fair_sched_class)
  1549. return 0;
  1550. if (sysctl_sched_migration_cost == -1)
  1551. return 1;
  1552. if (sysctl_sched_migration_cost == 0)
  1553. return 0;
  1554. delta = now - p->se.exec_start;
  1555. return delta < (s64)sysctl_sched_migration_cost;
  1556. }
  1557. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1558. {
  1559. int old_cpu = task_cpu(p);
  1560. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1561. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1562. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1563. u64 clock_offset;
  1564. clock_offset = old_rq->clock - new_rq->clock;
  1565. #ifdef CONFIG_SCHEDSTATS
  1566. if (p->se.wait_start)
  1567. p->se.wait_start -= clock_offset;
  1568. if (p->se.sleep_start)
  1569. p->se.sleep_start -= clock_offset;
  1570. if (p->se.block_start)
  1571. p->se.block_start -= clock_offset;
  1572. if (old_cpu != new_cpu) {
  1573. schedstat_inc(p, se.nr_migrations);
  1574. if (task_hot(p, old_rq->clock, NULL))
  1575. schedstat_inc(p, se.nr_forced2_migrations);
  1576. }
  1577. #endif
  1578. p->se.vruntime -= old_cfsrq->min_vruntime -
  1579. new_cfsrq->min_vruntime;
  1580. __set_task_cpu(p, new_cpu);
  1581. }
  1582. struct migration_req {
  1583. struct list_head list;
  1584. struct task_struct *task;
  1585. int dest_cpu;
  1586. struct completion done;
  1587. };
  1588. /*
  1589. * The task's runqueue lock must be held.
  1590. * Returns true if you have to wait for migration thread.
  1591. */
  1592. static int
  1593. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1594. {
  1595. struct rq *rq = task_rq(p);
  1596. /*
  1597. * If the task is not on a runqueue (and not running), then
  1598. * it is sufficient to simply update the task's cpu field.
  1599. */
  1600. if (!p->se.on_rq && !task_running(rq, p)) {
  1601. set_task_cpu(p, dest_cpu);
  1602. return 0;
  1603. }
  1604. init_completion(&req->done);
  1605. req->task = p;
  1606. req->dest_cpu = dest_cpu;
  1607. list_add(&req->list, &rq->migration_queue);
  1608. return 1;
  1609. }
  1610. /*
  1611. * wait_task_inactive - wait for a thread to unschedule.
  1612. *
  1613. * If @match_state is nonzero, it's the @p->state value just checked and
  1614. * not expected to change. If it changes, i.e. @p might have woken up,
  1615. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1616. * we return a positive number (its total switch count). If a second call
  1617. * a short while later returns the same number, the caller can be sure that
  1618. * @p has remained unscheduled the whole time.
  1619. *
  1620. * The caller must ensure that the task *will* unschedule sometime soon,
  1621. * else this function might spin for a *long* time. This function can't
  1622. * be called with interrupts off, or it may introduce deadlock with
  1623. * smp_call_function() if an IPI is sent by the same process we are
  1624. * waiting to become inactive.
  1625. */
  1626. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1627. {
  1628. unsigned long flags;
  1629. int running, on_rq;
  1630. unsigned long ncsw;
  1631. struct rq *rq;
  1632. for (;;) {
  1633. /*
  1634. * We do the initial early heuristics without holding
  1635. * any task-queue locks at all. We'll only try to get
  1636. * the runqueue lock when things look like they will
  1637. * work out!
  1638. */
  1639. rq = task_rq(p);
  1640. /*
  1641. * If the task is actively running on another CPU
  1642. * still, just relax and busy-wait without holding
  1643. * any locks.
  1644. *
  1645. * NOTE! Since we don't hold any locks, it's not
  1646. * even sure that "rq" stays as the right runqueue!
  1647. * But we don't care, since "task_running()" will
  1648. * return false if the runqueue has changed and p
  1649. * is actually now running somewhere else!
  1650. */
  1651. while (task_running(rq, p)) {
  1652. if (match_state && unlikely(p->state != match_state))
  1653. return 0;
  1654. cpu_relax();
  1655. }
  1656. /*
  1657. * Ok, time to look more closely! We need the rq
  1658. * lock now, to be *sure*. If we're wrong, we'll
  1659. * just go back and repeat.
  1660. */
  1661. rq = task_rq_lock(p, &flags);
  1662. trace_sched_wait_task(rq, p);
  1663. running = task_running(rq, p);
  1664. on_rq = p->se.on_rq;
  1665. ncsw = 0;
  1666. if (!match_state || p->state == match_state)
  1667. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1668. task_rq_unlock(rq, &flags);
  1669. /*
  1670. * If it changed from the expected state, bail out now.
  1671. */
  1672. if (unlikely(!ncsw))
  1673. break;
  1674. /*
  1675. * Was it really running after all now that we
  1676. * checked with the proper locks actually held?
  1677. *
  1678. * Oops. Go back and try again..
  1679. */
  1680. if (unlikely(running)) {
  1681. cpu_relax();
  1682. continue;
  1683. }
  1684. /*
  1685. * It's not enough that it's not actively running,
  1686. * it must be off the runqueue _entirely_, and not
  1687. * preempted!
  1688. *
  1689. * So if it wa still runnable (but just not actively
  1690. * running right now), it's preempted, and we should
  1691. * yield - it could be a while.
  1692. */
  1693. if (unlikely(on_rq)) {
  1694. schedule_timeout_uninterruptible(1);
  1695. continue;
  1696. }
  1697. /*
  1698. * Ahh, all good. It wasn't running, and it wasn't
  1699. * runnable, which means that it will never become
  1700. * running in the future either. We're all done!
  1701. */
  1702. break;
  1703. }
  1704. return ncsw;
  1705. }
  1706. /***
  1707. * kick_process - kick a running thread to enter/exit the kernel
  1708. * @p: the to-be-kicked thread
  1709. *
  1710. * Cause a process which is running on another CPU to enter
  1711. * kernel-mode, without any delay. (to get signals handled.)
  1712. *
  1713. * NOTE: this function doesnt have to take the runqueue lock,
  1714. * because all it wants to ensure is that the remote task enters
  1715. * the kernel. If the IPI races and the task has been migrated
  1716. * to another CPU then no harm is done and the purpose has been
  1717. * achieved as well.
  1718. */
  1719. void kick_process(struct task_struct *p)
  1720. {
  1721. int cpu;
  1722. preempt_disable();
  1723. cpu = task_cpu(p);
  1724. if ((cpu != smp_processor_id()) && task_curr(p))
  1725. smp_send_reschedule(cpu);
  1726. preempt_enable();
  1727. }
  1728. /*
  1729. * Return a low guess at the load of a migration-source cpu weighted
  1730. * according to the scheduling class and "nice" value.
  1731. *
  1732. * We want to under-estimate the load of migration sources, to
  1733. * balance conservatively.
  1734. */
  1735. static unsigned long source_load(int cpu, int type)
  1736. {
  1737. struct rq *rq = cpu_rq(cpu);
  1738. unsigned long total = weighted_cpuload(cpu);
  1739. if (type == 0 || !sched_feat(LB_BIAS))
  1740. return total;
  1741. return min(rq->cpu_load[type-1], total);
  1742. }
  1743. /*
  1744. * Return a high guess at the load of a migration-target cpu weighted
  1745. * according to the scheduling class and "nice" value.
  1746. */
  1747. static unsigned long target_load(int cpu, int type)
  1748. {
  1749. struct rq *rq = cpu_rq(cpu);
  1750. unsigned long total = weighted_cpuload(cpu);
  1751. if (type == 0 || !sched_feat(LB_BIAS))
  1752. return total;
  1753. return max(rq->cpu_load[type-1], total);
  1754. }
  1755. /*
  1756. * find_idlest_group finds and returns the least busy CPU group within the
  1757. * domain.
  1758. */
  1759. static struct sched_group *
  1760. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1761. {
  1762. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1763. unsigned long min_load = ULONG_MAX, this_load = 0;
  1764. int load_idx = sd->forkexec_idx;
  1765. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1766. do {
  1767. unsigned long load, avg_load;
  1768. int local_group;
  1769. int i;
  1770. /* Skip over this group if it has no CPUs allowed */
  1771. if (!cpumask_intersects(sched_group_cpus(group),
  1772. &p->cpus_allowed))
  1773. continue;
  1774. local_group = cpumask_test_cpu(this_cpu,
  1775. sched_group_cpus(group));
  1776. /* Tally up the load of all CPUs in the group */
  1777. avg_load = 0;
  1778. for_each_cpu(i, sched_group_cpus(group)) {
  1779. /* Bias balancing toward cpus of our domain */
  1780. if (local_group)
  1781. load = source_load(i, load_idx);
  1782. else
  1783. load = target_load(i, load_idx);
  1784. avg_load += load;
  1785. }
  1786. /* Adjust by relative CPU power of the group */
  1787. avg_load = sg_div_cpu_power(group,
  1788. avg_load * SCHED_LOAD_SCALE);
  1789. if (local_group) {
  1790. this_load = avg_load;
  1791. this = group;
  1792. } else if (avg_load < min_load) {
  1793. min_load = avg_load;
  1794. idlest = group;
  1795. }
  1796. } while (group = group->next, group != sd->groups);
  1797. if (!idlest || 100*this_load < imbalance*min_load)
  1798. return NULL;
  1799. return idlest;
  1800. }
  1801. /*
  1802. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1803. */
  1804. static int
  1805. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1806. {
  1807. unsigned long load, min_load = ULONG_MAX;
  1808. int idlest = -1;
  1809. int i;
  1810. /* Traverse only the allowed CPUs */
  1811. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1812. load = weighted_cpuload(i);
  1813. if (load < min_load || (load == min_load && i == this_cpu)) {
  1814. min_load = load;
  1815. idlest = i;
  1816. }
  1817. }
  1818. return idlest;
  1819. }
  1820. /*
  1821. * sched_balance_self: balance the current task (running on cpu) in domains
  1822. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1823. * SD_BALANCE_EXEC.
  1824. *
  1825. * Balance, ie. select the least loaded group.
  1826. *
  1827. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1828. *
  1829. * preempt must be disabled.
  1830. */
  1831. static int sched_balance_self(int cpu, int flag)
  1832. {
  1833. struct task_struct *t = current;
  1834. struct sched_domain *tmp, *sd = NULL;
  1835. for_each_domain(cpu, tmp) {
  1836. /*
  1837. * If power savings logic is enabled for a domain, stop there.
  1838. */
  1839. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1840. break;
  1841. if (tmp->flags & flag)
  1842. sd = tmp;
  1843. }
  1844. if (sd)
  1845. update_shares(sd);
  1846. while (sd) {
  1847. struct sched_group *group;
  1848. int new_cpu, weight;
  1849. if (!(sd->flags & flag)) {
  1850. sd = sd->child;
  1851. continue;
  1852. }
  1853. group = find_idlest_group(sd, t, cpu);
  1854. if (!group) {
  1855. sd = sd->child;
  1856. continue;
  1857. }
  1858. new_cpu = find_idlest_cpu(group, t, cpu);
  1859. if (new_cpu == -1 || new_cpu == cpu) {
  1860. /* Now try balancing at a lower domain level of cpu */
  1861. sd = sd->child;
  1862. continue;
  1863. }
  1864. /* Now try balancing at a lower domain level of new_cpu */
  1865. cpu = new_cpu;
  1866. weight = cpumask_weight(sched_domain_span(sd));
  1867. sd = NULL;
  1868. for_each_domain(cpu, tmp) {
  1869. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1870. break;
  1871. if (tmp->flags & flag)
  1872. sd = tmp;
  1873. }
  1874. /* while loop will break here if sd == NULL */
  1875. }
  1876. return cpu;
  1877. }
  1878. #endif /* CONFIG_SMP */
  1879. /***
  1880. * try_to_wake_up - wake up a thread
  1881. * @p: the to-be-woken-up thread
  1882. * @state: the mask of task states that can be woken
  1883. * @sync: do a synchronous wakeup?
  1884. *
  1885. * Put it on the run-queue if it's not already there. The "current"
  1886. * thread is always on the run-queue (except when the actual
  1887. * re-schedule is in progress), and as such you're allowed to do
  1888. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1889. * runnable without the overhead of this.
  1890. *
  1891. * returns failure only if the task is already active.
  1892. */
  1893. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1894. {
  1895. int cpu, orig_cpu, this_cpu, success = 0;
  1896. unsigned long flags;
  1897. long old_state;
  1898. struct rq *rq;
  1899. if (!sched_feat(SYNC_WAKEUPS))
  1900. sync = 0;
  1901. #ifdef CONFIG_SMP
  1902. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1903. struct sched_domain *sd;
  1904. this_cpu = raw_smp_processor_id();
  1905. cpu = task_cpu(p);
  1906. for_each_domain(this_cpu, sd) {
  1907. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1908. update_shares(sd);
  1909. break;
  1910. }
  1911. }
  1912. }
  1913. #endif
  1914. smp_wmb();
  1915. rq = task_rq_lock(p, &flags);
  1916. old_state = p->state;
  1917. if (!(old_state & state))
  1918. goto out;
  1919. if (p->se.on_rq)
  1920. goto out_running;
  1921. cpu = task_cpu(p);
  1922. orig_cpu = cpu;
  1923. this_cpu = smp_processor_id();
  1924. #ifdef CONFIG_SMP
  1925. if (unlikely(task_running(rq, p)))
  1926. goto out_activate;
  1927. cpu = p->sched_class->select_task_rq(p, sync);
  1928. if (cpu != orig_cpu) {
  1929. set_task_cpu(p, cpu);
  1930. task_rq_unlock(rq, &flags);
  1931. /* might preempt at this point */
  1932. rq = task_rq_lock(p, &flags);
  1933. old_state = p->state;
  1934. if (!(old_state & state))
  1935. goto out;
  1936. if (p->se.on_rq)
  1937. goto out_running;
  1938. this_cpu = smp_processor_id();
  1939. cpu = task_cpu(p);
  1940. }
  1941. #ifdef CONFIG_SCHEDSTATS
  1942. schedstat_inc(rq, ttwu_count);
  1943. if (cpu == this_cpu)
  1944. schedstat_inc(rq, ttwu_local);
  1945. else {
  1946. struct sched_domain *sd;
  1947. for_each_domain(this_cpu, sd) {
  1948. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1949. schedstat_inc(sd, ttwu_wake_remote);
  1950. break;
  1951. }
  1952. }
  1953. }
  1954. #endif /* CONFIG_SCHEDSTATS */
  1955. out_activate:
  1956. #endif /* CONFIG_SMP */
  1957. schedstat_inc(p, se.nr_wakeups);
  1958. if (sync)
  1959. schedstat_inc(p, se.nr_wakeups_sync);
  1960. if (orig_cpu != cpu)
  1961. schedstat_inc(p, se.nr_wakeups_migrate);
  1962. if (cpu == this_cpu)
  1963. schedstat_inc(p, se.nr_wakeups_local);
  1964. else
  1965. schedstat_inc(p, se.nr_wakeups_remote);
  1966. update_rq_clock(rq);
  1967. activate_task(rq, p, 1);
  1968. success = 1;
  1969. out_running:
  1970. trace_sched_wakeup(rq, p);
  1971. check_preempt_curr(rq, p, sync);
  1972. p->state = TASK_RUNNING;
  1973. #ifdef CONFIG_SMP
  1974. if (p->sched_class->task_wake_up)
  1975. p->sched_class->task_wake_up(rq, p);
  1976. #endif
  1977. out:
  1978. current->se.last_wakeup = current->se.sum_exec_runtime;
  1979. task_rq_unlock(rq, &flags);
  1980. return success;
  1981. }
  1982. int wake_up_process(struct task_struct *p)
  1983. {
  1984. return try_to_wake_up(p, TASK_ALL, 0);
  1985. }
  1986. EXPORT_SYMBOL(wake_up_process);
  1987. int wake_up_state(struct task_struct *p, unsigned int state)
  1988. {
  1989. return try_to_wake_up(p, state, 0);
  1990. }
  1991. /*
  1992. * Perform scheduler related setup for a newly forked process p.
  1993. * p is forked by current.
  1994. *
  1995. * __sched_fork() is basic setup used by init_idle() too:
  1996. */
  1997. static void __sched_fork(struct task_struct *p)
  1998. {
  1999. p->se.exec_start = 0;
  2000. p->se.sum_exec_runtime = 0;
  2001. p->se.prev_sum_exec_runtime = 0;
  2002. p->se.last_wakeup = 0;
  2003. p->se.avg_overlap = 0;
  2004. #ifdef CONFIG_SCHEDSTATS
  2005. p->se.wait_start = 0;
  2006. p->se.sum_sleep_runtime = 0;
  2007. p->se.sleep_start = 0;
  2008. p->se.block_start = 0;
  2009. p->se.sleep_max = 0;
  2010. p->se.block_max = 0;
  2011. p->se.exec_max = 0;
  2012. p->se.slice_max = 0;
  2013. p->se.wait_max = 0;
  2014. #endif
  2015. INIT_LIST_HEAD(&p->rt.run_list);
  2016. p->se.on_rq = 0;
  2017. INIT_LIST_HEAD(&p->se.group_node);
  2018. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2019. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2020. #endif
  2021. /*
  2022. * We mark the process as running here, but have not actually
  2023. * inserted it onto the runqueue yet. This guarantees that
  2024. * nobody will actually run it, and a signal or other external
  2025. * event cannot wake it up and insert it on the runqueue either.
  2026. */
  2027. p->state = TASK_RUNNING;
  2028. }
  2029. /*
  2030. * fork()/clone()-time setup:
  2031. */
  2032. void sched_fork(struct task_struct *p, int clone_flags)
  2033. {
  2034. int cpu = get_cpu();
  2035. __sched_fork(p);
  2036. #ifdef CONFIG_SMP
  2037. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2038. #endif
  2039. set_task_cpu(p, cpu);
  2040. /*
  2041. * Make sure we do not leak PI boosting priority to the child:
  2042. */
  2043. p->prio = current->normal_prio;
  2044. if (!rt_prio(p->prio))
  2045. p->sched_class = &fair_sched_class;
  2046. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2047. if (likely(sched_info_on()))
  2048. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2049. #endif
  2050. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2051. p->oncpu = 0;
  2052. #endif
  2053. #ifdef CONFIG_PREEMPT
  2054. /* Want to start with kernel preemption disabled. */
  2055. task_thread_info(p)->preempt_count = 1;
  2056. #endif
  2057. put_cpu();
  2058. }
  2059. /*
  2060. * wake_up_new_task - wake up a newly created task for the first time.
  2061. *
  2062. * This function will do some initial scheduler statistics housekeeping
  2063. * that must be done for every newly created context, then puts the task
  2064. * on the runqueue and wakes it.
  2065. */
  2066. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2067. {
  2068. unsigned long flags;
  2069. struct rq *rq;
  2070. rq = task_rq_lock(p, &flags);
  2071. BUG_ON(p->state != TASK_RUNNING);
  2072. update_rq_clock(rq);
  2073. p->prio = effective_prio(p);
  2074. if (!p->sched_class->task_new || !current->se.on_rq) {
  2075. activate_task(rq, p, 0);
  2076. } else {
  2077. /*
  2078. * Let the scheduling class do new task startup
  2079. * management (if any):
  2080. */
  2081. p->sched_class->task_new(rq, p);
  2082. inc_nr_running(rq);
  2083. }
  2084. trace_sched_wakeup_new(rq, p);
  2085. check_preempt_curr(rq, p, 0);
  2086. #ifdef CONFIG_SMP
  2087. if (p->sched_class->task_wake_up)
  2088. p->sched_class->task_wake_up(rq, p);
  2089. #endif
  2090. task_rq_unlock(rq, &flags);
  2091. }
  2092. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2093. /**
  2094. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2095. * @notifier: notifier struct to register
  2096. */
  2097. void preempt_notifier_register(struct preempt_notifier *notifier)
  2098. {
  2099. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2100. }
  2101. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2102. /**
  2103. * preempt_notifier_unregister - no longer interested in preemption notifications
  2104. * @notifier: notifier struct to unregister
  2105. *
  2106. * This is safe to call from within a preemption notifier.
  2107. */
  2108. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2109. {
  2110. hlist_del(&notifier->link);
  2111. }
  2112. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2113. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2114. {
  2115. struct preempt_notifier *notifier;
  2116. struct hlist_node *node;
  2117. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2118. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2119. }
  2120. static void
  2121. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2122. struct task_struct *next)
  2123. {
  2124. struct preempt_notifier *notifier;
  2125. struct hlist_node *node;
  2126. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2127. notifier->ops->sched_out(notifier, next);
  2128. }
  2129. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2130. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2131. {
  2132. }
  2133. static void
  2134. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2135. struct task_struct *next)
  2136. {
  2137. }
  2138. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2139. /**
  2140. * prepare_task_switch - prepare to switch tasks
  2141. * @rq: the runqueue preparing to switch
  2142. * @prev: the current task that is being switched out
  2143. * @next: the task we are going to switch to.
  2144. *
  2145. * This is called with the rq lock held and interrupts off. It must
  2146. * be paired with a subsequent finish_task_switch after the context
  2147. * switch.
  2148. *
  2149. * prepare_task_switch sets up locking and calls architecture specific
  2150. * hooks.
  2151. */
  2152. static inline void
  2153. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2154. struct task_struct *next)
  2155. {
  2156. fire_sched_out_preempt_notifiers(prev, next);
  2157. prepare_lock_switch(rq, next);
  2158. prepare_arch_switch(next);
  2159. }
  2160. /**
  2161. * finish_task_switch - clean up after a task-switch
  2162. * @rq: runqueue associated with task-switch
  2163. * @prev: the thread we just switched away from.
  2164. *
  2165. * finish_task_switch must be called after the context switch, paired
  2166. * with a prepare_task_switch call before the context switch.
  2167. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2168. * and do any other architecture-specific cleanup actions.
  2169. *
  2170. * Note that we may have delayed dropping an mm in context_switch(). If
  2171. * so, we finish that here outside of the runqueue lock. (Doing it
  2172. * with the lock held can cause deadlocks; see schedule() for
  2173. * details.)
  2174. */
  2175. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2176. __releases(rq->lock)
  2177. {
  2178. struct mm_struct *mm = rq->prev_mm;
  2179. long prev_state;
  2180. rq->prev_mm = NULL;
  2181. /*
  2182. * A task struct has one reference for the use as "current".
  2183. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2184. * schedule one last time. The schedule call will never return, and
  2185. * the scheduled task must drop that reference.
  2186. * The test for TASK_DEAD must occur while the runqueue locks are
  2187. * still held, otherwise prev could be scheduled on another cpu, die
  2188. * there before we look at prev->state, and then the reference would
  2189. * be dropped twice.
  2190. * Manfred Spraul <manfred@colorfullife.com>
  2191. */
  2192. prev_state = prev->state;
  2193. finish_arch_switch(prev);
  2194. finish_lock_switch(rq, prev);
  2195. #ifdef CONFIG_SMP
  2196. if (current->sched_class->post_schedule)
  2197. current->sched_class->post_schedule(rq);
  2198. #endif
  2199. fire_sched_in_preempt_notifiers(current);
  2200. if (mm)
  2201. mmdrop(mm);
  2202. if (unlikely(prev_state == TASK_DEAD)) {
  2203. /*
  2204. * Remove function-return probe instances associated with this
  2205. * task and put them back on the free list.
  2206. */
  2207. kprobe_flush_task(prev);
  2208. put_task_struct(prev);
  2209. }
  2210. }
  2211. /**
  2212. * schedule_tail - first thing a freshly forked thread must call.
  2213. * @prev: the thread we just switched away from.
  2214. */
  2215. asmlinkage void schedule_tail(struct task_struct *prev)
  2216. __releases(rq->lock)
  2217. {
  2218. struct rq *rq = this_rq();
  2219. finish_task_switch(rq, prev);
  2220. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2221. /* In this case, finish_task_switch does not reenable preemption */
  2222. preempt_enable();
  2223. #endif
  2224. if (current->set_child_tid)
  2225. put_user(task_pid_vnr(current), current->set_child_tid);
  2226. }
  2227. /*
  2228. * context_switch - switch to the new MM and the new
  2229. * thread's register state.
  2230. */
  2231. static inline void
  2232. context_switch(struct rq *rq, struct task_struct *prev,
  2233. struct task_struct *next)
  2234. {
  2235. struct mm_struct *mm, *oldmm;
  2236. prepare_task_switch(rq, prev, next);
  2237. trace_sched_switch(rq, prev, next);
  2238. mm = next->mm;
  2239. oldmm = prev->active_mm;
  2240. /*
  2241. * For paravirt, this is coupled with an exit in switch_to to
  2242. * combine the page table reload and the switch backend into
  2243. * one hypercall.
  2244. */
  2245. arch_enter_lazy_cpu_mode();
  2246. if (unlikely(!mm)) {
  2247. next->active_mm = oldmm;
  2248. atomic_inc(&oldmm->mm_count);
  2249. enter_lazy_tlb(oldmm, next);
  2250. } else
  2251. switch_mm(oldmm, mm, next);
  2252. if (unlikely(!prev->mm)) {
  2253. prev->active_mm = NULL;
  2254. rq->prev_mm = oldmm;
  2255. }
  2256. /*
  2257. * Since the runqueue lock will be released by the next
  2258. * task (which is an invalid locking op but in the case
  2259. * of the scheduler it's an obvious special-case), so we
  2260. * do an early lockdep release here:
  2261. */
  2262. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2263. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2264. #endif
  2265. /* Here we just switch the register state and the stack. */
  2266. switch_to(prev, next, prev);
  2267. barrier();
  2268. /*
  2269. * this_rq must be evaluated again because prev may have moved
  2270. * CPUs since it called schedule(), thus the 'rq' on its stack
  2271. * frame will be invalid.
  2272. */
  2273. finish_task_switch(this_rq(), prev);
  2274. }
  2275. /*
  2276. * nr_running, nr_uninterruptible and nr_context_switches:
  2277. *
  2278. * externally visible scheduler statistics: current number of runnable
  2279. * threads, current number of uninterruptible-sleeping threads, total
  2280. * number of context switches performed since bootup.
  2281. */
  2282. unsigned long nr_running(void)
  2283. {
  2284. unsigned long i, sum = 0;
  2285. for_each_online_cpu(i)
  2286. sum += cpu_rq(i)->nr_running;
  2287. return sum;
  2288. }
  2289. unsigned long nr_uninterruptible(void)
  2290. {
  2291. unsigned long i, sum = 0;
  2292. for_each_possible_cpu(i)
  2293. sum += cpu_rq(i)->nr_uninterruptible;
  2294. /*
  2295. * Since we read the counters lockless, it might be slightly
  2296. * inaccurate. Do not allow it to go below zero though:
  2297. */
  2298. if (unlikely((long)sum < 0))
  2299. sum = 0;
  2300. return sum;
  2301. }
  2302. unsigned long long nr_context_switches(void)
  2303. {
  2304. int i;
  2305. unsigned long long sum = 0;
  2306. for_each_possible_cpu(i)
  2307. sum += cpu_rq(i)->nr_switches;
  2308. return sum;
  2309. }
  2310. unsigned long nr_iowait(void)
  2311. {
  2312. unsigned long i, sum = 0;
  2313. for_each_possible_cpu(i)
  2314. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2315. return sum;
  2316. }
  2317. unsigned long nr_active(void)
  2318. {
  2319. unsigned long i, running = 0, uninterruptible = 0;
  2320. for_each_online_cpu(i) {
  2321. running += cpu_rq(i)->nr_running;
  2322. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2323. }
  2324. if (unlikely((long)uninterruptible < 0))
  2325. uninterruptible = 0;
  2326. return running + uninterruptible;
  2327. }
  2328. /*
  2329. * Update rq->cpu_load[] statistics. This function is usually called every
  2330. * scheduler tick (TICK_NSEC).
  2331. */
  2332. static void update_cpu_load(struct rq *this_rq)
  2333. {
  2334. unsigned long this_load = this_rq->load.weight;
  2335. int i, scale;
  2336. this_rq->nr_load_updates++;
  2337. /* Update our load: */
  2338. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2339. unsigned long old_load, new_load;
  2340. /* scale is effectively 1 << i now, and >> i divides by scale */
  2341. old_load = this_rq->cpu_load[i];
  2342. new_load = this_load;
  2343. /*
  2344. * Round up the averaging division if load is increasing. This
  2345. * prevents us from getting stuck on 9 if the load is 10, for
  2346. * example.
  2347. */
  2348. if (new_load > old_load)
  2349. new_load += scale-1;
  2350. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2351. }
  2352. }
  2353. #ifdef CONFIG_SMP
  2354. /*
  2355. * double_rq_lock - safely lock two runqueues
  2356. *
  2357. * Note this does not disable interrupts like task_rq_lock,
  2358. * you need to do so manually before calling.
  2359. */
  2360. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2361. __acquires(rq1->lock)
  2362. __acquires(rq2->lock)
  2363. {
  2364. BUG_ON(!irqs_disabled());
  2365. if (rq1 == rq2) {
  2366. spin_lock(&rq1->lock);
  2367. __acquire(rq2->lock); /* Fake it out ;) */
  2368. } else {
  2369. if (rq1 < rq2) {
  2370. spin_lock(&rq1->lock);
  2371. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2372. } else {
  2373. spin_lock(&rq2->lock);
  2374. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2375. }
  2376. }
  2377. update_rq_clock(rq1);
  2378. update_rq_clock(rq2);
  2379. }
  2380. /*
  2381. * double_rq_unlock - safely unlock two runqueues
  2382. *
  2383. * Note this does not restore interrupts like task_rq_unlock,
  2384. * you need to do so manually after calling.
  2385. */
  2386. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2387. __releases(rq1->lock)
  2388. __releases(rq2->lock)
  2389. {
  2390. spin_unlock(&rq1->lock);
  2391. if (rq1 != rq2)
  2392. spin_unlock(&rq2->lock);
  2393. else
  2394. __release(rq2->lock);
  2395. }
  2396. /*
  2397. * If dest_cpu is allowed for this process, migrate the task to it.
  2398. * This is accomplished by forcing the cpu_allowed mask to only
  2399. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2400. * the cpu_allowed mask is restored.
  2401. */
  2402. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2403. {
  2404. struct migration_req req;
  2405. unsigned long flags;
  2406. struct rq *rq;
  2407. rq = task_rq_lock(p, &flags);
  2408. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2409. || unlikely(!cpu_active(dest_cpu)))
  2410. goto out;
  2411. trace_sched_migrate_task(rq, p, dest_cpu);
  2412. /* force the process onto the specified CPU */
  2413. if (migrate_task(p, dest_cpu, &req)) {
  2414. /* Need to wait for migration thread (might exit: take ref). */
  2415. struct task_struct *mt = rq->migration_thread;
  2416. get_task_struct(mt);
  2417. task_rq_unlock(rq, &flags);
  2418. wake_up_process(mt);
  2419. put_task_struct(mt);
  2420. wait_for_completion(&req.done);
  2421. return;
  2422. }
  2423. out:
  2424. task_rq_unlock(rq, &flags);
  2425. }
  2426. /*
  2427. * sched_exec - execve() is a valuable balancing opportunity, because at
  2428. * this point the task has the smallest effective memory and cache footprint.
  2429. */
  2430. void sched_exec(void)
  2431. {
  2432. int new_cpu, this_cpu = get_cpu();
  2433. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2434. put_cpu();
  2435. if (new_cpu != this_cpu)
  2436. sched_migrate_task(current, new_cpu);
  2437. }
  2438. /*
  2439. * pull_task - move a task from a remote runqueue to the local runqueue.
  2440. * Both runqueues must be locked.
  2441. */
  2442. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2443. struct rq *this_rq, int this_cpu)
  2444. {
  2445. deactivate_task(src_rq, p, 0);
  2446. set_task_cpu(p, this_cpu);
  2447. activate_task(this_rq, p, 0);
  2448. /*
  2449. * Note that idle threads have a prio of MAX_PRIO, for this test
  2450. * to be always true for them.
  2451. */
  2452. check_preempt_curr(this_rq, p, 0);
  2453. }
  2454. /*
  2455. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2456. */
  2457. static
  2458. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2459. struct sched_domain *sd, enum cpu_idle_type idle,
  2460. int *all_pinned)
  2461. {
  2462. /*
  2463. * We do not migrate tasks that are:
  2464. * 1) running (obviously), or
  2465. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2466. * 3) are cache-hot on their current CPU.
  2467. */
  2468. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2469. schedstat_inc(p, se.nr_failed_migrations_affine);
  2470. return 0;
  2471. }
  2472. *all_pinned = 0;
  2473. if (task_running(rq, p)) {
  2474. schedstat_inc(p, se.nr_failed_migrations_running);
  2475. return 0;
  2476. }
  2477. /*
  2478. * Aggressive migration if:
  2479. * 1) task is cache cold, or
  2480. * 2) too many balance attempts have failed.
  2481. */
  2482. if (!task_hot(p, rq->clock, sd) ||
  2483. sd->nr_balance_failed > sd->cache_nice_tries) {
  2484. #ifdef CONFIG_SCHEDSTATS
  2485. if (task_hot(p, rq->clock, sd)) {
  2486. schedstat_inc(sd, lb_hot_gained[idle]);
  2487. schedstat_inc(p, se.nr_forced_migrations);
  2488. }
  2489. #endif
  2490. return 1;
  2491. }
  2492. if (task_hot(p, rq->clock, sd)) {
  2493. schedstat_inc(p, se.nr_failed_migrations_hot);
  2494. return 0;
  2495. }
  2496. return 1;
  2497. }
  2498. static unsigned long
  2499. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2500. unsigned long max_load_move, struct sched_domain *sd,
  2501. enum cpu_idle_type idle, int *all_pinned,
  2502. int *this_best_prio, struct rq_iterator *iterator)
  2503. {
  2504. int loops = 0, pulled = 0, pinned = 0;
  2505. struct task_struct *p;
  2506. long rem_load_move = max_load_move;
  2507. if (max_load_move == 0)
  2508. goto out;
  2509. pinned = 1;
  2510. /*
  2511. * Start the load-balancing iterator:
  2512. */
  2513. p = iterator->start(iterator->arg);
  2514. next:
  2515. if (!p || loops++ > sysctl_sched_nr_migrate)
  2516. goto out;
  2517. if ((p->se.load.weight >> 1) > rem_load_move ||
  2518. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2519. p = iterator->next(iterator->arg);
  2520. goto next;
  2521. }
  2522. pull_task(busiest, p, this_rq, this_cpu);
  2523. pulled++;
  2524. rem_load_move -= p->se.load.weight;
  2525. /*
  2526. * We only want to steal up to the prescribed amount of weighted load.
  2527. */
  2528. if (rem_load_move > 0) {
  2529. if (p->prio < *this_best_prio)
  2530. *this_best_prio = p->prio;
  2531. p = iterator->next(iterator->arg);
  2532. goto next;
  2533. }
  2534. out:
  2535. /*
  2536. * Right now, this is one of only two places pull_task() is called,
  2537. * so we can safely collect pull_task() stats here rather than
  2538. * inside pull_task().
  2539. */
  2540. schedstat_add(sd, lb_gained[idle], pulled);
  2541. if (all_pinned)
  2542. *all_pinned = pinned;
  2543. return max_load_move - rem_load_move;
  2544. }
  2545. /*
  2546. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2547. * this_rq, as part of a balancing operation within domain "sd".
  2548. * Returns 1 if successful and 0 otherwise.
  2549. *
  2550. * Called with both runqueues locked.
  2551. */
  2552. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2553. unsigned long max_load_move,
  2554. struct sched_domain *sd, enum cpu_idle_type idle,
  2555. int *all_pinned)
  2556. {
  2557. const struct sched_class *class = sched_class_highest;
  2558. unsigned long total_load_moved = 0;
  2559. int this_best_prio = this_rq->curr->prio;
  2560. do {
  2561. total_load_moved +=
  2562. class->load_balance(this_rq, this_cpu, busiest,
  2563. max_load_move - total_load_moved,
  2564. sd, idle, all_pinned, &this_best_prio);
  2565. class = class->next;
  2566. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2567. break;
  2568. } while (class && max_load_move > total_load_moved);
  2569. return total_load_moved > 0;
  2570. }
  2571. static int
  2572. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2573. struct sched_domain *sd, enum cpu_idle_type idle,
  2574. struct rq_iterator *iterator)
  2575. {
  2576. struct task_struct *p = iterator->start(iterator->arg);
  2577. int pinned = 0;
  2578. while (p) {
  2579. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2580. pull_task(busiest, p, this_rq, this_cpu);
  2581. /*
  2582. * Right now, this is only the second place pull_task()
  2583. * is called, so we can safely collect pull_task()
  2584. * stats here rather than inside pull_task().
  2585. */
  2586. schedstat_inc(sd, lb_gained[idle]);
  2587. return 1;
  2588. }
  2589. p = iterator->next(iterator->arg);
  2590. }
  2591. return 0;
  2592. }
  2593. /*
  2594. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2595. * part of active balancing operations within "domain".
  2596. * Returns 1 if successful and 0 otherwise.
  2597. *
  2598. * Called with both runqueues locked.
  2599. */
  2600. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2601. struct sched_domain *sd, enum cpu_idle_type idle)
  2602. {
  2603. const struct sched_class *class;
  2604. for (class = sched_class_highest; class; class = class->next)
  2605. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2606. return 1;
  2607. return 0;
  2608. }
  2609. /*
  2610. * find_busiest_group finds and returns the busiest CPU group within the
  2611. * domain. It calculates and returns the amount of weighted load which
  2612. * should be moved to restore balance via the imbalance parameter.
  2613. */
  2614. static struct sched_group *
  2615. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2616. unsigned long *imbalance, enum cpu_idle_type idle,
  2617. int *sd_idle, const struct cpumask *cpus, int *balance)
  2618. {
  2619. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2620. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2621. unsigned long max_pull;
  2622. unsigned long busiest_load_per_task, busiest_nr_running;
  2623. unsigned long this_load_per_task, this_nr_running;
  2624. int load_idx, group_imb = 0;
  2625. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2626. int power_savings_balance = 1;
  2627. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2628. unsigned long min_nr_running = ULONG_MAX;
  2629. struct sched_group *group_min = NULL, *group_leader = NULL;
  2630. #endif
  2631. max_load = this_load = total_load = total_pwr = 0;
  2632. busiest_load_per_task = busiest_nr_running = 0;
  2633. this_load_per_task = this_nr_running = 0;
  2634. if (idle == CPU_NOT_IDLE)
  2635. load_idx = sd->busy_idx;
  2636. else if (idle == CPU_NEWLY_IDLE)
  2637. load_idx = sd->newidle_idx;
  2638. else
  2639. load_idx = sd->idle_idx;
  2640. do {
  2641. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2642. int local_group;
  2643. int i;
  2644. int __group_imb = 0;
  2645. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2646. unsigned long sum_nr_running, sum_weighted_load;
  2647. unsigned long sum_avg_load_per_task;
  2648. unsigned long avg_load_per_task;
  2649. local_group = cpumask_test_cpu(this_cpu,
  2650. sched_group_cpus(group));
  2651. if (local_group)
  2652. balance_cpu = cpumask_first(sched_group_cpus(group));
  2653. /* Tally up the load of all CPUs in the group */
  2654. sum_weighted_load = sum_nr_running = avg_load = 0;
  2655. sum_avg_load_per_task = avg_load_per_task = 0;
  2656. max_cpu_load = 0;
  2657. min_cpu_load = ~0UL;
  2658. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2659. struct rq *rq = cpu_rq(i);
  2660. if (*sd_idle && rq->nr_running)
  2661. *sd_idle = 0;
  2662. /* Bias balancing toward cpus of our domain */
  2663. if (local_group) {
  2664. if (idle_cpu(i) && !first_idle_cpu) {
  2665. first_idle_cpu = 1;
  2666. balance_cpu = i;
  2667. }
  2668. load = target_load(i, load_idx);
  2669. } else {
  2670. load = source_load(i, load_idx);
  2671. if (load > max_cpu_load)
  2672. max_cpu_load = load;
  2673. if (min_cpu_load > load)
  2674. min_cpu_load = load;
  2675. }
  2676. avg_load += load;
  2677. sum_nr_running += rq->nr_running;
  2678. sum_weighted_load += weighted_cpuload(i);
  2679. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2680. }
  2681. /*
  2682. * First idle cpu or the first cpu(busiest) in this sched group
  2683. * is eligible for doing load balancing at this and above
  2684. * domains. In the newly idle case, we will allow all the cpu's
  2685. * to do the newly idle load balance.
  2686. */
  2687. if (idle != CPU_NEWLY_IDLE && local_group &&
  2688. balance_cpu != this_cpu && balance) {
  2689. *balance = 0;
  2690. goto ret;
  2691. }
  2692. total_load += avg_load;
  2693. total_pwr += group->__cpu_power;
  2694. /* Adjust by relative CPU power of the group */
  2695. avg_load = sg_div_cpu_power(group,
  2696. avg_load * SCHED_LOAD_SCALE);
  2697. /*
  2698. * Consider the group unbalanced when the imbalance is larger
  2699. * than the average weight of two tasks.
  2700. *
  2701. * APZ: with cgroup the avg task weight can vary wildly and
  2702. * might not be a suitable number - should we keep a
  2703. * normalized nr_running number somewhere that negates
  2704. * the hierarchy?
  2705. */
  2706. avg_load_per_task = sg_div_cpu_power(group,
  2707. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2708. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2709. __group_imb = 1;
  2710. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2711. if (local_group) {
  2712. this_load = avg_load;
  2713. this = group;
  2714. this_nr_running = sum_nr_running;
  2715. this_load_per_task = sum_weighted_load;
  2716. } else if (avg_load > max_load &&
  2717. (sum_nr_running > group_capacity || __group_imb)) {
  2718. max_load = avg_load;
  2719. busiest = group;
  2720. busiest_nr_running = sum_nr_running;
  2721. busiest_load_per_task = sum_weighted_load;
  2722. group_imb = __group_imb;
  2723. }
  2724. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2725. /*
  2726. * Busy processors will not participate in power savings
  2727. * balance.
  2728. */
  2729. if (idle == CPU_NOT_IDLE ||
  2730. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2731. goto group_next;
  2732. /*
  2733. * If the local group is idle or completely loaded
  2734. * no need to do power savings balance at this domain
  2735. */
  2736. if (local_group && (this_nr_running >= group_capacity ||
  2737. !this_nr_running))
  2738. power_savings_balance = 0;
  2739. /*
  2740. * If a group is already running at full capacity or idle,
  2741. * don't include that group in power savings calculations
  2742. */
  2743. if (!power_savings_balance || sum_nr_running >= group_capacity
  2744. || !sum_nr_running)
  2745. goto group_next;
  2746. /*
  2747. * Calculate the group which has the least non-idle load.
  2748. * This is the group from where we need to pick up the load
  2749. * for saving power
  2750. */
  2751. if ((sum_nr_running < min_nr_running) ||
  2752. (sum_nr_running == min_nr_running &&
  2753. cpumask_first(sched_group_cpus(group)) >
  2754. cpumask_first(sched_group_cpus(group_min)))) {
  2755. group_min = group;
  2756. min_nr_running = sum_nr_running;
  2757. min_load_per_task = sum_weighted_load /
  2758. sum_nr_running;
  2759. }
  2760. /*
  2761. * Calculate the group which is almost near its
  2762. * capacity but still has some space to pick up some load
  2763. * from other group and save more power
  2764. */
  2765. if (sum_nr_running <= group_capacity - 1) {
  2766. if (sum_nr_running > leader_nr_running ||
  2767. (sum_nr_running == leader_nr_running &&
  2768. cpumask_first(sched_group_cpus(group)) <
  2769. cpumask_first(sched_group_cpus(group_leader)))) {
  2770. group_leader = group;
  2771. leader_nr_running = sum_nr_running;
  2772. }
  2773. }
  2774. group_next:
  2775. #endif
  2776. group = group->next;
  2777. } while (group != sd->groups);
  2778. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2779. goto out_balanced;
  2780. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2781. if (this_load >= avg_load ||
  2782. 100*max_load <= sd->imbalance_pct*this_load)
  2783. goto out_balanced;
  2784. busiest_load_per_task /= busiest_nr_running;
  2785. if (group_imb)
  2786. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2787. /*
  2788. * We're trying to get all the cpus to the average_load, so we don't
  2789. * want to push ourselves above the average load, nor do we wish to
  2790. * reduce the max loaded cpu below the average load, as either of these
  2791. * actions would just result in more rebalancing later, and ping-pong
  2792. * tasks around. Thus we look for the minimum possible imbalance.
  2793. * Negative imbalances (*we* are more loaded than anyone else) will
  2794. * be counted as no imbalance for these purposes -- we can't fix that
  2795. * by pulling tasks to us. Be careful of negative numbers as they'll
  2796. * appear as very large values with unsigned longs.
  2797. */
  2798. if (max_load <= busiest_load_per_task)
  2799. goto out_balanced;
  2800. /*
  2801. * In the presence of smp nice balancing, certain scenarios can have
  2802. * max load less than avg load(as we skip the groups at or below
  2803. * its cpu_power, while calculating max_load..)
  2804. */
  2805. if (max_load < avg_load) {
  2806. *imbalance = 0;
  2807. goto small_imbalance;
  2808. }
  2809. /* Don't want to pull so many tasks that a group would go idle */
  2810. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2811. /* How much load to actually move to equalise the imbalance */
  2812. *imbalance = min(max_pull * busiest->__cpu_power,
  2813. (avg_load - this_load) * this->__cpu_power)
  2814. / SCHED_LOAD_SCALE;
  2815. /*
  2816. * if *imbalance is less than the average load per runnable task
  2817. * there is no gaurantee that any tasks will be moved so we'll have
  2818. * a think about bumping its value to force at least one task to be
  2819. * moved
  2820. */
  2821. if (*imbalance < busiest_load_per_task) {
  2822. unsigned long tmp, pwr_now, pwr_move;
  2823. unsigned int imbn;
  2824. small_imbalance:
  2825. pwr_move = pwr_now = 0;
  2826. imbn = 2;
  2827. if (this_nr_running) {
  2828. this_load_per_task /= this_nr_running;
  2829. if (busiest_load_per_task > this_load_per_task)
  2830. imbn = 1;
  2831. } else
  2832. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2833. if (max_load - this_load + busiest_load_per_task >=
  2834. busiest_load_per_task * imbn) {
  2835. *imbalance = busiest_load_per_task;
  2836. return busiest;
  2837. }
  2838. /*
  2839. * OK, we don't have enough imbalance to justify moving tasks,
  2840. * however we may be able to increase total CPU power used by
  2841. * moving them.
  2842. */
  2843. pwr_now += busiest->__cpu_power *
  2844. min(busiest_load_per_task, max_load);
  2845. pwr_now += this->__cpu_power *
  2846. min(this_load_per_task, this_load);
  2847. pwr_now /= SCHED_LOAD_SCALE;
  2848. /* Amount of load we'd subtract */
  2849. tmp = sg_div_cpu_power(busiest,
  2850. busiest_load_per_task * SCHED_LOAD_SCALE);
  2851. if (max_load > tmp)
  2852. pwr_move += busiest->__cpu_power *
  2853. min(busiest_load_per_task, max_load - tmp);
  2854. /* Amount of load we'd add */
  2855. if (max_load * busiest->__cpu_power <
  2856. busiest_load_per_task * SCHED_LOAD_SCALE)
  2857. tmp = sg_div_cpu_power(this,
  2858. max_load * busiest->__cpu_power);
  2859. else
  2860. tmp = sg_div_cpu_power(this,
  2861. busiest_load_per_task * SCHED_LOAD_SCALE);
  2862. pwr_move += this->__cpu_power *
  2863. min(this_load_per_task, this_load + tmp);
  2864. pwr_move /= SCHED_LOAD_SCALE;
  2865. /* Move if we gain throughput */
  2866. if (pwr_move > pwr_now)
  2867. *imbalance = busiest_load_per_task;
  2868. }
  2869. return busiest;
  2870. out_balanced:
  2871. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2872. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2873. goto ret;
  2874. if (this == group_leader && group_leader != group_min) {
  2875. *imbalance = min_load_per_task;
  2876. return group_min;
  2877. }
  2878. #endif
  2879. ret:
  2880. *imbalance = 0;
  2881. return NULL;
  2882. }
  2883. /*
  2884. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2885. */
  2886. static struct rq *
  2887. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2888. unsigned long imbalance, const struct cpumask *cpus)
  2889. {
  2890. struct rq *busiest = NULL, *rq;
  2891. unsigned long max_load = 0;
  2892. int i;
  2893. for_each_cpu(i, sched_group_cpus(group)) {
  2894. unsigned long wl;
  2895. if (!cpumask_test_cpu(i, cpus))
  2896. continue;
  2897. rq = cpu_rq(i);
  2898. wl = weighted_cpuload(i);
  2899. if (rq->nr_running == 1 && wl > imbalance)
  2900. continue;
  2901. if (wl > max_load) {
  2902. max_load = wl;
  2903. busiest = rq;
  2904. }
  2905. }
  2906. return busiest;
  2907. }
  2908. /*
  2909. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2910. * so long as it is large enough.
  2911. */
  2912. #define MAX_PINNED_INTERVAL 512
  2913. /*
  2914. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2915. * tasks if there is an imbalance.
  2916. */
  2917. static int load_balance(int this_cpu, struct rq *this_rq,
  2918. struct sched_domain *sd, enum cpu_idle_type idle,
  2919. int *balance, struct cpumask *cpus)
  2920. {
  2921. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2922. struct sched_group *group;
  2923. unsigned long imbalance;
  2924. struct rq *busiest;
  2925. unsigned long flags;
  2926. cpumask_setall(cpus);
  2927. /*
  2928. * When power savings policy is enabled for the parent domain, idle
  2929. * sibling can pick up load irrespective of busy siblings. In this case,
  2930. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2931. * portraying it as CPU_NOT_IDLE.
  2932. */
  2933. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2934. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2935. sd_idle = 1;
  2936. schedstat_inc(sd, lb_count[idle]);
  2937. redo:
  2938. update_shares(sd);
  2939. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2940. cpus, balance);
  2941. if (*balance == 0)
  2942. goto out_balanced;
  2943. if (!group) {
  2944. schedstat_inc(sd, lb_nobusyg[idle]);
  2945. goto out_balanced;
  2946. }
  2947. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2948. if (!busiest) {
  2949. schedstat_inc(sd, lb_nobusyq[idle]);
  2950. goto out_balanced;
  2951. }
  2952. BUG_ON(busiest == this_rq);
  2953. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2954. ld_moved = 0;
  2955. if (busiest->nr_running > 1) {
  2956. /*
  2957. * Attempt to move tasks. If find_busiest_group has found
  2958. * an imbalance but busiest->nr_running <= 1, the group is
  2959. * still unbalanced. ld_moved simply stays zero, so it is
  2960. * correctly treated as an imbalance.
  2961. */
  2962. local_irq_save(flags);
  2963. double_rq_lock(this_rq, busiest);
  2964. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2965. imbalance, sd, idle, &all_pinned);
  2966. double_rq_unlock(this_rq, busiest);
  2967. local_irq_restore(flags);
  2968. /*
  2969. * some other cpu did the load balance for us.
  2970. */
  2971. if (ld_moved && this_cpu != smp_processor_id())
  2972. resched_cpu(this_cpu);
  2973. /* All tasks on this runqueue were pinned by CPU affinity */
  2974. if (unlikely(all_pinned)) {
  2975. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2976. if (!cpumask_empty(cpus))
  2977. goto redo;
  2978. goto out_balanced;
  2979. }
  2980. }
  2981. if (!ld_moved) {
  2982. schedstat_inc(sd, lb_failed[idle]);
  2983. sd->nr_balance_failed++;
  2984. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2985. spin_lock_irqsave(&busiest->lock, flags);
  2986. /* don't kick the migration_thread, if the curr
  2987. * task on busiest cpu can't be moved to this_cpu
  2988. */
  2989. if (!cpumask_test_cpu(this_cpu,
  2990. &busiest->curr->cpus_allowed)) {
  2991. spin_unlock_irqrestore(&busiest->lock, flags);
  2992. all_pinned = 1;
  2993. goto out_one_pinned;
  2994. }
  2995. if (!busiest->active_balance) {
  2996. busiest->active_balance = 1;
  2997. busiest->push_cpu = this_cpu;
  2998. active_balance = 1;
  2999. }
  3000. spin_unlock_irqrestore(&busiest->lock, flags);
  3001. if (active_balance)
  3002. wake_up_process(busiest->migration_thread);
  3003. /*
  3004. * We've kicked active balancing, reset the failure
  3005. * counter.
  3006. */
  3007. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3008. }
  3009. } else
  3010. sd->nr_balance_failed = 0;
  3011. if (likely(!active_balance)) {
  3012. /* We were unbalanced, so reset the balancing interval */
  3013. sd->balance_interval = sd->min_interval;
  3014. } else {
  3015. /*
  3016. * If we've begun active balancing, start to back off. This
  3017. * case may not be covered by the all_pinned logic if there
  3018. * is only 1 task on the busy runqueue (because we don't call
  3019. * move_tasks).
  3020. */
  3021. if (sd->balance_interval < sd->max_interval)
  3022. sd->balance_interval *= 2;
  3023. }
  3024. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3025. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3026. ld_moved = -1;
  3027. goto out;
  3028. out_balanced:
  3029. schedstat_inc(sd, lb_balanced[idle]);
  3030. sd->nr_balance_failed = 0;
  3031. out_one_pinned:
  3032. /* tune up the balancing interval */
  3033. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3034. (sd->balance_interval < sd->max_interval))
  3035. sd->balance_interval *= 2;
  3036. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3037. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3038. ld_moved = -1;
  3039. else
  3040. ld_moved = 0;
  3041. out:
  3042. if (ld_moved)
  3043. update_shares(sd);
  3044. return ld_moved;
  3045. }
  3046. /*
  3047. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3048. * tasks if there is an imbalance.
  3049. *
  3050. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3051. * this_rq is locked.
  3052. */
  3053. static int
  3054. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3055. struct cpumask *cpus)
  3056. {
  3057. struct sched_group *group;
  3058. struct rq *busiest = NULL;
  3059. unsigned long imbalance;
  3060. int ld_moved = 0;
  3061. int sd_idle = 0;
  3062. int all_pinned = 0;
  3063. cpumask_setall(cpus);
  3064. /*
  3065. * When power savings policy is enabled for the parent domain, idle
  3066. * sibling can pick up load irrespective of busy siblings. In this case,
  3067. * let the state of idle sibling percolate up as IDLE, instead of
  3068. * portraying it as CPU_NOT_IDLE.
  3069. */
  3070. if (sd->flags & SD_SHARE_CPUPOWER &&
  3071. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3072. sd_idle = 1;
  3073. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3074. redo:
  3075. update_shares_locked(this_rq, sd);
  3076. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3077. &sd_idle, cpus, NULL);
  3078. if (!group) {
  3079. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3080. goto out_balanced;
  3081. }
  3082. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3083. if (!busiest) {
  3084. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3085. goto out_balanced;
  3086. }
  3087. BUG_ON(busiest == this_rq);
  3088. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3089. ld_moved = 0;
  3090. if (busiest->nr_running > 1) {
  3091. /* Attempt to move tasks */
  3092. double_lock_balance(this_rq, busiest);
  3093. /* this_rq->clock is already updated */
  3094. update_rq_clock(busiest);
  3095. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3096. imbalance, sd, CPU_NEWLY_IDLE,
  3097. &all_pinned);
  3098. double_unlock_balance(this_rq, busiest);
  3099. if (unlikely(all_pinned)) {
  3100. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3101. if (!cpumask_empty(cpus))
  3102. goto redo;
  3103. }
  3104. }
  3105. if (!ld_moved) {
  3106. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3107. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3108. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3109. return -1;
  3110. } else
  3111. sd->nr_balance_failed = 0;
  3112. update_shares_locked(this_rq, sd);
  3113. return ld_moved;
  3114. out_balanced:
  3115. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3116. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3117. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3118. return -1;
  3119. sd->nr_balance_failed = 0;
  3120. return 0;
  3121. }
  3122. /*
  3123. * idle_balance is called by schedule() if this_cpu is about to become
  3124. * idle. Attempts to pull tasks from other CPUs.
  3125. */
  3126. static void idle_balance(int this_cpu, struct rq *this_rq)
  3127. {
  3128. struct sched_domain *sd;
  3129. int pulled_task = 0;
  3130. unsigned long next_balance = jiffies + HZ;
  3131. cpumask_var_t tmpmask;
  3132. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3133. return;
  3134. for_each_domain(this_cpu, sd) {
  3135. unsigned long interval;
  3136. if (!(sd->flags & SD_LOAD_BALANCE))
  3137. continue;
  3138. if (sd->flags & SD_BALANCE_NEWIDLE)
  3139. /* If we've pulled tasks over stop searching: */
  3140. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3141. sd, tmpmask);
  3142. interval = msecs_to_jiffies(sd->balance_interval);
  3143. if (time_after(next_balance, sd->last_balance + interval))
  3144. next_balance = sd->last_balance + interval;
  3145. if (pulled_task)
  3146. break;
  3147. }
  3148. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3149. /*
  3150. * We are going idle. next_balance may be set based on
  3151. * a busy processor. So reset next_balance.
  3152. */
  3153. this_rq->next_balance = next_balance;
  3154. }
  3155. free_cpumask_var(tmpmask);
  3156. }
  3157. /*
  3158. * active_load_balance is run by migration threads. It pushes running tasks
  3159. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3160. * running on each physical CPU where possible, and avoids physical /
  3161. * logical imbalances.
  3162. *
  3163. * Called with busiest_rq locked.
  3164. */
  3165. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3166. {
  3167. int target_cpu = busiest_rq->push_cpu;
  3168. struct sched_domain *sd;
  3169. struct rq *target_rq;
  3170. /* Is there any task to move? */
  3171. if (busiest_rq->nr_running <= 1)
  3172. return;
  3173. target_rq = cpu_rq(target_cpu);
  3174. /*
  3175. * This condition is "impossible", if it occurs
  3176. * we need to fix it. Originally reported by
  3177. * Bjorn Helgaas on a 128-cpu setup.
  3178. */
  3179. BUG_ON(busiest_rq == target_rq);
  3180. /* move a task from busiest_rq to target_rq */
  3181. double_lock_balance(busiest_rq, target_rq);
  3182. update_rq_clock(busiest_rq);
  3183. update_rq_clock(target_rq);
  3184. /* Search for an sd spanning us and the target CPU. */
  3185. for_each_domain(target_cpu, sd) {
  3186. if ((sd->flags & SD_LOAD_BALANCE) &&
  3187. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3188. break;
  3189. }
  3190. if (likely(sd)) {
  3191. schedstat_inc(sd, alb_count);
  3192. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3193. sd, CPU_IDLE))
  3194. schedstat_inc(sd, alb_pushed);
  3195. else
  3196. schedstat_inc(sd, alb_failed);
  3197. }
  3198. double_unlock_balance(busiest_rq, target_rq);
  3199. }
  3200. #ifdef CONFIG_NO_HZ
  3201. static struct {
  3202. atomic_t load_balancer;
  3203. cpumask_var_t cpu_mask;
  3204. } nohz ____cacheline_aligned = {
  3205. .load_balancer = ATOMIC_INIT(-1),
  3206. };
  3207. /*
  3208. * This routine will try to nominate the ilb (idle load balancing)
  3209. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3210. * load balancing on behalf of all those cpus. If all the cpus in the system
  3211. * go into this tickless mode, then there will be no ilb owner (as there is
  3212. * no need for one) and all the cpus will sleep till the next wakeup event
  3213. * arrives...
  3214. *
  3215. * For the ilb owner, tick is not stopped. And this tick will be used
  3216. * for idle load balancing. ilb owner will still be part of
  3217. * nohz.cpu_mask..
  3218. *
  3219. * While stopping the tick, this cpu will become the ilb owner if there
  3220. * is no other owner. And will be the owner till that cpu becomes busy
  3221. * or if all cpus in the system stop their ticks at which point
  3222. * there is no need for ilb owner.
  3223. *
  3224. * When the ilb owner becomes busy, it nominates another owner, during the
  3225. * next busy scheduler_tick()
  3226. */
  3227. int select_nohz_load_balancer(int stop_tick)
  3228. {
  3229. int cpu = smp_processor_id();
  3230. if (stop_tick) {
  3231. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3232. cpu_rq(cpu)->in_nohz_recently = 1;
  3233. /*
  3234. * If we are going offline and still the leader, give up!
  3235. */
  3236. if (!cpu_active(cpu) &&
  3237. atomic_read(&nohz.load_balancer) == cpu) {
  3238. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3239. BUG();
  3240. return 0;
  3241. }
  3242. /* time for ilb owner also to sleep */
  3243. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3244. if (atomic_read(&nohz.load_balancer) == cpu)
  3245. atomic_set(&nohz.load_balancer, -1);
  3246. return 0;
  3247. }
  3248. if (atomic_read(&nohz.load_balancer) == -1) {
  3249. /* make me the ilb owner */
  3250. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3251. return 1;
  3252. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3253. return 1;
  3254. } else {
  3255. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3256. return 0;
  3257. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3258. if (atomic_read(&nohz.load_balancer) == cpu)
  3259. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3260. BUG();
  3261. }
  3262. return 0;
  3263. }
  3264. #endif
  3265. static DEFINE_SPINLOCK(balancing);
  3266. /*
  3267. * It checks each scheduling domain to see if it is due to be balanced,
  3268. * and initiates a balancing operation if so.
  3269. *
  3270. * Balancing parameters are set up in arch_init_sched_domains.
  3271. */
  3272. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3273. {
  3274. int balance = 1;
  3275. struct rq *rq = cpu_rq(cpu);
  3276. unsigned long interval;
  3277. struct sched_domain *sd;
  3278. /* Earliest time when we have to do rebalance again */
  3279. unsigned long next_balance = jiffies + 60*HZ;
  3280. int update_next_balance = 0;
  3281. int need_serialize;
  3282. cpumask_var_t tmp;
  3283. /* Fails alloc? Rebalancing probably not a priority right now. */
  3284. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3285. return;
  3286. for_each_domain(cpu, sd) {
  3287. if (!(sd->flags & SD_LOAD_BALANCE))
  3288. continue;
  3289. interval = sd->balance_interval;
  3290. if (idle != CPU_IDLE)
  3291. interval *= sd->busy_factor;
  3292. /* scale ms to jiffies */
  3293. interval = msecs_to_jiffies(interval);
  3294. if (unlikely(!interval))
  3295. interval = 1;
  3296. if (interval > HZ*NR_CPUS/10)
  3297. interval = HZ*NR_CPUS/10;
  3298. need_serialize = sd->flags & SD_SERIALIZE;
  3299. if (need_serialize) {
  3300. if (!spin_trylock(&balancing))
  3301. goto out;
  3302. }
  3303. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3304. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3305. /*
  3306. * We've pulled tasks over so either we're no
  3307. * longer idle, or one of our SMT siblings is
  3308. * not idle.
  3309. */
  3310. idle = CPU_NOT_IDLE;
  3311. }
  3312. sd->last_balance = jiffies;
  3313. }
  3314. if (need_serialize)
  3315. spin_unlock(&balancing);
  3316. out:
  3317. if (time_after(next_balance, sd->last_balance + interval)) {
  3318. next_balance = sd->last_balance + interval;
  3319. update_next_balance = 1;
  3320. }
  3321. /*
  3322. * Stop the load balance at this level. There is another
  3323. * CPU in our sched group which is doing load balancing more
  3324. * actively.
  3325. */
  3326. if (!balance)
  3327. break;
  3328. }
  3329. /*
  3330. * next_balance will be updated only when there is a need.
  3331. * When the cpu is attached to null domain for ex, it will not be
  3332. * updated.
  3333. */
  3334. if (likely(update_next_balance))
  3335. rq->next_balance = next_balance;
  3336. free_cpumask_var(tmp);
  3337. }
  3338. /*
  3339. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3340. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3341. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3342. */
  3343. static void run_rebalance_domains(struct softirq_action *h)
  3344. {
  3345. int this_cpu = smp_processor_id();
  3346. struct rq *this_rq = cpu_rq(this_cpu);
  3347. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3348. CPU_IDLE : CPU_NOT_IDLE;
  3349. rebalance_domains(this_cpu, idle);
  3350. #ifdef CONFIG_NO_HZ
  3351. /*
  3352. * If this cpu is the owner for idle load balancing, then do the
  3353. * balancing on behalf of the other idle cpus whose ticks are
  3354. * stopped.
  3355. */
  3356. if (this_rq->idle_at_tick &&
  3357. atomic_read(&nohz.load_balancer) == this_cpu) {
  3358. struct rq *rq;
  3359. int balance_cpu;
  3360. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3361. if (balance_cpu == this_cpu)
  3362. continue;
  3363. /*
  3364. * If this cpu gets work to do, stop the load balancing
  3365. * work being done for other cpus. Next load
  3366. * balancing owner will pick it up.
  3367. */
  3368. if (need_resched())
  3369. break;
  3370. rebalance_domains(balance_cpu, CPU_IDLE);
  3371. rq = cpu_rq(balance_cpu);
  3372. if (time_after(this_rq->next_balance, rq->next_balance))
  3373. this_rq->next_balance = rq->next_balance;
  3374. }
  3375. }
  3376. #endif
  3377. }
  3378. /*
  3379. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3380. *
  3381. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3382. * idle load balancing owner or decide to stop the periodic load balancing,
  3383. * if the whole system is idle.
  3384. */
  3385. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3386. {
  3387. #ifdef CONFIG_NO_HZ
  3388. /*
  3389. * If we were in the nohz mode recently and busy at the current
  3390. * scheduler tick, then check if we need to nominate new idle
  3391. * load balancer.
  3392. */
  3393. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3394. rq->in_nohz_recently = 0;
  3395. if (atomic_read(&nohz.load_balancer) == cpu) {
  3396. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3397. atomic_set(&nohz.load_balancer, -1);
  3398. }
  3399. if (atomic_read(&nohz.load_balancer) == -1) {
  3400. /*
  3401. * simple selection for now: Nominate the
  3402. * first cpu in the nohz list to be the next
  3403. * ilb owner.
  3404. *
  3405. * TBD: Traverse the sched domains and nominate
  3406. * the nearest cpu in the nohz.cpu_mask.
  3407. */
  3408. int ilb = cpumask_first(nohz.cpu_mask);
  3409. if (ilb < nr_cpu_ids)
  3410. resched_cpu(ilb);
  3411. }
  3412. }
  3413. /*
  3414. * If this cpu is idle and doing idle load balancing for all the
  3415. * cpus with ticks stopped, is it time for that to stop?
  3416. */
  3417. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3418. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3419. resched_cpu(cpu);
  3420. return;
  3421. }
  3422. /*
  3423. * If this cpu is idle and the idle load balancing is done by
  3424. * someone else, then no need raise the SCHED_SOFTIRQ
  3425. */
  3426. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3427. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3428. return;
  3429. #endif
  3430. if (time_after_eq(jiffies, rq->next_balance))
  3431. raise_softirq(SCHED_SOFTIRQ);
  3432. }
  3433. #else /* CONFIG_SMP */
  3434. /*
  3435. * on UP we do not need to balance between CPUs:
  3436. */
  3437. static inline void idle_balance(int cpu, struct rq *rq)
  3438. {
  3439. }
  3440. #endif
  3441. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3442. EXPORT_PER_CPU_SYMBOL(kstat);
  3443. /*
  3444. * Return any ns on the sched_clock that have not yet been banked in
  3445. * @p in case that task is currently running.
  3446. */
  3447. unsigned long long task_delta_exec(struct task_struct *p)
  3448. {
  3449. unsigned long flags;
  3450. struct rq *rq;
  3451. u64 ns = 0;
  3452. rq = task_rq_lock(p, &flags);
  3453. if (task_current(rq, p)) {
  3454. u64 delta_exec;
  3455. update_rq_clock(rq);
  3456. delta_exec = rq->clock - p->se.exec_start;
  3457. if ((s64)delta_exec > 0)
  3458. ns = delta_exec;
  3459. }
  3460. task_rq_unlock(rq, &flags);
  3461. return ns;
  3462. }
  3463. /*
  3464. * Account user cpu time to a process.
  3465. * @p: the process that the cpu time gets accounted to
  3466. * @cputime: the cpu time spent in user space since the last update
  3467. */
  3468. void account_user_time(struct task_struct *p, cputime_t cputime)
  3469. {
  3470. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3471. cputime64_t tmp;
  3472. p->utime = cputime_add(p->utime, cputime);
  3473. account_group_user_time(p, cputime);
  3474. /* Add user time to cpustat. */
  3475. tmp = cputime_to_cputime64(cputime);
  3476. if (TASK_NICE(p) > 0)
  3477. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3478. else
  3479. cpustat->user = cputime64_add(cpustat->user, tmp);
  3480. /* Account for user time used */
  3481. acct_update_integrals(p);
  3482. }
  3483. /*
  3484. * Account guest cpu time to a process.
  3485. * @p: the process that the cpu time gets accounted to
  3486. * @cputime: the cpu time spent in virtual machine since the last update
  3487. */
  3488. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3489. {
  3490. cputime64_t tmp;
  3491. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3492. tmp = cputime_to_cputime64(cputime);
  3493. p->utime = cputime_add(p->utime, cputime);
  3494. account_group_user_time(p, cputime);
  3495. p->gtime = cputime_add(p->gtime, cputime);
  3496. cpustat->user = cputime64_add(cpustat->user, tmp);
  3497. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3498. }
  3499. /*
  3500. * Account scaled user cpu time to a process.
  3501. * @p: the process that the cpu time gets accounted to
  3502. * @cputime: the cpu time spent in user space since the last update
  3503. */
  3504. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3505. {
  3506. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3507. }
  3508. /*
  3509. * Account system cpu time to a process.
  3510. * @p: the process that the cpu time gets accounted to
  3511. * @hardirq_offset: the offset to subtract from hardirq_count()
  3512. * @cputime: the cpu time spent in kernel space since the last update
  3513. */
  3514. void account_system_time(struct task_struct *p, int hardirq_offset,
  3515. cputime_t cputime)
  3516. {
  3517. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3518. struct rq *rq = this_rq();
  3519. cputime64_t tmp;
  3520. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3521. account_guest_time(p, cputime);
  3522. return;
  3523. }
  3524. p->stime = cputime_add(p->stime, cputime);
  3525. account_group_system_time(p, cputime);
  3526. /* Add system time to cpustat. */
  3527. tmp = cputime_to_cputime64(cputime);
  3528. if (hardirq_count() - hardirq_offset)
  3529. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3530. else if (softirq_count())
  3531. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3532. else if (p != rq->idle)
  3533. cpustat->system = cputime64_add(cpustat->system, tmp);
  3534. else if (atomic_read(&rq->nr_iowait) > 0)
  3535. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3536. else
  3537. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3538. /* Account for system time used */
  3539. acct_update_integrals(p);
  3540. }
  3541. /*
  3542. * Account scaled system cpu time to a process.
  3543. * @p: the process that the cpu time gets accounted to
  3544. * @hardirq_offset: the offset to subtract from hardirq_count()
  3545. * @cputime: the cpu time spent in kernel space since the last update
  3546. */
  3547. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3548. {
  3549. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3550. }
  3551. /*
  3552. * Account for involuntary wait time.
  3553. * @p: the process from which the cpu time has been stolen
  3554. * @steal: the cpu time spent in involuntary wait
  3555. */
  3556. void account_steal_time(struct task_struct *p, cputime_t steal)
  3557. {
  3558. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3559. cputime64_t tmp = cputime_to_cputime64(steal);
  3560. struct rq *rq = this_rq();
  3561. if (p == rq->idle) {
  3562. p->stime = cputime_add(p->stime, steal);
  3563. if (atomic_read(&rq->nr_iowait) > 0)
  3564. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3565. else
  3566. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3567. } else
  3568. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3569. }
  3570. /*
  3571. * Use precise platform statistics if available:
  3572. */
  3573. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3574. cputime_t task_utime(struct task_struct *p)
  3575. {
  3576. return p->utime;
  3577. }
  3578. cputime_t task_stime(struct task_struct *p)
  3579. {
  3580. return p->stime;
  3581. }
  3582. #else
  3583. cputime_t task_utime(struct task_struct *p)
  3584. {
  3585. clock_t utime = cputime_to_clock_t(p->utime),
  3586. total = utime + cputime_to_clock_t(p->stime);
  3587. u64 temp;
  3588. /*
  3589. * Use CFS's precise accounting:
  3590. */
  3591. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3592. if (total) {
  3593. temp *= utime;
  3594. do_div(temp, total);
  3595. }
  3596. utime = (clock_t)temp;
  3597. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3598. return p->prev_utime;
  3599. }
  3600. cputime_t task_stime(struct task_struct *p)
  3601. {
  3602. clock_t stime;
  3603. /*
  3604. * Use CFS's precise accounting. (we subtract utime from
  3605. * the total, to make sure the total observed by userspace
  3606. * grows monotonically - apps rely on that):
  3607. */
  3608. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3609. cputime_to_clock_t(task_utime(p));
  3610. if (stime >= 0)
  3611. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3612. return p->prev_stime;
  3613. }
  3614. #endif
  3615. inline cputime_t task_gtime(struct task_struct *p)
  3616. {
  3617. return p->gtime;
  3618. }
  3619. /*
  3620. * This function gets called by the timer code, with HZ frequency.
  3621. * We call it with interrupts disabled.
  3622. *
  3623. * It also gets called by the fork code, when changing the parent's
  3624. * timeslices.
  3625. */
  3626. void scheduler_tick(void)
  3627. {
  3628. int cpu = smp_processor_id();
  3629. struct rq *rq = cpu_rq(cpu);
  3630. struct task_struct *curr = rq->curr;
  3631. sched_clock_tick();
  3632. spin_lock(&rq->lock);
  3633. update_rq_clock(rq);
  3634. update_cpu_load(rq);
  3635. curr->sched_class->task_tick(rq, curr, 0);
  3636. spin_unlock(&rq->lock);
  3637. #ifdef CONFIG_SMP
  3638. rq->idle_at_tick = idle_cpu(cpu);
  3639. trigger_load_balance(rq, cpu);
  3640. #endif
  3641. }
  3642. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3643. defined(CONFIG_PREEMPT_TRACER))
  3644. static inline unsigned long get_parent_ip(unsigned long addr)
  3645. {
  3646. if (in_lock_functions(addr)) {
  3647. addr = CALLER_ADDR2;
  3648. if (in_lock_functions(addr))
  3649. addr = CALLER_ADDR3;
  3650. }
  3651. return addr;
  3652. }
  3653. void __kprobes add_preempt_count(int val)
  3654. {
  3655. #ifdef CONFIG_DEBUG_PREEMPT
  3656. /*
  3657. * Underflow?
  3658. */
  3659. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3660. return;
  3661. #endif
  3662. preempt_count() += val;
  3663. #ifdef CONFIG_DEBUG_PREEMPT
  3664. /*
  3665. * Spinlock count overflowing soon?
  3666. */
  3667. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3668. PREEMPT_MASK - 10);
  3669. #endif
  3670. if (preempt_count() == val)
  3671. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3672. }
  3673. EXPORT_SYMBOL(add_preempt_count);
  3674. void __kprobes sub_preempt_count(int val)
  3675. {
  3676. #ifdef CONFIG_DEBUG_PREEMPT
  3677. /*
  3678. * Underflow?
  3679. */
  3680. if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
  3681. return;
  3682. /*
  3683. * Is the spinlock portion underflowing?
  3684. */
  3685. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3686. !(preempt_count() & PREEMPT_MASK)))
  3687. return;
  3688. #endif
  3689. if (preempt_count() == val)
  3690. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3691. preempt_count() -= val;
  3692. }
  3693. EXPORT_SYMBOL(sub_preempt_count);
  3694. #endif
  3695. /*
  3696. * Print scheduling while atomic bug:
  3697. */
  3698. static noinline void __schedule_bug(struct task_struct *prev)
  3699. {
  3700. struct pt_regs *regs = get_irq_regs();
  3701. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3702. prev->comm, prev->pid, preempt_count());
  3703. debug_show_held_locks(prev);
  3704. print_modules();
  3705. if (irqs_disabled())
  3706. print_irqtrace_events(prev);
  3707. if (regs)
  3708. show_regs(regs);
  3709. else
  3710. dump_stack();
  3711. }
  3712. /*
  3713. * Various schedule()-time debugging checks and statistics:
  3714. */
  3715. static inline void schedule_debug(struct task_struct *prev)
  3716. {
  3717. /*
  3718. * Test if we are atomic. Since do_exit() needs to call into
  3719. * schedule() atomically, we ignore that path for now.
  3720. * Otherwise, whine if we are scheduling when we should not be.
  3721. */
  3722. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3723. __schedule_bug(prev);
  3724. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3725. schedstat_inc(this_rq(), sched_count);
  3726. #ifdef CONFIG_SCHEDSTATS
  3727. if (unlikely(prev->lock_depth >= 0)) {
  3728. schedstat_inc(this_rq(), bkl_count);
  3729. schedstat_inc(prev, sched_info.bkl_count);
  3730. }
  3731. #endif
  3732. }
  3733. /*
  3734. * Pick up the highest-prio task:
  3735. */
  3736. static inline struct task_struct *
  3737. pick_next_task(struct rq *rq, struct task_struct *prev)
  3738. {
  3739. const struct sched_class *class;
  3740. struct task_struct *p;
  3741. /*
  3742. * Optimization: we know that if all tasks are in
  3743. * the fair class we can call that function directly:
  3744. */
  3745. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3746. p = fair_sched_class.pick_next_task(rq);
  3747. if (likely(p))
  3748. return p;
  3749. }
  3750. class = sched_class_highest;
  3751. for ( ; ; ) {
  3752. p = class->pick_next_task(rq);
  3753. if (p)
  3754. return p;
  3755. /*
  3756. * Will never be NULL as the idle class always
  3757. * returns a non-NULL p:
  3758. */
  3759. class = class->next;
  3760. }
  3761. }
  3762. /*
  3763. * schedule() is the main scheduler function.
  3764. */
  3765. asmlinkage void __sched schedule(void)
  3766. {
  3767. struct task_struct *prev, *next;
  3768. unsigned long *switch_count;
  3769. struct rq *rq;
  3770. int cpu;
  3771. need_resched:
  3772. preempt_disable();
  3773. cpu = smp_processor_id();
  3774. rq = cpu_rq(cpu);
  3775. rcu_qsctr_inc(cpu);
  3776. prev = rq->curr;
  3777. switch_count = &prev->nivcsw;
  3778. release_kernel_lock(prev);
  3779. need_resched_nonpreemptible:
  3780. schedule_debug(prev);
  3781. if (sched_feat(HRTICK))
  3782. hrtick_clear(rq);
  3783. spin_lock_irq(&rq->lock);
  3784. update_rq_clock(rq);
  3785. clear_tsk_need_resched(prev);
  3786. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3787. if (unlikely(signal_pending_state(prev->state, prev)))
  3788. prev->state = TASK_RUNNING;
  3789. else
  3790. deactivate_task(rq, prev, 1);
  3791. switch_count = &prev->nvcsw;
  3792. }
  3793. #ifdef CONFIG_SMP
  3794. if (prev->sched_class->pre_schedule)
  3795. prev->sched_class->pre_schedule(rq, prev);
  3796. #endif
  3797. if (unlikely(!rq->nr_running))
  3798. idle_balance(cpu, rq);
  3799. prev->sched_class->put_prev_task(rq, prev);
  3800. next = pick_next_task(rq, prev);
  3801. if (likely(prev != next)) {
  3802. sched_info_switch(prev, next);
  3803. rq->nr_switches++;
  3804. rq->curr = next;
  3805. ++*switch_count;
  3806. context_switch(rq, prev, next); /* unlocks the rq */
  3807. /*
  3808. * the context switch might have flipped the stack from under
  3809. * us, hence refresh the local variables.
  3810. */
  3811. cpu = smp_processor_id();
  3812. rq = cpu_rq(cpu);
  3813. } else
  3814. spin_unlock_irq(&rq->lock);
  3815. if (unlikely(reacquire_kernel_lock(current) < 0))
  3816. goto need_resched_nonpreemptible;
  3817. preempt_enable_no_resched();
  3818. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3819. goto need_resched;
  3820. }
  3821. EXPORT_SYMBOL(schedule);
  3822. #ifdef CONFIG_PREEMPT
  3823. /*
  3824. * this is the entry point to schedule() from in-kernel preemption
  3825. * off of preempt_enable. Kernel preemptions off return from interrupt
  3826. * occur there and call schedule directly.
  3827. */
  3828. asmlinkage void __sched preempt_schedule(void)
  3829. {
  3830. struct thread_info *ti = current_thread_info();
  3831. /*
  3832. * If there is a non-zero preempt_count or interrupts are disabled,
  3833. * we do not want to preempt the current task. Just return..
  3834. */
  3835. if (likely(ti->preempt_count || irqs_disabled()))
  3836. return;
  3837. do {
  3838. add_preempt_count(PREEMPT_ACTIVE);
  3839. schedule();
  3840. sub_preempt_count(PREEMPT_ACTIVE);
  3841. /*
  3842. * Check again in case we missed a preemption opportunity
  3843. * between schedule and now.
  3844. */
  3845. barrier();
  3846. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3847. }
  3848. EXPORT_SYMBOL(preempt_schedule);
  3849. /*
  3850. * this is the entry point to schedule() from kernel preemption
  3851. * off of irq context.
  3852. * Note, that this is called and return with irqs disabled. This will
  3853. * protect us against recursive calling from irq.
  3854. */
  3855. asmlinkage void __sched preempt_schedule_irq(void)
  3856. {
  3857. struct thread_info *ti = current_thread_info();
  3858. /* Catch callers which need to be fixed */
  3859. BUG_ON(ti->preempt_count || !irqs_disabled());
  3860. do {
  3861. add_preempt_count(PREEMPT_ACTIVE);
  3862. local_irq_enable();
  3863. schedule();
  3864. local_irq_disable();
  3865. sub_preempt_count(PREEMPT_ACTIVE);
  3866. /*
  3867. * Check again in case we missed a preemption opportunity
  3868. * between schedule and now.
  3869. */
  3870. barrier();
  3871. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3872. }
  3873. #endif /* CONFIG_PREEMPT */
  3874. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3875. void *key)
  3876. {
  3877. return try_to_wake_up(curr->private, mode, sync);
  3878. }
  3879. EXPORT_SYMBOL(default_wake_function);
  3880. /*
  3881. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3882. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3883. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3884. *
  3885. * There are circumstances in which we can try to wake a task which has already
  3886. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3887. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3888. */
  3889. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3890. int nr_exclusive, int sync, void *key)
  3891. {
  3892. wait_queue_t *curr, *next;
  3893. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3894. unsigned flags = curr->flags;
  3895. if (curr->func(curr, mode, sync, key) &&
  3896. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3897. break;
  3898. }
  3899. }
  3900. /**
  3901. * __wake_up - wake up threads blocked on a waitqueue.
  3902. * @q: the waitqueue
  3903. * @mode: which threads
  3904. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3905. * @key: is directly passed to the wakeup function
  3906. */
  3907. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3908. int nr_exclusive, void *key)
  3909. {
  3910. unsigned long flags;
  3911. spin_lock_irqsave(&q->lock, flags);
  3912. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3913. spin_unlock_irqrestore(&q->lock, flags);
  3914. }
  3915. EXPORT_SYMBOL(__wake_up);
  3916. /*
  3917. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3918. */
  3919. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3920. {
  3921. __wake_up_common(q, mode, 1, 0, NULL);
  3922. }
  3923. /**
  3924. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3925. * @q: the waitqueue
  3926. * @mode: which threads
  3927. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3928. *
  3929. * The sync wakeup differs that the waker knows that it will schedule
  3930. * away soon, so while the target thread will be woken up, it will not
  3931. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3932. * with each other. This can prevent needless bouncing between CPUs.
  3933. *
  3934. * On UP it can prevent extra preemption.
  3935. */
  3936. void
  3937. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3938. {
  3939. unsigned long flags;
  3940. int sync = 1;
  3941. if (unlikely(!q))
  3942. return;
  3943. if (unlikely(!nr_exclusive))
  3944. sync = 0;
  3945. spin_lock_irqsave(&q->lock, flags);
  3946. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3947. spin_unlock_irqrestore(&q->lock, flags);
  3948. }
  3949. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3950. /**
  3951. * complete: - signals a single thread waiting on this completion
  3952. * @x: holds the state of this particular completion
  3953. *
  3954. * This will wake up a single thread waiting on this completion. Threads will be
  3955. * awakened in the same order in which they were queued.
  3956. *
  3957. * See also complete_all(), wait_for_completion() and related routines.
  3958. */
  3959. void complete(struct completion *x)
  3960. {
  3961. unsigned long flags;
  3962. spin_lock_irqsave(&x->wait.lock, flags);
  3963. x->done++;
  3964. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3965. spin_unlock_irqrestore(&x->wait.lock, flags);
  3966. }
  3967. EXPORT_SYMBOL(complete);
  3968. /**
  3969. * complete_all: - signals all threads waiting on this completion
  3970. * @x: holds the state of this particular completion
  3971. *
  3972. * This will wake up all threads waiting on this particular completion event.
  3973. */
  3974. void complete_all(struct completion *x)
  3975. {
  3976. unsigned long flags;
  3977. spin_lock_irqsave(&x->wait.lock, flags);
  3978. x->done += UINT_MAX/2;
  3979. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3980. spin_unlock_irqrestore(&x->wait.lock, flags);
  3981. }
  3982. EXPORT_SYMBOL(complete_all);
  3983. static inline long __sched
  3984. do_wait_for_common(struct completion *x, long timeout, int state)
  3985. {
  3986. if (!x->done) {
  3987. DECLARE_WAITQUEUE(wait, current);
  3988. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3989. __add_wait_queue_tail(&x->wait, &wait);
  3990. do {
  3991. if (signal_pending_state(state, current)) {
  3992. timeout = -ERESTARTSYS;
  3993. break;
  3994. }
  3995. __set_current_state(state);
  3996. spin_unlock_irq(&x->wait.lock);
  3997. timeout = schedule_timeout(timeout);
  3998. spin_lock_irq(&x->wait.lock);
  3999. } while (!x->done && timeout);
  4000. __remove_wait_queue(&x->wait, &wait);
  4001. if (!x->done)
  4002. return timeout;
  4003. }
  4004. x->done--;
  4005. return timeout ?: 1;
  4006. }
  4007. static long __sched
  4008. wait_for_common(struct completion *x, long timeout, int state)
  4009. {
  4010. might_sleep();
  4011. spin_lock_irq(&x->wait.lock);
  4012. timeout = do_wait_for_common(x, timeout, state);
  4013. spin_unlock_irq(&x->wait.lock);
  4014. return timeout;
  4015. }
  4016. /**
  4017. * wait_for_completion: - waits for completion of a task
  4018. * @x: holds the state of this particular completion
  4019. *
  4020. * This waits to be signaled for completion of a specific task. It is NOT
  4021. * interruptible and there is no timeout.
  4022. *
  4023. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4024. * and interrupt capability. Also see complete().
  4025. */
  4026. void __sched wait_for_completion(struct completion *x)
  4027. {
  4028. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4029. }
  4030. EXPORT_SYMBOL(wait_for_completion);
  4031. /**
  4032. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4033. * @x: holds the state of this particular completion
  4034. * @timeout: timeout value in jiffies
  4035. *
  4036. * This waits for either a completion of a specific task to be signaled or for a
  4037. * specified timeout to expire. The timeout is in jiffies. It is not
  4038. * interruptible.
  4039. */
  4040. unsigned long __sched
  4041. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4042. {
  4043. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4044. }
  4045. EXPORT_SYMBOL(wait_for_completion_timeout);
  4046. /**
  4047. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4048. * @x: holds the state of this particular completion
  4049. *
  4050. * This waits for completion of a specific task to be signaled. It is
  4051. * interruptible.
  4052. */
  4053. int __sched wait_for_completion_interruptible(struct completion *x)
  4054. {
  4055. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4056. if (t == -ERESTARTSYS)
  4057. return t;
  4058. return 0;
  4059. }
  4060. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4061. /**
  4062. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4063. * @x: holds the state of this particular completion
  4064. * @timeout: timeout value in jiffies
  4065. *
  4066. * This waits for either a completion of a specific task to be signaled or for a
  4067. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4068. */
  4069. unsigned long __sched
  4070. wait_for_completion_interruptible_timeout(struct completion *x,
  4071. unsigned long timeout)
  4072. {
  4073. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4074. }
  4075. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4076. /**
  4077. * wait_for_completion_killable: - waits for completion of a task (killable)
  4078. * @x: holds the state of this particular completion
  4079. *
  4080. * This waits to be signaled for completion of a specific task. It can be
  4081. * interrupted by a kill signal.
  4082. */
  4083. int __sched wait_for_completion_killable(struct completion *x)
  4084. {
  4085. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4086. if (t == -ERESTARTSYS)
  4087. return t;
  4088. return 0;
  4089. }
  4090. EXPORT_SYMBOL(wait_for_completion_killable);
  4091. /**
  4092. * try_wait_for_completion - try to decrement a completion without blocking
  4093. * @x: completion structure
  4094. *
  4095. * Returns: 0 if a decrement cannot be done without blocking
  4096. * 1 if a decrement succeeded.
  4097. *
  4098. * If a completion is being used as a counting completion,
  4099. * attempt to decrement the counter without blocking. This
  4100. * enables us to avoid waiting if the resource the completion
  4101. * is protecting is not available.
  4102. */
  4103. bool try_wait_for_completion(struct completion *x)
  4104. {
  4105. int ret = 1;
  4106. spin_lock_irq(&x->wait.lock);
  4107. if (!x->done)
  4108. ret = 0;
  4109. else
  4110. x->done--;
  4111. spin_unlock_irq(&x->wait.lock);
  4112. return ret;
  4113. }
  4114. EXPORT_SYMBOL(try_wait_for_completion);
  4115. /**
  4116. * completion_done - Test to see if a completion has any waiters
  4117. * @x: completion structure
  4118. *
  4119. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4120. * 1 if there are no waiters.
  4121. *
  4122. */
  4123. bool completion_done(struct completion *x)
  4124. {
  4125. int ret = 1;
  4126. spin_lock_irq(&x->wait.lock);
  4127. if (!x->done)
  4128. ret = 0;
  4129. spin_unlock_irq(&x->wait.lock);
  4130. return ret;
  4131. }
  4132. EXPORT_SYMBOL(completion_done);
  4133. static long __sched
  4134. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4135. {
  4136. unsigned long flags;
  4137. wait_queue_t wait;
  4138. init_waitqueue_entry(&wait, current);
  4139. __set_current_state(state);
  4140. spin_lock_irqsave(&q->lock, flags);
  4141. __add_wait_queue(q, &wait);
  4142. spin_unlock(&q->lock);
  4143. timeout = schedule_timeout(timeout);
  4144. spin_lock_irq(&q->lock);
  4145. __remove_wait_queue(q, &wait);
  4146. spin_unlock_irqrestore(&q->lock, flags);
  4147. return timeout;
  4148. }
  4149. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4150. {
  4151. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4152. }
  4153. EXPORT_SYMBOL(interruptible_sleep_on);
  4154. long __sched
  4155. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4156. {
  4157. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4158. }
  4159. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4160. void __sched sleep_on(wait_queue_head_t *q)
  4161. {
  4162. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4163. }
  4164. EXPORT_SYMBOL(sleep_on);
  4165. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4166. {
  4167. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4168. }
  4169. EXPORT_SYMBOL(sleep_on_timeout);
  4170. #ifdef CONFIG_RT_MUTEXES
  4171. /*
  4172. * rt_mutex_setprio - set the current priority of a task
  4173. * @p: task
  4174. * @prio: prio value (kernel-internal form)
  4175. *
  4176. * This function changes the 'effective' priority of a task. It does
  4177. * not touch ->normal_prio like __setscheduler().
  4178. *
  4179. * Used by the rt_mutex code to implement priority inheritance logic.
  4180. */
  4181. void rt_mutex_setprio(struct task_struct *p, int prio)
  4182. {
  4183. unsigned long flags;
  4184. int oldprio, on_rq, running;
  4185. struct rq *rq;
  4186. const struct sched_class *prev_class = p->sched_class;
  4187. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4188. rq = task_rq_lock(p, &flags);
  4189. update_rq_clock(rq);
  4190. oldprio = p->prio;
  4191. on_rq = p->se.on_rq;
  4192. running = task_current(rq, p);
  4193. if (on_rq)
  4194. dequeue_task(rq, p, 0);
  4195. if (running)
  4196. p->sched_class->put_prev_task(rq, p);
  4197. if (rt_prio(prio))
  4198. p->sched_class = &rt_sched_class;
  4199. else
  4200. p->sched_class = &fair_sched_class;
  4201. p->prio = prio;
  4202. if (running)
  4203. p->sched_class->set_curr_task(rq);
  4204. if (on_rq) {
  4205. enqueue_task(rq, p, 0);
  4206. check_class_changed(rq, p, prev_class, oldprio, running);
  4207. }
  4208. task_rq_unlock(rq, &flags);
  4209. }
  4210. #endif
  4211. void set_user_nice(struct task_struct *p, long nice)
  4212. {
  4213. int old_prio, delta, on_rq;
  4214. unsigned long flags;
  4215. struct rq *rq;
  4216. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4217. return;
  4218. /*
  4219. * We have to be careful, if called from sys_setpriority(),
  4220. * the task might be in the middle of scheduling on another CPU.
  4221. */
  4222. rq = task_rq_lock(p, &flags);
  4223. update_rq_clock(rq);
  4224. /*
  4225. * The RT priorities are set via sched_setscheduler(), but we still
  4226. * allow the 'normal' nice value to be set - but as expected
  4227. * it wont have any effect on scheduling until the task is
  4228. * SCHED_FIFO/SCHED_RR:
  4229. */
  4230. if (task_has_rt_policy(p)) {
  4231. p->static_prio = NICE_TO_PRIO(nice);
  4232. goto out_unlock;
  4233. }
  4234. on_rq = p->se.on_rq;
  4235. if (on_rq)
  4236. dequeue_task(rq, p, 0);
  4237. p->static_prio = NICE_TO_PRIO(nice);
  4238. set_load_weight(p);
  4239. old_prio = p->prio;
  4240. p->prio = effective_prio(p);
  4241. delta = p->prio - old_prio;
  4242. if (on_rq) {
  4243. enqueue_task(rq, p, 0);
  4244. /*
  4245. * If the task increased its priority or is running and
  4246. * lowered its priority, then reschedule its CPU:
  4247. */
  4248. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4249. resched_task(rq->curr);
  4250. }
  4251. out_unlock:
  4252. task_rq_unlock(rq, &flags);
  4253. }
  4254. EXPORT_SYMBOL(set_user_nice);
  4255. /*
  4256. * can_nice - check if a task can reduce its nice value
  4257. * @p: task
  4258. * @nice: nice value
  4259. */
  4260. int can_nice(const struct task_struct *p, const int nice)
  4261. {
  4262. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4263. int nice_rlim = 20 - nice;
  4264. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4265. capable(CAP_SYS_NICE));
  4266. }
  4267. #ifdef __ARCH_WANT_SYS_NICE
  4268. /*
  4269. * sys_nice - change the priority of the current process.
  4270. * @increment: priority increment
  4271. *
  4272. * sys_setpriority is a more generic, but much slower function that
  4273. * does similar things.
  4274. */
  4275. asmlinkage long sys_nice(int increment)
  4276. {
  4277. long nice, retval;
  4278. /*
  4279. * Setpriority might change our priority at the same moment.
  4280. * We don't have to worry. Conceptually one call occurs first
  4281. * and we have a single winner.
  4282. */
  4283. if (increment < -40)
  4284. increment = -40;
  4285. if (increment > 40)
  4286. increment = 40;
  4287. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4288. if (nice < -20)
  4289. nice = -20;
  4290. if (nice > 19)
  4291. nice = 19;
  4292. if (increment < 0 && !can_nice(current, nice))
  4293. return -EPERM;
  4294. retval = security_task_setnice(current, nice);
  4295. if (retval)
  4296. return retval;
  4297. set_user_nice(current, nice);
  4298. return 0;
  4299. }
  4300. #endif
  4301. /**
  4302. * task_prio - return the priority value of a given task.
  4303. * @p: the task in question.
  4304. *
  4305. * This is the priority value as seen by users in /proc.
  4306. * RT tasks are offset by -200. Normal tasks are centered
  4307. * around 0, value goes from -16 to +15.
  4308. */
  4309. int task_prio(const struct task_struct *p)
  4310. {
  4311. return p->prio - MAX_RT_PRIO;
  4312. }
  4313. /**
  4314. * task_nice - return the nice value of a given task.
  4315. * @p: the task in question.
  4316. */
  4317. int task_nice(const struct task_struct *p)
  4318. {
  4319. return TASK_NICE(p);
  4320. }
  4321. EXPORT_SYMBOL(task_nice);
  4322. /**
  4323. * idle_cpu - is a given cpu idle currently?
  4324. * @cpu: the processor in question.
  4325. */
  4326. int idle_cpu(int cpu)
  4327. {
  4328. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4329. }
  4330. /**
  4331. * idle_task - return the idle task for a given cpu.
  4332. * @cpu: the processor in question.
  4333. */
  4334. struct task_struct *idle_task(int cpu)
  4335. {
  4336. return cpu_rq(cpu)->idle;
  4337. }
  4338. /**
  4339. * find_process_by_pid - find a process with a matching PID value.
  4340. * @pid: the pid in question.
  4341. */
  4342. static struct task_struct *find_process_by_pid(pid_t pid)
  4343. {
  4344. return pid ? find_task_by_vpid(pid) : current;
  4345. }
  4346. /* Actually do priority change: must hold rq lock. */
  4347. static void
  4348. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4349. {
  4350. BUG_ON(p->se.on_rq);
  4351. p->policy = policy;
  4352. switch (p->policy) {
  4353. case SCHED_NORMAL:
  4354. case SCHED_BATCH:
  4355. case SCHED_IDLE:
  4356. p->sched_class = &fair_sched_class;
  4357. break;
  4358. case SCHED_FIFO:
  4359. case SCHED_RR:
  4360. p->sched_class = &rt_sched_class;
  4361. break;
  4362. }
  4363. p->rt_priority = prio;
  4364. p->normal_prio = normal_prio(p);
  4365. /* we are holding p->pi_lock already */
  4366. p->prio = rt_mutex_getprio(p);
  4367. set_load_weight(p);
  4368. }
  4369. static int __sched_setscheduler(struct task_struct *p, int policy,
  4370. struct sched_param *param, bool user)
  4371. {
  4372. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4373. unsigned long flags;
  4374. const struct sched_class *prev_class = p->sched_class;
  4375. struct rq *rq;
  4376. /* may grab non-irq protected spin_locks */
  4377. BUG_ON(in_interrupt());
  4378. recheck:
  4379. /* double check policy once rq lock held */
  4380. if (policy < 0)
  4381. policy = oldpolicy = p->policy;
  4382. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4383. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4384. policy != SCHED_IDLE)
  4385. return -EINVAL;
  4386. /*
  4387. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4388. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4389. * SCHED_BATCH and SCHED_IDLE is 0.
  4390. */
  4391. if (param->sched_priority < 0 ||
  4392. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4393. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4394. return -EINVAL;
  4395. if (rt_policy(policy) != (param->sched_priority != 0))
  4396. return -EINVAL;
  4397. /*
  4398. * Allow unprivileged RT tasks to decrease priority:
  4399. */
  4400. if (user && !capable(CAP_SYS_NICE)) {
  4401. if (rt_policy(policy)) {
  4402. unsigned long rlim_rtprio;
  4403. if (!lock_task_sighand(p, &flags))
  4404. return -ESRCH;
  4405. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4406. unlock_task_sighand(p, &flags);
  4407. /* can't set/change the rt policy */
  4408. if (policy != p->policy && !rlim_rtprio)
  4409. return -EPERM;
  4410. /* can't increase priority */
  4411. if (param->sched_priority > p->rt_priority &&
  4412. param->sched_priority > rlim_rtprio)
  4413. return -EPERM;
  4414. }
  4415. /*
  4416. * Like positive nice levels, dont allow tasks to
  4417. * move out of SCHED_IDLE either:
  4418. */
  4419. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4420. return -EPERM;
  4421. /* can't change other user's priorities */
  4422. if ((current->euid != p->euid) &&
  4423. (current->euid != p->uid))
  4424. return -EPERM;
  4425. }
  4426. if (user) {
  4427. #ifdef CONFIG_RT_GROUP_SCHED
  4428. /*
  4429. * Do not allow realtime tasks into groups that have no runtime
  4430. * assigned.
  4431. */
  4432. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4433. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4434. return -EPERM;
  4435. #endif
  4436. retval = security_task_setscheduler(p, policy, param);
  4437. if (retval)
  4438. return retval;
  4439. }
  4440. /*
  4441. * make sure no PI-waiters arrive (or leave) while we are
  4442. * changing the priority of the task:
  4443. */
  4444. spin_lock_irqsave(&p->pi_lock, flags);
  4445. /*
  4446. * To be able to change p->policy safely, the apropriate
  4447. * runqueue lock must be held.
  4448. */
  4449. rq = __task_rq_lock(p);
  4450. /* recheck policy now with rq lock held */
  4451. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4452. policy = oldpolicy = -1;
  4453. __task_rq_unlock(rq);
  4454. spin_unlock_irqrestore(&p->pi_lock, flags);
  4455. goto recheck;
  4456. }
  4457. update_rq_clock(rq);
  4458. on_rq = p->se.on_rq;
  4459. running = task_current(rq, p);
  4460. if (on_rq)
  4461. deactivate_task(rq, p, 0);
  4462. if (running)
  4463. p->sched_class->put_prev_task(rq, p);
  4464. oldprio = p->prio;
  4465. __setscheduler(rq, p, policy, param->sched_priority);
  4466. if (running)
  4467. p->sched_class->set_curr_task(rq);
  4468. if (on_rq) {
  4469. activate_task(rq, p, 0);
  4470. check_class_changed(rq, p, prev_class, oldprio, running);
  4471. }
  4472. __task_rq_unlock(rq);
  4473. spin_unlock_irqrestore(&p->pi_lock, flags);
  4474. rt_mutex_adjust_pi(p);
  4475. return 0;
  4476. }
  4477. /**
  4478. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4479. * @p: the task in question.
  4480. * @policy: new policy.
  4481. * @param: structure containing the new RT priority.
  4482. *
  4483. * NOTE that the task may be already dead.
  4484. */
  4485. int sched_setscheduler(struct task_struct *p, int policy,
  4486. struct sched_param *param)
  4487. {
  4488. return __sched_setscheduler(p, policy, param, true);
  4489. }
  4490. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4491. /**
  4492. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4493. * @p: the task in question.
  4494. * @policy: new policy.
  4495. * @param: structure containing the new RT priority.
  4496. *
  4497. * Just like sched_setscheduler, only don't bother checking if the
  4498. * current context has permission. For example, this is needed in
  4499. * stop_machine(): we create temporary high priority worker threads,
  4500. * but our caller might not have that capability.
  4501. */
  4502. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4503. struct sched_param *param)
  4504. {
  4505. return __sched_setscheduler(p, policy, param, false);
  4506. }
  4507. static int
  4508. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4509. {
  4510. struct sched_param lparam;
  4511. struct task_struct *p;
  4512. int retval;
  4513. if (!param || pid < 0)
  4514. return -EINVAL;
  4515. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4516. return -EFAULT;
  4517. rcu_read_lock();
  4518. retval = -ESRCH;
  4519. p = find_process_by_pid(pid);
  4520. if (p != NULL)
  4521. retval = sched_setscheduler(p, policy, &lparam);
  4522. rcu_read_unlock();
  4523. return retval;
  4524. }
  4525. /**
  4526. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4527. * @pid: the pid in question.
  4528. * @policy: new policy.
  4529. * @param: structure containing the new RT priority.
  4530. */
  4531. asmlinkage long
  4532. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4533. {
  4534. /* negative values for policy are not valid */
  4535. if (policy < 0)
  4536. return -EINVAL;
  4537. return do_sched_setscheduler(pid, policy, param);
  4538. }
  4539. /**
  4540. * sys_sched_setparam - set/change the RT priority of a thread
  4541. * @pid: the pid in question.
  4542. * @param: structure containing the new RT priority.
  4543. */
  4544. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4545. {
  4546. return do_sched_setscheduler(pid, -1, param);
  4547. }
  4548. /**
  4549. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4550. * @pid: the pid in question.
  4551. */
  4552. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4553. {
  4554. struct task_struct *p;
  4555. int retval;
  4556. if (pid < 0)
  4557. return -EINVAL;
  4558. retval = -ESRCH;
  4559. read_lock(&tasklist_lock);
  4560. p = find_process_by_pid(pid);
  4561. if (p) {
  4562. retval = security_task_getscheduler(p);
  4563. if (!retval)
  4564. retval = p->policy;
  4565. }
  4566. read_unlock(&tasklist_lock);
  4567. return retval;
  4568. }
  4569. /**
  4570. * sys_sched_getscheduler - get the RT priority of a thread
  4571. * @pid: the pid in question.
  4572. * @param: structure containing the RT priority.
  4573. */
  4574. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4575. {
  4576. struct sched_param lp;
  4577. struct task_struct *p;
  4578. int retval;
  4579. if (!param || pid < 0)
  4580. return -EINVAL;
  4581. read_lock(&tasklist_lock);
  4582. p = find_process_by_pid(pid);
  4583. retval = -ESRCH;
  4584. if (!p)
  4585. goto out_unlock;
  4586. retval = security_task_getscheduler(p);
  4587. if (retval)
  4588. goto out_unlock;
  4589. lp.sched_priority = p->rt_priority;
  4590. read_unlock(&tasklist_lock);
  4591. /*
  4592. * This one might sleep, we cannot do it with a spinlock held ...
  4593. */
  4594. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4595. return retval;
  4596. out_unlock:
  4597. read_unlock(&tasklist_lock);
  4598. return retval;
  4599. }
  4600. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4601. {
  4602. cpumask_var_t cpus_allowed, new_mask;
  4603. struct task_struct *p;
  4604. int retval;
  4605. get_online_cpus();
  4606. read_lock(&tasklist_lock);
  4607. p = find_process_by_pid(pid);
  4608. if (!p) {
  4609. read_unlock(&tasklist_lock);
  4610. put_online_cpus();
  4611. return -ESRCH;
  4612. }
  4613. /*
  4614. * It is not safe to call set_cpus_allowed with the
  4615. * tasklist_lock held. We will bump the task_struct's
  4616. * usage count and then drop tasklist_lock.
  4617. */
  4618. get_task_struct(p);
  4619. read_unlock(&tasklist_lock);
  4620. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4621. retval = -ENOMEM;
  4622. goto out_put_task;
  4623. }
  4624. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4625. retval = -ENOMEM;
  4626. goto out_free_cpus_allowed;
  4627. }
  4628. retval = -EPERM;
  4629. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4630. !capable(CAP_SYS_NICE))
  4631. goto out_unlock;
  4632. retval = security_task_setscheduler(p, 0, NULL);
  4633. if (retval)
  4634. goto out_unlock;
  4635. cpuset_cpus_allowed(p, cpus_allowed);
  4636. cpumask_and(new_mask, in_mask, cpus_allowed);
  4637. again:
  4638. retval = set_cpus_allowed_ptr(p, new_mask);
  4639. if (!retval) {
  4640. cpuset_cpus_allowed(p, cpus_allowed);
  4641. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4642. /*
  4643. * We must have raced with a concurrent cpuset
  4644. * update. Just reset the cpus_allowed to the
  4645. * cpuset's cpus_allowed
  4646. */
  4647. cpumask_copy(new_mask, cpus_allowed);
  4648. goto again;
  4649. }
  4650. }
  4651. out_unlock:
  4652. free_cpumask_var(new_mask);
  4653. out_free_cpus_allowed:
  4654. free_cpumask_var(cpus_allowed);
  4655. out_put_task:
  4656. put_task_struct(p);
  4657. put_online_cpus();
  4658. return retval;
  4659. }
  4660. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4661. struct cpumask *new_mask)
  4662. {
  4663. if (len < cpumask_size())
  4664. cpumask_clear(new_mask);
  4665. else if (len > cpumask_size())
  4666. len = cpumask_size();
  4667. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4668. }
  4669. /**
  4670. * sys_sched_setaffinity - set the cpu affinity of a process
  4671. * @pid: pid of the process
  4672. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4673. * @user_mask_ptr: user-space pointer to the new cpu mask
  4674. */
  4675. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4676. unsigned long __user *user_mask_ptr)
  4677. {
  4678. cpumask_var_t new_mask;
  4679. int retval;
  4680. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4681. return -ENOMEM;
  4682. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4683. if (retval == 0)
  4684. retval = sched_setaffinity(pid, new_mask);
  4685. free_cpumask_var(new_mask);
  4686. return retval;
  4687. }
  4688. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4689. {
  4690. struct task_struct *p;
  4691. int retval;
  4692. get_online_cpus();
  4693. read_lock(&tasklist_lock);
  4694. retval = -ESRCH;
  4695. p = find_process_by_pid(pid);
  4696. if (!p)
  4697. goto out_unlock;
  4698. retval = security_task_getscheduler(p);
  4699. if (retval)
  4700. goto out_unlock;
  4701. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4702. out_unlock:
  4703. read_unlock(&tasklist_lock);
  4704. put_online_cpus();
  4705. return retval;
  4706. }
  4707. /**
  4708. * sys_sched_getaffinity - get the cpu affinity of a process
  4709. * @pid: pid of the process
  4710. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4711. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4712. */
  4713. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4714. unsigned long __user *user_mask_ptr)
  4715. {
  4716. int ret;
  4717. cpumask_var_t mask;
  4718. if (len < cpumask_size())
  4719. return -EINVAL;
  4720. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4721. return -ENOMEM;
  4722. ret = sched_getaffinity(pid, mask);
  4723. if (ret == 0) {
  4724. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4725. ret = -EFAULT;
  4726. else
  4727. ret = cpumask_size();
  4728. }
  4729. free_cpumask_var(mask);
  4730. return ret;
  4731. }
  4732. /**
  4733. * sys_sched_yield - yield the current processor to other threads.
  4734. *
  4735. * This function yields the current CPU to other tasks. If there are no
  4736. * other threads running on this CPU then this function will return.
  4737. */
  4738. asmlinkage long sys_sched_yield(void)
  4739. {
  4740. struct rq *rq = this_rq_lock();
  4741. schedstat_inc(rq, yld_count);
  4742. current->sched_class->yield_task(rq);
  4743. /*
  4744. * Since we are going to call schedule() anyway, there's
  4745. * no need to preempt or enable interrupts:
  4746. */
  4747. __release(rq->lock);
  4748. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4749. _raw_spin_unlock(&rq->lock);
  4750. preempt_enable_no_resched();
  4751. schedule();
  4752. return 0;
  4753. }
  4754. static void __cond_resched(void)
  4755. {
  4756. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4757. __might_sleep(__FILE__, __LINE__);
  4758. #endif
  4759. /*
  4760. * The BKS might be reacquired before we have dropped
  4761. * PREEMPT_ACTIVE, which could trigger a second
  4762. * cond_resched() call.
  4763. */
  4764. do {
  4765. add_preempt_count(PREEMPT_ACTIVE);
  4766. schedule();
  4767. sub_preempt_count(PREEMPT_ACTIVE);
  4768. } while (need_resched());
  4769. }
  4770. int __sched _cond_resched(void)
  4771. {
  4772. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4773. system_state == SYSTEM_RUNNING) {
  4774. __cond_resched();
  4775. return 1;
  4776. }
  4777. return 0;
  4778. }
  4779. EXPORT_SYMBOL(_cond_resched);
  4780. /*
  4781. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4782. * call schedule, and on return reacquire the lock.
  4783. *
  4784. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4785. * operations here to prevent schedule() from being called twice (once via
  4786. * spin_unlock(), once by hand).
  4787. */
  4788. int cond_resched_lock(spinlock_t *lock)
  4789. {
  4790. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4791. int ret = 0;
  4792. if (spin_needbreak(lock) || resched) {
  4793. spin_unlock(lock);
  4794. if (resched && need_resched())
  4795. __cond_resched();
  4796. else
  4797. cpu_relax();
  4798. ret = 1;
  4799. spin_lock(lock);
  4800. }
  4801. return ret;
  4802. }
  4803. EXPORT_SYMBOL(cond_resched_lock);
  4804. int __sched cond_resched_softirq(void)
  4805. {
  4806. BUG_ON(!in_softirq());
  4807. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4808. local_bh_enable();
  4809. __cond_resched();
  4810. local_bh_disable();
  4811. return 1;
  4812. }
  4813. return 0;
  4814. }
  4815. EXPORT_SYMBOL(cond_resched_softirq);
  4816. /**
  4817. * yield - yield the current processor to other threads.
  4818. *
  4819. * This is a shortcut for kernel-space yielding - it marks the
  4820. * thread runnable and calls sys_sched_yield().
  4821. */
  4822. void __sched yield(void)
  4823. {
  4824. set_current_state(TASK_RUNNING);
  4825. sys_sched_yield();
  4826. }
  4827. EXPORT_SYMBOL(yield);
  4828. /*
  4829. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4830. * that process accounting knows that this is a task in IO wait state.
  4831. *
  4832. * But don't do that if it is a deliberate, throttling IO wait (this task
  4833. * has set its backing_dev_info: the queue against which it should throttle)
  4834. */
  4835. void __sched io_schedule(void)
  4836. {
  4837. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4838. delayacct_blkio_start();
  4839. atomic_inc(&rq->nr_iowait);
  4840. schedule();
  4841. atomic_dec(&rq->nr_iowait);
  4842. delayacct_blkio_end();
  4843. }
  4844. EXPORT_SYMBOL(io_schedule);
  4845. long __sched io_schedule_timeout(long timeout)
  4846. {
  4847. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4848. long ret;
  4849. delayacct_blkio_start();
  4850. atomic_inc(&rq->nr_iowait);
  4851. ret = schedule_timeout(timeout);
  4852. atomic_dec(&rq->nr_iowait);
  4853. delayacct_blkio_end();
  4854. return ret;
  4855. }
  4856. /**
  4857. * sys_sched_get_priority_max - return maximum RT priority.
  4858. * @policy: scheduling class.
  4859. *
  4860. * this syscall returns the maximum rt_priority that can be used
  4861. * by a given scheduling class.
  4862. */
  4863. asmlinkage long sys_sched_get_priority_max(int policy)
  4864. {
  4865. int ret = -EINVAL;
  4866. switch (policy) {
  4867. case SCHED_FIFO:
  4868. case SCHED_RR:
  4869. ret = MAX_USER_RT_PRIO-1;
  4870. break;
  4871. case SCHED_NORMAL:
  4872. case SCHED_BATCH:
  4873. case SCHED_IDLE:
  4874. ret = 0;
  4875. break;
  4876. }
  4877. return ret;
  4878. }
  4879. /**
  4880. * sys_sched_get_priority_min - return minimum RT priority.
  4881. * @policy: scheduling class.
  4882. *
  4883. * this syscall returns the minimum rt_priority that can be used
  4884. * by a given scheduling class.
  4885. */
  4886. asmlinkage long sys_sched_get_priority_min(int policy)
  4887. {
  4888. int ret = -EINVAL;
  4889. switch (policy) {
  4890. case SCHED_FIFO:
  4891. case SCHED_RR:
  4892. ret = 1;
  4893. break;
  4894. case SCHED_NORMAL:
  4895. case SCHED_BATCH:
  4896. case SCHED_IDLE:
  4897. ret = 0;
  4898. }
  4899. return ret;
  4900. }
  4901. /**
  4902. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4903. * @pid: pid of the process.
  4904. * @interval: userspace pointer to the timeslice value.
  4905. *
  4906. * this syscall writes the default timeslice value of a given process
  4907. * into the user-space timespec buffer. A value of '0' means infinity.
  4908. */
  4909. asmlinkage
  4910. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4911. {
  4912. struct task_struct *p;
  4913. unsigned int time_slice;
  4914. int retval;
  4915. struct timespec t;
  4916. if (pid < 0)
  4917. return -EINVAL;
  4918. retval = -ESRCH;
  4919. read_lock(&tasklist_lock);
  4920. p = find_process_by_pid(pid);
  4921. if (!p)
  4922. goto out_unlock;
  4923. retval = security_task_getscheduler(p);
  4924. if (retval)
  4925. goto out_unlock;
  4926. /*
  4927. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4928. * tasks that are on an otherwise idle runqueue:
  4929. */
  4930. time_slice = 0;
  4931. if (p->policy == SCHED_RR) {
  4932. time_slice = DEF_TIMESLICE;
  4933. } else if (p->policy != SCHED_FIFO) {
  4934. struct sched_entity *se = &p->se;
  4935. unsigned long flags;
  4936. struct rq *rq;
  4937. rq = task_rq_lock(p, &flags);
  4938. if (rq->cfs.load.weight)
  4939. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4940. task_rq_unlock(rq, &flags);
  4941. }
  4942. read_unlock(&tasklist_lock);
  4943. jiffies_to_timespec(time_slice, &t);
  4944. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4945. return retval;
  4946. out_unlock:
  4947. read_unlock(&tasklist_lock);
  4948. return retval;
  4949. }
  4950. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4951. void sched_show_task(struct task_struct *p)
  4952. {
  4953. unsigned long free = 0;
  4954. unsigned state;
  4955. state = p->state ? __ffs(p->state) + 1 : 0;
  4956. printk(KERN_INFO "%-13.13s %c", p->comm,
  4957. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4958. #if BITS_PER_LONG == 32
  4959. if (state == TASK_RUNNING)
  4960. printk(KERN_CONT " running ");
  4961. else
  4962. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4963. #else
  4964. if (state == TASK_RUNNING)
  4965. printk(KERN_CONT " running task ");
  4966. else
  4967. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4968. #endif
  4969. #ifdef CONFIG_DEBUG_STACK_USAGE
  4970. {
  4971. unsigned long *n = end_of_stack(p);
  4972. while (!*n)
  4973. n++;
  4974. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4975. }
  4976. #endif
  4977. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4978. task_pid_nr(p), task_pid_nr(p->real_parent));
  4979. show_stack(p, NULL);
  4980. }
  4981. void show_state_filter(unsigned long state_filter)
  4982. {
  4983. struct task_struct *g, *p;
  4984. #if BITS_PER_LONG == 32
  4985. printk(KERN_INFO
  4986. " task PC stack pid father\n");
  4987. #else
  4988. printk(KERN_INFO
  4989. " task PC stack pid father\n");
  4990. #endif
  4991. read_lock(&tasklist_lock);
  4992. do_each_thread(g, p) {
  4993. /*
  4994. * reset the NMI-timeout, listing all files on a slow
  4995. * console might take alot of time:
  4996. */
  4997. touch_nmi_watchdog();
  4998. if (!state_filter || (p->state & state_filter))
  4999. sched_show_task(p);
  5000. } while_each_thread(g, p);
  5001. touch_all_softlockup_watchdogs();
  5002. #ifdef CONFIG_SCHED_DEBUG
  5003. sysrq_sched_debug_show();
  5004. #endif
  5005. read_unlock(&tasklist_lock);
  5006. /*
  5007. * Only show locks if all tasks are dumped:
  5008. */
  5009. if (state_filter == -1)
  5010. debug_show_all_locks();
  5011. }
  5012. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5013. {
  5014. idle->sched_class = &idle_sched_class;
  5015. }
  5016. /**
  5017. * init_idle - set up an idle thread for a given CPU
  5018. * @idle: task in question
  5019. * @cpu: cpu the idle task belongs to
  5020. *
  5021. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5022. * flag, to make booting more robust.
  5023. */
  5024. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5025. {
  5026. struct rq *rq = cpu_rq(cpu);
  5027. unsigned long flags;
  5028. spin_lock_irqsave(&rq->lock, flags);
  5029. __sched_fork(idle);
  5030. idle->se.exec_start = sched_clock();
  5031. idle->prio = idle->normal_prio = MAX_PRIO;
  5032. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5033. __set_task_cpu(idle, cpu);
  5034. rq->curr = rq->idle = idle;
  5035. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5036. idle->oncpu = 1;
  5037. #endif
  5038. spin_unlock_irqrestore(&rq->lock, flags);
  5039. /* Set the preempt count _outside_ the spinlocks! */
  5040. #if defined(CONFIG_PREEMPT)
  5041. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5042. #else
  5043. task_thread_info(idle)->preempt_count = 0;
  5044. #endif
  5045. /*
  5046. * The idle tasks have their own, simple scheduling class:
  5047. */
  5048. idle->sched_class = &idle_sched_class;
  5049. ftrace_graph_init_task(idle);
  5050. }
  5051. /*
  5052. * In a system that switches off the HZ timer nohz_cpu_mask
  5053. * indicates which cpus entered this state. This is used
  5054. * in the rcu update to wait only for active cpus. For system
  5055. * which do not switch off the HZ timer nohz_cpu_mask should
  5056. * always be CPU_BITS_NONE.
  5057. */
  5058. cpumask_var_t nohz_cpu_mask;
  5059. /*
  5060. * Increase the granularity value when there are more CPUs,
  5061. * because with more CPUs the 'effective latency' as visible
  5062. * to users decreases. But the relationship is not linear,
  5063. * so pick a second-best guess by going with the log2 of the
  5064. * number of CPUs.
  5065. *
  5066. * This idea comes from the SD scheduler of Con Kolivas:
  5067. */
  5068. static inline void sched_init_granularity(void)
  5069. {
  5070. unsigned int factor = 1 + ilog2(num_online_cpus());
  5071. const unsigned long limit = 200000000;
  5072. sysctl_sched_min_granularity *= factor;
  5073. if (sysctl_sched_min_granularity > limit)
  5074. sysctl_sched_min_granularity = limit;
  5075. sysctl_sched_latency *= factor;
  5076. if (sysctl_sched_latency > limit)
  5077. sysctl_sched_latency = limit;
  5078. sysctl_sched_wakeup_granularity *= factor;
  5079. sysctl_sched_shares_ratelimit *= factor;
  5080. }
  5081. #ifdef CONFIG_SMP
  5082. /*
  5083. * This is how migration works:
  5084. *
  5085. * 1) we queue a struct migration_req structure in the source CPU's
  5086. * runqueue and wake up that CPU's migration thread.
  5087. * 2) we down() the locked semaphore => thread blocks.
  5088. * 3) migration thread wakes up (implicitly it forces the migrated
  5089. * thread off the CPU)
  5090. * 4) it gets the migration request and checks whether the migrated
  5091. * task is still in the wrong runqueue.
  5092. * 5) if it's in the wrong runqueue then the migration thread removes
  5093. * it and puts it into the right queue.
  5094. * 6) migration thread up()s the semaphore.
  5095. * 7) we wake up and the migration is done.
  5096. */
  5097. /*
  5098. * Change a given task's CPU affinity. Migrate the thread to a
  5099. * proper CPU and schedule it away if the CPU it's executing on
  5100. * is removed from the allowed bitmask.
  5101. *
  5102. * NOTE: the caller must have a valid reference to the task, the
  5103. * task must not exit() & deallocate itself prematurely. The
  5104. * call is not atomic; no spinlocks may be held.
  5105. */
  5106. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5107. {
  5108. struct migration_req req;
  5109. unsigned long flags;
  5110. struct rq *rq;
  5111. int ret = 0;
  5112. rq = task_rq_lock(p, &flags);
  5113. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5114. ret = -EINVAL;
  5115. goto out;
  5116. }
  5117. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5118. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5119. ret = -EINVAL;
  5120. goto out;
  5121. }
  5122. if (p->sched_class->set_cpus_allowed)
  5123. p->sched_class->set_cpus_allowed(p, new_mask);
  5124. else {
  5125. cpumask_copy(&p->cpus_allowed, new_mask);
  5126. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5127. }
  5128. /* Can the task run on the task's current CPU? If so, we're done */
  5129. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5130. goto out;
  5131. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5132. /* Need help from migration thread: drop lock and wait. */
  5133. task_rq_unlock(rq, &flags);
  5134. wake_up_process(rq->migration_thread);
  5135. wait_for_completion(&req.done);
  5136. tlb_migrate_finish(p->mm);
  5137. return 0;
  5138. }
  5139. out:
  5140. task_rq_unlock(rq, &flags);
  5141. return ret;
  5142. }
  5143. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5144. /*
  5145. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5146. * this because either it can't run here any more (set_cpus_allowed()
  5147. * away from this CPU, or CPU going down), or because we're
  5148. * attempting to rebalance this task on exec (sched_exec).
  5149. *
  5150. * So we race with normal scheduler movements, but that's OK, as long
  5151. * as the task is no longer on this CPU.
  5152. *
  5153. * Returns non-zero if task was successfully migrated.
  5154. */
  5155. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5156. {
  5157. struct rq *rq_dest, *rq_src;
  5158. int ret = 0, on_rq;
  5159. if (unlikely(!cpu_active(dest_cpu)))
  5160. return ret;
  5161. rq_src = cpu_rq(src_cpu);
  5162. rq_dest = cpu_rq(dest_cpu);
  5163. double_rq_lock(rq_src, rq_dest);
  5164. /* Already moved. */
  5165. if (task_cpu(p) != src_cpu)
  5166. goto done;
  5167. /* Affinity changed (again). */
  5168. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5169. goto fail;
  5170. on_rq = p->se.on_rq;
  5171. if (on_rq)
  5172. deactivate_task(rq_src, p, 0);
  5173. set_task_cpu(p, dest_cpu);
  5174. if (on_rq) {
  5175. activate_task(rq_dest, p, 0);
  5176. check_preempt_curr(rq_dest, p, 0);
  5177. }
  5178. done:
  5179. ret = 1;
  5180. fail:
  5181. double_rq_unlock(rq_src, rq_dest);
  5182. return ret;
  5183. }
  5184. /*
  5185. * migration_thread - this is a highprio system thread that performs
  5186. * thread migration by bumping thread off CPU then 'pushing' onto
  5187. * another runqueue.
  5188. */
  5189. static int migration_thread(void *data)
  5190. {
  5191. int cpu = (long)data;
  5192. struct rq *rq;
  5193. rq = cpu_rq(cpu);
  5194. BUG_ON(rq->migration_thread != current);
  5195. set_current_state(TASK_INTERRUPTIBLE);
  5196. while (!kthread_should_stop()) {
  5197. struct migration_req *req;
  5198. struct list_head *head;
  5199. spin_lock_irq(&rq->lock);
  5200. if (cpu_is_offline(cpu)) {
  5201. spin_unlock_irq(&rq->lock);
  5202. goto wait_to_die;
  5203. }
  5204. if (rq->active_balance) {
  5205. active_load_balance(rq, cpu);
  5206. rq->active_balance = 0;
  5207. }
  5208. head = &rq->migration_queue;
  5209. if (list_empty(head)) {
  5210. spin_unlock_irq(&rq->lock);
  5211. schedule();
  5212. set_current_state(TASK_INTERRUPTIBLE);
  5213. continue;
  5214. }
  5215. req = list_entry(head->next, struct migration_req, list);
  5216. list_del_init(head->next);
  5217. spin_unlock(&rq->lock);
  5218. __migrate_task(req->task, cpu, req->dest_cpu);
  5219. local_irq_enable();
  5220. complete(&req->done);
  5221. }
  5222. __set_current_state(TASK_RUNNING);
  5223. return 0;
  5224. wait_to_die:
  5225. /* Wait for kthread_stop */
  5226. set_current_state(TASK_INTERRUPTIBLE);
  5227. while (!kthread_should_stop()) {
  5228. schedule();
  5229. set_current_state(TASK_INTERRUPTIBLE);
  5230. }
  5231. __set_current_state(TASK_RUNNING);
  5232. return 0;
  5233. }
  5234. #ifdef CONFIG_HOTPLUG_CPU
  5235. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5236. {
  5237. int ret;
  5238. local_irq_disable();
  5239. ret = __migrate_task(p, src_cpu, dest_cpu);
  5240. local_irq_enable();
  5241. return ret;
  5242. }
  5243. /*
  5244. * Figure out where task on dead CPU should go, use force if necessary.
  5245. */
  5246. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5247. {
  5248. int dest_cpu;
  5249. /* FIXME: Use cpumask_of_node here. */
  5250. cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
  5251. const struct cpumask *nodemask = &_nodemask;
  5252. again:
  5253. /* Look for allowed, online CPU in same node. */
  5254. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5255. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5256. goto move;
  5257. /* Any allowed, online CPU? */
  5258. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5259. if (dest_cpu < nr_cpu_ids)
  5260. goto move;
  5261. /* No more Mr. Nice Guy. */
  5262. if (dest_cpu >= nr_cpu_ids) {
  5263. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5264. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5265. /*
  5266. * Don't tell them about moving exiting tasks or
  5267. * kernel threads (both mm NULL), since they never
  5268. * leave kernel.
  5269. */
  5270. if (p->mm && printk_ratelimit()) {
  5271. printk(KERN_INFO "process %d (%s) no "
  5272. "longer affine to cpu%d\n",
  5273. task_pid_nr(p), p->comm, dead_cpu);
  5274. }
  5275. }
  5276. move:
  5277. /* It can have affinity changed while we were choosing. */
  5278. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5279. goto again;
  5280. }
  5281. /*
  5282. * While a dead CPU has no uninterruptible tasks queued at this point,
  5283. * it might still have a nonzero ->nr_uninterruptible counter, because
  5284. * for performance reasons the counter is not stricly tracking tasks to
  5285. * their home CPUs. So we just add the counter to another CPU's counter,
  5286. * to keep the global sum constant after CPU-down:
  5287. */
  5288. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5289. {
  5290. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5291. unsigned long flags;
  5292. local_irq_save(flags);
  5293. double_rq_lock(rq_src, rq_dest);
  5294. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5295. rq_src->nr_uninterruptible = 0;
  5296. double_rq_unlock(rq_src, rq_dest);
  5297. local_irq_restore(flags);
  5298. }
  5299. /* Run through task list and migrate tasks from the dead cpu. */
  5300. static void migrate_live_tasks(int src_cpu)
  5301. {
  5302. struct task_struct *p, *t;
  5303. read_lock(&tasklist_lock);
  5304. do_each_thread(t, p) {
  5305. if (p == current)
  5306. continue;
  5307. if (task_cpu(p) == src_cpu)
  5308. move_task_off_dead_cpu(src_cpu, p);
  5309. } while_each_thread(t, p);
  5310. read_unlock(&tasklist_lock);
  5311. }
  5312. /*
  5313. * Schedules idle task to be the next runnable task on current CPU.
  5314. * It does so by boosting its priority to highest possible.
  5315. * Used by CPU offline code.
  5316. */
  5317. void sched_idle_next(void)
  5318. {
  5319. int this_cpu = smp_processor_id();
  5320. struct rq *rq = cpu_rq(this_cpu);
  5321. struct task_struct *p = rq->idle;
  5322. unsigned long flags;
  5323. /* cpu has to be offline */
  5324. BUG_ON(cpu_online(this_cpu));
  5325. /*
  5326. * Strictly not necessary since rest of the CPUs are stopped by now
  5327. * and interrupts disabled on the current cpu.
  5328. */
  5329. spin_lock_irqsave(&rq->lock, flags);
  5330. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5331. update_rq_clock(rq);
  5332. activate_task(rq, p, 0);
  5333. spin_unlock_irqrestore(&rq->lock, flags);
  5334. }
  5335. /*
  5336. * Ensures that the idle task is using init_mm right before its cpu goes
  5337. * offline.
  5338. */
  5339. void idle_task_exit(void)
  5340. {
  5341. struct mm_struct *mm = current->active_mm;
  5342. BUG_ON(cpu_online(smp_processor_id()));
  5343. if (mm != &init_mm)
  5344. switch_mm(mm, &init_mm, current);
  5345. mmdrop(mm);
  5346. }
  5347. /* called under rq->lock with disabled interrupts */
  5348. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5349. {
  5350. struct rq *rq = cpu_rq(dead_cpu);
  5351. /* Must be exiting, otherwise would be on tasklist. */
  5352. BUG_ON(!p->exit_state);
  5353. /* Cannot have done final schedule yet: would have vanished. */
  5354. BUG_ON(p->state == TASK_DEAD);
  5355. get_task_struct(p);
  5356. /*
  5357. * Drop lock around migration; if someone else moves it,
  5358. * that's OK. No task can be added to this CPU, so iteration is
  5359. * fine.
  5360. */
  5361. spin_unlock_irq(&rq->lock);
  5362. move_task_off_dead_cpu(dead_cpu, p);
  5363. spin_lock_irq(&rq->lock);
  5364. put_task_struct(p);
  5365. }
  5366. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5367. static void migrate_dead_tasks(unsigned int dead_cpu)
  5368. {
  5369. struct rq *rq = cpu_rq(dead_cpu);
  5370. struct task_struct *next;
  5371. for ( ; ; ) {
  5372. if (!rq->nr_running)
  5373. break;
  5374. update_rq_clock(rq);
  5375. next = pick_next_task(rq, rq->curr);
  5376. if (!next)
  5377. break;
  5378. next->sched_class->put_prev_task(rq, next);
  5379. migrate_dead(dead_cpu, next);
  5380. }
  5381. }
  5382. #endif /* CONFIG_HOTPLUG_CPU */
  5383. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5384. static struct ctl_table sd_ctl_dir[] = {
  5385. {
  5386. .procname = "sched_domain",
  5387. .mode = 0555,
  5388. },
  5389. {0, },
  5390. };
  5391. static struct ctl_table sd_ctl_root[] = {
  5392. {
  5393. .ctl_name = CTL_KERN,
  5394. .procname = "kernel",
  5395. .mode = 0555,
  5396. .child = sd_ctl_dir,
  5397. },
  5398. {0, },
  5399. };
  5400. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5401. {
  5402. struct ctl_table *entry =
  5403. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5404. return entry;
  5405. }
  5406. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5407. {
  5408. struct ctl_table *entry;
  5409. /*
  5410. * In the intermediate directories, both the child directory and
  5411. * procname are dynamically allocated and could fail but the mode
  5412. * will always be set. In the lowest directory the names are
  5413. * static strings and all have proc handlers.
  5414. */
  5415. for (entry = *tablep; entry->mode; entry++) {
  5416. if (entry->child)
  5417. sd_free_ctl_entry(&entry->child);
  5418. if (entry->proc_handler == NULL)
  5419. kfree(entry->procname);
  5420. }
  5421. kfree(*tablep);
  5422. *tablep = NULL;
  5423. }
  5424. static void
  5425. set_table_entry(struct ctl_table *entry,
  5426. const char *procname, void *data, int maxlen,
  5427. mode_t mode, proc_handler *proc_handler)
  5428. {
  5429. entry->procname = procname;
  5430. entry->data = data;
  5431. entry->maxlen = maxlen;
  5432. entry->mode = mode;
  5433. entry->proc_handler = proc_handler;
  5434. }
  5435. static struct ctl_table *
  5436. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5437. {
  5438. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5439. if (table == NULL)
  5440. return NULL;
  5441. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5442. sizeof(long), 0644, proc_doulongvec_minmax);
  5443. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5444. sizeof(long), 0644, proc_doulongvec_minmax);
  5445. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5446. sizeof(int), 0644, proc_dointvec_minmax);
  5447. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5448. sizeof(int), 0644, proc_dointvec_minmax);
  5449. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5450. sizeof(int), 0644, proc_dointvec_minmax);
  5451. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5452. sizeof(int), 0644, proc_dointvec_minmax);
  5453. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5454. sizeof(int), 0644, proc_dointvec_minmax);
  5455. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5456. sizeof(int), 0644, proc_dointvec_minmax);
  5457. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5458. sizeof(int), 0644, proc_dointvec_minmax);
  5459. set_table_entry(&table[9], "cache_nice_tries",
  5460. &sd->cache_nice_tries,
  5461. sizeof(int), 0644, proc_dointvec_minmax);
  5462. set_table_entry(&table[10], "flags", &sd->flags,
  5463. sizeof(int), 0644, proc_dointvec_minmax);
  5464. set_table_entry(&table[11], "name", sd->name,
  5465. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5466. /* &table[12] is terminator */
  5467. return table;
  5468. }
  5469. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5470. {
  5471. struct ctl_table *entry, *table;
  5472. struct sched_domain *sd;
  5473. int domain_num = 0, i;
  5474. char buf[32];
  5475. for_each_domain(cpu, sd)
  5476. domain_num++;
  5477. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5478. if (table == NULL)
  5479. return NULL;
  5480. i = 0;
  5481. for_each_domain(cpu, sd) {
  5482. snprintf(buf, 32, "domain%d", i);
  5483. entry->procname = kstrdup(buf, GFP_KERNEL);
  5484. entry->mode = 0555;
  5485. entry->child = sd_alloc_ctl_domain_table(sd);
  5486. entry++;
  5487. i++;
  5488. }
  5489. return table;
  5490. }
  5491. static struct ctl_table_header *sd_sysctl_header;
  5492. static void register_sched_domain_sysctl(void)
  5493. {
  5494. int i, cpu_num = num_online_cpus();
  5495. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5496. char buf[32];
  5497. WARN_ON(sd_ctl_dir[0].child);
  5498. sd_ctl_dir[0].child = entry;
  5499. if (entry == NULL)
  5500. return;
  5501. for_each_online_cpu(i) {
  5502. snprintf(buf, 32, "cpu%d", i);
  5503. entry->procname = kstrdup(buf, GFP_KERNEL);
  5504. entry->mode = 0555;
  5505. entry->child = sd_alloc_ctl_cpu_table(i);
  5506. entry++;
  5507. }
  5508. WARN_ON(sd_sysctl_header);
  5509. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5510. }
  5511. /* may be called multiple times per register */
  5512. static void unregister_sched_domain_sysctl(void)
  5513. {
  5514. if (sd_sysctl_header)
  5515. unregister_sysctl_table(sd_sysctl_header);
  5516. sd_sysctl_header = NULL;
  5517. if (sd_ctl_dir[0].child)
  5518. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5519. }
  5520. #else
  5521. static void register_sched_domain_sysctl(void)
  5522. {
  5523. }
  5524. static void unregister_sched_domain_sysctl(void)
  5525. {
  5526. }
  5527. #endif
  5528. static void set_rq_online(struct rq *rq)
  5529. {
  5530. if (!rq->online) {
  5531. const struct sched_class *class;
  5532. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5533. rq->online = 1;
  5534. for_each_class(class) {
  5535. if (class->rq_online)
  5536. class->rq_online(rq);
  5537. }
  5538. }
  5539. }
  5540. static void set_rq_offline(struct rq *rq)
  5541. {
  5542. if (rq->online) {
  5543. const struct sched_class *class;
  5544. for_each_class(class) {
  5545. if (class->rq_offline)
  5546. class->rq_offline(rq);
  5547. }
  5548. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5549. rq->online = 0;
  5550. }
  5551. }
  5552. /*
  5553. * migration_call - callback that gets triggered when a CPU is added.
  5554. * Here we can start up the necessary migration thread for the new CPU.
  5555. */
  5556. static int __cpuinit
  5557. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5558. {
  5559. struct task_struct *p;
  5560. int cpu = (long)hcpu;
  5561. unsigned long flags;
  5562. struct rq *rq;
  5563. switch (action) {
  5564. case CPU_UP_PREPARE:
  5565. case CPU_UP_PREPARE_FROZEN:
  5566. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5567. if (IS_ERR(p))
  5568. return NOTIFY_BAD;
  5569. kthread_bind(p, cpu);
  5570. /* Must be high prio: stop_machine expects to yield to it. */
  5571. rq = task_rq_lock(p, &flags);
  5572. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5573. task_rq_unlock(rq, &flags);
  5574. cpu_rq(cpu)->migration_thread = p;
  5575. break;
  5576. case CPU_ONLINE:
  5577. case CPU_ONLINE_FROZEN:
  5578. /* Strictly unnecessary, as first user will wake it. */
  5579. wake_up_process(cpu_rq(cpu)->migration_thread);
  5580. /* Update our root-domain */
  5581. rq = cpu_rq(cpu);
  5582. spin_lock_irqsave(&rq->lock, flags);
  5583. if (rq->rd) {
  5584. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5585. set_rq_online(rq);
  5586. }
  5587. spin_unlock_irqrestore(&rq->lock, flags);
  5588. break;
  5589. #ifdef CONFIG_HOTPLUG_CPU
  5590. case CPU_UP_CANCELED:
  5591. case CPU_UP_CANCELED_FROZEN:
  5592. if (!cpu_rq(cpu)->migration_thread)
  5593. break;
  5594. /* Unbind it from offline cpu so it can run. Fall thru. */
  5595. kthread_bind(cpu_rq(cpu)->migration_thread,
  5596. cpumask_any(cpu_online_mask));
  5597. kthread_stop(cpu_rq(cpu)->migration_thread);
  5598. cpu_rq(cpu)->migration_thread = NULL;
  5599. break;
  5600. case CPU_DEAD:
  5601. case CPU_DEAD_FROZEN:
  5602. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5603. migrate_live_tasks(cpu);
  5604. rq = cpu_rq(cpu);
  5605. kthread_stop(rq->migration_thread);
  5606. rq->migration_thread = NULL;
  5607. /* Idle task back to normal (off runqueue, low prio) */
  5608. spin_lock_irq(&rq->lock);
  5609. update_rq_clock(rq);
  5610. deactivate_task(rq, rq->idle, 0);
  5611. rq->idle->static_prio = MAX_PRIO;
  5612. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5613. rq->idle->sched_class = &idle_sched_class;
  5614. migrate_dead_tasks(cpu);
  5615. spin_unlock_irq(&rq->lock);
  5616. cpuset_unlock();
  5617. migrate_nr_uninterruptible(rq);
  5618. BUG_ON(rq->nr_running != 0);
  5619. /*
  5620. * No need to migrate the tasks: it was best-effort if
  5621. * they didn't take sched_hotcpu_mutex. Just wake up
  5622. * the requestors.
  5623. */
  5624. spin_lock_irq(&rq->lock);
  5625. while (!list_empty(&rq->migration_queue)) {
  5626. struct migration_req *req;
  5627. req = list_entry(rq->migration_queue.next,
  5628. struct migration_req, list);
  5629. list_del_init(&req->list);
  5630. spin_unlock_irq(&rq->lock);
  5631. complete(&req->done);
  5632. spin_lock_irq(&rq->lock);
  5633. }
  5634. spin_unlock_irq(&rq->lock);
  5635. break;
  5636. case CPU_DYING:
  5637. case CPU_DYING_FROZEN:
  5638. /* Update our root-domain */
  5639. rq = cpu_rq(cpu);
  5640. spin_lock_irqsave(&rq->lock, flags);
  5641. if (rq->rd) {
  5642. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5643. set_rq_offline(rq);
  5644. }
  5645. spin_unlock_irqrestore(&rq->lock, flags);
  5646. break;
  5647. #endif
  5648. }
  5649. return NOTIFY_OK;
  5650. }
  5651. /* Register at highest priority so that task migration (migrate_all_tasks)
  5652. * happens before everything else.
  5653. */
  5654. static struct notifier_block __cpuinitdata migration_notifier = {
  5655. .notifier_call = migration_call,
  5656. .priority = 10
  5657. };
  5658. static int __init migration_init(void)
  5659. {
  5660. void *cpu = (void *)(long)smp_processor_id();
  5661. int err;
  5662. /* Start one for the boot CPU: */
  5663. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5664. BUG_ON(err == NOTIFY_BAD);
  5665. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5666. register_cpu_notifier(&migration_notifier);
  5667. return err;
  5668. }
  5669. early_initcall(migration_init);
  5670. #endif
  5671. #ifdef CONFIG_SMP
  5672. #ifdef CONFIG_SCHED_DEBUG
  5673. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5674. struct cpumask *groupmask)
  5675. {
  5676. struct sched_group *group = sd->groups;
  5677. char str[256];
  5678. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5679. cpumask_clear(groupmask);
  5680. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5681. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5682. printk("does not load-balance\n");
  5683. if (sd->parent)
  5684. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5685. " has parent");
  5686. return -1;
  5687. }
  5688. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5689. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5690. printk(KERN_ERR "ERROR: domain->span does not contain "
  5691. "CPU%d\n", cpu);
  5692. }
  5693. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5694. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5695. " CPU%d\n", cpu);
  5696. }
  5697. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5698. do {
  5699. if (!group) {
  5700. printk("\n");
  5701. printk(KERN_ERR "ERROR: group is NULL\n");
  5702. break;
  5703. }
  5704. if (!group->__cpu_power) {
  5705. printk(KERN_CONT "\n");
  5706. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5707. "set\n");
  5708. break;
  5709. }
  5710. if (!cpumask_weight(sched_group_cpus(group))) {
  5711. printk(KERN_CONT "\n");
  5712. printk(KERN_ERR "ERROR: empty group\n");
  5713. break;
  5714. }
  5715. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5716. printk(KERN_CONT "\n");
  5717. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5718. break;
  5719. }
  5720. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5721. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5722. printk(KERN_CONT " %s", str);
  5723. group = group->next;
  5724. } while (group != sd->groups);
  5725. printk(KERN_CONT "\n");
  5726. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5727. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5728. if (sd->parent &&
  5729. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5730. printk(KERN_ERR "ERROR: parent span is not a superset "
  5731. "of domain->span\n");
  5732. return 0;
  5733. }
  5734. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5735. {
  5736. cpumask_var_t groupmask;
  5737. int level = 0;
  5738. if (!sd) {
  5739. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5740. return;
  5741. }
  5742. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5743. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5744. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5745. return;
  5746. }
  5747. for (;;) {
  5748. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5749. break;
  5750. level++;
  5751. sd = sd->parent;
  5752. if (!sd)
  5753. break;
  5754. }
  5755. free_cpumask_var(groupmask);
  5756. }
  5757. #else /* !CONFIG_SCHED_DEBUG */
  5758. # define sched_domain_debug(sd, cpu) do { } while (0)
  5759. #endif /* CONFIG_SCHED_DEBUG */
  5760. static int sd_degenerate(struct sched_domain *sd)
  5761. {
  5762. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5763. return 1;
  5764. /* Following flags need at least 2 groups */
  5765. if (sd->flags & (SD_LOAD_BALANCE |
  5766. SD_BALANCE_NEWIDLE |
  5767. SD_BALANCE_FORK |
  5768. SD_BALANCE_EXEC |
  5769. SD_SHARE_CPUPOWER |
  5770. SD_SHARE_PKG_RESOURCES)) {
  5771. if (sd->groups != sd->groups->next)
  5772. return 0;
  5773. }
  5774. /* Following flags don't use groups */
  5775. if (sd->flags & (SD_WAKE_IDLE |
  5776. SD_WAKE_AFFINE |
  5777. SD_WAKE_BALANCE))
  5778. return 0;
  5779. return 1;
  5780. }
  5781. static int
  5782. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5783. {
  5784. unsigned long cflags = sd->flags, pflags = parent->flags;
  5785. if (sd_degenerate(parent))
  5786. return 1;
  5787. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5788. return 0;
  5789. /* Does parent contain flags not in child? */
  5790. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5791. if (cflags & SD_WAKE_AFFINE)
  5792. pflags &= ~SD_WAKE_BALANCE;
  5793. /* Flags needing groups don't count if only 1 group in parent */
  5794. if (parent->groups == parent->groups->next) {
  5795. pflags &= ~(SD_LOAD_BALANCE |
  5796. SD_BALANCE_NEWIDLE |
  5797. SD_BALANCE_FORK |
  5798. SD_BALANCE_EXEC |
  5799. SD_SHARE_CPUPOWER |
  5800. SD_SHARE_PKG_RESOURCES);
  5801. if (nr_node_ids == 1)
  5802. pflags &= ~SD_SERIALIZE;
  5803. }
  5804. if (~cflags & pflags)
  5805. return 0;
  5806. return 1;
  5807. }
  5808. static void free_rootdomain(struct root_domain *rd)
  5809. {
  5810. cpupri_cleanup(&rd->cpupri);
  5811. free_cpumask_var(rd->rto_mask);
  5812. free_cpumask_var(rd->online);
  5813. free_cpumask_var(rd->span);
  5814. kfree(rd);
  5815. }
  5816. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5817. {
  5818. unsigned long flags;
  5819. spin_lock_irqsave(&rq->lock, flags);
  5820. if (rq->rd) {
  5821. struct root_domain *old_rd = rq->rd;
  5822. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5823. set_rq_offline(rq);
  5824. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5825. if (atomic_dec_and_test(&old_rd->refcount))
  5826. free_rootdomain(old_rd);
  5827. }
  5828. atomic_inc(&rd->refcount);
  5829. rq->rd = rd;
  5830. cpumask_set_cpu(rq->cpu, rd->span);
  5831. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  5832. set_rq_online(rq);
  5833. spin_unlock_irqrestore(&rq->lock, flags);
  5834. }
  5835. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5836. {
  5837. memset(rd, 0, sizeof(*rd));
  5838. if (bootmem) {
  5839. alloc_bootmem_cpumask_var(&def_root_domain.span);
  5840. alloc_bootmem_cpumask_var(&def_root_domain.online);
  5841. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  5842. cpupri_init(&rd->cpupri, true);
  5843. return 0;
  5844. }
  5845. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5846. goto free_rd;
  5847. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5848. goto free_span;
  5849. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5850. goto free_online;
  5851. if (cpupri_init(&rd->cpupri, false) != 0)
  5852. goto free_rto_mask;
  5853. return 0;
  5854. free_rto_mask:
  5855. free_cpumask_var(rd->rto_mask);
  5856. free_online:
  5857. free_cpumask_var(rd->online);
  5858. free_span:
  5859. free_cpumask_var(rd->span);
  5860. free_rd:
  5861. kfree(rd);
  5862. return -ENOMEM;
  5863. }
  5864. static void init_defrootdomain(void)
  5865. {
  5866. init_rootdomain(&def_root_domain, true);
  5867. atomic_set(&def_root_domain.refcount, 1);
  5868. }
  5869. static struct root_domain *alloc_rootdomain(void)
  5870. {
  5871. struct root_domain *rd;
  5872. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5873. if (!rd)
  5874. return NULL;
  5875. if (init_rootdomain(rd, false) != 0) {
  5876. kfree(rd);
  5877. return NULL;
  5878. }
  5879. return rd;
  5880. }
  5881. /*
  5882. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5883. * hold the hotplug lock.
  5884. */
  5885. static void
  5886. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5887. {
  5888. struct rq *rq = cpu_rq(cpu);
  5889. struct sched_domain *tmp;
  5890. /* Remove the sched domains which do not contribute to scheduling. */
  5891. for (tmp = sd; tmp; ) {
  5892. struct sched_domain *parent = tmp->parent;
  5893. if (!parent)
  5894. break;
  5895. if (sd_parent_degenerate(tmp, parent)) {
  5896. tmp->parent = parent->parent;
  5897. if (parent->parent)
  5898. parent->parent->child = tmp;
  5899. } else
  5900. tmp = tmp->parent;
  5901. }
  5902. if (sd && sd_degenerate(sd)) {
  5903. sd = sd->parent;
  5904. if (sd)
  5905. sd->child = NULL;
  5906. }
  5907. sched_domain_debug(sd, cpu);
  5908. rq_attach_root(rq, rd);
  5909. rcu_assign_pointer(rq->sd, sd);
  5910. }
  5911. /* cpus with isolated domains */
  5912. static cpumask_var_t cpu_isolated_map;
  5913. /* Setup the mask of cpus configured for isolated domains */
  5914. static int __init isolated_cpu_setup(char *str)
  5915. {
  5916. cpulist_parse(str, cpu_isolated_map);
  5917. return 1;
  5918. }
  5919. __setup("isolcpus=", isolated_cpu_setup);
  5920. /*
  5921. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5922. * to a function which identifies what group(along with sched group) a CPU
  5923. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5924. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5925. *
  5926. * init_sched_build_groups will build a circular linked list of the groups
  5927. * covered by the given span, and will set each group's ->cpumask correctly,
  5928. * and ->cpu_power to 0.
  5929. */
  5930. static void
  5931. init_sched_build_groups(const struct cpumask *span,
  5932. const struct cpumask *cpu_map,
  5933. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5934. struct sched_group **sg,
  5935. struct cpumask *tmpmask),
  5936. struct cpumask *covered, struct cpumask *tmpmask)
  5937. {
  5938. struct sched_group *first = NULL, *last = NULL;
  5939. int i;
  5940. cpumask_clear(covered);
  5941. for_each_cpu(i, span) {
  5942. struct sched_group *sg;
  5943. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5944. int j;
  5945. if (cpumask_test_cpu(i, covered))
  5946. continue;
  5947. cpumask_clear(sched_group_cpus(sg));
  5948. sg->__cpu_power = 0;
  5949. for_each_cpu(j, span) {
  5950. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5951. continue;
  5952. cpumask_set_cpu(j, covered);
  5953. cpumask_set_cpu(j, sched_group_cpus(sg));
  5954. }
  5955. if (!first)
  5956. first = sg;
  5957. if (last)
  5958. last->next = sg;
  5959. last = sg;
  5960. }
  5961. last->next = first;
  5962. }
  5963. #define SD_NODES_PER_DOMAIN 16
  5964. #ifdef CONFIG_NUMA
  5965. /**
  5966. * find_next_best_node - find the next node to include in a sched_domain
  5967. * @node: node whose sched_domain we're building
  5968. * @used_nodes: nodes already in the sched_domain
  5969. *
  5970. * Find the next node to include in a given scheduling domain. Simply
  5971. * finds the closest node not already in the @used_nodes map.
  5972. *
  5973. * Should use nodemask_t.
  5974. */
  5975. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5976. {
  5977. int i, n, val, min_val, best_node = 0;
  5978. min_val = INT_MAX;
  5979. for (i = 0; i < nr_node_ids; i++) {
  5980. /* Start at @node */
  5981. n = (node + i) % nr_node_ids;
  5982. if (!nr_cpus_node(n))
  5983. continue;
  5984. /* Skip already used nodes */
  5985. if (node_isset(n, *used_nodes))
  5986. continue;
  5987. /* Simple min distance search */
  5988. val = node_distance(node, n);
  5989. if (val < min_val) {
  5990. min_val = val;
  5991. best_node = n;
  5992. }
  5993. }
  5994. node_set(best_node, *used_nodes);
  5995. return best_node;
  5996. }
  5997. /**
  5998. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5999. * @node: node whose cpumask we're constructing
  6000. * @span: resulting cpumask
  6001. *
  6002. * Given a node, construct a good cpumask for its sched_domain to span. It
  6003. * should be one that prevents unnecessary balancing, but also spreads tasks
  6004. * out optimally.
  6005. */
  6006. static void sched_domain_node_span(int node, struct cpumask *span)
  6007. {
  6008. nodemask_t used_nodes;
  6009. /* FIXME: use cpumask_of_node() */
  6010. node_to_cpumask_ptr(nodemask, node);
  6011. int i;
  6012. cpus_clear(*span);
  6013. nodes_clear(used_nodes);
  6014. cpus_or(*span, *span, *nodemask);
  6015. node_set(node, used_nodes);
  6016. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6017. int next_node = find_next_best_node(node, &used_nodes);
  6018. node_to_cpumask_ptr_next(nodemask, next_node);
  6019. cpus_or(*span, *span, *nodemask);
  6020. }
  6021. }
  6022. #endif /* CONFIG_NUMA */
  6023. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6024. /*
  6025. * The cpus mask in sched_group and sched_domain hangs off the end.
  6026. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6027. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6028. */
  6029. struct static_sched_group {
  6030. struct sched_group sg;
  6031. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6032. };
  6033. struct static_sched_domain {
  6034. struct sched_domain sd;
  6035. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6036. };
  6037. /*
  6038. * SMT sched-domains:
  6039. */
  6040. #ifdef CONFIG_SCHED_SMT
  6041. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6042. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6043. static int
  6044. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6045. struct sched_group **sg, struct cpumask *unused)
  6046. {
  6047. if (sg)
  6048. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6049. return cpu;
  6050. }
  6051. #endif /* CONFIG_SCHED_SMT */
  6052. /*
  6053. * multi-core sched-domains:
  6054. */
  6055. #ifdef CONFIG_SCHED_MC
  6056. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6057. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6058. #endif /* CONFIG_SCHED_MC */
  6059. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6060. static int
  6061. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6062. struct sched_group **sg, struct cpumask *mask)
  6063. {
  6064. int group;
  6065. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6066. group = cpumask_first(mask);
  6067. if (sg)
  6068. *sg = &per_cpu(sched_group_core, group).sg;
  6069. return group;
  6070. }
  6071. #elif defined(CONFIG_SCHED_MC)
  6072. static int
  6073. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6074. struct sched_group **sg, struct cpumask *unused)
  6075. {
  6076. if (sg)
  6077. *sg = &per_cpu(sched_group_core, cpu).sg;
  6078. return cpu;
  6079. }
  6080. #endif
  6081. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6082. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6083. static int
  6084. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6085. struct sched_group **sg, struct cpumask *mask)
  6086. {
  6087. int group;
  6088. #ifdef CONFIG_SCHED_MC
  6089. /* FIXME: Use cpu_coregroup_mask. */
  6090. *mask = cpu_coregroup_map(cpu);
  6091. cpus_and(*mask, *mask, *cpu_map);
  6092. group = cpumask_first(mask);
  6093. #elif defined(CONFIG_SCHED_SMT)
  6094. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6095. group = cpumask_first(mask);
  6096. #else
  6097. group = cpu;
  6098. #endif
  6099. if (sg)
  6100. *sg = &per_cpu(sched_group_phys, group).sg;
  6101. return group;
  6102. }
  6103. #ifdef CONFIG_NUMA
  6104. /*
  6105. * The init_sched_build_groups can't handle what we want to do with node
  6106. * groups, so roll our own. Now each node has its own list of groups which
  6107. * gets dynamically allocated.
  6108. */
  6109. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6110. static struct sched_group ***sched_group_nodes_bycpu;
  6111. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6112. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6113. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6114. struct sched_group **sg,
  6115. struct cpumask *nodemask)
  6116. {
  6117. int group;
  6118. /* FIXME: use cpumask_of_node */
  6119. node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
  6120. cpumask_and(nodemask, pnodemask, cpu_map);
  6121. group = cpumask_first(nodemask);
  6122. if (sg)
  6123. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6124. return group;
  6125. }
  6126. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6127. {
  6128. struct sched_group *sg = group_head;
  6129. int j;
  6130. if (!sg)
  6131. return;
  6132. do {
  6133. for_each_cpu(j, sched_group_cpus(sg)) {
  6134. struct sched_domain *sd;
  6135. sd = &per_cpu(phys_domains, j).sd;
  6136. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6137. /*
  6138. * Only add "power" once for each
  6139. * physical package.
  6140. */
  6141. continue;
  6142. }
  6143. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6144. }
  6145. sg = sg->next;
  6146. } while (sg != group_head);
  6147. }
  6148. #endif /* CONFIG_NUMA */
  6149. #ifdef CONFIG_NUMA
  6150. /* Free memory allocated for various sched_group structures */
  6151. static void free_sched_groups(const struct cpumask *cpu_map,
  6152. struct cpumask *nodemask)
  6153. {
  6154. int cpu, i;
  6155. for_each_cpu(cpu, cpu_map) {
  6156. struct sched_group **sched_group_nodes
  6157. = sched_group_nodes_bycpu[cpu];
  6158. if (!sched_group_nodes)
  6159. continue;
  6160. for (i = 0; i < nr_node_ids; i++) {
  6161. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6162. /* FIXME: Use cpumask_of_node */
  6163. node_to_cpumask_ptr(pnodemask, i);
  6164. cpus_and(*nodemask, *pnodemask, *cpu_map);
  6165. if (cpumask_empty(nodemask))
  6166. continue;
  6167. if (sg == NULL)
  6168. continue;
  6169. sg = sg->next;
  6170. next_sg:
  6171. oldsg = sg;
  6172. sg = sg->next;
  6173. kfree(oldsg);
  6174. if (oldsg != sched_group_nodes[i])
  6175. goto next_sg;
  6176. }
  6177. kfree(sched_group_nodes);
  6178. sched_group_nodes_bycpu[cpu] = NULL;
  6179. }
  6180. }
  6181. #else /* !CONFIG_NUMA */
  6182. static void free_sched_groups(const struct cpumask *cpu_map,
  6183. struct cpumask *nodemask)
  6184. {
  6185. }
  6186. #endif /* CONFIG_NUMA */
  6187. /*
  6188. * Initialize sched groups cpu_power.
  6189. *
  6190. * cpu_power indicates the capacity of sched group, which is used while
  6191. * distributing the load between different sched groups in a sched domain.
  6192. * Typically cpu_power for all the groups in a sched domain will be same unless
  6193. * there are asymmetries in the topology. If there are asymmetries, group
  6194. * having more cpu_power will pickup more load compared to the group having
  6195. * less cpu_power.
  6196. *
  6197. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6198. * the maximum number of tasks a group can handle in the presence of other idle
  6199. * or lightly loaded groups in the same sched domain.
  6200. */
  6201. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6202. {
  6203. struct sched_domain *child;
  6204. struct sched_group *group;
  6205. WARN_ON(!sd || !sd->groups);
  6206. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6207. return;
  6208. child = sd->child;
  6209. sd->groups->__cpu_power = 0;
  6210. /*
  6211. * For perf policy, if the groups in child domain share resources
  6212. * (for example cores sharing some portions of the cache hierarchy
  6213. * or SMT), then set this domain groups cpu_power such that each group
  6214. * can handle only one task, when there are other idle groups in the
  6215. * same sched domain.
  6216. */
  6217. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6218. (child->flags &
  6219. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6220. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6221. return;
  6222. }
  6223. /*
  6224. * add cpu_power of each child group to this groups cpu_power
  6225. */
  6226. group = child->groups;
  6227. do {
  6228. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6229. group = group->next;
  6230. } while (group != child->groups);
  6231. }
  6232. /*
  6233. * Initializers for schedule domains
  6234. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6235. */
  6236. #ifdef CONFIG_SCHED_DEBUG
  6237. # define SD_INIT_NAME(sd, type) sd->name = #type
  6238. #else
  6239. # define SD_INIT_NAME(sd, type) do { } while (0)
  6240. #endif
  6241. #define SD_INIT(sd, type) sd_init_##type(sd)
  6242. #define SD_INIT_FUNC(type) \
  6243. static noinline void sd_init_##type(struct sched_domain *sd) \
  6244. { \
  6245. memset(sd, 0, sizeof(*sd)); \
  6246. *sd = SD_##type##_INIT; \
  6247. sd->level = SD_LV_##type; \
  6248. SD_INIT_NAME(sd, type); \
  6249. }
  6250. SD_INIT_FUNC(CPU)
  6251. #ifdef CONFIG_NUMA
  6252. SD_INIT_FUNC(ALLNODES)
  6253. SD_INIT_FUNC(NODE)
  6254. #endif
  6255. #ifdef CONFIG_SCHED_SMT
  6256. SD_INIT_FUNC(SIBLING)
  6257. #endif
  6258. #ifdef CONFIG_SCHED_MC
  6259. SD_INIT_FUNC(MC)
  6260. #endif
  6261. static int default_relax_domain_level = -1;
  6262. static int __init setup_relax_domain_level(char *str)
  6263. {
  6264. unsigned long val;
  6265. val = simple_strtoul(str, NULL, 0);
  6266. if (val < SD_LV_MAX)
  6267. default_relax_domain_level = val;
  6268. return 1;
  6269. }
  6270. __setup("relax_domain_level=", setup_relax_domain_level);
  6271. static void set_domain_attribute(struct sched_domain *sd,
  6272. struct sched_domain_attr *attr)
  6273. {
  6274. int request;
  6275. if (!attr || attr->relax_domain_level < 0) {
  6276. if (default_relax_domain_level < 0)
  6277. return;
  6278. else
  6279. request = default_relax_domain_level;
  6280. } else
  6281. request = attr->relax_domain_level;
  6282. if (request < sd->level) {
  6283. /* turn off idle balance on this domain */
  6284. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6285. } else {
  6286. /* turn on idle balance on this domain */
  6287. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6288. }
  6289. }
  6290. /*
  6291. * Build sched domains for a given set of cpus and attach the sched domains
  6292. * to the individual cpus
  6293. */
  6294. static int __build_sched_domains(const struct cpumask *cpu_map,
  6295. struct sched_domain_attr *attr)
  6296. {
  6297. int i, err = -ENOMEM;
  6298. struct root_domain *rd;
  6299. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6300. tmpmask;
  6301. #ifdef CONFIG_NUMA
  6302. cpumask_var_t domainspan, covered, notcovered;
  6303. struct sched_group **sched_group_nodes = NULL;
  6304. int sd_allnodes = 0;
  6305. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6306. goto out;
  6307. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6308. goto free_domainspan;
  6309. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6310. goto free_covered;
  6311. #endif
  6312. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6313. goto free_notcovered;
  6314. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6315. goto free_nodemask;
  6316. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6317. goto free_this_sibling_map;
  6318. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6319. goto free_this_core_map;
  6320. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6321. goto free_send_covered;
  6322. #ifdef CONFIG_NUMA
  6323. /*
  6324. * Allocate the per-node list of sched groups
  6325. */
  6326. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6327. GFP_KERNEL);
  6328. if (!sched_group_nodes) {
  6329. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6330. goto free_tmpmask;
  6331. }
  6332. #endif
  6333. rd = alloc_rootdomain();
  6334. if (!rd) {
  6335. printk(KERN_WARNING "Cannot alloc root domain\n");
  6336. goto free_sched_groups;
  6337. }
  6338. #ifdef CONFIG_NUMA
  6339. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6340. #endif
  6341. /*
  6342. * Set up domains for cpus specified by the cpu_map.
  6343. */
  6344. for_each_cpu(i, cpu_map) {
  6345. struct sched_domain *sd = NULL, *p;
  6346. /* FIXME: use cpumask_of_node */
  6347. *nodemask = node_to_cpumask(cpu_to_node(i));
  6348. cpus_and(*nodemask, *nodemask, *cpu_map);
  6349. #ifdef CONFIG_NUMA
  6350. if (cpumask_weight(cpu_map) >
  6351. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6352. sd = &per_cpu(allnodes_domains, i);
  6353. SD_INIT(sd, ALLNODES);
  6354. set_domain_attribute(sd, attr);
  6355. cpumask_copy(sched_domain_span(sd), cpu_map);
  6356. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6357. p = sd;
  6358. sd_allnodes = 1;
  6359. } else
  6360. p = NULL;
  6361. sd = &per_cpu(node_domains, i);
  6362. SD_INIT(sd, NODE);
  6363. set_domain_attribute(sd, attr);
  6364. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6365. sd->parent = p;
  6366. if (p)
  6367. p->child = sd;
  6368. cpumask_and(sched_domain_span(sd),
  6369. sched_domain_span(sd), cpu_map);
  6370. #endif
  6371. p = sd;
  6372. sd = &per_cpu(phys_domains, i).sd;
  6373. SD_INIT(sd, CPU);
  6374. set_domain_attribute(sd, attr);
  6375. cpumask_copy(sched_domain_span(sd), nodemask);
  6376. sd->parent = p;
  6377. if (p)
  6378. p->child = sd;
  6379. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6380. #ifdef CONFIG_SCHED_MC
  6381. p = sd;
  6382. sd = &per_cpu(core_domains, i).sd;
  6383. SD_INIT(sd, MC);
  6384. set_domain_attribute(sd, attr);
  6385. *sched_domain_span(sd) = cpu_coregroup_map(i);
  6386. cpumask_and(sched_domain_span(sd),
  6387. sched_domain_span(sd), cpu_map);
  6388. sd->parent = p;
  6389. p->child = sd;
  6390. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6391. #endif
  6392. #ifdef CONFIG_SCHED_SMT
  6393. p = sd;
  6394. sd = &per_cpu(cpu_domains, i).sd;
  6395. SD_INIT(sd, SIBLING);
  6396. set_domain_attribute(sd, attr);
  6397. cpumask_and(sched_domain_span(sd),
  6398. &per_cpu(cpu_sibling_map, i), cpu_map);
  6399. sd->parent = p;
  6400. p->child = sd;
  6401. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6402. #endif
  6403. }
  6404. #ifdef CONFIG_SCHED_SMT
  6405. /* Set up CPU (sibling) groups */
  6406. for_each_cpu(i, cpu_map) {
  6407. cpumask_and(this_sibling_map,
  6408. &per_cpu(cpu_sibling_map, i), cpu_map);
  6409. if (i != cpumask_first(this_sibling_map))
  6410. continue;
  6411. init_sched_build_groups(this_sibling_map, cpu_map,
  6412. &cpu_to_cpu_group,
  6413. send_covered, tmpmask);
  6414. }
  6415. #endif
  6416. #ifdef CONFIG_SCHED_MC
  6417. /* Set up multi-core groups */
  6418. for_each_cpu(i, cpu_map) {
  6419. /* FIXME: Use cpu_coregroup_mask */
  6420. *this_core_map = cpu_coregroup_map(i);
  6421. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6422. if (i != cpumask_first(this_core_map))
  6423. continue;
  6424. init_sched_build_groups(this_core_map, cpu_map,
  6425. &cpu_to_core_group,
  6426. send_covered, tmpmask);
  6427. }
  6428. #endif
  6429. /* Set up physical groups */
  6430. for (i = 0; i < nr_node_ids; i++) {
  6431. /* FIXME: Use cpumask_of_node */
  6432. *nodemask = node_to_cpumask(i);
  6433. cpus_and(*nodemask, *nodemask, *cpu_map);
  6434. if (cpumask_empty(nodemask))
  6435. continue;
  6436. init_sched_build_groups(nodemask, cpu_map,
  6437. &cpu_to_phys_group,
  6438. send_covered, tmpmask);
  6439. }
  6440. #ifdef CONFIG_NUMA
  6441. /* Set up node groups */
  6442. if (sd_allnodes) {
  6443. init_sched_build_groups(cpu_map, cpu_map,
  6444. &cpu_to_allnodes_group,
  6445. send_covered, tmpmask);
  6446. }
  6447. for (i = 0; i < nr_node_ids; i++) {
  6448. /* Set up node groups */
  6449. struct sched_group *sg, *prev;
  6450. int j;
  6451. /* FIXME: Use cpumask_of_node */
  6452. *nodemask = node_to_cpumask(i);
  6453. cpumask_clear(covered);
  6454. cpus_and(*nodemask, *nodemask, *cpu_map);
  6455. if (cpumask_empty(nodemask)) {
  6456. sched_group_nodes[i] = NULL;
  6457. continue;
  6458. }
  6459. sched_domain_node_span(i, domainspan);
  6460. cpumask_and(domainspan, domainspan, cpu_map);
  6461. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6462. GFP_KERNEL, i);
  6463. if (!sg) {
  6464. printk(KERN_WARNING "Can not alloc domain group for "
  6465. "node %d\n", i);
  6466. goto error;
  6467. }
  6468. sched_group_nodes[i] = sg;
  6469. for_each_cpu(j, nodemask) {
  6470. struct sched_domain *sd;
  6471. sd = &per_cpu(node_domains, j);
  6472. sd->groups = sg;
  6473. }
  6474. sg->__cpu_power = 0;
  6475. cpumask_copy(sched_group_cpus(sg), nodemask);
  6476. sg->next = sg;
  6477. cpumask_or(covered, covered, nodemask);
  6478. prev = sg;
  6479. for (j = 0; j < nr_node_ids; j++) {
  6480. int n = (i + j) % nr_node_ids;
  6481. /* FIXME: Use cpumask_of_node */
  6482. node_to_cpumask_ptr(pnodemask, n);
  6483. cpumask_complement(notcovered, covered);
  6484. cpumask_and(tmpmask, notcovered, cpu_map);
  6485. cpumask_and(tmpmask, tmpmask, domainspan);
  6486. if (cpumask_empty(tmpmask))
  6487. break;
  6488. cpumask_and(tmpmask, tmpmask, pnodemask);
  6489. if (cpumask_empty(tmpmask))
  6490. continue;
  6491. sg = kmalloc_node(sizeof(struct sched_group) +
  6492. cpumask_size(),
  6493. GFP_KERNEL, i);
  6494. if (!sg) {
  6495. printk(KERN_WARNING
  6496. "Can not alloc domain group for node %d\n", j);
  6497. goto error;
  6498. }
  6499. sg->__cpu_power = 0;
  6500. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6501. sg->next = prev->next;
  6502. cpumask_or(covered, covered, tmpmask);
  6503. prev->next = sg;
  6504. prev = sg;
  6505. }
  6506. }
  6507. #endif
  6508. /* Calculate CPU power for physical packages and nodes */
  6509. #ifdef CONFIG_SCHED_SMT
  6510. for_each_cpu(i, cpu_map) {
  6511. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6512. init_sched_groups_power(i, sd);
  6513. }
  6514. #endif
  6515. #ifdef CONFIG_SCHED_MC
  6516. for_each_cpu(i, cpu_map) {
  6517. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6518. init_sched_groups_power(i, sd);
  6519. }
  6520. #endif
  6521. for_each_cpu(i, cpu_map) {
  6522. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6523. init_sched_groups_power(i, sd);
  6524. }
  6525. #ifdef CONFIG_NUMA
  6526. for (i = 0; i < nr_node_ids; i++)
  6527. init_numa_sched_groups_power(sched_group_nodes[i]);
  6528. if (sd_allnodes) {
  6529. struct sched_group *sg;
  6530. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6531. tmpmask);
  6532. init_numa_sched_groups_power(sg);
  6533. }
  6534. #endif
  6535. /* Attach the domains */
  6536. for_each_cpu(i, cpu_map) {
  6537. struct sched_domain *sd;
  6538. #ifdef CONFIG_SCHED_SMT
  6539. sd = &per_cpu(cpu_domains, i).sd;
  6540. #elif defined(CONFIG_SCHED_MC)
  6541. sd = &per_cpu(core_domains, i).sd;
  6542. #else
  6543. sd = &per_cpu(phys_domains, i).sd;
  6544. #endif
  6545. cpu_attach_domain(sd, rd, i);
  6546. }
  6547. err = 0;
  6548. free_tmpmask:
  6549. free_cpumask_var(tmpmask);
  6550. free_send_covered:
  6551. free_cpumask_var(send_covered);
  6552. free_this_core_map:
  6553. free_cpumask_var(this_core_map);
  6554. free_this_sibling_map:
  6555. free_cpumask_var(this_sibling_map);
  6556. free_nodemask:
  6557. free_cpumask_var(nodemask);
  6558. free_notcovered:
  6559. #ifdef CONFIG_NUMA
  6560. free_cpumask_var(notcovered);
  6561. free_covered:
  6562. free_cpumask_var(covered);
  6563. free_domainspan:
  6564. free_cpumask_var(domainspan);
  6565. out:
  6566. #endif
  6567. return err;
  6568. free_sched_groups:
  6569. #ifdef CONFIG_NUMA
  6570. kfree(sched_group_nodes);
  6571. #endif
  6572. goto free_tmpmask;
  6573. #ifdef CONFIG_NUMA
  6574. error:
  6575. free_sched_groups(cpu_map, tmpmask);
  6576. free_rootdomain(rd);
  6577. goto free_tmpmask;
  6578. #endif
  6579. }
  6580. static int build_sched_domains(const struct cpumask *cpu_map)
  6581. {
  6582. return __build_sched_domains(cpu_map, NULL);
  6583. }
  6584. static struct cpumask *doms_cur; /* current sched domains */
  6585. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6586. static struct sched_domain_attr *dattr_cur;
  6587. /* attribues of custom domains in 'doms_cur' */
  6588. /*
  6589. * Special case: If a kmalloc of a doms_cur partition (array of
  6590. * cpumask) fails, then fallback to a single sched domain,
  6591. * as determined by the single cpumask fallback_doms.
  6592. */
  6593. static cpumask_var_t fallback_doms;
  6594. /*
  6595. * arch_update_cpu_topology lets virtualized architectures update the
  6596. * cpu core maps. It is supposed to return 1 if the topology changed
  6597. * or 0 if it stayed the same.
  6598. */
  6599. int __attribute__((weak)) arch_update_cpu_topology(void)
  6600. {
  6601. return 0;
  6602. }
  6603. /*
  6604. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6605. * For now this just excludes isolated cpus, but could be used to
  6606. * exclude other special cases in the future.
  6607. */
  6608. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6609. {
  6610. int err;
  6611. arch_update_cpu_topology();
  6612. ndoms_cur = 1;
  6613. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6614. if (!doms_cur)
  6615. doms_cur = fallback_doms;
  6616. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6617. dattr_cur = NULL;
  6618. err = build_sched_domains(doms_cur);
  6619. register_sched_domain_sysctl();
  6620. return err;
  6621. }
  6622. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6623. struct cpumask *tmpmask)
  6624. {
  6625. free_sched_groups(cpu_map, tmpmask);
  6626. }
  6627. /*
  6628. * Detach sched domains from a group of cpus specified in cpu_map
  6629. * These cpus will now be attached to the NULL domain
  6630. */
  6631. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6632. {
  6633. /* Save because hotplug lock held. */
  6634. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6635. int i;
  6636. for_each_cpu(i, cpu_map)
  6637. cpu_attach_domain(NULL, &def_root_domain, i);
  6638. synchronize_sched();
  6639. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6640. }
  6641. /* handle null as "default" */
  6642. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6643. struct sched_domain_attr *new, int idx_new)
  6644. {
  6645. struct sched_domain_attr tmp;
  6646. /* fast path */
  6647. if (!new && !cur)
  6648. return 1;
  6649. tmp = SD_ATTR_INIT;
  6650. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6651. new ? (new + idx_new) : &tmp,
  6652. sizeof(struct sched_domain_attr));
  6653. }
  6654. /*
  6655. * Partition sched domains as specified by the 'ndoms_new'
  6656. * cpumasks in the array doms_new[] of cpumasks. This compares
  6657. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6658. * It destroys each deleted domain and builds each new domain.
  6659. *
  6660. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6661. * The masks don't intersect (don't overlap.) We should setup one
  6662. * sched domain for each mask. CPUs not in any of the cpumasks will
  6663. * not be load balanced. If the same cpumask appears both in the
  6664. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6665. * it as it is.
  6666. *
  6667. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6668. * ownership of it and will kfree it when done with it. If the caller
  6669. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6670. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6671. * the single partition 'fallback_doms', it also forces the domains
  6672. * to be rebuilt.
  6673. *
  6674. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6675. * ndoms_new == 0 is a special case for destroying existing domains,
  6676. * and it will not create the default domain.
  6677. *
  6678. * Call with hotplug lock held
  6679. */
  6680. /* FIXME: Change to struct cpumask *doms_new[] */
  6681. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6682. struct sched_domain_attr *dattr_new)
  6683. {
  6684. int i, j, n;
  6685. int new_topology;
  6686. mutex_lock(&sched_domains_mutex);
  6687. /* always unregister in case we don't destroy any domains */
  6688. unregister_sched_domain_sysctl();
  6689. /* Let architecture update cpu core mappings. */
  6690. new_topology = arch_update_cpu_topology();
  6691. n = doms_new ? ndoms_new : 0;
  6692. /* Destroy deleted domains */
  6693. for (i = 0; i < ndoms_cur; i++) {
  6694. for (j = 0; j < n && !new_topology; j++) {
  6695. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6696. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6697. goto match1;
  6698. }
  6699. /* no match - a current sched domain not in new doms_new[] */
  6700. detach_destroy_domains(doms_cur + i);
  6701. match1:
  6702. ;
  6703. }
  6704. if (doms_new == NULL) {
  6705. ndoms_cur = 0;
  6706. doms_new = fallback_doms;
  6707. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6708. WARN_ON_ONCE(dattr_new);
  6709. }
  6710. /* Build new domains */
  6711. for (i = 0; i < ndoms_new; i++) {
  6712. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6713. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6714. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6715. goto match2;
  6716. }
  6717. /* no match - add a new doms_new */
  6718. __build_sched_domains(doms_new + i,
  6719. dattr_new ? dattr_new + i : NULL);
  6720. match2:
  6721. ;
  6722. }
  6723. /* Remember the new sched domains */
  6724. if (doms_cur != fallback_doms)
  6725. kfree(doms_cur);
  6726. kfree(dattr_cur); /* kfree(NULL) is safe */
  6727. doms_cur = doms_new;
  6728. dattr_cur = dattr_new;
  6729. ndoms_cur = ndoms_new;
  6730. register_sched_domain_sysctl();
  6731. mutex_unlock(&sched_domains_mutex);
  6732. }
  6733. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6734. int arch_reinit_sched_domains(void)
  6735. {
  6736. get_online_cpus();
  6737. /* Destroy domains first to force the rebuild */
  6738. partition_sched_domains(0, NULL, NULL);
  6739. rebuild_sched_domains();
  6740. put_online_cpus();
  6741. return 0;
  6742. }
  6743. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6744. {
  6745. int ret;
  6746. unsigned int level = 0;
  6747. if (sscanf(buf, "%u", &level) != 1)
  6748. return -EINVAL;
  6749. /*
  6750. * level is always be positive so don't check for
  6751. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6752. * What happens on 0 or 1 byte write,
  6753. * need to check for count as well?
  6754. */
  6755. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6756. return -EINVAL;
  6757. if (smt)
  6758. sched_smt_power_savings = level;
  6759. else
  6760. sched_mc_power_savings = level;
  6761. ret = arch_reinit_sched_domains();
  6762. return ret ? ret : count;
  6763. }
  6764. #ifdef CONFIG_SCHED_MC
  6765. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6766. char *page)
  6767. {
  6768. return sprintf(page, "%u\n", sched_mc_power_savings);
  6769. }
  6770. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6771. const char *buf, size_t count)
  6772. {
  6773. return sched_power_savings_store(buf, count, 0);
  6774. }
  6775. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6776. sched_mc_power_savings_show,
  6777. sched_mc_power_savings_store);
  6778. #endif
  6779. #ifdef CONFIG_SCHED_SMT
  6780. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6781. char *page)
  6782. {
  6783. return sprintf(page, "%u\n", sched_smt_power_savings);
  6784. }
  6785. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6786. const char *buf, size_t count)
  6787. {
  6788. return sched_power_savings_store(buf, count, 1);
  6789. }
  6790. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6791. sched_smt_power_savings_show,
  6792. sched_smt_power_savings_store);
  6793. #endif
  6794. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6795. {
  6796. int err = 0;
  6797. #ifdef CONFIG_SCHED_SMT
  6798. if (smt_capable())
  6799. err = sysfs_create_file(&cls->kset.kobj,
  6800. &attr_sched_smt_power_savings.attr);
  6801. #endif
  6802. #ifdef CONFIG_SCHED_MC
  6803. if (!err && mc_capable())
  6804. err = sysfs_create_file(&cls->kset.kobj,
  6805. &attr_sched_mc_power_savings.attr);
  6806. #endif
  6807. return err;
  6808. }
  6809. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6810. #ifndef CONFIG_CPUSETS
  6811. /*
  6812. * Add online and remove offline CPUs from the scheduler domains.
  6813. * When cpusets are enabled they take over this function.
  6814. */
  6815. static int update_sched_domains(struct notifier_block *nfb,
  6816. unsigned long action, void *hcpu)
  6817. {
  6818. switch (action) {
  6819. case CPU_ONLINE:
  6820. case CPU_ONLINE_FROZEN:
  6821. case CPU_DEAD:
  6822. case CPU_DEAD_FROZEN:
  6823. partition_sched_domains(1, NULL, NULL);
  6824. return NOTIFY_OK;
  6825. default:
  6826. return NOTIFY_DONE;
  6827. }
  6828. }
  6829. #endif
  6830. static int update_runtime(struct notifier_block *nfb,
  6831. unsigned long action, void *hcpu)
  6832. {
  6833. int cpu = (int)(long)hcpu;
  6834. switch (action) {
  6835. case CPU_DOWN_PREPARE:
  6836. case CPU_DOWN_PREPARE_FROZEN:
  6837. disable_runtime(cpu_rq(cpu));
  6838. return NOTIFY_OK;
  6839. case CPU_DOWN_FAILED:
  6840. case CPU_DOWN_FAILED_FROZEN:
  6841. case CPU_ONLINE:
  6842. case CPU_ONLINE_FROZEN:
  6843. enable_runtime(cpu_rq(cpu));
  6844. return NOTIFY_OK;
  6845. default:
  6846. return NOTIFY_DONE;
  6847. }
  6848. }
  6849. void __init sched_init_smp(void)
  6850. {
  6851. cpumask_var_t non_isolated_cpus;
  6852. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6853. #if defined(CONFIG_NUMA)
  6854. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6855. GFP_KERNEL);
  6856. BUG_ON(sched_group_nodes_bycpu == NULL);
  6857. #endif
  6858. get_online_cpus();
  6859. mutex_lock(&sched_domains_mutex);
  6860. arch_init_sched_domains(cpu_online_mask);
  6861. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6862. if (cpumask_empty(non_isolated_cpus))
  6863. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6864. mutex_unlock(&sched_domains_mutex);
  6865. put_online_cpus();
  6866. #ifndef CONFIG_CPUSETS
  6867. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6868. hotcpu_notifier(update_sched_domains, 0);
  6869. #endif
  6870. /* RT runtime code needs to handle some hotplug events */
  6871. hotcpu_notifier(update_runtime, 0);
  6872. init_hrtick();
  6873. /* Move init over to a non-isolated CPU */
  6874. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6875. BUG();
  6876. sched_init_granularity();
  6877. free_cpumask_var(non_isolated_cpus);
  6878. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6879. init_sched_rt_class();
  6880. }
  6881. #else
  6882. void __init sched_init_smp(void)
  6883. {
  6884. sched_init_granularity();
  6885. }
  6886. #endif /* CONFIG_SMP */
  6887. int in_sched_functions(unsigned long addr)
  6888. {
  6889. return in_lock_functions(addr) ||
  6890. (addr >= (unsigned long)__sched_text_start
  6891. && addr < (unsigned long)__sched_text_end);
  6892. }
  6893. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6894. {
  6895. cfs_rq->tasks_timeline = RB_ROOT;
  6896. INIT_LIST_HEAD(&cfs_rq->tasks);
  6897. #ifdef CONFIG_FAIR_GROUP_SCHED
  6898. cfs_rq->rq = rq;
  6899. #endif
  6900. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6901. }
  6902. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6903. {
  6904. struct rt_prio_array *array;
  6905. int i;
  6906. array = &rt_rq->active;
  6907. for (i = 0; i < MAX_RT_PRIO; i++) {
  6908. INIT_LIST_HEAD(array->queue + i);
  6909. __clear_bit(i, array->bitmap);
  6910. }
  6911. /* delimiter for bitsearch: */
  6912. __set_bit(MAX_RT_PRIO, array->bitmap);
  6913. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6914. rt_rq->highest_prio = MAX_RT_PRIO;
  6915. #endif
  6916. #ifdef CONFIG_SMP
  6917. rt_rq->rt_nr_migratory = 0;
  6918. rt_rq->overloaded = 0;
  6919. #endif
  6920. rt_rq->rt_time = 0;
  6921. rt_rq->rt_throttled = 0;
  6922. rt_rq->rt_runtime = 0;
  6923. spin_lock_init(&rt_rq->rt_runtime_lock);
  6924. #ifdef CONFIG_RT_GROUP_SCHED
  6925. rt_rq->rt_nr_boosted = 0;
  6926. rt_rq->rq = rq;
  6927. #endif
  6928. }
  6929. #ifdef CONFIG_FAIR_GROUP_SCHED
  6930. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6931. struct sched_entity *se, int cpu, int add,
  6932. struct sched_entity *parent)
  6933. {
  6934. struct rq *rq = cpu_rq(cpu);
  6935. tg->cfs_rq[cpu] = cfs_rq;
  6936. init_cfs_rq(cfs_rq, rq);
  6937. cfs_rq->tg = tg;
  6938. if (add)
  6939. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6940. tg->se[cpu] = se;
  6941. /* se could be NULL for init_task_group */
  6942. if (!se)
  6943. return;
  6944. if (!parent)
  6945. se->cfs_rq = &rq->cfs;
  6946. else
  6947. se->cfs_rq = parent->my_q;
  6948. se->my_q = cfs_rq;
  6949. se->load.weight = tg->shares;
  6950. se->load.inv_weight = 0;
  6951. se->parent = parent;
  6952. }
  6953. #endif
  6954. #ifdef CONFIG_RT_GROUP_SCHED
  6955. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6956. struct sched_rt_entity *rt_se, int cpu, int add,
  6957. struct sched_rt_entity *parent)
  6958. {
  6959. struct rq *rq = cpu_rq(cpu);
  6960. tg->rt_rq[cpu] = rt_rq;
  6961. init_rt_rq(rt_rq, rq);
  6962. rt_rq->tg = tg;
  6963. rt_rq->rt_se = rt_se;
  6964. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6965. if (add)
  6966. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6967. tg->rt_se[cpu] = rt_se;
  6968. if (!rt_se)
  6969. return;
  6970. if (!parent)
  6971. rt_se->rt_rq = &rq->rt;
  6972. else
  6973. rt_se->rt_rq = parent->my_q;
  6974. rt_se->my_q = rt_rq;
  6975. rt_se->parent = parent;
  6976. INIT_LIST_HEAD(&rt_se->run_list);
  6977. }
  6978. #endif
  6979. void __init sched_init(void)
  6980. {
  6981. int i, j;
  6982. unsigned long alloc_size = 0, ptr;
  6983. #ifdef CONFIG_FAIR_GROUP_SCHED
  6984. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6985. #endif
  6986. #ifdef CONFIG_RT_GROUP_SCHED
  6987. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6988. #endif
  6989. #ifdef CONFIG_USER_SCHED
  6990. alloc_size *= 2;
  6991. #endif
  6992. /*
  6993. * As sched_init() is called before page_alloc is setup,
  6994. * we use alloc_bootmem().
  6995. */
  6996. if (alloc_size) {
  6997. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6998. #ifdef CONFIG_FAIR_GROUP_SCHED
  6999. init_task_group.se = (struct sched_entity **)ptr;
  7000. ptr += nr_cpu_ids * sizeof(void **);
  7001. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7002. ptr += nr_cpu_ids * sizeof(void **);
  7003. #ifdef CONFIG_USER_SCHED
  7004. root_task_group.se = (struct sched_entity **)ptr;
  7005. ptr += nr_cpu_ids * sizeof(void **);
  7006. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7007. ptr += nr_cpu_ids * sizeof(void **);
  7008. #endif /* CONFIG_USER_SCHED */
  7009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7010. #ifdef CONFIG_RT_GROUP_SCHED
  7011. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7012. ptr += nr_cpu_ids * sizeof(void **);
  7013. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7014. ptr += nr_cpu_ids * sizeof(void **);
  7015. #ifdef CONFIG_USER_SCHED
  7016. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7017. ptr += nr_cpu_ids * sizeof(void **);
  7018. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7019. ptr += nr_cpu_ids * sizeof(void **);
  7020. #endif /* CONFIG_USER_SCHED */
  7021. #endif /* CONFIG_RT_GROUP_SCHED */
  7022. }
  7023. #ifdef CONFIG_SMP
  7024. init_defrootdomain();
  7025. #endif
  7026. init_rt_bandwidth(&def_rt_bandwidth,
  7027. global_rt_period(), global_rt_runtime());
  7028. #ifdef CONFIG_RT_GROUP_SCHED
  7029. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7030. global_rt_period(), global_rt_runtime());
  7031. #ifdef CONFIG_USER_SCHED
  7032. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7033. global_rt_period(), RUNTIME_INF);
  7034. #endif /* CONFIG_USER_SCHED */
  7035. #endif /* CONFIG_RT_GROUP_SCHED */
  7036. #ifdef CONFIG_GROUP_SCHED
  7037. list_add(&init_task_group.list, &task_groups);
  7038. INIT_LIST_HEAD(&init_task_group.children);
  7039. #ifdef CONFIG_USER_SCHED
  7040. INIT_LIST_HEAD(&root_task_group.children);
  7041. init_task_group.parent = &root_task_group;
  7042. list_add(&init_task_group.siblings, &root_task_group.children);
  7043. #endif /* CONFIG_USER_SCHED */
  7044. #endif /* CONFIG_GROUP_SCHED */
  7045. for_each_possible_cpu(i) {
  7046. struct rq *rq;
  7047. rq = cpu_rq(i);
  7048. spin_lock_init(&rq->lock);
  7049. rq->nr_running = 0;
  7050. init_cfs_rq(&rq->cfs, rq);
  7051. init_rt_rq(&rq->rt, rq);
  7052. #ifdef CONFIG_FAIR_GROUP_SCHED
  7053. init_task_group.shares = init_task_group_load;
  7054. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7055. #ifdef CONFIG_CGROUP_SCHED
  7056. /*
  7057. * How much cpu bandwidth does init_task_group get?
  7058. *
  7059. * In case of task-groups formed thr' the cgroup filesystem, it
  7060. * gets 100% of the cpu resources in the system. This overall
  7061. * system cpu resource is divided among the tasks of
  7062. * init_task_group and its child task-groups in a fair manner,
  7063. * based on each entity's (task or task-group's) weight
  7064. * (se->load.weight).
  7065. *
  7066. * In other words, if init_task_group has 10 tasks of weight
  7067. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7068. * then A0's share of the cpu resource is:
  7069. *
  7070. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7071. *
  7072. * We achieve this by letting init_task_group's tasks sit
  7073. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7074. */
  7075. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7076. #elif defined CONFIG_USER_SCHED
  7077. root_task_group.shares = NICE_0_LOAD;
  7078. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7079. /*
  7080. * In case of task-groups formed thr' the user id of tasks,
  7081. * init_task_group represents tasks belonging to root user.
  7082. * Hence it forms a sibling of all subsequent groups formed.
  7083. * In this case, init_task_group gets only a fraction of overall
  7084. * system cpu resource, based on the weight assigned to root
  7085. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7086. * by letting tasks of init_task_group sit in a separate cfs_rq
  7087. * (init_cfs_rq) and having one entity represent this group of
  7088. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7089. */
  7090. init_tg_cfs_entry(&init_task_group,
  7091. &per_cpu(init_cfs_rq, i),
  7092. &per_cpu(init_sched_entity, i), i, 1,
  7093. root_task_group.se[i]);
  7094. #endif
  7095. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7096. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7097. #ifdef CONFIG_RT_GROUP_SCHED
  7098. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7099. #ifdef CONFIG_CGROUP_SCHED
  7100. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7101. #elif defined CONFIG_USER_SCHED
  7102. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7103. init_tg_rt_entry(&init_task_group,
  7104. &per_cpu(init_rt_rq, i),
  7105. &per_cpu(init_sched_rt_entity, i), i, 1,
  7106. root_task_group.rt_se[i]);
  7107. #endif
  7108. #endif
  7109. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7110. rq->cpu_load[j] = 0;
  7111. #ifdef CONFIG_SMP
  7112. rq->sd = NULL;
  7113. rq->rd = NULL;
  7114. rq->active_balance = 0;
  7115. rq->next_balance = jiffies;
  7116. rq->push_cpu = 0;
  7117. rq->cpu = i;
  7118. rq->online = 0;
  7119. rq->migration_thread = NULL;
  7120. INIT_LIST_HEAD(&rq->migration_queue);
  7121. rq_attach_root(rq, &def_root_domain);
  7122. #endif
  7123. init_rq_hrtick(rq);
  7124. atomic_set(&rq->nr_iowait, 0);
  7125. }
  7126. set_load_weight(&init_task);
  7127. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7128. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7129. #endif
  7130. #ifdef CONFIG_SMP
  7131. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7132. #endif
  7133. #ifdef CONFIG_RT_MUTEXES
  7134. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7135. #endif
  7136. /*
  7137. * The boot idle thread does lazy MMU switching as well:
  7138. */
  7139. atomic_inc(&init_mm.mm_count);
  7140. enter_lazy_tlb(&init_mm, current);
  7141. /*
  7142. * Make us the idle thread. Technically, schedule() should not be
  7143. * called from this thread, however somewhere below it might be,
  7144. * but because we are the idle thread, we just pick up running again
  7145. * when this runqueue becomes "idle".
  7146. */
  7147. init_idle(current, smp_processor_id());
  7148. /*
  7149. * During early bootup we pretend to be a normal task:
  7150. */
  7151. current->sched_class = &fair_sched_class;
  7152. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7153. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7154. #ifdef CONFIG_SMP
  7155. #ifdef CONFIG_NO_HZ
  7156. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7157. #endif
  7158. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7159. #endif /* SMP */
  7160. scheduler_running = 1;
  7161. }
  7162. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7163. void __might_sleep(char *file, int line)
  7164. {
  7165. #ifdef in_atomic
  7166. static unsigned long prev_jiffy; /* ratelimiting */
  7167. if ((!in_atomic() && !irqs_disabled()) ||
  7168. system_state != SYSTEM_RUNNING || oops_in_progress)
  7169. return;
  7170. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7171. return;
  7172. prev_jiffy = jiffies;
  7173. printk(KERN_ERR
  7174. "BUG: sleeping function called from invalid context at %s:%d\n",
  7175. file, line);
  7176. printk(KERN_ERR
  7177. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7178. in_atomic(), irqs_disabled(),
  7179. current->pid, current->comm);
  7180. debug_show_held_locks(current);
  7181. if (irqs_disabled())
  7182. print_irqtrace_events(current);
  7183. dump_stack();
  7184. #endif
  7185. }
  7186. EXPORT_SYMBOL(__might_sleep);
  7187. #endif
  7188. #ifdef CONFIG_MAGIC_SYSRQ
  7189. static void normalize_task(struct rq *rq, struct task_struct *p)
  7190. {
  7191. int on_rq;
  7192. update_rq_clock(rq);
  7193. on_rq = p->se.on_rq;
  7194. if (on_rq)
  7195. deactivate_task(rq, p, 0);
  7196. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7197. if (on_rq) {
  7198. activate_task(rq, p, 0);
  7199. resched_task(rq->curr);
  7200. }
  7201. }
  7202. void normalize_rt_tasks(void)
  7203. {
  7204. struct task_struct *g, *p;
  7205. unsigned long flags;
  7206. struct rq *rq;
  7207. read_lock_irqsave(&tasklist_lock, flags);
  7208. do_each_thread(g, p) {
  7209. /*
  7210. * Only normalize user tasks:
  7211. */
  7212. if (!p->mm)
  7213. continue;
  7214. p->se.exec_start = 0;
  7215. #ifdef CONFIG_SCHEDSTATS
  7216. p->se.wait_start = 0;
  7217. p->se.sleep_start = 0;
  7218. p->se.block_start = 0;
  7219. #endif
  7220. if (!rt_task(p)) {
  7221. /*
  7222. * Renice negative nice level userspace
  7223. * tasks back to 0:
  7224. */
  7225. if (TASK_NICE(p) < 0 && p->mm)
  7226. set_user_nice(p, 0);
  7227. continue;
  7228. }
  7229. spin_lock(&p->pi_lock);
  7230. rq = __task_rq_lock(p);
  7231. normalize_task(rq, p);
  7232. __task_rq_unlock(rq);
  7233. spin_unlock(&p->pi_lock);
  7234. } while_each_thread(g, p);
  7235. read_unlock_irqrestore(&tasklist_lock, flags);
  7236. }
  7237. #endif /* CONFIG_MAGIC_SYSRQ */
  7238. #ifdef CONFIG_IA64
  7239. /*
  7240. * These functions are only useful for the IA64 MCA handling.
  7241. *
  7242. * They can only be called when the whole system has been
  7243. * stopped - every CPU needs to be quiescent, and no scheduling
  7244. * activity can take place. Using them for anything else would
  7245. * be a serious bug, and as a result, they aren't even visible
  7246. * under any other configuration.
  7247. */
  7248. /**
  7249. * curr_task - return the current task for a given cpu.
  7250. * @cpu: the processor in question.
  7251. *
  7252. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7253. */
  7254. struct task_struct *curr_task(int cpu)
  7255. {
  7256. return cpu_curr(cpu);
  7257. }
  7258. /**
  7259. * set_curr_task - set the current task for a given cpu.
  7260. * @cpu: the processor in question.
  7261. * @p: the task pointer to set.
  7262. *
  7263. * Description: This function must only be used when non-maskable interrupts
  7264. * are serviced on a separate stack. It allows the architecture to switch the
  7265. * notion of the current task on a cpu in a non-blocking manner. This function
  7266. * must be called with all CPU's synchronized, and interrupts disabled, the
  7267. * and caller must save the original value of the current task (see
  7268. * curr_task() above) and restore that value before reenabling interrupts and
  7269. * re-starting the system.
  7270. *
  7271. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7272. */
  7273. void set_curr_task(int cpu, struct task_struct *p)
  7274. {
  7275. cpu_curr(cpu) = p;
  7276. }
  7277. #endif
  7278. #ifdef CONFIG_FAIR_GROUP_SCHED
  7279. static void free_fair_sched_group(struct task_group *tg)
  7280. {
  7281. int i;
  7282. for_each_possible_cpu(i) {
  7283. if (tg->cfs_rq)
  7284. kfree(tg->cfs_rq[i]);
  7285. if (tg->se)
  7286. kfree(tg->se[i]);
  7287. }
  7288. kfree(tg->cfs_rq);
  7289. kfree(tg->se);
  7290. }
  7291. static
  7292. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7293. {
  7294. struct cfs_rq *cfs_rq;
  7295. struct sched_entity *se;
  7296. struct rq *rq;
  7297. int i;
  7298. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7299. if (!tg->cfs_rq)
  7300. goto err;
  7301. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7302. if (!tg->se)
  7303. goto err;
  7304. tg->shares = NICE_0_LOAD;
  7305. for_each_possible_cpu(i) {
  7306. rq = cpu_rq(i);
  7307. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7308. GFP_KERNEL, cpu_to_node(i));
  7309. if (!cfs_rq)
  7310. goto err;
  7311. se = kzalloc_node(sizeof(struct sched_entity),
  7312. GFP_KERNEL, cpu_to_node(i));
  7313. if (!se)
  7314. goto err;
  7315. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7316. }
  7317. return 1;
  7318. err:
  7319. return 0;
  7320. }
  7321. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7322. {
  7323. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7324. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7325. }
  7326. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7327. {
  7328. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7329. }
  7330. #else /* !CONFG_FAIR_GROUP_SCHED */
  7331. static inline void free_fair_sched_group(struct task_group *tg)
  7332. {
  7333. }
  7334. static inline
  7335. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7336. {
  7337. return 1;
  7338. }
  7339. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7340. {
  7341. }
  7342. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7343. {
  7344. }
  7345. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7346. #ifdef CONFIG_RT_GROUP_SCHED
  7347. static void free_rt_sched_group(struct task_group *tg)
  7348. {
  7349. int i;
  7350. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7351. for_each_possible_cpu(i) {
  7352. if (tg->rt_rq)
  7353. kfree(tg->rt_rq[i]);
  7354. if (tg->rt_se)
  7355. kfree(tg->rt_se[i]);
  7356. }
  7357. kfree(tg->rt_rq);
  7358. kfree(tg->rt_se);
  7359. }
  7360. static
  7361. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7362. {
  7363. struct rt_rq *rt_rq;
  7364. struct sched_rt_entity *rt_se;
  7365. struct rq *rq;
  7366. int i;
  7367. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7368. if (!tg->rt_rq)
  7369. goto err;
  7370. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7371. if (!tg->rt_se)
  7372. goto err;
  7373. init_rt_bandwidth(&tg->rt_bandwidth,
  7374. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7375. for_each_possible_cpu(i) {
  7376. rq = cpu_rq(i);
  7377. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7378. GFP_KERNEL, cpu_to_node(i));
  7379. if (!rt_rq)
  7380. goto err;
  7381. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7382. GFP_KERNEL, cpu_to_node(i));
  7383. if (!rt_se)
  7384. goto err;
  7385. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7386. }
  7387. return 1;
  7388. err:
  7389. return 0;
  7390. }
  7391. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7392. {
  7393. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7394. &cpu_rq(cpu)->leaf_rt_rq_list);
  7395. }
  7396. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7397. {
  7398. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7399. }
  7400. #else /* !CONFIG_RT_GROUP_SCHED */
  7401. static inline void free_rt_sched_group(struct task_group *tg)
  7402. {
  7403. }
  7404. static inline
  7405. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7406. {
  7407. return 1;
  7408. }
  7409. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7410. {
  7411. }
  7412. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7413. {
  7414. }
  7415. #endif /* CONFIG_RT_GROUP_SCHED */
  7416. #ifdef CONFIG_GROUP_SCHED
  7417. static void free_sched_group(struct task_group *tg)
  7418. {
  7419. free_fair_sched_group(tg);
  7420. free_rt_sched_group(tg);
  7421. kfree(tg);
  7422. }
  7423. /* allocate runqueue etc for a new task group */
  7424. struct task_group *sched_create_group(struct task_group *parent)
  7425. {
  7426. struct task_group *tg;
  7427. unsigned long flags;
  7428. int i;
  7429. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7430. if (!tg)
  7431. return ERR_PTR(-ENOMEM);
  7432. if (!alloc_fair_sched_group(tg, parent))
  7433. goto err;
  7434. if (!alloc_rt_sched_group(tg, parent))
  7435. goto err;
  7436. spin_lock_irqsave(&task_group_lock, flags);
  7437. for_each_possible_cpu(i) {
  7438. register_fair_sched_group(tg, i);
  7439. register_rt_sched_group(tg, i);
  7440. }
  7441. list_add_rcu(&tg->list, &task_groups);
  7442. WARN_ON(!parent); /* root should already exist */
  7443. tg->parent = parent;
  7444. INIT_LIST_HEAD(&tg->children);
  7445. list_add_rcu(&tg->siblings, &parent->children);
  7446. spin_unlock_irqrestore(&task_group_lock, flags);
  7447. return tg;
  7448. err:
  7449. free_sched_group(tg);
  7450. return ERR_PTR(-ENOMEM);
  7451. }
  7452. /* rcu callback to free various structures associated with a task group */
  7453. static void free_sched_group_rcu(struct rcu_head *rhp)
  7454. {
  7455. /* now it should be safe to free those cfs_rqs */
  7456. free_sched_group(container_of(rhp, struct task_group, rcu));
  7457. }
  7458. /* Destroy runqueue etc associated with a task group */
  7459. void sched_destroy_group(struct task_group *tg)
  7460. {
  7461. unsigned long flags;
  7462. int i;
  7463. spin_lock_irqsave(&task_group_lock, flags);
  7464. for_each_possible_cpu(i) {
  7465. unregister_fair_sched_group(tg, i);
  7466. unregister_rt_sched_group(tg, i);
  7467. }
  7468. list_del_rcu(&tg->list);
  7469. list_del_rcu(&tg->siblings);
  7470. spin_unlock_irqrestore(&task_group_lock, flags);
  7471. /* wait for possible concurrent references to cfs_rqs complete */
  7472. call_rcu(&tg->rcu, free_sched_group_rcu);
  7473. }
  7474. /* change task's runqueue when it moves between groups.
  7475. * The caller of this function should have put the task in its new group
  7476. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7477. * reflect its new group.
  7478. */
  7479. void sched_move_task(struct task_struct *tsk)
  7480. {
  7481. int on_rq, running;
  7482. unsigned long flags;
  7483. struct rq *rq;
  7484. rq = task_rq_lock(tsk, &flags);
  7485. update_rq_clock(rq);
  7486. running = task_current(rq, tsk);
  7487. on_rq = tsk->se.on_rq;
  7488. if (on_rq)
  7489. dequeue_task(rq, tsk, 0);
  7490. if (unlikely(running))
  7491. tsk->sched_class->put_prev_task(rq, tsk);
  7492. set_task_rq(tsk, task_cpu(tsk));
  7493. #ifdef CONFIG_FAIR_GROUP_SCHED
  7494. if (tsk->sched_class->moved_group)
  7495. tsk->sched_class->moved_group(tsk);
  7496. #endif
  7497. if (unlikely(running))
  7498. tsk->sched_class->set_curr_task(rq);
  7499. if (on_rq)
  7500. enqueue_task(rq, tsk, 0);
  7501. task_rq_unlock(rq, &flags);
  7502. }
  7503. #endif /* CONFIG_GROUP_SCHED */
  7504. #ifdef CONFIG_FAIR_GROUP_SCHED
  7505. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7506. {
  7507. struct cfs_rq *cfs_rq = se->cfs_rq;
  7508. int on_rq;
  7509. on_rq = se->on_rq;
  7510. if (on_rq)
  7511. dequeue_entity(cfs_rq, se, 0);
  7512. se->load.weight = shares;
  7513. se->load.inv_weight = 0;
  7514. if (on_rq)
  7515. enqueue_entity(cfs_rq, se, 0);
  7516. }
  7517. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7518. {
  7519. struct cfs_rq *cfs_rq = se->cfs_rq;
  7520. struct rq *rq = cfs_rq->rq;
  7521. unsigned long flags;
  7522. spin_lock_irqsave(&rq->lock, flags);
  7523. __set_se_shares(se, shares);
  7524. spin_unlock_irqrestore(&rq->lock, flags);
  7525. }
  7526. static DEFINE_MUTEX(shares_mutex);
  7527. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7528. {
  7529. int i;
  7530. unsigned long flags;
  7531. /*
  7532. * We can't change the weight of the root cgroup.
  7533. */
  7534. if (!tg->se[0])
  7535. return -EINVAL;
  7536. if (shares < MIN_SHARES)
  7537. shares = MIN_SHARES;
  7538. else if (shares > MAX_SHARES)
  7539. shares = MAX_SHARES;
  7540. mutex_lock(&shares_mutex);
  7541. if (tg->shares == shares)
  7542. goto done;
  7543. spin_lock_irqsave(&task_group_lock, flags);
  7544. for_each_possible_cpu(i)
  7545. unregister_fair_sched_group(tg, i);
  7546. list_del_rcu(&tg->siblings);
  7547. spin_unlock_irqrestore(&task_group_lock, flags);
  7548. /* wait for any ongoing reference to this group to finish */
  7549. synchronize_sched();
  7550. /*
  7551. * Now we are free to modify the group's share on each cpu
  7552. * w/o tripping rebalance_share or load_balance_fair.
  7553. */
  7554. tg->shares = shares;
  7555. for_each_possible_cpu(i) {
  7556. /*
  7557. * force a rebalance
  7558. */
  7559. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7560. set_se_shares(tg->se[i], shares);
  7561. }
  7562. /*
  7563. * Enable load balance activity on this group, by inserting it back on
  7564. * each cpu's rq->leaf_cfs_rq_list.
  7565. */
  7566. spin_lock_irqsave(&task_group_lock, flags);
  7567. for_each_possible_cpu(i)
  7568. register_fair_sched_group(tg, i);
  7569. list_add_rcu(&tg->siblings, &tg->parent->children);
  7570. spin_unlock_irqrestore(&task_group_lock, flags);
  7571. done:
  7572. mutex_unlock(&shares_mutex);
  7573. return 0;
  7574. }
  7575. unsigned long sched_group_shares(struct task_group *tg)
  7576. {
  7577. return tg->shares;
  7578. }
  7579. #endif
  7580. #ifdef CONFIG_RT_GROUP_SCHED
  7581. /*
  7582. * Ensure that the real time constraints are schedulable.
  7583. */
  7584. static DEFINE_MUTEX(rt_constraints_mutex);
  7585. static unsigned long to_ratio(u64 period, u64 runtime)
  7586. {
  7587. if (runtime == RUNTIME_INF)
  7588. return 1ULL << 20;
  7589. return div64_u64(runtime << 20, period);
  7590. }
  7591. /* Must be called with tasklist_lock held */
  7592. static inline int tg_has_rt_tasks(struct task_group *tg)
  7593. {
  7594. struct task_struct *g, *p;
  7595. do_each_thread(g, p) {
  7596. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7597. return 1;
  7598. } while_each_thread(g, p);
  7599. return 0;
  7600. }
  7601. struct rt_schedulable_data {
  7602. struct task_group *tg;
  7603. u64 rt_period;
  7604. u64 rt_runtime;
  7605. };
  7606. static int tg_schedulable(struct task_group *tg, void *data)
  7607. {
  7608. struct rt_schedulable_data *d = data;
  7609. struct task_group *child;
  7610. unsigned long total, sum = 0;
  7611. u64 period, runtime;
  7612. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7613. runtime = tg->rt_bandwidth.rt_runtime;
  7614. if (tg == d->tg) {
  7615. period = d->rt_period;
  7616. runtime = d->rt_runtime;
  7617. }
  7618. /*
  7619. * Cannot have more runtime than the period.
  7620. */
  7621. if (runtime > period && runtime != RUNTIME_INF)
  7622. return -EINVAL;
  7623. /*
  7624. * Ensure we don't starve existing RT tasks.
  7625. */
  7626. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7627. return -EBUSY;
  7628. total = to_ratio(period, runtime);
  7629. /*
  7630. * Nobody can have more than the global setting allows.
  7631. */
  7632. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7633. return -EINVAL;
  7634. /*
  7635. * The sum of our children's runtime should not exceed our own.
  7636. */
  7637. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7638. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7639. runtime = child->rt_bandwidth.rt_runtime;
  7640. if (child == d->tg) {
  7641. period = d->rt_period;
  7642. runtime = d->rt_runtime;
  7643. }
  7644. sum += to_ratio(period, runtime);
  7645. }
  7646. if (sum > total)
  7647. return -EINVAL;
  7648. return 0;
  7649. }
  7650. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7651. {
  7652. struct rt_schedulable_data data = {
  7653. .tg = tg,
  7654. .rt_period = period,
  7655. .rt_runtime = runtime,
  7656. };
  7657. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7658. }
  7659. static int tg_set_bandwidth(struct task_group *tg,
  7660. u64 rt_period, u64 rt_runtime)
  7661. {
  7662. int i, err = 0;
  7663. mutex_lock(&rt_constraints_mutex);
  7664. read_lock(&tasklist_lock);
  7665. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7666. if (err)
  7667. goto unlock;
  7668. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7669. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7670. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7671. for_each_possible_cpu(i) {
  7672. struct rt_rq *rt_rq = tg->rt_rq[i];
  7673. spin_lock(&rt_rq->rt_runtime_lock);
  7674. rt_rq->rt_runtime = rt_runtime;
  7675. spin_unlock(&rt_rq->rt_runtime_lock);
  7676. }
  7677. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7678. unlock:
  7679. read_unlock(&tasklist_lock);
  7680. mutex_unlock(&rt_constraints_mutex);
  7681. return err;
  7682. }
  7683. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7684. {
  7685. u64 rt_runtime, rt_period;
  7686. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7687. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7688. if (rt_runtime_us < 0)
  7689. rt_runtime = RUNTIME_INF;
  7690. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7691. }
  7692. long sched_group_rt_runtime(struct task_group *tg)
  7693. {
  7694. u64 rt_runtime_us;
  7695. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7696. return -1;
  7697. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7698. do_div(rt_runtime_us, NSEC_PER_USEC);
  7699. return rt_runtime_us;
  7700. }
  7701. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7702. {
  7703. u64 rt_runtime, rt_period;
  7704. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7705. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7706. if (rt_period == 0)
  7707. return -EINVAL;
  7708. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7709. }
  7710. long sched_group_rt_period(struct task_group *tg)
  7711. {
  7712. u64 rt_period_us;
  7713. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7714. do_div(rt_period_us, NSEC_PER_USEC);
  7715. return rt_period_us;
  7716. }
  7717. static int sched_rt_global_constraints(void)
  7718. {
  7719. u64 runtime, period;
  7720. int ret = 0;
  7721. if (sysctl_sched_rt_period <= 0)
  7722. return -EINVAL;
  7723. runtime = global_rt_runtime();
  7724. period = global_rt_period();
  7725. /*
  7726. * Sanity check on the sysctl variables.
  7727. */
  7728. if (runtime > period && runtime != RUNTIME_INF)
  7729. return -EINVAL;
  7730. mutex_lock(&rt_constraints_mutex);
  7731. read_lock(&tasklist_lock);
  7732. ret = __rt_schedulable(NULL, 0, 0);
  7733. read_unlock(&tasklist_lock);
  7734. mutex_unlock(&rt_constraints_mutex);
  7735. return ret;
  7736. }
  7737. #else /* !CONFIG_RT_GROUP_SCHED */
  7738. static int sched_rt_global_constraints(void)
  7739. {
  7740. unsigned long flags;
  7741. int i;
  7742. if (sysctl_sched_rt_period <= 0)
  7743. return -EINVAL;
  7744. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7745. for_each_possible_cpu(i) {
  7746. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7747. spin_lock(&rt_rq->rt_runtime_lock);
  7748. rt_rq->rt_runtime = global_rt_runtime();
  7749. spin_unlock(&rt_rq->rt_runtime_lock);
  7750. }
  7751. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7752. return 0;
  7753. }
  7754. #endif /* CONFIG_RT_GROUP_SCHED */
  7755. int sched_rt_handler(struct ctl_table *table, int write,
  7756. struct file *filp, void __user *buffer, size_t *lenp,
  7757. loff_t *ppos)
  7758. {
  7759. int ret;
  7760. int old_period, old_runtime;
  7761. static DEFINE_MUTEX(mutex);
  7762. mutex_lock(&mutex);
  7763. old_period = sysctl_sched_rt_period;
  7764. old_runtime = sysctl_sched_rt_runtime;
  7765. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7766. if (!ret && write) {
  7767. ret = sched_rt_global_constraints();
  7768. if (ret) {
  7769. sysctl_sched_rt_period = old_period;
  7770. sysctl_sched_rt_runtime = old_runtime;
  7771. } else {
  7772. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7773. def_rt_bandwidth.rt_period =
  7774. ns_to_ktime(global_rt_period());
  7775. }
  7776. }
  7777. mutex_unlock(&mutex);
  7778. return ret;
  7779. }
  7780. #ifdef CONFIG_CGROUP_SCHED
  7781. /* return corresponding task_group object of a cgroup */
  7782. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7783. {
  7784. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7785. struct task_group, css);
  7786. }
  7787. static struct cgroup_subsys_state *
  7788. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7789. {
  7790. struct task_group *tg, *parent;
  7791. if (!cgrp->parent) {
  7792. /* This is early initialization for the top cgroup */
  7793. return &init_task_group.css;
  7794. }
  7795. parent = cgroup_tg(cgrp->parent);
  7796. tg = sched_create_group(parent);
  7797. if (IS_ERR(tg))
  7798. return ERR_PTR(-ENOMEM);
  7799. return &tg->css;
  7800. }
  7801. static void
  7802. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7803. {
  7804. struct task_group *tg = cgroup_tg(cgrp);
  7805. sched_destroy_group(tg);
  7806. }
  7807. static int
  7808. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7809. struct task_struct *tsk)
  7810. {
  7811. #ifdef CONFIG_RT_GROUP_SCHED
  7812. /* Don't accept realtime tasks when there is no way for them to run */
  7813. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7814. return -EINVAL;
  7815. #else
  7816. /* We don't support RT-tasks being in separate groups */
  7817. if (tsk->sched_class != &fair_sched_class)
  7818. return -EINVAL;
  7819. #endif
  7820. return 0;
  7821. }
  7822. static void
  7823. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7824. struct cgroup *old_cont, struct task_struct *tsk)
  7825. {
  7826. sched_move_task(tsk);
  7827. }
  7828. #ifdef CONFIG_FAIR_GROUP_SCHED
  7829. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7830. u64 shareval)
  7831. {
  7832. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7833. }
  7834. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7835. {
  7836. struct task_group *tg = cgroup_tg(cgrp);
  7837. return (u64) tg->shares;
  7838. }
  7839. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7840. #ifdef CONFIG_RT_GROUP_SCHED
  7841. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7842. s64 val)
  7843. {
  7844. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7845. }
  7846. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7847. {
  7848. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7849. }
  7850. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7851. u64 rt_period_us)
  7852. {
  7853. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7854. }
  7855. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7856. {
  7857. return sched_group_rt_period(cgroup_tg(cgrp));
  7858. }
  7859. #endif /* CONFIG_RT_GROUP_SCHED */
  7860. static struct cftype cpu_files[] = {
  7861. #ifdef CONFIG_FAIR_GROUP_SCHED
  7862. {
  7863. .name = "shares",
  7864. .read_u64 = cpu_shares_read_u64,
  7865. .write_u64 = cpu_shares_write_u64,
  7866. },
  7867. #endif
  7868. #ifdef CONFIG_RT_GROUP_SCHED
  7869. {
  7870. .name = "rt_runtime_us",
  7871. .read_s64 = cpu_rt_runtime_read,
  7872. .write_s64 = cpu_rt_runtime_write,
  7873. },
  7874. {
  7875. .name = "rt_period_us",
  7876. .read_u64 = cpu_rt_period_read_uint,
  7877. .write_u64 = cpu_rt_period_write_uint,
  7878. },
  7879. #endif
  7880. };
  7881. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7882. {
  7883. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7884. }
  7885. struct cgroup_subsys cpu_cgroup_subsys = {
  7886. .name = "cpu",
  7887. .create = cpu_cgroup_create,
  7888. .destroy = cpu_cgroup_destroy,
  7889. .can_attach = cpu_cgroup_can_attach,
  7890. .attach = cpu_cgroup_attach,
  7891. .populate = cpu_cgroup_populate,
  7892. .subsys_id = cpu_cgroup_subsys_id,
  7893. .early_init = 1,
  7894. };
  7895. #endif /* CONFIG_CGROUP_SCHED */
  7896. #ifdef CONFIG_CGROUP_CPUACCT
  7897. /*
  7898. * CPU accounting code for task groups.
  7899. *
  7900. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7901. * (balbir@in.ibm.com).
  7902. */
  7903. /* track cpu usage of a group of tasks and its child groups */
  7904. struct cpuacct {
  7905. struct cgroup_subsys_state css;
  7906. /* cpuusage holds pointer to a u64-type object on every cpu */
  7907. u64 *cpuusage;
  7908. struct cpuacct *parent;
  7909. };
  7910. struct cgroup_subsys cpuacct_subsys;
  7911. /* return cpu accounting group corresponding to this container */
  7912. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7913. {
  7914. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7915. struct cpuacct, css);
  7916. }
  7917. /* return cpu accounting group to which this task belongs */
  7918. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7919. {
  7920. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7921. struct cpuacct, css);
  7922. }
  7923. /* create a new cpu accounting group */
  7924. static struct cgroup_subsys_state *cpuacct_create(
  7925. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7926. {
  7927. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7928. if (!ca)
  7929. return ERR_PTR(-ENOMEM);
  7930. ca->cpuusage = alloc_percpu(u64);
  7931. if (!ca->cpuusage) {
  7932. kfree(ca);
  7933. return ERR_PTR(-ENOMEM);
  7934. }
  7935. if (cgrp->parent)
  7936. ca->parent = cgroup_ca(cgrp->parent);
  7937. return &ca->css;
  7938. }
  7939. /* destroy an existing cpu accounting group */
  7940. static void
  7941. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7942. {
  7943. struct cpuacct *ca = cgroup_ca(cgrp);
  7944. free_percpu(ca->cpuusage);
  7945. kfree(ca);
  7946. }
  7947. /* return total cpu usage (in nanoseconds) of a group */
  7948. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7949. {
  7950. struct cpuacct *ca = cgroup_ca(cgrp);
  7951. u64 totalcpuusage = 0;
  7952. int i;
  7953. for_each_possible_cpu(i) {
  7954. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7955. /*
  7956. * Take rq->lock to make 64-bit addition safe on 32-bit
  7957. * platforms.
  7958. */
  7959. spin_lock_irq(&cpu_rq(i)->lock);
  7960. totalcpuusage += *cpuusage;
  7961. spin_unlock_irq(&cpu_rq(i)->lock);
  7962. }
  7963. return totalcpuusage;
  7964. }
  7965. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7966. u64 reset)
  7967. {
  7968. struct cpuacct *ca = cgroup_ca(cgrp);
  7969. int err = 0;
  7970. int i;
  7971. if (reset) {
  7972. err = -EINVAL;
  7973. goto out;
  7974. }
  7975. for_each_possible_cpu(i) {
  7976. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7977. spin_lock_irq(&cpu_rq(i)->lock);
  7978. *cpuusage = 0;
  7979. spin_unlock_irq(&cpu_rq(i)->lock);
  7980. }
  7981. out:
  7982. return err;
  7983. }
  7984. static struct cftype files[] = {
  7985. {
  7986. .name = "usage",
  7987. .read_u64 = cpuusage_read,
  7988. .write_u64 = cpuusage_write,
  7989. },
  7990. };
  7991. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7992. {
  7993. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7994. }
  7995. /*
  7996. * charge this task's execution time to its accounting group.
  7997. *
  7998. * called with rq->lock held.
  7999. */
  8000. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8001. {
  8002. struct cpuacct *ca;
  8003. int cpu;
  8004. if (!cpuacct_subsys.active)
  8005. return;
  8006. cpu = task_cpu(tsk);
  8007. ca = task_ca(tsk);
  8008. for (; ca; ca = ca->parent) {
  8009. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8010. *cpuusage += cputime;
  8011. }
  8012. }
  8013. struct cgroup_subsys cpuacct_subsys = {
  8014. .name = "cpuacct",
  8015. .create = cpuacct_create,
  8016. .destroy = cpuacct_destroy,
  8017. .populate = cpuacct_populate,
  8018. .subsys_id = cpuacct_subsys_id,
  8019. };
  8020. #endif /* CONFIG_CGROUP_CPUACCT */