memory.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. unsigned long highest_memmap_pfn __read_mostly;
  99. /*
  100. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  101. */
  102. static int __init init_zero_pfn(void)
  103. {
  104. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  105. return 0;
  106. }
  107. core_initcall(init_zero_pfn);
  108. /*
  109. * If a p?d_bad entry is found while walking page tables, report
  110. * the error, before resetting entry to p?d_none. Usually (but
  111. * very seldom) called out from the p?d_none_or_clear_bad macros.
  112. */
  113. void pgd_clear_bad(pgd_t *pgd)
  114. {
  115. pgd_ERROR(*pgd);
  116. pgd_clear(pgd);
  117. }
  118. void pud_clear_bad(pud_t *pud)
  119. {
  120. pud_ERROR(*pud);
  121. pud_clear(pud);
  122. }
  123. void pmd_clear_bad(pmd_t *pmd)
  124. {
  125. pmd_ERROR(*pmd);
  126. pmd_clear(pmd);
  127. }
  128. /*
  129. * Note: this doesn't free the actual pages themselves. That
  130. * has been handled earlier when unmapping all the memory regions.
  131. */
  132. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  133. unsigned long addr)
  134. {
  135. pgtable_t token = pmd_pgtable(*pmd);
  136. pmd_clear(pmd);
  137. pte_free_tlb(tlb, token, addr);
  138. tlb->mm->nr_ptes--;
  139. }
  140. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  141. unsigned long addr, unsigned long end,
  142. unsigned long floor, unsigned long ceiling)
  143. {
  144. pmd_t *pmd;
  145. unsigned long next;
  146. unsigned long start;
  147. start = addr;
  148. pmd = pmd_offset(pud, addr);
  149. do {
  150. next = pmd_addr_end(addr, end);
  151. if (pmd_none_or_clear_bad(pmd))
  152. continue;
  153. free_pte_range(tlb, pmd, addr);
  154. } while (pmd++, addr = next, addr != end);
  155. start &= PUD_MASK;
  156. if (start < floor)
  157. return;
  158. if (ceiling) {
  159. ceiling &= PUD_MASK;
  160. if (!ceiling)
  161. return;
  162. }
  163. if (end - 1 > ceiling - 1)
  164. return;
  165. pmd = pmd_offset(pud, start);
  166. pud_clear(pud);
  167. pmd_free_tlb(tlb, pmd, start);
  168. }
  169. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  170. unsigned long addr, unsigned long end,
  171. unsigned long floor, unsigned long ceiling)
  172. {
  173. pud_t *pud;
  174. unsigned long next;
  175. unsigned long start;
  176. start = addr;
  177. pud = pud_offset(pgd, addr);
  178. do {
  179. next = pud_addr_end(addr, end);
  180. if (pud_none_or_clear_bad(pud))
  181. continue;
  182. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  183. } while (pud++, addr = next, addr != end);
  184. start &= PGDIR_MASK;
  185. if (start < floor)
  186. return;
  187. if (ceiling) {
  188. ceiling &= PGDIR_MASK;
  189. if (!ceiling)
  190. return;
  191. }
  192. if (end - 1 > ceiling - 1)
  193. return;
  194. pud = pud_offset(pgd, start);
  195. pgd_clear(pgd);
  196. pud_free_tlb(tlb, pud, start);
  197. }
  198. /*
  199. * This function frees user-level page tables of a process.
  200. *
  201. * Must be called with pagetable lock held.
  202. */
  203. void free_pgd_range(struct mmu_gather *tlb,
  204. unsigned long addr, unsigned long end,
  205. unsigned long floor, unsigned long ceiling)
  206. {
  207. pgd_t *pgd;
  208. unsigned long next;
  209. unsigned long start;
  210. /*
  211. * The next few lines have given us lots of grief...
  212. *
  213. * Why are we testing PMD* at this top level? Because often
  214. * there will be no work to do at all, and we'd prefer not to
  215. * go all the way down to the bottom just to discover that.
  216. *
  217. * Why all these "- 1"s? Because 0 represents both the bottom
  218. * of the address space and the top of it (using -1 for the
  219. * top wouldn't help much: the masks would do the wrong thing).
  220. * The rule is that addr 0 and floor 0 refer to the bottom of
  221. * the address space, but end 0 and ceiling 0 refer to the top
  222. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  223. * that end 0 case should be mythical).
  224. *
  225. * Wherever addr is brought up or ceiling brought down, we must
  226. * be careful to reject "the opposite 0" before it confuses the
  227. * subsequent tests. But what about where end is brought down
  228. * by PMD_SIZE below? no, end can't go down to 0 there.
  229. *
  230. * Whereas we round start (addr) and ceiling down, by different
  231. * masks at different levels, in order to test whether a table
  232. * now has no other vmas using it, so can be freed, we don't
  233. * bother to round floor or end up - the tests don't need that.
  234. */
  235. addr &= PMD_MASK;
  236. if (addr < floor) {
  237. addr += PMD_SIZE;
  238. if (!addr)
  239. return;
  240. }
  241. if (ceiling) {
  242. ceiling &= PMD_MASK;
  243. if (!ceiling)
  244. return;
  245. }
  246. if (end - 1 > ceiling - 1)
  247. end -= PMD_SIZE;
  248. if (addr > end - 1)
  249. return;
  250. start = addr;
  251. pgd = pgd_offset(tlb->mm, addr);
  252. do {
  253. next = pgd_addr_end(addr, end);
  254. if (pgd_none_or_clear_bad(pgd))
  255. continue;
  256. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  257. } while (pgd++, addr = next, addr != end);
  258. }
  259. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  260. unsigned long floor, unsigned long ceiling)
  261. {
  262. while (vma) {
  263. struct vm_area_struct *next = vma->vm_next;
  264. unsigned long addr = vma->vm_start;
  265. /*
  266. * Hide vma from rmap and truncate_pagecache before freeing
  267. * pgtables
  268. */
  269. anon_vma_unlink(vma);
  270. unlink_file_vma(vma);
  271. if (is_vm_hugetlb_page(vma)) {
  272. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  273. floor, next? next->vm_start: ceiling);
  274. } else {
  275. /*
  276. * Optimization: gather nearby vmas into one call down
  277. */
  278. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  279. && !is_vm_hugetlb_page(next)) {
  280. vma = next;
  281. next = vma->vm_next;
  282. anon_vma_unlink(vma);
  283. unlink_file_vma(vma);
  284. }
  285. free_pgd_range(tlb, addr, vma->vm_end,
  286. floor, next? next->vm_start: ceiling);
  287. }
  288. vma = next;
  289. }
  290. }
  291. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  292. {
  293. pgtable_t new = pte_alloc_one(mm, address);
  294. if (!new)
  295. return -ENOMEM;
  296. /*
  297. * Ensure all pte setup (eg. pte page lock and page clearing) are
  298. * visible before the pte is made visible to other CPUs by being
  299. * put into page tables.
  300. *
  301. * The other side of the story is the pointer chasing in the page
  302. * table walking code (when walking the page table without locking;
  303. * ie. most of the time). Fortunately, these data accesses consist
  304. * of a chain of data-dependent loads, meaning most CPUs (alpha
  305. * being the notable exception) will already guarantee loads are
  306. * seen in-order. See the alpha page table accessors for the
  307. * smp_read_barrier_depends() barriers in page table walking code.
  308. */
  309. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  310. spin_lock(&mm->page_table_lock);
  311. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  312. mm->nr_ptes++;
  313. pmd_populate(mm, pmd, new);
  314. new = NULL;
  315. }
  316. spin_unlock(&mm->page_table_lock);
  317. if (new)
  318. pte_free(mm, new);
  319. return 0;
  320. }
  321. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  322. {
  323. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  324. if (!new)
  325. return -ENOMEM;
  326. smp_wmb(); /* See comment in __pte_alloc */
  327. spin_lock(&init_mm.page_table_lock);
  328. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  329. pmd_populate_kernel(&init_mm, pmd, new);
  330. new = NULL;
  331. }
  332. spin_unlock(&init_mm.page_table_lock);
  333. if (new)
  334. pte_free_kernel(&init_mm, new);
  335. return 0;
  336. }
  337. static inline void init_rss_vec(int *rss)
  338. {
  339. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  340. }
  341. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  342. {
  343. int i;
  344. for (i = 0; i < NR_MM_COUNTERS; i++)
  345. if (rss[i])
  346. add_mm_counter(mm, i, rss[i]);
  347. }
  348. /*
  349. * This function is called to print an error when a bad pte
  350. * is found. For example, we might have a PFN-mapped pte in
  351. * a region that doesn't allow it.
  352. *
  353. * The calling function must still handle the error.
  354. */
  355. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  356. pte_t pte, struct page *page)
  357. {
  358. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  359. pud_t *pud = pud_offset(pgd, addr);
  360. pmd_t *pmd = pmd_offset(pud, addr);
  361. struct address_space *mapping;
  362. pgoff_t index;
  363. static unsigned long resume;
  364. static unsigned long nr_shown;
  365. static unsigned long nr_unshown;
  366. /*
  367. * Allow a burst of 60 reports, then keep quiet for that minute;
  368. * or allow a steady drip of one report per second.
  369. */
  370. if (nr_shown == 60) {
  371. if (time_before(jiffies, resume)) {
  372. nr_unshown++;
  373. return;
  374. }
  375. if (nr_unshown) {
  376. printk(KERN_ALERT
  377. "BUG: Bad page map: %lu messages suppressed\n",
  378. nr_unshown);
  379. nr_unshown = 0;
  380. }
  381. nr_shown = 0;
  382. }
  383. if (nr_shown++ == 0)
  384. resume = jiffies + 60 * HZ;
  385. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  386. index = linear_page_index(vma, addr);
  387. printk(KERN_ALERT
  388. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  389. current->comm,
  390. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  391. if (page) {
  392. printk(KERN_ALERT
  393. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  394. page, (void *)page->flags, page_count(page),
  395. page_mapcount(page), page->mapping, page->index);
  396. }
  397. printk(KERN_ALERT
  398. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  399. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  400. /*
  401. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  402. */
  403. if (vma->vm_ops)
  404. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  405. (unsigned long)vma->vm_ops->fault);
  406. if (vma->vm_file && vma->vm_file->f_op)
  407. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  408. (unsigned long)vma->vm_file->f_op->mmap);
  409. dump_stack();
  410. add_taint(TAINT_BAD_PAGE);
  411. }
  412. static inline int is_cow_mapping(unsigned int flags)
  413. {
  414. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  415. }
  416. #ifndef is_zero_pfn
  417. static inline int is_zero_pfn(unsigned long pfn)
  418. {
  419. return pfn == zero_pfn;
  420. }
  421. #endif
  422. #ifndef my_zero_pfn
  423. static inline unsigned long my_zero_pfn(unsigned long addr)
  424. {
  425. return zero_pfn;
  426. }
  427. #endif
  428. /*
  429. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  430. *
  431. * "Special" mappings do not wish to be associated with a "struct page" (either
  432. * it doesn't exist, or it exists but they don't want to touch it). In this
  433. * case, NULL is returned here. "Normal" mappings do have a struct page.
  434. *
  435. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  436. * pte bit, in which case this function is trivial. Secondly, an architecture
  437. * may not have a spare pte bit, which requires a more complicated scheme,
  438. * described below.
  439. *
  440. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  441. * special mapping (even if there are underlying and valid "struct pages").
  442. * COWed pages of a VM_PFNMAP are always normal.
  443. *
  444. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  445. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  446. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  447. * mapping will always honor the rule
  448. *
  449. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  450. *
  451. * And for normal mappings this is false.
  452. *
  453. * This restricts such mappings to be a linear translation from virtual address
  454. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  455. * as the vma is not a COW mapping; in that case, we know that all ptes are
  456. * special (because none can have been COWed).
  457. *
  458. *
  459. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  460. *
  461. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  462. * page" backing, however the difference is that _all_ pages with a struct
  463. * page (that is, those where pfn_valid is true) are refcounted and considered
  464. * normal pages by the VM. The disadvantage is that pages are refcounted
  465. * (which can be slower and simply not an option for some PFNMAP users). The
  466. * advantage is that we don't have to follow the strict linearity rule of
  467. * PFNMAP mappings in order to support COWable mappings.
  468. *
  469. */
  470. #ifdef __HAVE_ARCH_PTE_SPECIAL
  471. # define HAVE_PTE_SPECIAL 1
  472. #else
  473. # define HAVE_PTE_SPECIAL 0
  474. #endif
  475. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  476. pte_t pte)
  477. {
  478. unsigned long pfn = pte_pfn(pte);
  479. if (HAVE_PTE_SPECIAL) {
  480. if (likely(!pte_special(pte)))
  481. goto check_pfn;
  482. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  483. return NULL;
  484. if (!is_zero_pfn(pfn))
  485. print_bad_pte(vma, addr, pte, NULL);
  486. return NULL;
  487. }
  488. /* !HAVE_PTE_SPECIAL case follows: */
  489. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  490. if (vma->vm_flags & VM_MIXEDMAP) {
  491. if (!pfn_valid(pfn))
  492. return NULL;
  493. goto out;
  494. } else {
  495. unsigned long off;
  496. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  497. if (pfn == vma->vm_pgoff + off)
  498. return NULL;
  499. if (!is_cow_mapping(vma->vm_flags))
  500. return NULL;
  501. }
  502. }
  503. if (is_zero_pfn(pfn))
  504. return NULL;
  505. check_pfn:
  506. if (unlikely(pfn > highest_memmap_pfn)) {
  507. print_bad_pte(vma, addr, pte, NULL);
  508. return NULL;
  509. }
  510. /*
  511. * NOTE! We still have PageReserved() pages in the page tables.
  512. * eg. VDSO mappings can cause them to exist.
  513. */
  514. out:
  515. return pfn_to_page(pfn);
  516. }
  517. /*
  518. * copy one vm_area from one task to the other. Assumes the page tables
  519. * already present in the new task to be cleared in the whole range
  520. * covered by this vma.
  521. */
  522. static inline unsigned long
  523. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  524. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  525. unsigned long addr, int *rss)
  526. {
  527. unsigned long vm_flags = vma->vm_flags;
  528. pte_t pte = *src_pte;
  529. struct page *page;
  530. /* pte contains position in swap or file, so copy. */
  531. if (unlikely(!pte_present(pte))) {
  532. if (!pte_file(pte)) {
  533. swp_entry_t entry = pte_to_swp_entry(pte);
  534. if (swap_duplicate(entry) < 0)
  535. return entry.val;
  536. /* make sure dst_mm is on swapoff's mmlist. */
  537. if (unlikely(list_empty(&dst_mm->mmlist))) {
  538. spin_lock(&mmlist_lock);
  539. if (list_empty(&dst_mm->mmlist))
  540. list_add(&dst_mm->mmlist,
  541. &src_mm->mmlist);
  542. spin_unlock(&mmlist_lock);
  543. }
  544. if (is_write_migration_entry(entry) &&
  545. is_cow_mapping(vm_flags)) {
  546. /*
  547. * COW mappings require pages in both parent
  548. * and child to be set to read.
  549. */
  550. make_migration_entry_read(&entry);
  551. pte = swp_entry_to_pte(entry);
  552. set_pte_at(src_mm, addr, src_pte, pte);
  553. }
  554. }
  555. goto out_set_pte;
  556. }
  557. /*
  558. * If it's a COW mapping, write protect it both
  559. * in the parent and the child
  560. */
  561. if (is_cow_mapping(vm_flags)) {
  562. ptep_set_wrprotect(src_mm, addr, src_pte);
  563. pte = pte_wrprotect(pte);
  564. }
  565. /*
  566. * If it's a shared mapping, mark it clean in
  567. * the child
  568. */
  569. if (vm_flags & VM_SHARED)
  570. pte = pte_mkclean(pte);
  571. pte = pte_mkold(pte);
  572. page = vm_normal_page(vma, addr, pte);
  573. if (page) {
  574. get_page(page);
  575. page_dup_rmap(page);
  576. if (PageAnon(page))
  577. rss[MM_ANONPAGES]++;
  578. else
  579. rss[MM_FILEPAGES]++;
  580. }
  581. out_set_pte:
  582. set_pte_at(dst_mm, addr, dst_pte, pte);
  583. return 0;
  584. }
  585. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  586. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  587. unsigned long addr, unsigned long end)
  588. {
  589. pte_t *orig_src_pte, *orig_dst_pte;
  590. pte_t *src_pte, *dst_pte;
  591. spinlock_t *src_ptl, *dst_ptl;
  592. int progress = 0;
  593. int rss[NR_MM_COUNTERS];
  594. swp_entry_t entry = (swp_entry_t){0};
  595. again:
  596. init_rss_vec(rss);
  597. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  598. if (!dst_pte)
  599. return -ENOMEM;
  600. src_pte = pte_offset_map_nested(src_pmd, addr);
  601. src_ptl = pte_lockptr(src_mm, src_pmd);
  602. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  603. orig_src_pte = src_pte;
  604. orig_dst_pte = dst_pte;
  605. arch_enter_lazy_mmu_mode();
  606. do {
  607. /*
  608. * We are holding two locks at this point - either of them
  609. * could generate latencies in another task on another CPU.
  610. */
  611. if (progress >= 32) {
  612. progress = 0;
  613. if (need_resched() ||
  614. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  615. break;
  616. }
  617. if (pte_none(*src_pte)) {
  618. progress++;
  619. continue;
  620. }
  621. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  622. vma, addr, rss);
  623. if (entry.val)
  624. break;
  625. progress += 8;
  626. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  627. arch_leave_lazy_mmu_mode();
  628. spin_unlock(src_ptl);
  629. pte_unmap_nested(orig_src_pte);
  630. add_mm_rss_vec(dst_mm, rss);
  631. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  632. cond_resched();
  633. if (entry.val) {
  634. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  635. return -ENOMEM;
  636. progress = 0;
  637. }
  638. if (addr != end)
  639. goto again;
  640. return 0;
  641. }
  642. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  643. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  644. unsigned long addr, unsigned long end)
  645. {
  646. pmd_t *src_pmd, *dst_pmd;
  647. unsigned long next;
  648. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  649. if (!dst_pmd)
  650. return -ENOMEM;
  651. src_pmd = pmd_offset(src_pud, addr);
  652. do {
  653. next = pmd_addr_end(addr, end);
  654. if (pmd_none_or_clear_bad(src_pmd))
  655. continue;
  656. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  657. vma, addr, next))
  658. return -ENOMEM;
  659. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  660. return 0;
  661. }
  662. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  663. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  664. unsigned long addr, unsigned long end)
  665. {
  666. pud_t *src_pud, *dst_pud;
  667. unsigned long next;
  668. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  669. if (!dst_pud)
  670. return -ENOMEM;
  671. src_pud = pud_offset(src_pgd, addr);
  672. do {
  673. next = pud_addr_end(addr, end);
  674. if (pud_none_or_clear_bad(src_pud))
  675. continue;
  676. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  677. vma, addr, next))
  678. return -ENOMEM;
  679. } while (dst_pud++, src_pud++, addr = next, addr != end);
  680. return 0;
  681. }
  682. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  683. struct vm_area_struct *vma)
  684. {
  685. pgd_t *src_pgd, *dst_pgd;
  686. unsigned long next;
  687. unsigned long addr = vma->vm_start;
  688. unsigned long end = vma->vm_end;
  689. int ret;
  690. /*
  691. * Don't copy ptes where a page fault will fill them correctly.
  692. * Fork becomes much lighter when there are big shared or private
  693. * readonly mappings. The tradeoff is that copy_page_range is more
  694. * efficient than faulting.
  695. */
  696. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  697. if (!vma->anon_vma)
  698. return 0;
  699. }
  700. if (is_vm_hugetlb_page(vma))
  701. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  702. if (unlikely(is_pfn_mapping(vma))) {
  703. /*
  704. * We do not free on error cases below as remove_vma
  705. * gets called on error from higher level routine
  706. */
  707. ret = track_pfn_vma_copy(vma);
  708. if (ret)
  709. return ret;
  710. }
  711. /*
  712. * We need to invalidate the secondary MMU mappings only when
  713. * there could be a permission downgrade on the ptes of the
  714. * parent mm. And a permission downgrade will only happen if
  715. * is_cow_mapping() returns true.
  716. */
  717. if (is_cow_mapping(vma->vm_flags))
  718. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  719. ret = 0;
  720. dst_pgd = pgd_offset(dst_mm, addr);
  721. src_pgd = pgd_offset(src_mm, addr);
  722. do {
  723. next = pgd_addr_end(addr, end);
  724. if (pgd_none_or_clear_bad(src_pgd))
  725. continue;
  726. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  727. vma, addr, next))) {
  728. ret = -ENOMEM;
  729. break;
  730. }
  731. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  732. if (is_cow_mapping(vma->vm_flags))
  733. mmu_notifier_invalidate_range_end(src_mm,
  734. vma->vm_start, end);
  735. return ret;
  736. }
  737. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  738. struct vm_area_struct *vma, pmd_t *pmd,
  739. unsigned long addr, unsigned long end,
  740. long *zap_work, struct zap_details *details)
  741. {
  742. struct mm_struct *mm = tlb->mm;
  743. pte_t *pte;
  744. spinlock_t *ptl;
  745. int rss[NR_MM_COUNTERS];
  746. init_rss_vec(rss);
  747. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  748. arch_enter_lazy_mmu_mode();
  749. do {
  750. pte_t ptent = *pte;
  751. if (pte_none(ptent)) {
  752. (*zap_work)--;
  753. continue;
  754. }
  755. (*zap_work) -= PAGE_SIZE;
  756. if (pte_present(ptent)) {
  757. struct page *page;
  758. page = vm_normal_page(vma, addr, ptent);
  759. if (unlikely(details) && page) {
  760. /*
  761. * unmap_shared_mapping_pages() wants to
  762. * invalidate cache without truncating:
  763. * unmap shared but keep private pages.
  764. */
  765. if (details->check_mapping &&
  766. details->check_mapping != page->mapping)
  767. continue;
  768. /*
  769. * Each page->index must be checked when
  770. * invalidating or truncating nonlinear.
  771. */
  772. if (details->nonlinear_vma &&
  773. (page->index < details->first_index ||
  774. page->index > details->last_index))
  775. continue;
  776. }
  777. ptent = ptep_get_and_clear_full(mm, addr, pte,
  778. tlb->fullmm);
  779. tlb_remove_tlb_entry(tlb, pte, addr);
  780. if (unlikely(!page))
  781. continue;
  782. if (unlikely(details) && details->nonlinear_vma
  783. && linear_page_index(details->nonlinear_vma,
  784. addr) != page->index)
  785. set_pte_at(mm, addr, pte,
  786. pgoff_to_pte(page->index));
  787. if (PageAnon(page))
  788. rss[MM_ANONPAGES]--;
  789. else {
  790. if (pte_dirty(ptent))
  791. set_page_dirty(page);
  792. if (pte_young(ptent) &&
  793. likely(!VM_SequentialReadHint(vma)))
  794. mark_page_accessed(page);
  795. rss[MM_FILEPAGES]--;
  796. }
  797. page_remove_rmap(page);
  798. if (unlikely(page_mapcount(page) < 0))
  799. print_bad_pte(vma, addr, ptent, page);
  800. tlb_remove_page(tlb, page);
  801. continue;
  802. }
  803. /*
  804. * If details->check_mapping, we leave swap entries;
  805. * if details->nonlinear_vma, we leave file entries.
  806. */
  807. if (unlikely(details))
  808. continue;
  809. if (pte_file(ptent)) {
  810. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  811. print_bad_pte(vma, addr, ptent, NULL);
  812. } else if
  813. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  814. print_bad_pte(vma, addr, ptent, NULL);
  815. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  816. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  817. add_mm_rss_vec(mm, rss);
  818. arch_leave_lazy_mmu_mode();
  819. pte_unmap_unlock(pte - 1, ptl);
  820. return addr;
  821. }
  822. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  823. struct vm_area_struct *vma, pud_t *pud,
  824. unsigned long addr, unsigned long end,
  825. long *zap_work, struct zap_details *details)
  826. {
  827. pmd_t *pmd;
  828. unsigned long next;
  829. pmd = pmd_offset(pud, addr);
  830. do {
  831. next = pmd_addr_end(addr, end);
  832. if (pmd_none_or_clear_bad(pmd)) {
  833. (*zap_work)--;
  834. continue;
  835. }
  836. next = zap_pte_range(tlb, vma, pmd, addr, next,
  837. zap_work, details);
  838. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  839. return addr;
  840. }
  841. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  842. struct vm_area_struct *vma, pgd_t *pgd,
  843. unsigned long addr, unsigned long end,
  844. long *zap_work, struct zap_details *details)
  845. {
  846. pud_t *pud;
  847. unsigned long next;
  848. pud = pud_offset(pgd, addr);
  849. do {
  850. next = pud_addr_end(addr, end);
  851. if (pud_none_or_clear_bad(pud)) {
  852. (*zap_work)--;
  853. continue;
  854. }
  855. next = zap_pmd_range(tlb, vma, pud, addr, next,
  856. zap_work, details);
  857. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  858. return addr;
  859. }
  860. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  861. struct vm_area_struct *vma,
  862. unsigned long addr, unsigned long end,
  863. long *zap_work, struct zap_details *details)
  864. {
  865. pgd_t *pgd;
  866. unsigned long next;
  867. if (details && !details->check_mapping && !details->nonlinear_vma)
  868. details = NULL;
  869. BUG_ON(addr >= end);
  870. mem_cgroup_uncharge_start();
  871. tlb_start_vma(tlb, vma);
  872. pgd = pgd_offset(vma->vm_mm, addr);
  873. do {
  874. next = pgd_addr_end(addr, end);
  875. if (pgd_none_or_clear_bad(pgd)) {
  876. (*zap_work)--;
  877. continue;
  878. }
  879. next = zap_pud_range(tlb, vma, pgd, addr, next,
  880. zap_work, details);
  881. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  882. tlb_end_vma(tlb, vma);
  883. mem_cgroup_uncharge_end();
  884. return addr;
  885. }
  886. #ifdef CONFIG_PREEMPT
  887. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  888. #else
  889. /* No preempt: go for improved straight-line efficiency */
  890. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  891. #endif
  892. /**
  893. * unmap_vmas - unmap a range of memory covered by a list of vma's
  894. * @tlbp: address of the caller's struct mmu_gather
  895. * @vma: the starting vma
  896. * @start_addr: virtual address at which to start unmapping
  897. * @end_addr: virtual address at which to end unmapping
  898. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  899. * @details: details of nonlinear truncation or shared cache invalidation
  900. *
  901. * Returns the end address of the unmapping (restart addr if interrupted).
  902. *
  903. * Unmap all pages in the vma list.
  904. *
  905. * We aim to not hold locks for too long (for scheduling latency reasons).
  906. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  907. * return the ending mmu_gather to the caller.
  908. *
  909. * Only addresses between `start' and `end' will be unmapped.
  910. *
  911. * The VMA list must be sorted in ascending virtual address order.
  912. *
  913. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  914. * range after unmap_vmas() returns. So the only responsibility here is to
  915. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  916. * drops the lock and schedules.
  917. */
  918. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  919. struct vm_area_struct *vma, unsigned long start_addr,
  920. unsigned long end_addr, unsigned long *nr_accounted,
  921. struct zap_details *details)
  922. {
  923. long zap_work = ZAP_BLOCK_SIZE;
  924. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  925. int tlb_start_valid = 0;
  926. unsigned long start = start_addr;
  927. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  928. int fullmm = (*tlbp)->fullmm;
  929. struct mm_struct *mm = vma->vm_mm;
  930. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  931. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  932. unsigned long end;
  933. start = max(vma->vm_start, start_addr);
  934. if (start >= vma->vm_end)
  935. continue;
  936. end = min(vma->vm_end, end_addr);
  937. if (end <= vma->vm_start)
  938. continue;
  939. if (vma->vm_flags & VM_ACCOUNT)
  940. *nr_accounted += (end - start) >> PAGE_SHIFT;
  941. if (unlikely(is_pfn_mapping(vma)))
  942. untrack_pfn_vma(vma, 0, 0);
  943. while (start != end) {
  944. if (!tlb_start_valid) {
  945. tlb_start = start;
  946. tlb_start_valid = 1;
  947. }
  948. if (unlikely(is_vm_hugetlb_page(vma))) {
  949. /*
  950. * It is undesirable to test vma->vm_file as it
  951. * should be non-null for valid hugetlb area.
  952. * However, vm_file will be NULL in the error
  953. * cleanup path of do_mmap_pgoff. When
  954. * hugetlbfs ->mmap method fails,
  955. * do_mmap_pgoff() nullifies vma->vm_file
  956. * before calling this function to clean up.
  957. * Since no pte has actually been setup, it is
  958. * safe to do nothing in this case.
  959. */
  960. if (vma->vm_file) {
  961. unmap_hugepage_range(vma, start, end, NULL);
  962. zap_work -= (end - start) /
  963. pages_per_huge_page(hstate_vma(vma));
  964. }
  965. start = end;
  966. } else
  967. start = unmap_page_range(*tlbp, vma,
  968. start, end, &zap_work, details);
  969. if (zap_work > 0) {
  970. BUG_ON(start != end);
  971. break;
  972. }
  973. tlb_finish_mmu(*tlbp, tlb_start, start);
  974. if (need_resched() ||
  975. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  976. if (i_mmap_lock) {
  977. *tlbp = NULL;
  978. goto out;
  979. }
  980. cond_resched();
  981. }
  982. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  983. tlb_start_valid = 0;
  984. zap_work = ZAP_BLOCK_SIZE;
  985. }
  986. }
  987. out:
  988. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  989. return start; /* which is now the end (or restart) address */
  990. }
  991. /**
  992. * zap_page_range - remove user pages in a given range
  993. * @vma: vm_area_struct holding the applicable pages
  994. * @address: starting address of pages to zap
  995. * @size: number of bytes to zap
  996. * @details: details of nonlinear truncation or shared cache invalidation
  997. */
  998. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  999. unsigned long size, struct zap_details *details)
  1000. {
  1001. struct mm_struct *mm = vma->vm_mm;
  1002. struct mmu_gather *tlb;
  1003. unsigned long end = address + size;
  1004. unsigned long nr_accounted = 0;
  1005. lru_add_drain();
  1006. tlb = tlb_gather_mmu(mm, 0);
  1007. update_hiwater_rss(mm);
  1008. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1009. if (tlb)
  1010. tlb_finish_mmu(tlb, address, end);
  1011. return end;
  1012. }
  1013. /**
  1014. * zap_vma_ptes - remove ptes mapping the vma
  1015. * @vma: vm_area_struct holding ptes to be zapped
  1016. * @address: starting address of pages to zap
  1017. * @size: number of bytes to zap
  1018. *
  1019. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1020. *
  1021. * The entire address range must be fully contained within the vma.
  1022. *
  1023. * Returns 0 if successful.
  1024. */
  1025. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1026. unsigned long size)
  1027. {
  1028. if (address < vma->vm_start || address + size > vma->vm_end ||
  1029. !(vma->vm_flags & VM_PFNMAP))
  1030. return -1;
  1031. zap_page_range(vma, address, size, NULL);
  1032. return 0;
  1033. }
  1034. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1035. /*
  1036. * Do a quick page-table lookup for a single page.
  1037. */
  1038. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1039. unsigned int flags)
  1040. {
  1041. pgd_t *pgd;
  1042. pud_t *pud;
  1043. pmd_t *pmd;
  1044. pte_t *ptep, pte;
  1045. spinlock_t *ptl;
  1046. struct page *page;
  1047. struct mm_struct *mm = vma->vm_mm;
  1048. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1049. if (!IS_ERR(page)) {
  1050. BUG_ON(flags & FOLL_GET);
  1051. goto out;
  1052. }
  1053. page = NULL;
  1054. pgd = pgd_offset(mm, address);
  1055. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1056. goto no_page_table;
  1057. pud = pud_offset(pgd, address);
  1058. if (pud_none(*pud))
  1059. goto no_page_table;
  1060. if (pud_huge(*pud)) {
  1061. BUG_ON(flags & FOLL_GET);
  1062. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1063. goto out;
  1064. }
  1065. if (unlikely(pud_bad(*pud)))
  1066. goto no_page_table;
  1067. pmd = pmd_offset(pud, address);
  1068. if (pmd_none(*pmd))
  1069. goto no_page_table;
  1070. if (pmd_huge(*pmd)) {
  1071. BUG_ON(flags & FOLL_GET);
  1072. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1073. goto out;
  1074. }
  1075. if (unlikely(pmd_bad(*pmd)))
  1076. goto no_page_table;
  1077. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1078. pte = *ptep;
  1079. if (!pte_present(pte))
  1080. goto no_page;
  1081. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1082. goto unlock;
  1083. page = vm_normal_page(vma, address, pte);
  1084. if (unlikely(!page)) {
  1085. if ((flags & FOLL_DUMP) ||
  1086. !is_zero_pfn(pte_pfn(pte)))
  1087. goto bad_page;
  1088. page = pte_page(pte);
  1089. }
  1090. if (flags & FOLL_GET)
  1091. get_page(page);
  1092. if (flags & FOLL_TOUCH) {
  1093. if ((flags & FOLL_WRITE) &&
  1094. !pte_dirty(pte) && !PageDirty(page))
  1095. set_page_dirty(page);
  1096. /*
  1097. * pte_mkyoung() would be more correct here, but atomic care
  1098. * is needed to avoid losing the dirty bit: it is easier to use
  1099. * mark_page_accessed().
  1100. */
  1101. mark_page_accessed(page);
  1102. }
  1103. unlock:
  1104. pte_unmap_unlock(ptep, ptl);
  1105. out:
  1106. return page;
  1107. bad_page:
  1108. pte_unmap_unlock(ptep, ptl);
  1109. return ERR_PTR(-EFAULT);
  1110. no_page:
  1111. pte_unmap_unlock(ptep, ptl);
  1112. if (!pte_none(pte))
  1113. return page;
  1114. no_page_table:
  1115. /*
  1116. * When core dumping an enormous anonymous area that nobody
  1117. * has touched so far, we don't want to allocate unnecessary pages or
  1118. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1119. * then get_dump_page() will return NULL to leave a hole in the dump.
  1120. * But we can only make this optimization where a hole would surely
  1121. * be zero-filled if handle_mm_fault() actually did handle it.
  1122. */
  1123. if ((flags & FOLL_DUMP) &&
  1124. (!vma->vm_ops || !vma->vm_ops->fault))
  1125. return ERR_PTR(-EFAULT);
  1126. return page;
  1127. }
  1128. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1129. unsigned long start, int nr_pages, unsigned int gup_flags,
  1130. struct page **pages, struct vm_area_struct **vmas)
  1131. {
  1132. int i;
  1133. unsigned long vm_flags;
  1134. if (nr_pages <= 0)
  1135. return 0;
  1136. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1137. /*
  1138. * Require read or write permissions.
  1139. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1140. */
  1141. vm_flags = (gup_flags & FOLL_WRITE) ?
  1142. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1143. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1144. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1145. i = 0;
  1146. do {
  1147. struct vm_area_struct *vma;
  1148. vma = find_extend_vma(mm, start);
  1149. if (!vma && in_gate_area(tsk, start)) {
  1150. unsigned long pg = start & PAGE_MASK;
  1151. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1152. pgd_t *pgd;
  1153. pud_t *pud;
  1154. pmd_t *pmd;
  1155. pte_t *pte;
  1156. /* user gate pages are read-only */
  1157. if (gup_flags & FOLL_WRITE)
  1158. return i ? : -EFAULT;
  1159. if (pg > TASK_SIZE)
  1160. pgd = pgd_offset_k(pg);
  1161. else
  1162. pgd = pgd_offset_gate(mm, pg);
  1163. BUG_ON(pgd_none(*pgd));
  1164. pud = pud_offset(pgd, pg);
  1165. BUG_ON(pud_none(*pud));
  1166. pmd = pmd_offset(pud, pg);
  1167. if (pmd_none(*pmd))
  1168. return i ? : -EFAULT;
  1169. pte = pte_offset_map(pmd, pg);
  1170. if (pte_none(*pte)) {
  1171. pte_unmap(pte);
  1172. return i ? : -EFAULT;
  1173. }
  1174. if (pages) {
  1175. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1176. pages[i] = page;
  1177. if (page)
  1178. get_page(page);
  1179. }
  1180. pte_unmap(pte);
  1181. if (vmas)
  1182. vmas[i] = gate_vma;
  1183. i++;
  1184. start += PAGE_SIZE;
  1185. nr_pages--;
  1186. continue;
  1187. }
  1188. if (!vma ||
  1189. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1190. !(vm_flags & vma->vm_flags))
  1191. return i ? : -EFAULT;
  1192. if (is_vm_hugetlb_page(vma)) {
  1193. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1194. &start, &nr_pages, i, gup_flags);
  1195. continue;
  1196. }
  1197. do {
  1198. struct page *page;
  1199. unsigned int foll_flags = gup_flags;
  1200. /*
  1201. * If we have a pending SIGKILL, don't keep faulting
  1202. * pages and potentially allocating memory.
  1203. */
  1204. if (unlikely(fatal_signal_pending(current)))
  1205. return i ? i : -ERESTARTSYS;
  1206. cond_resched();
  1207. while (!(page = follow_page(vma, start, foll_flags))) {
  1208. int ret;
  1209. ret = handle_mm_fault(mm, vma, start,
  1210. (foll_flags & FOLL_WRITE) ?
  1211. FAULT_FLAG_WRITE : 0);
  1212. if (ret & VM_FAULT_ERROR) {
  1213. if (ret & VM_FAULT_OOM)
  1214. return i ? i : -ENOMEM;
  1215. if (ret &
  1216. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1217. return i ? i : -EFAULT;
  1218. BUG();
  1219. }
  1220. if (ret & VM_FAULT_MAJOR)
  1221. tsk->maj_flt++;
  1222. else
  1223. tsk->min_flt++;
  1224. /*
  1225. * The VM_FAULT_WRITE bit tells us that
  1226. * do_wp_page has broken COW when necessary,
  1227. * even if maybe_mkwrite decided not to set
  1228. * pte_write. We can thus safely do subsequent
  1229. * page lookups as if they were reads. But only
  1230. * do so when looping for pte_write is futile:
  1231. * in some cases userspace may also be wanting
  1232. * to write to the gotten user page, which a
  1233. * read fault here might prevent (a readonly
  1234. * page might get reCOWed by userspace write).
  1235. */
  1236. if ((ret & VM_FAULT_WRITE) &&
  1237. !(vma->vm_flags & VM_WRITE))
  1238. foll_flags &= ~FOLL_WRITE;
  1239. cond_resched();
  1240. }
  1241. if (IS_ERR(page))
  1242. return i ? i : PTR_ERR(page);
  1243. if (pages) {
  1244. pages[i] = page;
  1245. flush_anon_page(vma, page, start);
  1246. flush_dcache_page(page);
  1247. }
  1248. if (vmas)
  1249. vmas[i] = vma;
  1250. i++;
  1251. start += PAGE_SIZE;
  1252. nr_pages--;
  1253. } while (nr_pages && start < vma->vm_end);
  1254. } while (nr_pages);
  1255. return i;
  1256. }
  1257. /**
  1258. * get_user_pages() - pin user pages in memory
  1259. * @tsk: task_struct of target task
  1260. * @mm: mm_struct of target mm
  1261. * @start: starting user address
  1262. * @nr_pages: number of pages from start to pin
  1263. * @write: whether pages will be written to by the caller
  1264. * @force: whether to force write access even if user mapping is
  1265. * readonly. This will result in the page being COWed even
  1266. * in MAP_SHARED mappings. You do not want this.
  1267. * @pages: array that receives pointers to the pages pinned.
  1268. * Should be at least nr_pages long. Or NULL, if caller
  1269. * only intends to ensure the pages are faulted in.
  1270. * @vmas: array of pointers to vmas corresponding to each page.
  1271. * Or NULL if the caller does not require them.
  1272. *
  1273. * Returns number of pages pinned. This may be fewer than the number
  1274. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1275. * were pinned, returns -errno. Each page returned must be released
  1276. * with a put_page() call when it is finished with. vmas will only
  1277. * remain valid while mmap_sem is held.
  1278. *
  1279. * Must be called with mmap_sem held for read or write.
  1280. *
  1281. * get_user_pages walks a process's page tables and takes a reference to
  1282. * each struct page that each user address corresponds to at a given
  1283. * instant. That is, it takes the page that would be accessed if a user
  1284. * thread accesses the given user virtual address at that instant.
  1285. *
  1286. * This does not guarantee that the page exists in the user mappings when
  1287. * get_user_pages returns, and there may even be a completely different
  1288. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1289. * and subsequently re faulted). However it does guarantee that the page
  1290. * won't be freed completely. And mostly callers simply care that the page
  1291. * contains data that was valid *at some point in time*. Typically, an IO
  1292. * or similar operation cannot guarantee anything stronger anyway because
  1293. * locks can't be held over the syscall boundary.
  1294. *
  1295. * If write=0, the page must not be written to. If the page is written to,
  1296. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1297. * after the page is finished with, and before put_page is called.
  1298. *
  1299. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1300. * handle on the memory by some means other than accesses via the user virtual
  1301. * addresses. The pages may be submitted for DMA to devices or accessed via
  1302. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1303. * use the correct cache flushing APIs.
  1304. *
  1305. * See also get_user_pages_fast, for performance critical applications.
  1306. */
  1307. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1308. unsigned long start, int nr_pages, int write, int force,
  1309. struct page **pages, struct vm_area_struct **vmas)
  1310. {
  1311. int flags = FOLL_TOUCH;
  1312. if (pages)
  1313. flags |= FOLL_GET;
  1314. if (write)
  1315. flags |= FOLL_WRITE;
  1316. if (force)
  1317. flags |= FOLL_FORCE;
  1318. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1319. }
  1320. EXPORT_SYMBOL(get_user_pages);
  1321. /**
  1322. * get_dump_page() - pin user page in memory while writing it to core dump
  1323. * @addr: user address
  1324. *
  1325. * Returns struct page pointer of user page pinned for dump,
  1326. * to be freed afterwards by page_cache_release() or put_page().
  1327. *
  1328. * Returns NULL on any kind of failure - a hole must then be inserted into
  1329. * the corefile, to preserve alignment with its headers; and also returns
  1330. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1331. * allowing a hole to be left in the corefile to save diskspace.
  1332. *
  1333. * Called without mmap_sem, but after all other threads have been killed.
  1334. */
  1335. #ifdef CONFIG_ELF_CORE
  1336. struct page *get_dump_page(unsigned long addr)
  1337. {
  1338. struct vm_area_struct *vma;
  1339. struct page *page;
  1340. if (__get_user_pages(current, current->mm, addr, 1,
  1341. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1342. return NULL;
  1343. flush_cache_page(vma, addr, page_to_pfn(page));
  1344. return page;
  1345. }
  1346. #endif /* CONFIG_ELF_CORE */
  1347. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1348. spinlock_t **ptl)
  1349. {
  1350. pgd_t * pgd = pgd_offset(mm, addr);
  1351. pud_t * pud = pud_alloc(mm, pgd, addr);
  1352. if (pud) {
  1353. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1354. if (pmd)
  1355. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1356. }
  1357. return NULL;
  1358. }
  1359. /*
  1360. * This is the old fallback for page remapping.
  1361. *
  1362. * For historical reasons, it only allows reserved pages. Only
  1363. * old drivers should use this, and they needed to mark their
  1364. * pages reserved for the old functions anyway.
  1365. */
  1366. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1367. struct page *page, pgprot_t prot)
  1368. {
  1369. struct mm_struct *mm = vma->vm_mm;
  1370. int retval;
  1371. pte_t *pte;
  1372. spinlock_t *ptl;
  1373. retval = -EINVAL;
  1374. if (PageAnon(page))
  1375. goto out;
  1376. retval = -ENOMEM;
  1377. flush_dcache_page(page);
  1378. pte = get_locked_pte(mm, addr, &ptl);
  1379. if (!pte)
  1380. goto out;
  1381. retval = -EBUSY;
  1382. if (!pte_none(*pte))
  1383. goto out_unlock;
  1384. /* Ok, finally just insert the thing.. */
  1385. get_page(page);
  1386. inc_mm_counter(mm, MM_FILEPAGES);
  1387. page_add_file_rmap(page);
  1388. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1389. retval = 0;
  1390. pte_unmap_unlock(pte, ptl);
  1391. return retval;
  1392. out_unlock:
  1393. pte_unmap_unlock(pte, ptl);
  1394. out:
  1395. return retval;
  1396. }
  1397. /**
  1398. * vm_insert_page - insert single page into user vma
  1399. * @vma: user vma to map to
  1400. * @addr: target user address of this page
  1401. * @page: source kernel page
  1402. *
  1403. * This allows drivers to insert individual pages they've allocated
  1404. * into a user vma.
  1405. *
  1406. * The page has to be a nice clean _individual_ kernel allocation.
  1407. * If you allocate a compound page, you need to have marked it as
  1408. * such (__GFP_COMP), or manually just split the page up yourself
  1409. * (see split_page()).
  1410. *
  1411. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1412. * took an arbitrary page protection parameter. This doesn't allow
  1413. * that. Your vma protection will have to be set up correctly, which
  1414. * means that if you want a shared writable mapping, you'd better
  1415. * ask for a shared writable mapping!
  1416. *
  1417. * The page does not need to be reserved.
  1418. */
  1419. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1420. struct page *page)
  1421. {
  1422. if (addr < vma->vm_start || addr >= vma->vm_end)
  1423. return -EFAULT;
  1424. if (!page_count(page))
  1425. return -EINVAL;
  1426. vma->vm_flags |= VM_INSERTPAGE;
  1427. return insert_page(vma, addr, page, vma->vm_page_prot);
  1428. }
  1429. EXPORT_SYMBOL(vm_insert_page);
  1430. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1431. unsigned long pfn, pgprot_t prot)
  1432. {
  1433. struct mm_struct *mm = vma->vm_mm;
  1434. int retval;
  1435. pte_t *pte, entry;
  1436. spinlock_t *ptl;
  1437. retval = -ENOMEM;
  1438. pte = get_locked_pte(mm, addr, &ptl);
  1439. if (!pte)
  1440. goto out;
  1441. retval = -EBUSY;
  1442. if (!pte_none(*pte))
  1443. goto out_unlock;
  1444. /* Ok, finally just insert the thing.. */
  1445. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1446. set_pte_at(mm, addr, pte, entry);
  1447. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1448. retval = 0;
  1449. out_unlock:
  1450. pte_unmap_unlock(pte, ptl);
  1451. out:
  1452. return retval;
  1453. }
  1454. /**
  1455. * vm_insert_pfn - insert single pfn into user vma
  1456. * @vma: user vma to map to
  1457. * @addr: target user address of this page
  1458. * @pfn: source kernel pfn
  1459. *
  1460. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1461. * they've allocated into a user vma. Same comments apply.
  1462. *
  1463. * This function should only be called from a vm_ops->fault handler, and
  1464. * in that case the handler should return NULL.
  1465. *
  1466. * vma cannot be a COW mapping.
  1467. *
  1468. * As this is called only for pages that do not currently exist, we
  1469. * do not need to flush old virtual caches or the TLB.
  1470. */
  1471. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1472. unsigned long pfn)
  1473. {
  1474. int ret;
  1475. pgprot_t pgprot = vma->vm_page_prot;
  1476. /*
  1477. * Technically, architectures with pte_special can avoid all these
  1478. * restrictions (same for remap_pfn_range). However we would like
  1479. * consistency in testing and feature parity among all, so we should
  1480. * try to keep these invariants in place for everybody.
  1481. */
  1482. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1483. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1484. (VM_PFNMAP|VM_MIXEDMAP));
  1485. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1486. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1487. if (addr < vma->vm_start || addr >= vma->vm_end)
  1488. return -EFAULT;
  1489. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1490. return -EINVAL;
  1491. ret = insert_pfn(vma, addr, pfn, pgprot);
  1492. if (ret)
  1493. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1494. return ret;
  1495. }
  1496. EXPORT_SYMBOL(vm_insert_pfn);
  1497. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1498. unsigned long pfn)
  1499. {
  1500. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1501. if (addr < vma->vm_start || addr >= vma->vm_end)
  1502. return -EFAULT;
  1503. /*
  1504. * If we don't have pte special, then we have to use the pfn_valid()
  1505. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1506. * refcount the page if pfn_valid is true (hence insert_page rather
  1507. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1508. * without pte special, it would there be refcounted as a normal page.
  1509. */
  1510. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1511. struct page *page;
  1512. page = pfn_to_page(pfn);
  1513. return insert_page(vma, addr, page, vma->vm_page_prot);
  1514. }
  1515. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1516. }
  1517. EXPORT_SYMBOL(vm_insert_mixed);
  1518. /*
  1519. * maps a range of physical memory into the requested pages. the old
  1520. * mappings are removed. any references to nonexistent pages results
  1521. * in null mappings (currently treated as "copy-on-access")
  1522. */
  1523. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1524. unsigned long addr, unsigned long end,
  1525. unsigned long pfn, pgprot_t prot)
  1526. {
  1527. pte_t *pte;
  1528. spinlock_t *ptl;
  1529. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1530. if (!pte)
  1531. return -ENOMEM;
  1532. arch_enter_lazy_mmu_mode();
  1533. do {
  1534. BUG_ON(!pte_none(*pte));
  1535. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1536. pfn++;
  1537. } while (pte++, addr += PAGE_SIZE, addr != end);
  1538. arch_leave_lazy_mmu_mode();
  1539. pte_unmap_unlock(pte - 1, ptl);
  1540. return 0;
  1541. }
  1542. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1543. unsigned long addr, unsigned long end,
  1544. unsigned long pfn, pgprot_t prot)
  1545. {
  1546. pmd_t *pmd;
  1547. unsigned long next;
  1548. pfn -= addr >> PAGE_SHIFT;
  1549. pmd = pmd_alloc(mm, pud, addr);
  1550. if (!pmd)
  1551. return -ENOMEM;
  1552. do {
  1553. next = pmd_addr_end(addr, end);
  1554. if (remap_pte_range(mm, pmd, addr, next,
  1555. pfn + (addr >> PAGE_SHIFT), prot))
  1556. return -ENOMEM;
  1557. } while (pmd++, addr = next, addr != end);
  1558. return 0;
  1559. }
  1560. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1561. unsigned long addr, unsigned long end,
  1562. unsigned long pfn, pgprot_t prot)
  1563. {
  1564. pud_t *pud;
  1565. unsigned long next;
  1566. pfn -= addr >> PAGE_SHIFT;
  1567. pud = pud_alloc(mm, pgd, addr);
  1568. if (!pud)
  1569. return -ENOMEM;
  1570. do {
  1571. next = pud_addr_end(addr, end);
  1572. if (remap_pmd_range(mm, pud, addr, next,
  1573. pfn + (addr >> PAGE_SHIFT), prot))
  1574. return -ENOMEM;
  1575. } while (pud++, addr = next, addr != end);
  1576. return 0;
  1577. }
  1578. /**
  1579. * remap_pfn_range - remap kernel memory to userspace
  1580. * @vma: user vma to map to
  1581. * @addr: target user address to start at
  1582. * @pfn: physical address of kernel memory
  1583. * @size: size of map area
  1584. * @prot: page protection flags for this mapping
  1585. *
  1586. * Note: this is only safe if the mm semaphore is held when called.
  1587. */
  1588. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1589. unsigned long pfn, unsigned long size, pgprot_t prot)
  1590. {
  1591. pgd_t *pgd;
  1592. unsigned long next;
  1593. unsigned long end = addr + PAGE_ALIGN(size);
  1594. struct mm_struct *mm = vma->vm_mm;
  1595. int err;
  1596. /*
  1597. * Physically remapped pages are special. Tell the
  1598. * rest of the world about it:
  1599. * VM_IO tells people not to look at these pages
  1600. * (accesses can have side effects).
  1601. * VM_RESERVED is specified all over the place, because
  1602. * in 2.4 it kept swapout's vma scan off this vma; but
  1603. * in 2.6 the LRU scan won't even find its pages, so this
  1604. * flag means no more than count its pages in reserved_vm,
  1605. * and omit it from core dump, even when VM_IO turned off.
  1606. * VM_PFNMAP tells the core MM that the base pages are just
  1607. * raw PFN mappings, and do not have a "struct page" associated
  1608. * with them.
  1609. *
  1610. * There's a horrible special case to handle copy-on-write
  1611. * behaviour that some programs depend on. We mark the "original"
  1612. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1613. */
  1614. if (addr == vma->vm_start && end == vma->vm_end) {
  1615. vma->vm_pgoff = pfn;
  1616. vma->vm_flags |= VM_PFN_AT_MMAP;
  1617. } else if (is_cow_mapping(vma->vm_flags))
  1618. return -EINVAL;
  1619. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1620. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1621. if (err) {
  1622. /*
  1623. * To indicate that track_pfn related cleanup is not
  1624. * needed from higher level routine calling unmap_vmas
  1625. */
  1626. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1627. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1628. return -EINVAL;
  1629. }
  1630. BUG_ON(addr >= end);
  1631. pfn -= addr >> PAGE_SHIFT;
  1632. pgd = pgd_offset(mm, addr);
  1633. flush_cache_range(vma, addr, end);
  1634. do {
  1635. next = pgd_addr_end(addr, end);
  1636. err = remap_pud_range(mm, pgd, addr, next,
  1637. pfn + (addr >> PAGE_SHIFT), prot);
  1638. if (err)
  1639. break;
  1640. } while (pgd++, addr = next, addr != end);
  1641. if (err)
  1642. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1643. return err;
  1644. }
  1645. EXPORT_SYMBOL(remap_pfn_range);
  1646. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1647. unsigned long addr, unsigned long end,
  1648. pte_fn_t fn, void *data)
  1649. {
  1650. pte_t *pte;
  1651. int err;
  1652. pgtable_t token;
  1653. spinlock_t *uninitialized_var(ptl);
  1654. pte = (mm == &init_mm) ?
  1655. pte_alloc_kernel(pmd, addr) :
  1656. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1657. if (!pte)
  1658. return -ENOMEM;
  1659. BUG_ON(pmd_huge(*pmd));
  1660. arch_enter_lazy_mmu_mode();
  1661. token = pmd_pgtable(*pmd);
  1662. do {
  1663. err = fn(pte++, token, addr, data);
  1664. if (err)
  1665. break;
  1666. } while (addr += PAGE_SIZE, addr != end);
  1667. arch_leave_lazy_mmu_mode();
  1668. if (mm != &init_mm)
  1669. pte_unmap_unlock(pte-1, ptl);
  1670. return err;
  1671. }
  1672. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1673. unsigned long addr, unsigned long end,
  1674. pte_fn_t fn, void *data)
  1675. {
  1676. pmd_t *pmd;
  1677. unsigned long next;
  1678. int err;
  1679. BUG_ON(pud_huge(*pud));
  1680. pmd = pmd_alloc(mm, pud, addr);
  1681. if (!pmd)
  1682. return -ENOMEM;
  1683. do {
  1684. next = pmd_addr_end(addr, end);
  1685. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1686. if (err)
  1687. break;
  1688. } while (pmd++, addr = next, addr != end);
  1689. return err;
  1690. }
  1691. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1692. unsigned long addr, unsigned long end,
  1693. pte_fn_t fn, void *data)
  1694. {
  1695. pud_t *pud;
  1696. unsigned long next;
  1697. int err;
  1698. pud = pud_alloc(mm, pgd, addr);
  1699. if (!pud)
  1700. return -ENOMEM;
  1701. do {
  1702. next = pud_addr_end(addr, end);
  1703. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1704. if (err)
  1705. break;
  1706. } while (pud++, addr = next, addr != end);
  1707. return err;
  1708. }
  1709. /*
  1710. * Scan a region of virtual memory, filling in page tables as necessary
  1711. * and calling a provided function on each leaf page table.
  1712. */
  1713. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1714. unsigned long size, pte_fn_t fn, void *data)
  1715. {
  1716. pgd_t *pgd;
  1717. unsigned long next;
  1718. unsigned long start = addr, end = addr + size;
  1719. int err;
  1720. BUG_ON(addr >= end);
  1721. mmu_notifier_invalidate_range_start(mm, start, end);
  1722. pgd = pgd_offset(mm, addr);
  1723. do {
  1724. next = pgd_addr_end(addr, end);
  1725. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1726. if (err)
  1727. break;
  1728. } while (pgd++, addr = next, addr != end);
  1729. mmu_notifier_invalidate_range_end(mm, start, end);
  1730. return err;
  1731. }
  1732. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1733. /*
  1734. * handle_pte_fault chooses page fault handler according to an entry
  1735. * which was read non-atomically. Before making any commitment, on
  1736. * those architectures or configurations (e.g. i386 with PAE) which
  1737. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1738. * must check under lock before unmapping the pte and proceeding
  1739. * (but do_wp_page is only called after already making such a check;
  1740. * and do_anonymous_page and do_no_page can safely check later on).
  1741. */
  1742. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1743. pte_t *page_table, pte_t orig_pte)
  1744. {
  1745. int same = 1;
  1746. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1747. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1748. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1749. spin_lock(ptl);
  1750. same = pte_same(*page_table, orig_pte);
  1751. spin_unlock(ptl);
  1752. }
  1753. #endif
  1754. pte_unmap(page_table);
  1755. return same;
  1756. }
  1757. /*
  1758. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1759. * servicing faults for write access. In the normal case, do always want
  1760. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1761. * that do not have writing enabled, when used by access_process_vm.
  1762. */
  1763. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1764. {
  1765. if (likely(vma->vm_flags & VM_WRITE))
  1766. pte = pte_mkwrite(pte);
  1767. return pte;
  1768. }
  1769. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1770. {
  1771. /*
  1772. * If the source page was a PFN mapping, we don't have
  1773. * a "struct page" for it. We do a best-effort copy by
  1774. * just copying from the original user address. If that
  1775. * fails, we just zero-fill it. Live with it.
  1776. */
  1777. if (unlikely(!src)) {
  1778. void *kaddr = kmap_atomic(dst, KM_USER0);
  1779. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1780. /*
  1781. * This really shouldn't fail, because the page is there
  1782. * in the page tables. But it might just be unreadable,
  1783. * in which case we just give up and fill the result with
  1784. * zeroes.
  1785. */
  1786. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1787. memset(kaddr, 0, PAGE_SIZE);
  1788. kunmap_atomic(kaddr, KM_USER0);
  1789. flush_dcache_page(dst);
  1790. } else
  1791. copy_user_highpage(dst, src, va, vma);
  1792. }
  1793. /*
  1794. * This routine handles present pages, when users try to write
  1795. * to a shared page. It is done by copying the page to a new address
  1796. * and decrementing the shared-page counter for the old page.
  1797. *
  1798. * Note that this routine assumes that the protection checks have been
  1799. * done by the caller (the low-level page fault routine in most cases).
  1800. * Thus we can safely just mark it writable once we've done any necessary
  1801. * COW.
  1802. *
  1803. * We also mark the page dirty at this point even though the page will
  1804. * change only once the write actually happens. This avoids a few races,
  1805. * and potentially makes it more efficient.
  1806. *
  1807. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1808. * but allow concurrent faults), with pte both mapped and locked.
  1809. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1810. */
  1811. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1812. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1813. spinlock_t *ptl, pte_t orig_pte)
  1814. {
  1815. struct page *old_page, *new_page;
  1816. pte_t entry;
  1817. int reuse = 0, ret = 0;
  1818. int page_mkwrite = 0;
  1819. struct page *dirty_page = NULL;
  1820. old_page = vm_normal_page(vma, address, orig_pte);
  1821. if (!old_page) {
  1822. /*
  1823. * VM_MIXEDMAP !pfn_valid() case
  1824. *
  1825. * We should not cow pages in a shared writeable mapping.
  1826. * Just mark the pages writable as we can't do any dirty
  1827. * accounting on raw pfn maps.
  1828. */
  1829. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1830. (VM_WRITE|VM_SHARED))
  1831. goto reuse;
  1832. goto gotten;
  1833. }
  1834. /*
  1835. * Take out anonymous pages first, anonymous shared vmas are
  1836. * not dirty accountable.
  1837. */
  1838. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1839. if (!trylock_page(old_page)) {
  1840. page_cache_get(old_page);
  1841. pte_unmap_unlock(page_table, ptl);
  1842. lock_page(old_page);
  1843. page_table = pte_offset_map_lock(mm, pmd, address,
  1844. &ptl);
  1845. if (!pte_same(*page_table, orig_pte)) {
  1846. unlock_page(old_page);
  1847. page_cache_release(old_page);
  1848. goto unlock;
  1849. }
  1850. page_cache_release(old_page);
  1851. }
  1852. reuse = reuse_swap_page(old_page);
  1853. unlock_page(old_page);
  1854. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1855. (VM_WRITE|VM_SHARED))) {
  1856. /*
  1857. * Only catch write-faults on shared writable pages,
  1858. * read-only shared pages can get COWed by
  1859. * get_user_pages(.write=1, .force=1).
  1860. */
  1861. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1862. struct vm_fault vmf;
  1863. int tmp;
  1864. vmf.virtual_address = (void __user *)(address &
  1865. PAGE_MASK);
  1866. vmf.pgoff = old_page->index;
  1867. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1868. vmf.page = old_page;
  1869. /*
  1870. * Notify the address space that the page is about to
  1871. * become writable so that it can prohibit this or wait
  1872. * for the page to get into an appropriate state.
  1873. *
  1874. * We do this without the lock held, so that it can
  1875. * sleep if it needs to.
  1876. */
  1877. page_cache_get(old_page);
  1878. pte_unmap_unlock(page_table, ptl);
  1879. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1880. if (unlikely(tmp &
  1881. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1882. ret = tmp;
  1883. goto unwritable_page;
  1884. }
  1885. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1886. lock_page(old_page);
  1887. if (!old_page->mapping) {
  1888. ret = 0; /* retry the fault */
  1889. unlock_page(old_page);
  1890. goto unwritable_page;
  1891. }
  1892. } else
  1893. VM_BUG_ON(!PageLocked(old_page));
  1894. /*
  1895. * Since we dropped the lock we need to revalidate
  1896. * the PTE as someone else may have changed it. If
  1897. * they did, we just return, as we can count on the
  1898. * MMU to tell us if they didn't also make it writable.
  1899. */
  1900. page_table = pte_offset_map_lock(mm, pmd, address,
  1901. &ptl);
  1902. if (!pte_same(*page_table, orig_pte)) {
  1903. unlock_page(old_page);
  1904. page_cache_release(old_page);
  1905. goto unlock;
  1906. }
  1907. page_mkwrite = 1;
  1908. }
  1909. dirty_page = old_page;
  1910. get_page(dirty_page);
  1911. reuse = 1;
  1912. }
  1913. if (reuse) {
  1914. reuse:
  1915. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1916. entry = pte_mkyoung(orig_pte);
  1917. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1918. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1919. update_mmu_cache(vma, address, page_table);
  1920. ret |= VM_FAULT_WRITE;
  1921. goto unlock;
  1922. }
  1923. /*
  1924. * Ok, we need to copy. Oh, well..
  1925. */
  1926. page_cache_get(old_page);
  1927. gotten:
  1928. pte_unmap_unlock(page_table, ptl);
  1929. if (unlikely(anon_vma_prepare(vma)))
  1930. goto oom;
  1931. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1932. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1933. if (!new_page)
  1934. goto oom;
  1935. } else {
  1936. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1937. if (!new_page)
  1938. goto oom;
  1939. cow_user_page(new_page, old_page, address, vma);
  1940. }
  1941. __SetPageUptodate(new_page);
  1942. /*
  1943. * Don't let another task, with possibly unlocked vma,
  1944. * keep the mlocked page.
  1945. */
  1946. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1947. lock_page(old_page); /* for LRU manipulation */
  1948. clear_page_mlock(old_page);
  1949. unlock_page(old_page);
  1950. }
  1951. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1952. goto oom_free_new;
  1953. /*
  1954. * Re-check the pte - we dropped the lock
  1955. */
  1956. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1957. if (likely(pte_same(*page_table, orig_pte))) {
  1958. if (old_page) {
  1959. if (!PageAnon(old_page)) {
  1960. dec_mm_counter(mm, MM_FILEPAGES);
  1961. inc_mm_counter(mm, MM_ANONPAGES);
  1962. }
  1963. } else
  1964. inc_mm_counter(mm, MM_ANONPAGES);
  1965. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1966. entry = mk_pte(new_page, vma->vm_page_prot);
  1967. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1968. /*
  1969. * Clear the pte entry and flush it first, before updating the
  1970. * pte with the new entry. This will avoid a race condition
  1971. * seen in the presence of one thread doing SMC and another
  1972. * thread doing COW.
  1973. */
  1974. ptep_clear_flush(vma, address, page_table);
  1975. page_add_new_anon_rmap(new_page, vma, address);
  1976. /*
  1977. * We call the notify macro here because, when using secondary
  1978. * mmu page tables (such as kvm shadow page tables), we want the
  1979. * new page to be mapped directly into the secondary page table.
  1980. */
  1981. set_pte_at_notify(mm, address, page_table, entry);
  1982. update_mmu_cache(vma, address, page_table);
  1983. if (old_page) {
  1984. /*
  1985. * Only after switching the pte to the new page may
  1986. * we remove the mapcount here. Otherwise another
  1987. * process may come and find the rmap count decremented
  1988. * before the pte is switched to the new page, and
  1989. * "reuse" the old page writing into it while our pte
  1990. * here still points into it and can be read by other
  1991. * threads.
  1992. *
  1993. * The critical issue is to order this
  1994. * page_remove_rmap with the ptp_clear_flush above.
  1995. * Those stores are ordered by (if nothing else,)
  1996. * the barrier present in the atomic_add_negative
  1997. * in page_remove_rmap.
  1998. *
  1999. * Then the TLB flush in ptep_clear_flush ensures that
  2000. * no process can access the old page before the
  2001. * decremented mapcount is visible. And the old page
  2002. * cannot be reused until after the decremented
  2003. * mapcount is visible. So transitively, TLBs to
  2004. * old page will be flushed before it can be reused.
  2005. */
  2006. page_remove_rmap(old_page);
  2007. }
  2008. /* Free the old page.. */
  2009. new_page = old_page;
  2010. ret |= VM_FAULT_WRITE;
  2011. } else
  2012. mem_cgroup_uncharge_page(new_page);
  2013. if (new_page)
  2014. page_cache_release(new_page);
  2015. if (old_page)
  2016. page_cache_release(old_page);
  2017. unlock:
  2018. pte_unmap_unlock(page_table, ptl);
  2019. if (dirty_page) {
  2020. /*
  2021. * Yes, Virginia, this is actually required to prevent a race
  2022. * with clear_page_dirty_for_io() from clearing the page dirty
  2023. * bit after it clear all dirty ptes, but before a racing
  2024. * do_wp_page installs a dirty pte.
  2025. *
  2026. * do_no_page is protected similarly.
  2027. */
  2028. if (!page_mkwrite) {
  2029. wait_on_page_locked(dirty_page);
  2030. set_page_dirty_balance(dirty_page, page_mkwrite);
  2031. }
  2032. put_page(dirty_page);
  2033. if (page_mkwrite) {
  2034. struct address_space *mapping = dirty_page->mapping;
  2035. set_page_dirty(dirty_page);
  2036. unlock_page(dirty_page);
  2037. page_cache_release(dirty_page);
  2038. if (mapping) {
  2039. /*
  2040. * Some device drivers do not set page.mapping
  2041. * but still dirty their pages
  2042. */
  2043. balance_dirty_pages_ratelimited(mapping);
  2044. }
  2045. }
  2046. /* file_update_time outside page_lock */
  2047. if (vma->vm_file)
  2048. file_update_time(vma->vm_file);
  2049. }
  2050. return ret;
  2051. oom_free_new:
  2052. page_cache_release(new_page);
  2053. oom:
  2054. if (old_page) {
  2055. if (page_mkwrite) {
  2056. unlock_page(old_page);
  2057. page_cache_release(old_page);
  2058. }
  2059. page_cache_release(old_page);
  2060. }
  2061. return VM_FAULT_OOM;
  2062. unwritable_page:
  2063. page_cache_release(old_page);
  2064. return ret;
  2065. }
  2066. /*
  2067. * Helper functions for unmap_mapping_range().
  2068. *
  2069. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2070. *
  2071. * We have to restart searching the prio_tree whenever we drop the lock,
  2072. * since the iterator is only valid while the lock is held, and anyway
  2073. * a later vma might be split and reinserted earlier while lock dropped.
  2074. *
  2075. * The list of nonlinear vmas could be handled more efficiently, using
  2076. * a placeholder, but handle it in the same way until a need is shown.
  2077. * It is important to search the prio_tree before nonlinear list: a vma
  2078. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2079. * while the lock is dropped; but never shifted from list to prio_tree.
  2080. *
  2081. * In order to make forward progress despite restarting the search,
  2082. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2083. * quickly skip it next time around. Since the prio_tree search only
  2084. * shows us those vmas affected by unmapping the range in question, we
  2085. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2086. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2087. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2088. * i_mmap_lock.
  2089. *
  2090. * In order to make forward progress despite repeatedly restarting some
  2091. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2092. * and restart from that address when we reach that vma again. It might
  2093. * have been split or merged, shrunk or extended, but never shifted: so
  2094. * restart_addr remains valid so long as it remains in the vma's range.
  2095. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2096. * values so we can save vma's restart_addr in its truncate_count field.
  2097. */
  2098. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2099. static void reset_vma_truncate_counts(struct address_space *mapping)
  2100. {
  2101. struct vm_area_struct *vma;
  2102. struct prio_tree_iter iter;
  2103. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2104. vma->vm_truncate_count = 0;
  2105. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2106. vma->vm_truncate_count = 0;
  2107. }
  2108. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2109. unsigned long start_addr, unsigned long end_addr,
  2110. struct zap_details *details)
  2111. {
  2112. unsigned long restart_addr;
  2113. int need_break;
  2114. /*
  2115. * files that support invalidating or truncating portions of the
  2116. * file from under mmaped areas must have their ->fault function
  2117. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2118. * This provides synchronisation against concurrent unmapping here.
  2119. */
  2120. again:
  2121. restart_addr = vma->vm_truncate_count;
  2122. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2123. start_addr = restart_addr;
  2124. if (start_addr >= end_addr) {
  2125. /* Top of vma has been split off since last time */
  2126. vma->vm_truncate_count = details->truncate_count;
  2127. return 0;
  2128. }
  2129. }
  2130. restart_addr = zap_page_range(vma, start_addr,
  2131. end_addr - start_addr, details);
  2132. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2133. if (restart_addr >= end_addr) {
  2134. /* We have now completed this vma: mark it so */
  2135. vma->vm_truncate_count = details->truncate_count;
  2136. if (!need_break)
  2137. return 0;
  2138. } else {
  2139. /* Note restart_addr in vma's truncate_count field */
  2140. vma->vm_truncate_count = restart_addr;
  2141. if (!need_break)
  2142. goto again;
  2143. }
  2144. spin_unlock(details->i_mmap_lock);
  2145. cond_resched();
  2146. spin_lock(details->i_mmap_lock);
  2147. return -EINTR;
  2148. }
  2149. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2150. struct zap_details *details)
  2151. {
  2152. struct vm_area_struct *vma;
  2153. struct prio_tree_iter iter;
  2154. pgoff_t vba, vea, zba, zea;
  2155. restart:
  2156. vma_prio_tree_foreach(vma, &iter, root,
  2157. details->first_index, details->last_index) {
  2158. /* Skip quickly over those we have already dealt with */
  2159. if (vma->vm_truncate_count == details->truncate_count)
  2160. continue;
  2161. vba = vma->vm_pgoff;
  2162. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2163. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2164. zba = details->first_index;
  2165. if (zba < vba)
  2166. zba = vba;
  2167. zea = details->last_index;
  2168. if (zea > vea)
  2169. zea = vea;
  2170. if (unmap_mapping_range_vma(vma,
  2171. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2172. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2173. details) < 0)
  2174. goto restart;
  2175. }
  2176. }
  2177. static inline void unmap_mapping_range_list(struct list_head *head,
  2178. struct zap_details *details)
  2179. {
  2180. struct vm_area_struct *vma;
  2181. /*
  2182. * In nonlinear VMAs there is no correspondence between virtual address
  2183. * offset and file offset. So we must perform an exhaustive search
  2184. * across *all* the pages in each nonlinear VMA, not just the pages
  2185. * whose virtual address lies outside the file truncation point.
  2186. */
  2187. restart:
  2188. list_for_each_entry(vma, head, shared.vm_set.list) {
  2189. /* Skip quickly over those we have already dealt with */
  2190. if (vma->vm_truncate_count == details->truncate_count)
  2191. continue;
  2192. details->nonlinear_vma = vma;
  2193. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2194. vma->vm_end, details) < 0)
  2195. goto restart;
  2196. }
  2197. }
  2198. /**
  2199. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2200. * @mapping: the address space containing mmaps to be unmapped.
  2201. * @holebegin: byte in first page to unmap, relative to the start of
  2202. * the underlying file. This will be rounded down to a PAGE_SIZE
  2203. * boundary. Note that this is different from truncate_pagecache(), which
  2204. * must keep the partial page. In contrast, we must get rid of
  2205. * partial pages.
  2206. * @holelen: size of prospective hole in bytes. This will be rounded
  2207. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2208. * end of the file.
  2209. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2210. * but 0 when invalidating pagecache, don't throw away private data.
  2211. */
  2212. void unmap_mapping_range(struct address_space *mapping,
  2213. loff_t const holebegin, loff_t const holelen, int even_cows)
  2214. {
  2215. struct zap_details details;
  2216. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2217. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2218. /* Check for overflow. */
  2219. if (sizeof(holelen) > sizeof(hlen)) {
  2220. long long holeend =
  2221. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2222. if (holeend & ~(long long)ULONG_MAX)
  2223. hlen = ULONG_MAX - hba + 1;
  2224. }
  2225. details.check_mapping = even_cows? NULL: mapping;
  2226. details.nonlinear_vma = NULL;
  2227. details.first_index = hba;
  2228. details.last_index = hba + hlen - 1;
  2229. if (details.last_index < details.first_index)
  2230. details.last_index = ULONG_MAX;
  2231. details.i_mmap_lock = &mapping->i_mmap_lock;
  2232. spin_lock(&mapping->i_mmap_lock);
  2233. /* Protect against endless unmapping loops */
  2234. mapping->truncate_count++;
  2235. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2236. if (mapping->truncate_count == 0)
  2237. reset_vma_truncate_counts(mapping);
  2238. mapping->truncate_count++;
  2239. }
  2240. details.truncate_count = mapping->truncate_count;
  2241. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2242. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2243. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2244. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2245. spin_unlock(&mapping->i_mmap_lock);
  2246. }
  2247. EXPORT_SYMBOL(unmap_mapping_range);
  2248. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2249. {
  2250. struct address_space *mapping = inode->i_mapping;
  2251. /*
  2252. * If the underlying filesystem is not going to provide
  2253. * a way to truncate a range of blocks (punch a hole) -
  2254. * we should return failure right now.
  2255. */
  2256. if (!inode->i_op->truncate_range)
  2257. return -ENOSYS;
  2258. mutex_lock(&inode->i_mutex);
  2259. down_write(&inode->i_alloc_sem);
  2260. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2261. truncate_inode_pages_range(mapping, offset, end);
  2262. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2263. inode->i_op->truncate_range(inode, offset, end);
  2264. up_write(&inode->i_alloc_sem);
  2265. mutex_unlock(&inode->i_mutex);
  2266. return 0;
  2267. }
  2268. /*
  2269. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2270. * but allow concurrent faults), and pte mapped but not yet locked.
  2271. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2272. */
  2273. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2274. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2275. unsigned int flags, pte_t orig_pte)
  2276. {
  2277. spinlock_t *ptl;
  2278. struct page *page;
  2279. swp_entry_t entry;
  2280. pte_t pte;
  2281. struct mem_cgroup *ptr = NULL;
  2282. int ret = 0;
  2283. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2284. goto out;
  2285. entry = pte_to_swp_entry(orig_pte);
  2286. if (unlikely(non_swap_entry(entry))) {
  2287. if (is_migration_entry(entry)) {
  2288. migration_entry_wait(mm, pmd, address);
  2289. } else if (is_hwpoison_entry(entry)) {
  2290. ret = VM_FAULT_HWPOISON;
  2291. } else {
  2292. print_bad_pte(vma, address, orig_pte, NULL);
  2293. ret = VM_FAULT_SIGBUS;
  2294. }
  2295. goto out;
  2296. }
  2297. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2298. page = lookup_swap_cache(entry);
  2299. if (!page) {
  2300. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2301. page = swapin_readahead(entry,
  2302. GFP_HIGHUSER_MOVABLE, vma, address);
  2303. if (!page) {
  2304. /*
  2305. * Back out if somebody else faulted in this pte
  2306. * while we released the pte lock.
  2307. */
  2308. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2309. if (likely(pte_same(*page_table, orig_pte)))
  2310. ret = VM_FAULT_OOM;
  2311. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2312. goto unlock;
  2313. }
  2314. /* Had to read the page from swap area: Major fault */
  2315. ret = VM_FAULT_MAJOR;
  2316. count_vm_event(PGMAJFAULT);
  2317. } else if (PageHWPoison(page)) {
  2318. /*
  2319. * hwpoisoned dirty swapcache pages are kept for killing
  2320. * owner processes (which may be unknown at hwpoison time)
  2321. */
  2322. ret = VM_FAULT_HWPOISON;
  2323. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2324. goto out_release;
  2325. }
  2326. lock_page(page);
  2327. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2328. page = ksm_might_need_to_copy(page, vma, address);
  2329. if (!page) {
  2330. ret = VM_FAULT_OOM;
  2331. goto out;
  2332. }
  2333. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2334. ret = VM_FAULT_OOM;
  2335. goto out_page;
  2336. }
  2337. /*
  2338. * Back out if somebody else already faulted in this pte.
  2339. */
  2340. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2341. if (unlikely(!pte_same(*page_table, orig_pte)))
  2342. goto out_nomap;
  2343. if (unlikely(!PageUptodate(page))) {
  2344. ret = VM_FAULT_SIGBUS;
  2345. goto out_nomap;
  2346. }
  2347. /*
  2348. * The page isn't present yet, go ahead with the fault.
  2349. *
  2350. * Be careful about the sequence of operations here.
  2351. * To get its accounting right, reuse_swap_page() must be called
  2352. * while the page is counted on swap but not yet in mapcount i.e.
  2353. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2354. * must be called after the swap_free(), or it will never succeed.
  2355. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2356. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2357. * in page->private. In this case, a record in swap_cgroup is silently
  2358. * discarded at swap_free().
  2359. */
  2360. inc_mm_counter(mm, MM_ANONPAGES);
  2361. pte = mk_pte(page, vma->vm_page_prot);
  2362. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2363. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2364. flags &= ~FAULT_FLAG_WRITE;
  2365. }
  2366. flush_icache_page(vma, page);
  2367. set_pte_at(mm, address, page_table, pte);
  2368. page_add_anon_rmap(page, vma, address);
  2369. /* It's better to call commit-charge after rmap is established */
  2370. mem_cgroup_commit_charge_swapin(page, ptr);
  2371. swap_free(entry);
  2372. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2373. try_to_free_swap(page);
  2374. unlock_page(page);
  2375. if (flags & FAULT_FLAG_WRITE) {
  2376. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2377. if (ret & VM_FAULT_ERROR)
  2378. ret &= VM_FAULT_ERROR;
  2379. goto out;
  2380. }
  2381. /* No need to invalidate - it was non-present before */
  2382. update_mmu_cache(vma, address, page_table);
  2383. unlock:
  2384. pte_unmap_unlock(page_table, ptl);
  2385. out:
  2386. return ret;
  2387. out_nomap:
  2388. mem_cgroup_cancel_charge_swapin(ptr);
  2389. pte_unmap_unlock(page_table, ptl);
  2390. out_page:
  2391. unlock_page(page);
  2392. out_release:
  2393. page_cache_release(page);
  2394. return ret;
  2395. }
  2396. /*
  2397. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2398. * but allow concurrent faults), and pte mapped but not yet locked.
  2399. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2400. */
  2401. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2402. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2403. unsigned int flags)
  2404. {
  2405. struct page *page;
  2406. spinlock_t *ptl;
  2407. pte_t entry;
  2408. if (!(flags & FAULT_FLAG_WRITE)) {
  2409. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2410. vma->vm_page_prot));
  2411. ptl = pte_lockptr(mm, pmd);
  2412. spin_lock(ptl);
  2413. if (!pte_none(*page_table))
  2414. goto unlock;
  2415. goto setpte;
  2416. }
  2417. /* Allocate our own private page. */
  2418. pte_unmap(page_table);
  2419. if (unlikely(anon_vma_prepare(vma)))
  2420. goto oom;
  2421. page = alloc_zeroed_user_highpage_movable(vma, address);
  2422. if (!page)
  2423. goto oom;
  2424. __SetPageUptodate(page);
  2425. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2426. goto oom_free_page;
  2427. entry = mk_pte(page, vma->vm_page_prot);
  2428. if (vma->vm_flags & VM_WRITE)
  2429. entry = pte_mkwrite(pte_mkdirty(entry));
  2430. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2431. if (!pte_none(*page_table))
  2432. goto release;
  2433. inc_mm_counter(mm, MM_ANONPAGES);
  2434. page_add_new_anon_rmap(page, vma, address);
  2435. setpte:
  2436. set_pte_at(mm, address, page_table, entry);
  2437. /* No need to invalidate - it was non-present before */
  2438. update_mmu_cache(vma, address, page_table);
  2439. unlock:
  2440. pte_unmap_unlock(page_table, ptl);
  2441. return 0;
  2442. release:
  2443. mem_cgroup_uncharge_page(page);
  2444. page_cache_release(page);
  2445. goto unlock;
  2446. oom_free_page:
  2447. page_cache_release(page);
  2448. oom:
  2449. return VM_FAULT_OOM;
  2450. }
  2451. /*
  2452. * __do_fault() tries to create a new page mapping. It aggressively
  2453. * tries to share with existing pages, but makes a separate copy if
  2454. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2455. * the next page fault.
  2456. *
  2457. * As this is called only for pages that do not currently exist, we
  2458. * do not need to flush old virtual caches or the TLB.
  2459. *
  2460. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2461. * but allow concurrent faults), and pte neither mapped nor locked.
  2462. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2463. */
  2464. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2465. unsigned long address, pmd_t *pmd,
  2466. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2467. {
  2468. pte_t *page_table;
  2469. spinlock_t *ptl;
  2470. struct page *page;
  2471. pte_t entry;
  2472. int anon = 0;
  2473. int charged = 0;
  2474. struct page *dirty_page = NULL;
  2475. struct vm_fault vmf;
  2476. int ret;
  2477. int page_mkwrite = 0;
  2478. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2479. vmf.pgoff = pgoff;
  2480. vmf.flags = flags;
  2481. vmf.page = NULL;
  2482. ret = vma->vm_ops->fault(vma, &vmf);
  2483. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2484. return ret;
  2485. if (unlikely(PageHWPoison(vmf.page))) {
  2486. if (ret & VM_FAULT_LOCKED)
  2487. unlock_page(vmf.page);
  2488. return VM_FAULT_HWPOISON;
  2489. }
  2490. /*
  2491. * For consistency in subsequent calls, make the faulted page always
  2492. * locked.
  2493. */
  2494. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2495. lock_page(vmf.page);
  2496. else
  2497. VM_BUG_ON(!PageLocked(vmf.page));
  2498. /*
  2499. * Should we do an early C-O-W break?
  2500. */
  2501. page = vmf.page;
  2502. if (flags & FAULT_FLAG_WRITE) {
  2503. if (!(vma->vm_flags & VM_SHARED)) {
  2504. anon = 1;
  2505. if (unlikely(anon_vma_prepare(vma))) {
  2506. ret = VM_FAULT_OOM;
  2507. goto out;
  2508. }
  2509. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2510. vma, address);
  2511. if (!page) {
  2512. ret = VM_FAULT_OOM;
  2513. goto out;
  2514. }
  2515. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2516. ret = VM_FAULT_OOM;
  2517. page_cache_release(page);
  2518. goto out;
  2519. }
  2520. charged = 1;
  2521. /*
  2522. * Don't let another task, with possibly unlocked vma,
  2523. * keep the mlocked page.
  2524. */
  2525. if (vma->vm_flags & VM_LOCKED)
  2526. clear_page_mlock(vmf.page);
  2527. copy_user_highpage(page, vmf.page, address, vma);
  2528. __SetPageUptodate(page);
  2529. } else {
  2530. /*
  2531. * If the page will be shareable, see if the backing
  2532. * address space wants to know that the page is about
  2533. * to become writable
  2534. */
  2535. if (vma->vm_ops->page_mkwrite) {
  2536. int tmp;
  2537. unlock_page(page);
  2538. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2539. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2540. if (unlikely(tmp &
  2541. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2542. ret = tmp;
  2543. goto unwritable_page;
  2544. }
  2545. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2546. lock_page(page);
  2547. if (!page->mapping) {
  2548. ret = 0; /* retry the fault */
  2549. unlock_page(page);
  2550. goto unwritable_page;
  2551. }
  2552. } else
  2553. VM_BUG_ON(!PageLocked(page));
  2554. page_mkwrite = 1;
  2555. }
  2556. }
  2557. }
  2558. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2559. /*
  2560. * This silly early PAGE_DIRTY setting removes a race
  2561. * due to the bad i386 page protection. But it's valid
  2562. * for other architectures too.
  2563. *
  2564. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2565. * an exclusive copy of the page, or this is a shared mapping,
  2566. * so we can make it writable and dirty to avoid having to
  2567. * handle that later.
  2568. */
  2569. /* Only go through if we didn't race with anybody else... */
  2570. if (likely(pte_same(*page_table, orig_pte))) {
  2571. flush_icache_page(vma, page);
  2572. entry = mk_pte(page, vma->vm_page_prot);
  2573. if (flags & FAULT_FLAG_WRITE)
  2574. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2575. if (anon) {
  2576. inc_mm_counter(mm, MM_ANONPAGES);
  2577. page_add_new_anon_rmap(page, vma, address);
  2578. } else {
  2579. inc_mm_counter(mm, MM_FILEPAGES);
  2580. page_add_file_rmap(page);
  2581. if (flags & FAULT_FLAG_WRITE) {
  2582. dirty_page = page;
  2583. get_page(dirty_page);
  2584. }
  2585. }
  2586. set_pte_at(mm, address, page_table, entry);
  2587. /* no need to invalidate: a not-present page won't be cached */
  2588. update_mmu_cache(vma, address, page_table);
  2589. } else {
  2590. if (charged)
  2591. mem_cgroup_uncharge_page(page);
  2592. if (anon)
  2593. page_cache_release(page);
  2594. else
  2595. anon = 1; /* no anon but release faulted_page */
  2596. }
  2597. pte_unmap_unlock(page_table, ptl);
  2598. out:
  2599. if (dirty_page) {
  2600. struct address_space *mapping = page->mapping;
  2601. if (set_page_dirty(dirty_page))
  2602. page_mkwrite = 1;
  2603. unlock_page(dirty_page);
  2604. put_page(dirty_page);
  2605. if (page_mkwrite && mapping) {
  2606. /*
  2607. * Some device drivers do not set page.mapping but still
  2608. * dirty their pages
  2609. */
  2610. balance_dirty_pages_ratelimited(mapping);
  2611. }
  2612. /* file_update_time outside page_lock */
  2613. if (vma->vm_file)
  2614. file_update_time(vma->vm_file);
  2615. } else {
  2616. unlock_page(vmf.page);
  2617. if (anon)
  2618. page_cache_release(vmf.page);
  2619. }
  2620. return ret;
  2621. unwritable_page:
  2622. page_cache_release(page);
  2623. return ret;
  2624. }
  2625. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2626. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2627. unsigned int flags, pte_t orig_pte)
  2628. {
  2629. pgoff_t pgoff = (((address & PAGE_MASK)
  2630. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2631. pte_unmap(page_table);
  2632. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2633. }
  2634. /*
  2635. * Fault of a previously existing named mapping. Repopulate the pte
  2636. * from the encoded file_pte if possible. This enables swappable
  2637. * nonlinear vmas.
  2638. *
  2639. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2640. * but allow concurrent faults), and pte mapped but not yet locked.
  2641. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2642. */
  2643. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2644. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2645. unsigned int flags, pte_t orig_pte)
  2646. {
  2647. pgoff_t pgoff;
  2648. flags |= FAULT_FLAG_NONLINEAR;
  2649. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2650. return 0;
  2651. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2652. /*
  2653. * Page table corrupted: show pte and kill process.
  2654. */
  2655. print_bad_pte(vma, address, orig_pte, NULL);
  2656. return VM_FAULT_SIGBUS;
  2657. }
  2658. pgoff = pte_to_pgoff(orig_pte);
  2659. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2660. }
  2661. /*
  2662. * These routines also need to handle stuff like marking pages dirty
  2663. * and/or accessed for architectures that don't do it in hardware (most
  2664. * RISC architectures). The early dirtying is also good on the i386.
  2665. *
  2666. * There is also a hook called "update_mmu_cache()" that architectures
  2667. * with external mmu caches can use to update those (ie the Sparc or
  2668. * PowerPC hashed page tables that act as extended TLBs).
  2669. *
  2670. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2671. * but allow concurrent faults), and pte mapped but not yet locked.
  2672. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2673. */
  2674. static inline int handle_pte_fault(struct mm_struct *mm,
  2675. struct vm_area_struct *vma, unsigned long address,
  2676. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2677. {
  2678. pte_t entry;
  2679. spinlock_t *ptl;
  2680. entry = *pte;
  2681. if (!pte_present(entry)) {
  2682. if (pte_none(entry)) {
  2683. if (vma->vm_ops) {
  2684. if (likely(vma->vm_ops->fault))
  2685. return do_linear_fault(mm, vma, address,
  2686. pte, pmd, flags, entry);
  2687. }
  2688. return do_anonymous_page(mm, vma, address,
  2689. pte, pmd, flags);
  2690. }
  2691. if (pte_file(entry))
  2692. return do_nonlinear_fault(mm, vma, address,
  2693. pte, pmd, flags, entry);
  2694. return do_swap_page(mm, vma, address,
  2695. pte, pmd, flags, entry);
  2696. }
  2697. ptl = pte_lockptr(mm, pmd);
  2698. spin_lock(ptl);
  2699. if (unlikely(!pte_same(*pte, entry)))
  2700. goto unlock;
  2701. if (flags & FAULT_FLAG_WRITE) {
  2702. if (!pte_write(entry))
  2703. return do_wp_page(mm, vma, address,
  2704. pte, pmd, ptl, entry);
  2705. entry = pte_mkdirty(entry);
  2706. }
  2707. entry = pte_mkyoung(entry);
  2708. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2709. update_mmu_cache(vma, address, pte);
  2710. } else {
  2711. /*
  2712. * This is needed only for protection faults but the arch code
  2713. * is not yet telling us if this is a protection fault or not.
  2714. * This still avoids useless tlb flushes for .text page faults
  2715. * with threads.
  2716. */
  2717. if (flags & FAULT_FLAG_WRITE)
  2718. flush_tlb_page(vma, address);
  2719. }
  2720. unlock:
  2721. pte_unmap_unlock(pte, ptl);
  2722. return 0;
  2723. }
  2724. /*
  2725. * By the time we get here, we already hold the mm semaphore
  2726. */
  2727. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2728. unsigned long address, unsigned int flags)
  2729. {
  2730. pgd_t *pgd;
  2731. pud_t *pud;
  2732. pmd_t *pmd;
  2733. pte_t *pte;
  2734. __set_current_state(TASK_RUNNING);
  2735. count_vm_event(PGFAULT);
  2736. if (unlikely(is_vm_hugetlb_page(vma)))
  2737. return hugetlb_fault(mm, vma, address, flags);
  2738. pgd = pgd_offset(mm, address);
  2739. pud = pud_alloc(mm, pgd, address);
  2740. if (!pud)
  2741. return VM_FAULT_OOM;
  2742. pmd = pmd_alloc(mm, pud, address);
  2743. if (!pmd)
  2744. return VM_FAULT_OOM;
  2745. pte = pte_alloc_map(mm, pmd, address);
  2746. if (!pte)
  2747. return VM_FAULT_OOM;
  2748. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2749. }
  2750. #ifndef __PAGETABLE_PUD_FOLDED
  2751. /*
  2752. * Allocate page upper directory.
  2753. * We've already handled the fast-path in-line.
  2754. */
  2755. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2756. {
  2757. pud_t *new = pud_alloc_one(mm, address);
  2758. if (!new)
  2759. return -ENOMEM;
  2760. smp_wmb(); /* See comment in __pte_alloc */
  2761. spin_lock(&mm->page_table_lock);
  2762. if (pgd_present(*pgd)) /* Another has populated it */
  2763. pud_free(mm, new);
  2764. else
  2765. pgd_populate(mm, pgd, new);
  2766. spin_unlock(&mm->page_table_lock);
  2767. return 0;
  2768. }
  2769. #endif /* __PAGETABLE_PUD_FOLDED */
  2770. #ifndef __PAGETABLE_PMD_FOLDED
  2771. /*
  2772. * Allocate page middle directory.
  2773. * We've already handled the fast-path in-line.
  2774. */
  2775. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2776. {
  2777. pmd_t *new = pmd_alloc_one(mm, address);
  2778. if (!new)
  2779. return -ENOMEM;
  2780. smp_wmb(); /* See comment in __pte_alloc */
  2781. spin_lock(&mm->page_table_lock);
  2782. #ifndef __ARCH_HAS_4LEVEL_HACK
  2783. if (pud_present(*pud)) /* Another has populated it */
  2784. pmd_free(mm, new);
  2785. else
  2786. pud_populate(mm, pud, new);
  2787. #else
  2788. if (pgd_present(*pud)) /* Another has populated it */
  2789. pmd_free(mm, new);
  2790. else
  2791. pgd_populate(mm, pud, new);
  2792. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2793. spin_unlock(&mm->page_table_lock);
  2794. return 0;
  2795. }
  2796. #endif /* __PAGETABLE_PMD_FOLDED */
  2797. int make_pages_present(unsigned long addr, unsigned long end)
  2798. {
  2799. int ret, len, write;
  2800. struct vm_area_struct * vma;
  2801. vma = find_vma(current->mm, addr);
  2802. if (!vma)
  2803. return -ENOMEM;
  2804. write = (vma->vm_flags & VM_WRITE) != 0;
  2805. BUG_ON(addr >= end);
  2806. BUG_ON(end > vma->vm_end);
  2807. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2808. ret = get_user_pages(current, current->mm, addr,
  2809. len, write, 0, NULL, NULL);
  2810. if (ret < 0)
  2811. return ret;
  2812. return ret == len ? 0 : -EFAULT;
  2813. }
  2814. #if !defined(__HAVE_ARCH_GATE_AREA)
  2815. #if defined(AT_SYSINFO_EHDR)
  2816. static struct vm_area_struct gate_vma;
  2817. static int __init gate_vma_init(void)
  2818. {
  2819. gate_vma.vm_mm = NULL;
  2820. gate_vma.vm_start = FIXADDR_USER_START;
  2821. gate_vma.vm_end = FIXADDR_USER_END;
  2822. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2823. gate_vma.vm_page_prot = __P101;
  2824. /*
  2825. * Make sure the vDSO gets into every core dump.
  2826. * Dumping its contents makes post-mortem fully interpretable later
  2827. * without matching up the same kernel and hardware config to see
  2828. * what PC values meant.
  2829. */
  2830. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2831. return 0;
  2832. }
  2833. __initcall(gate_vma_init);
  2834. #endif
  2835. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2836. {
  2837. #ifdef AT_SYSINFO_EHDR
  2838. return &gate_vma;
  2839. #else
  2840. return NULL;
  2841. #endif
  2842. }
  2843. int in_gate_area_no_task(unsigned long addr)
  2844. {
  2845. #ifdef AT_SYSINFO_EHDR
  2846. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2847. return 1;
  2848. #endif
  2849. return 0;
  2850. }
  2851. #endif /* __HAVE_ARCH_GATE_AREA */
  2852. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2853. pte_t **ptepp, spinlock_t **ptlp)
  2854. {
  2855. pgd_t *pgd;
  2856. pud_t *pud;
  2857. pmd_t *pmd;
  2858. pte_t *ptep;
  2859. pgd = pgd_offset(mm, address);
  2860. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2861. goto out;
  2862. pud = pud_offset(pgd, address);
  2863. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2864. goto out;
  2865. pmd = pmd_offset(pud, address);
  2866. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2867. goto out;
  2868. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2869. if (pmd_huge(*pmd))
  2870. goto out;
  2871. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2872. if (!ptep)
  2873. goto out;
  2874. if (!pte_present(*ptep))
  2875. goto unlock;
  2876. *ptepp = ptep;
  2877. return 0;
  2878. unlock:
  2879. pte_unmap_unlock(ptep, *ptlp);
  2880. out:
  2881. return -EINVAL;
  2882. }
  2883. /**
  2884. * follow_pfn - look up PFN at a user virtual address
  2885. * @vma: memory mapping
  2886. * @address: user virtual address
  2887. * @pfn: location to store found PFN
  2888. *
  2889. * Only IO mappings and raw PFN mappings are allowed.
  2890. *
  2891. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2892. */
  2893. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2894. unsigned long *pfn)
  2895. {
  2896. int ret = -EINVAL;
  2897. spinlock_t *ptl;
  2898. pte_t *ptep;
  2899. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2900. return ret;
  2901. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2902. if (ret)
  2903. return ret;
  2904. *pfn = pte_pfn(*ptep);
  2905. pte_unmap_unlock(ptep, ptl);
  2906. return 0;
  2907. }
  2908. EXPORT_SYMBOL(follow_pfn);
  2909. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2910. int follow_phys(struct vm_area_struct *vma,
  2911. unsigned long address, unsigned int flags,
  2912. unsigned long *prot, resource_size_t *phys)
  2913. {
  2914. int ret = -EINVAL;
  2915. pte_t *ptep, pte;
  2916. spinlock_t *ptl;
  2917. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2918. goto out;
  2919. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2920. goto out;
  2921. pte = *ptep;
  2922. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2923. goto unlock;
  2924. *prot = pgprot_val(pte_pgprot(pte));
  2925. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2926. ret = 0;
  2927. unlock:
  2928. pte_unmap_unlock(ptep, ptl);
  2929. out:
  2930. return ret;
  2931. }
  2932. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2933. void *buf, int len, int write)
  2934. {
  2935. resource_size_t phys_addr;
  2936. unsigned long prot = 0;
  2937. void __iomem *maddr;
  2938. int offset = addr & (PAGE_SIZE-1);
  2939. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2940. return -EINVAL;
  2941. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2942. if (write)
  2943. memcpy_toio(maddr + offset, buf, len);
  2944. else
  2945. memcpy_fromio(buf, maddr + offset, len);
  2946. iounmap(maddr);
  2947. return len;
  2948. }
  2949. #endif
  2950. /*
  2951. * Access another process' address space.
  2952. * Source/target buffer must be kernel space,
  2953. * Do not walk the page table directly, use get_user_pages
  2954. */
  2955. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2956. {
  2957. struct mm_struct *mm;
  2958. struct vm_area_struct *vma;
  2959. void *old_buf = buf;
  2960. mm = get_task_mm(tsk);
  2961. if (!mm)
  2962. return 0;
  2963. down_read(&mm->mmap_sem);
  2964. /* ignore errors, just check how much was successfully transferred */
  2965. while (len) {
  2966. int bytes, ret, offset;
  2967. void *maddr;
  2968. struct page *page = NULL;
  2969. ret = get_user_pages(tsk, mm, addr, 1,
  2970. write, 1, &page, &vma);
  2971. if (ret <= 0) {
  2972. /*
  2973. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2974. * we can access using slightly different code.
  2975. */
  2976. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2977. vma = find_vma(mm, addr);
  2978. if (!vma)
  2979. break;
  2980. if (vma->vm_ops && vma->vm_ops->access)
  2981. ret = vma->vm_ops->access(vma, addr, buf,
  2982. len, write);
  2983. if (ret <= 0)
  2984. #endif
  2985. break;
  2986. bytes = ret;
  2987. } else {
  2988. bytes = len;
  2989. offset = addr & (PAGE_SIZE-1);
  2990. if (bytes > PAGE_SIZE-offset)
  2991. bytes = PAGE_SIZE-offset;
  2992. maddr = kmap(page);
  2993. if (write) {
  2994. copy_to_user_page(vma, page, addr,
  2995. maddr + offset, buf, bytes);
  2996. set_page_dirty_lock(page);
  2997. } else {
  2998. copy_from_user_page(vma, page, addr,
  2999. buf, maddr + offset, bytes);
  3000. }
  3001. kunmap(page);
  3002. page_cache_release(page);
  3003. }
  3004. len -= bytes;
  3005. buf += bytes;
  3006. addr += bytes;
  3007. }
  3008. up_read(&mm->mmap_sem);
  3009. mmput(mm);
  3010. return buf - old_buf;
  3011. }
  3012. /*
  3013. * Print the name of a VMA.
  3014. */
  3015. void print_vma_addr(char *prefix, unsigned long ip)
  3016. {
  3017. struct mm_struct *mm = current->mm;
  3018. struct vm_area_struct *vma;
  3019. /*
  3020. * Do not print if we are in atomic
  3021. * contexts (in exception stacks, etc.):
  3022. */
  3023. if (preempt_count())
  3024. return;
  3025. down_read(&mm->mmap_sem);
  3026. vma = find_vma(mm, ip);
  3027. if (vma && vma->vm_file) {
  3028. struct file *f = vma->vm_file;
  3029. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3030. if (buf) {
  3031. char *p, *s;
  3032. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3033. if (IS_ERR(p))
  3034. p = "?";
  3035. s = strrchr(p, '/');
  3036. if (s)
  3037. p = s+1;
  3038. printk("%s%s[%lx+%lx]", prefix, p,
  3039. vma->vm_start,
  3040. vma->vm_end - vma->vm_start);
  3041. free_page((unsigned long)buf);
  3042. }
  3043. }
  3044. up_read(&current->mm->mmap_sem);
  3045. }
  3046. #ifdef CONFIG_PROVE_LOCKING
  3047. void might_fault(void)
  3048. {
  3049. /*
  3050. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3051. * holding the mmap_sem, this is safe because kernel memory doesn't
  3052. * get paged out, therefore we'll never actually fault, and the
  3053. * below annotations will generate false positives.
  3054. */
  3055. if (segment_eq(get_fs(), KERNEL_DS))
  3056. return;
  3057. might_sleep();
  3058. /*
  3059. * it would be nicer only to annotate paths which are not under
  3060. * pagefault_disable, however that requires a larger audit and
  3061. * providing helpers like get_user_atomic.
  3062. */
  3063. if (!in_atomic() && current->mm)
  3064. might_lock_read(&current->mm->mmap_sem);
  3065. }
  3066. EXPORT_SYMBOL(might_fault);
  3067. #endif