qlge_main.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (qdev->
  341. rss_ring_first_cq_id <<
  342. CAM_OUT_CQ_ID_SHIFT));
  343. if (qdev->vlgrp)
  344. cam_output |= CAM_OUT_RV;
  345. /* route to NIC core */
  346. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  347. }
  348. break;
  349. }
  350. case MAC_ADDR_TYPE_VLAN:
  351. {
  352. u32 enable_bit = *((u32 *) &addr[0]);
  353. /* For VLAN, the addr actually holds a bit that
  354. * either enables or disables the vlan id we are
  355. * addressing. It's either MAC_ADDR_E on or off.
  356. * That's bit-27 we're talking about.
  357. */
  358. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  359. (enable_bit ? "Adding" : "Removing"),
  360. index, (enable_bit ? "to" : "from"));
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type | /* type */
  369. enable_bit); /* enable/disable */
  370. break;
  371. }
  372. case MAC_ADDR_TYPE_MULTI_FLTR:
  373. default:
  374. QPRINTK(qdev, IFUP, CRIT,
  375. "Address type %d not yet supported.\n", type);
  376. status = -EPERM;
  377. }
  378. exit:
  379. return status;
  380. }
  381. /* Get a specific frame routing value from the CAM.
  382. * Used for debug and reg dump.
  383. */
  384. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  385. {
  386. int status = 0;
  387. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, RT_IDX,
  391. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  392. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  393. if (status)
  394. goto exit;
  395. *value = ql_read32(qdev, RT_DATA);
  396. exit:
  397. return status;
  398. }
  399. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  400. * to route different frame types to various inbound queues. We send broadcast/
  401. * multicast/error frames to the default queue for slow handling,
  402. * and CAM hit/RSS frames to the fast handling queues.
  403. */
  404. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  405. int enable)
  406. {
  407. int status = -EINVAL; /* Return error if no mask match. */
  408. u32 value = 0;
  409. QPRINTK(qdev, IFUP, DEBUG,
  410. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  411. (enable ? "Adding" : "Removing"),
  412. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  413. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  414. ((index ==
  415. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  416. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  417. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  419. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  420. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  421. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  422. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  423. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  424. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  425. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  426. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  427. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  428. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  429. (enable ? "to" : "from"));
  430. switch (mask) {
  431. case RT_IDX_CAM_HIT:
  432. {
  433. value = RT_IDX_DST_CAM_Q | /* dest */
  434. RT_IDX_TYPE_NICQ | /* type */
  435. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  436. break;
  437. }
  438. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  439. {
  440. value = RT_IDX_DST_DFLT_Q | /* dest */
  441. RT_IDX_TYPE_NICQ | /* type */
  442. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  443. break;
  444. }
  445. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  446. {
  447. value = RT_IDX_DST_DFLT_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  460. {
  461. value = RT_IDX_DST_CAM_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  467. {
  468. value = RT_IDX_DST_CAM_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  474. {
  475. value = RT_IDX_DST_RSS | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case 0: /* Clear the E-bit on an entry. */
  481. {
  482. value = RT_IDX_DST_DFLT_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (index << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. default:
  488. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  489. mask);
  490. status = -EPERM;
  491. goto exit;
  492. }
  493. if (value) {
  494. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  495. if (status)
  496. goto exit;
  497. value |= (enable ? RT_IDX_E : 0);
  498. ql_write32(qdev, RT_IDX, value);
  499. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  500. }
  501. exit:
  502. return status;
  503. }
  504. static void ql_enable_interrupts(struct ql_adapter *qdev)
  505. {
  506. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  507. }
  508. static void ql_disable_interrupts(struct ql_adapter *qdev)
  509. {
  510. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  511. }
  512. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  513. * Otherwise, we may have multiple outstanding workers and don't want to
  514. * enable until the last one finishes. In this case, the irq_cnt gets
  515. * incremented everytime we queue a worker and decremented everytime
  516. * a worker finishes. Once it hits zero we enable the interrupt.
  517. */
  518. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  519. {
  520. u32 var = 0;
  521. unsigned long hw_flags = 0;
  522. struct intr_context *ctx = qdev->intr_context + intr;
  523. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  524. /* Always enable if we're MSIX multi interrupts and
  525. * it's not the default (zeroeth) interrupt.
  526. */
  527. ql_write32(qdev, INTR_EN,
  528. ctx->intr_en_mask);
  529. var = ql_read32(qdev, STS);
  530. return var;
  531. }
  532. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  533. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  534. ql_write32(qdev, INTR_EN,
  535. ctx->intr_en_mask);
  536. var = ql_read32(qdev, STS);
  537. }
  538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  539. return var;
  540. }
  541. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  542. {
  543. u32 var = 0;
  544. unsigned long hw_flags;
  545. struct intr_context *ctx;
  546. /* HW disables for us if we're MSIX multi interrupts and
  547. * it's not the default (zeroeth) interrupt.
  548. */
  549. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  550. return 0;
  551. ctx = qdev->intr_context + intr;
  552. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  553. if (!atomic_read(&ctx->irq_cnt)) {
  554. ql_write32(qdev, INTR_EN,
  555. ctx->intr_dis_mask);
  556. var = ql_read32(qdev, STS);
  557. }
  558. atomic_inc(&ctx->irq_cnt);
  559. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  560. return var;
  561. }
  562. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  563. {
  564. int i;
  565. for (i = 0; i < qdev->intr_count; i++) {
  566. /* The enable call does a atomic_dec_and_test
  567. * and enables only if the result is zero.
  568. * So we precharge it here.
  569. */
  570. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  571. i == 0))
  572. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  573. ql_enable_completion_interrupt(qdev, i);
  574. }
  575. }
  576. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  577. {
  578. int status, i;
  579. u16 csum = 0;
  580. __le16 *flash = (__le16 *)&qdev->flash;
  581. status = strncmp((char *)&qdev->flash, str, 4);
  582. if (status) {
  583. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  584. return status;
  585. }
  586. for (i = 0; i < size; i++)
  587. csum += le16_to_cpu(*flash++);
  588. if (csum)
  589. QPRINTK(qdev, IFUP, ERR,
  590. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  591. return csum;
  592. }
  593. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  594. {
  595. int status = 0;
  596. /* wait for reg to come ready */
  597. status = ql_wait_reg_rdy(qdev,
  598. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  599. if (status)
  600. goto exit;
  601. /* set up for reg read */
  602. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  603. /* wait for reg to come ready */
  604. status = ql_wait_reg_rdy(qdev,
  605. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  606. if (status)
  607. goto exit;
  608. /* This data is stored on flash as an array of
  609. * __le32. Since ql_read32() returns cpu endian
  610. * we need to swap it back.
  611. */
  612. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  613. exit:
  614. return status;
  615. }
  616. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  617. {
  618. u32 i, size;
  619. int status;
  620. __le32 *p = (__le32 *)&qdev->flash;
  621. u32 offset;
  622. /* Get flash offset for function and adjust
  623. * for dword access.
  624. */
  625. if (!qdev->func)
  626. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  627. else
  628. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  629. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  630. return -ETIMEDOUT;
  631. size = sizeof(struct flash_params_8000) / sizeof(u32);
  632. for (i = 0; i < size; i++, p++) {
  633. status = ql_read_flash_word(qdev, i+offset, p);
  634. if (status) {
  635. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  636. goto exit;
  637. }
  638. }
  639. status = ql_validate_flash(qdev,
  640. sizeof(struct flash_params_8000) / sizeof(u16),
  641. "8000");
  642. if (status) {
  643. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  644. status = -EINVAL;
  645. goto exit;
  646. }
  647. if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
  648. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  649. status = -EINVAL;
  650. goto exit;
  651. }
  652. memcpy(qdev->ndev->dev_addr,
  653. qdev->flash.flash_params_8000.mac_addr,
  654. qdev->ndev->addr_len);
  655. exit:
  656. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  657. return status;
  658. }
  659. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  660. {
  661. int i;
  662. int status;
  663. __le32 *p = (__le32 *)&qdev->flash;
  664. u32 offset = 0;
  665. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  666. /* Second function's parameters follow the first
  667. * function's.
  668. */
  669. if (qdev->func)
  670. offset = size;
  671. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  672. return -ETIMEDOUT;
  673. for (i = 0; i < size; i++, p++) {
  674. status = ql_read_flash_word(qdev, i+offset, p);
  675. if (status) {
  676. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  677. goto exit;
  678. }
  679. }
  680. status = ql_validate_flash(qdev,
  681. sizeof(struct flash_params_8012) / sizeof(u16),
  682. "8012");
  683. if (status) {
  684. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  685. status = -EINVAL;
  686. goto exit;
  687. }
  688. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  689. status = -EINVAL;
  690. goto exit;
  691. }
  692. memcpy(qdev->ndev->dev_addr,
  693. qdev->flash.flash_params_8012.mac_addr,
  694. qdev->ndev->addr_len);
  695. exit:
  696. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  697. return status;
  698. }
  699. /* xgmac register are located behind the xgmac_addr and xgmac_data
  700. * register pair. Each read/write requires us to wait for the ready
  701. * bit before reading/writing the data.
  702. */
  703. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  704. {
  705. int status;
  706. /* wait for reg to come ready */
  707. status = ql_wait_reg_rdy(qdev,
  708. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  709. if (status)
  710. return status;
  711. /* write the data to the data reg */
  712. ql_write32(qdev, XGMAC_DATA, data);
  713. /* trigger the write */
  714. ql_write32(qdev, XGMAC_ADDR, reg);
  715. return status;
  716. }
  717. /* xgmac register are located behind the xgmac_addr and xgmac_data
  718. * register pair. Each read/write requires us to wait for the ready
  719. * bit before reading/writing the data.
  720. */
  721. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  722. {
  723. int status = 0;
  724. /* wait for reg to come ready */
  725. status = ql_wait_reg_rdy(qdev,
  726. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  727. if (status)
  728. goto exit;
  729. /* set up for reg read */
  730. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  731. /* wait for reg to come ready */
  732. status = ql_wait_reg_rdy(qdev,
  733. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  734. if (status)
  735. goto exit;
  736. /* get the data */
  737. *data = ql_read32(qdev, XGMAC_DATA);
  738. exit:
  739. return status;
  740. }
  741. /* This is used for reading the 64-bit statistics regs. */
  742. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  743. {
  744. int status = 0;
  745. u32 hi = 0;
  746. u32 lo = 0;
  747. status = ql_read_xgmac_reg(qdev, reg, &lo);
  748. if (status)
  749. goto exit;
  750. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  751. if (status)
  752. goto exit;
  753. *data = (u64) lo | ((u64) hi << 32);
  754. exit:
  755. return status;
  756. }
  757. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  758. {
  759. int status;
  760. status = ql_mb_get_fw_state(qdev);
  761. if (status)
  762. goto exit;
  763. /* Wake up a worker to get/set the TX/RX frame sizes. */
  764. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  765. exit:
  766. return status;
  767. }
  768. /* Take the MAC Core out of reset.
  769. * Enable statistics counting.
  770. * Take the transmitter/receiver out of reset.
  771. * This functionality may be done in the MPI firmware at a
  772. * later date.
  773. */
  774. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  775. {
  776. int status = 0;
  777. u32 data;
  778. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  779. /* Another function has the semaphore, so
  780. * wait for the port init bit to come ready.
  781. */
  782. QPRINTK(qdev, LINK, INFO,
  783. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  784. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  785. if (status) {
  786. QPRINTK(qdev, LINK, CRIT,
  787. "Port initialize timed out.\n");
  788. }
  789. return status;
  790. }
  791. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  792. /* Set the core reset. */
  793. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  794. if (status)
  795. goto end;
  796. data |= GLOBAL_CFG_RESET;
  797. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  798. if (status)
  799. goto end;
  800. /* Clear the core reset and turn on jumbo for receiver. */
  801. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  802. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  803. data |= GLOBAL_CFG_TX_STAT_EN;
  804. data |= GLOBAL_CFG_RX_STAT_EN;
  805. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  806. if (status)
  807. goto end;
  808. /* Enable transmitter, and clear it's reset. */
  809. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  810. if (status)
  811. goto end;
  812. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  813. data |= TX_CFG_EN; /* Enable the transmitter. */
  814. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  815. if (status)
  816. goto end;
  817. /* Enable receiver and clear it's reset. */
  818. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  819. if (status)
  820. goto end;
  821. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  822. data |= RX_CFG_EN; /* Enable the receiver. */
  823. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  824. if (status)
  825. goto end;
  826. /* Turn on jumbo. */
  827. status =
  828. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  829. if (status)
  830. goto end;
  831. status =
  832. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  833. if (status)
  834. goto end;
  835. /* Signal to the world that the port is enabled. */
  836. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  837. end:
  838. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  839. return status;
  840. }
  841. /* Get the next large buffer. */
  842. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  843. {
  844. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  845. rx_ring->lbq_curr_idx++;
  846. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  847. rx_ring->lbq_curr_idx = 0;
  848. rx_ring->lbq_free_cnt++;
  849. return lbq_desc;
  850. }
  851. /* Get the next small buffer. */
  852. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  853. {
  854. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  855. rx_ring->sbq_curr_idx++;
  856. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  857. rx_ring->sbq_curr_idx = 0;
  858. rx_ring->sbq_free_cnt++;
  859. return sbq_desc;
  860. }
  861. /* Update an rx ring index. */
  862. static void ql_update_cq(struct rx_ring *rx_ring)
  863. {
  864. rx_ring->cnsmr_idx++;
  865. rx_ring->curr_entry++;
  866. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  867. rx_ring->cnsmr_idx = 0;
  868. rx_ring->curr_entry = rx_ring->cq_base;
  869. }
  870. }
  871. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  872. {
  873. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  874. }
  875. /* Process (refill) a large buffer queue. */
  876. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  877. {
  878. u32 clean_idx = rx_ring->lbq_clean_idx;
  879. u32 start_idx = clean_idx;
  880. struct bq_desc *lbq_desc;
  881. u64 map;
  882. int i;
  883. while (rx_ring->lbq_free_cnt > 16) {
  884. for (i = 0; i < 16; i++) {
  885. QPRINTK(qdev, RX_STATUS, DEBUG,
  886. "lbq: try cleaning clean_idx = %d.\n",
  887. clean_idx);
  888. lbq_desc = &rx_ring->lbq[clean_idx];
  889. if (lbq_desc->p.lbq_page == NULL) {
  890. QPRINTK(qdev, RX_STATUS, DEBUG,
  891. "lbq: getting new page for index %d.\n",
  892. lbq_desc->index);
  893. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  894. if (lbq_desc->p.lbq_page == NULL) {
  895. rx_ring->lbq_clean_idx = clean_idx;
  896. QPRINTK(qdev, RX_STATUS, ERR,
  897. "Couldn't get a page.\n");
  898. return;
  899. }
  900. map = pci_map_page(qdev->pdev,
  901. lbq_desc->p.lbq_page,
  902. 0, PAGE_SIZE,
  903. PCI_DMA_FROMDEVICE);
  904. if (pci_dma_mapping_error(qdev->pdev, map)) {
  905. rx_ring->lbq_clean_idx = clean_idx;
  906. put_page(lbq_desc->p.lbq_page);
  907. lbq_desc->p.lbq_page = NULL;
  908. QPRINTK(qdev, RX_STATUS, ERR,
  909. "PCI mapping failed.\n");
  910. return;
  911. }
  912. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  913. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  914. *lbq_desc->addr = cpu_to_le64(map);
  915. }
  916. clean_idx++;
  917. if (clean_idx == rx_ring->lbq_len)
  918. clean_idx = 0;
  919. }
  920. rx_ring->lbq_clean_idx = clean_idx;
  921. rx_ring->lbq_prod_idx += 16;
  922. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  923. rx_ring->lbq_prod_idx = 0;
  924. rx_ring->lbq_free_cnt -= 16;
  925. }
  926. if (start_idx != clean_idx) {
  927. QPRINTK(qdev, RX_STATUS, DEBUG,
  928. "lbq: updating prod idx = %d.\n",
  929. rx_ring->lbq_prod_idx);
  930. ql_write_db_reg(rx_ring->lbq_prod_idx,
  931. rx_ring->lbq_prod_idx_db_reg);
  932. }
  933. }
  934. /* Process (refill) a small buffer queue. */
  935. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  936. {
  937. u32 clean_idx = rx_ring->sbq_clean_idx;
  938. u32 start_idx = clean_idx;
  939. struct bq_desc *sbq_desc;
  940. u64 map;
  941. int i;
  942. while (rx_ring->sbq_free_cnt > 16) {
  943. for (i = 0; i < 16; i++) {
  944. sbq_desc = &rx_ring->sbq[clean_idx];
  945. QPRINTK(qdev, RX_STATUS, DEBUG,
  946. "sbq: try cleaning clean_idx = %d.\n",
  947. clean_idx);
  948. if (sbq_desc->p.skb == NULL) {
  949. QPRINTK(qdev, RX_STATUS, DEBUG,
  950. "sbq: getting new skb for index %d.\n",
  951. sbq_desc->index);
  952. sbq_desc->p.skb =
  953. netdev_alloc_skb(qdev->ndev,
  954. rx_ring->sbq_buf_size);
  955. if (sbq_desc->p.skb == NULL) {
  956. QPRINTK(qdev, PROBE, ERR,
  957. "Couldn't get an skb.\n");
  958. rx_ring->sbq_clean_idx = clean_idx;
  959. return;
  960. }
  961. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  962. map = pci_map_single(qdev->pdev,
  963. sbq_desc->p.skb->data,
  964. rx_ring->sbq_buf_size /
  965. 2, PCI_DMA_FROMDEVICE);
  966. if (pci_dma_mapping_error(qdev->pdev, map)) {
  967. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  968. rx_ring->sbq_clean_idx = clean_idx;
  969. dev_kfree_skb_any(sbq_desc->p.skb);
  970. sbq_desc->p.skb = NULL;
  971. return;
  972. }
  973. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  974. pci_unmap_len_set(sbq_desc, maplen,
  975. rx_ring->sbq_buf_size / 2);
  976. *sbq_desc->addr = cpu_to_le64(map);
  977. }
  978. clean_idx++;
  979. if (clean_idx == rx_ring->sbq_len)
  980. clean_idx = 0;
  981. }
  982. rx_ring->sbq_clean_idx = clean_idx;
  983. rx_ring->sbq_prod_idx += 16;
  984. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  985. rx_ring->sbq_prod_idx = 0;
  986. rx_ring->sbq_free_cnt -= 16;
  987. }
  988. if (start_idx != clean_idx) {
  989. QPRINTK(qdev, RX_STATUS, DEBUG,
  990. "sbq: updating prod idx = %d.\n",
  991. rx_ring->sbq_prod_idx);
  992. ql_write_db_reg(rx_ring->sbq_prod_idx,
  993. rx_ring->sbq_prod_idx_db_reg);
  994. }
  995. }
  996. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  997. struct rx_ring *rx_ring)
  998. {
  999. ql_update_sbq(qdev, rx_ring);
  1000. ql_update_lbq(qdev, rx_ring);
  1001. }
  1002. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1003. * fails at some stage, or from the interrupt when a tx completes.
  1004. */
  1005. static void ql_unmap_send(struct ql_adapter *qdev,
  1006. struct tx_ring_desc *tx_ring_desc, int mapped)
  1007. {
  1008. int i;
  1009. for (i = 0; i < mapped; i++) {
  1010. if (i == 0 || (i == 7 && mapped > 7)) {
  1011. /*
  1012. * Unmap the skb->data area, or the
  1013. * external sglist (AKA the Outbound
  1014. * Address List (OAL)).
  1015. * If its the zeroeth element, then it's
  1016. * the skb->data area. If it's the 7th
  1017. * element and there is more than 6 frags,
  1018. * then its an OAL.
  1019. */
  1020. if (i == 7) {
  1021. QPRINTK(qdev, TX_DONE, DEBUG,
  1022. "unmapping OAL area.\n");
  1023. }
  1024. pci_unmap_single(qdev->pdev,
  1025. pci_unmap_addr(&tx_ring_desc->map[i],
  1026. mapaddr),
  1027. pci_unmap_len(&tx_ring_desc->map[i],
  1028. maplen),
  1029. PCI_DMA_TODEVICE);
  1030. } else {
  1031. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1032. i);
  1033. pci_unmap_page(qdev->pdev,
  1034. pci_unmap_addr(&tx_ring_desc->map[i],
  1035. mapaddr),
  1036. pci_unmap_len(&tx_ring_desc->map[i],
  1037. maplen), PCI_DMA_TODEVICE);
  1038. }
  1039. }
  1040. }
  1041. /* Map the buffers for this transmit. This will return
  1042. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1043. */
  1044. static int ql_map_send(struct ql_adapter *qdev,
  1045. struct ob_mac_iocb_req *mac_iocb_ptr,
  1046. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1047. {
  1048. int len = skb_headlen(skb);
  1049. dma_addr_t map;
  1050. int frag_idx, err, map_idx = 0;
  1051. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1052. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1053. if (frag_cnt) {
  1054. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1055. }
  1056. /*
  1057. * Map the skb buffer first.
  1058. */
  1059. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1060. err = pci_dma_mapping_error(qdev->pdev, map);
  1061. if (err) {
  1062. QPRINTK(qdev, TX_QUEUED, ERR,
  1063. "PCI mapping failed with error: %d\n", err);
  1064. return NETDEV_TX_BUSY;
  1065. }
  1066. tbd->len = cpu_to_le32(len);
  1067. tbd->addr = cpu_to_le64(map);
  1068. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1069. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1070. map_idx++;
  1071. /*
  1072. * This loop fills the remainder of the 8 address descriptors
  1073. * in the IOCB. If there are more than 7 fragments, then the
  1074. * eighth address desc will point to an external list (OAL).
  1075. * When this happens, the remainder of the frags will be stored
  1076. * in this list.
  1077. */
  1078. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1079. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1080. tbd++;
  1081. if (frag_idx == 6 && frag_cnt > 7) {
  1082. /* Let's tack on an sglist.
  1083. * Our control block will now
  1084. * look like this:
  1085. * iocb->seg[0] = skb->data
  1086. * iocb->seg[1] = frag[0]
  1087. * iocb->seg[2] = frag[1]
  1088. * iocb->seg[3] = frag[2]
  1089. * iocb->seg[4] = frag[3]
  1090. * iocb->seg[5] = frag[4]
  1091. * iocb->seg[6] = frag[5]
  1092. * iocb->seg[7] = ptr to OAL (external sglist)
  1093. * oal->seg[0] = frag[6]
  1094. * oal->seg[1] = frag[7]
  1095. * oal->seg[2] = frag[8]
  1096. * oal->seg[3] = frag[9]
  1097. * oal->seg[4] = frag[10]
  1098. * etc...
  1099. */
  1100. /* Tack on the OAL in the eighth segment of IOCB. */
  1101. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1102. sizeof(struct oal),
  1103. PCI_DMA_TODEVICE);
  1104. err = pci_dma_mapping_error(qdev->pdev, map);
  1105. if (err) {
  1106. QPRINTK(qdev, TX_QUEUED, ERR,
  1107. "PCI mapping outbound address list with error: %d\n",
  1108. err);
  1109. goto map_error;
  1110. }
  1111. tbd->addr = cpu_to_le64(map);
  1112. /*
  1113. * The length is the number of fragments
  1114. * that remain to be mapped times the length
  1115. * of our sglist (OAL).
  1116. */
  1117. tbd->len =
  1118. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1119. (frag_cnt - frag_idx)) | TX_DESC_C);
  1120. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1121. map);
  1122. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1123. sizeof(struct oal));
  1124. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1125. map_idx++;
  1126. }
  1127. map =
  1128. pci_map_page(qdev->pdev, frag->page,
  1129. frag->page_offset, frag->size,
  1130. PCI_DMA_TODEVICE);
  1131. err = pci_dma_mapping_error(qdev->pdev, map);
  1132. if (err) {
  1133. QPRINTK(qdev, TX_QUEUED, ERR,
  1134. "PCI mapping frags failed with error: %d.\n",
  1135. err);
  1136. goto map_error;
  1137. }
  1138. tbd->addr = cpu_to_le64(map);
  1139. tbd->len = cpu_to_le32(frag->size);
  1140. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1141. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1142. frag->size);
  1143. }
  1144. /* Save the number of segments we've mapped. */
  1145. tx_ring_desc->map_cnt = map_idx;
  1146. /* Terminate the last segment. */
  1147. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1148. return NETDEV_TX_OK;
  1149. map_error:
  1150. /*
  1151. * If the first frag mapping failed, then i will be zero.
  1152. * This causes the unmap of the skb->data area. Otherwise
  1153. * we pass in the number of frags that mapped successfully
  1154. * so they can be umapped.
  1155. */
  1156. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1157. return NETDEV_TX_BUSY;
  1158. }
  1159. static void ql_realign_skb(struct sk_buff *skb, int len)
  1160. {
  1161. void *temp_addr = skb->data;
  1162. /* Undo the skb_reserve(skb,32) we did before
  1163. * giving to hardware, and realign data on
  1164. * a 2-byte boundary.
  1165. */
  1166. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1167. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1168. skb_copy_to_linear_data(skb, temp_addr,
  1169. (unsigned int)len);
  1170. }
  1171. /*
  1172. * This function builds an skb for the given inbound
  1173. * completion. It will be rewritten for readability in the near
  1174. * future, but for not it works well.
  1175. */
  1176. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1177. struct rx_ring *rx_ring,
  1178. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1179. {
  1180. struct bq_desc *lbq_desc;
  1181. struct bq_desc *sbq_desc;
  1182. struct sk_buff *skb = NULL;
  1183. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1184. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1185. /*
  1186. * Handle the header buffer if present.
  1187. */
  1188. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1189. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1190. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1191. /*
  1192. * Headers fit nicely into a small buffer.
  1193. */
  1194. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1195. pci_unmap_single(qdev->pdev,
  1196. pci_unmap_addr(sbq_desc, mapaddr),
  1197. pci_unmap_len(sbq_desc, maplen),
  1198. PCI_DMA_FROMDEVICE);
  1199. skb = sbq_desc->p.skb;
  1200. ql_realign_skb(skb, hdr_len);
  1201. skb_put(skb, hdr_len);
  1202. sbq_desc->p.skb = NULL;
  1203. }
  1204. /*
  1205. * Handle the data buffer(s).
  1206. */
  1207. if (unlikely(!length)) { /* Is there data too? */
  1208. QPRINTK(qdev, RX_STATUS, DEBUG,
  1209. "No Data buffer in this packet.\n");
  1210. return skb;
  1211. }
  1212. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1213. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1214. QPRINTK(qdev, RX_STATUS, DEBUG,
  1215. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1216. /*
  1217. * Data is less than small buffer size so it's
  1218. * stuffed in a small buffer.
  1219. * For this case we append the data
  1220. * from the "data" small buffer to the "header" small
  1221. * buffer.
  1222. */
  1223. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1224. pci_dma_sync_single_for_cpu(qdev->pdev,
  1225. pci_unmap_addr
  1226. (sbq_desc, mapaddr),
  1227. pci_unmap_len
  1228. (sbq_desc, maplen),
  1229. PCI_DMA_FROMDEVICE);
  1230. memcpy(skb_put(skb, length),
  1231. sbq_desc->p.skb->data, length);
  1232. pci_dma_sync_single_for_device(qdev->pdev,
  1233. pci_unmap_addr
  1234. (sbq_desc,
  1235. mapaddr),
  1236. pci_unmap_len
  1237. (sbq_desc,
  1238. maplen),
  1239. PCI_DMA_FROMDEVICE);
  1240. } else {
  1241. QPRINTK(qdev, RX_STATUS, DEBUG,
  1242. "%d bytes in a single small buffer.\n", length);
  1243. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1244. skb = sbq_desc->p.skb;
  1245. ql_realign_skb(skb, length);
  1246. skb_put(skb, length);
  1247. pci_unmap_single(qdev->pdev,
  1248. pci_unmap_addr(sbq_desc,
  1249. mapaddr),
  1250. pci_unmap_len(sbq_desc,
  1251. maplen),
  1252. PCI_DMA_FROMDEVICE);
  1253. sbq_desc->p.skb = NULL;
  1254. }
  1255. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1256. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1257. QPRINTK(qdev, RX_STATUS, DEBUG,
  1258. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1259. /*
  1260. * The data is in a single large buffer. We
  1261. * chain it to the header buffer's skb and let
  1262. * it rip.
  1263. */
  1264. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1265. pci_unmap_page(qdev->pdev,
  1266. pci_unmap_addr(lbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(lbq_desc, maplen),
  1269. PCI_DMA_FROMDEVICE);
  1270. QPRINTK(qdev, RX_STATUS, DEBUG,
  1271. "Chaining page to skb.\n");
  1272. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1273. 0, length);
  1274. skb->len += length;
  1275. skb->data_len += length;
  1276. skb->truesize += length;
  1277. lbq_desc->p.lbq_page = NULL;
  1278. } else {
  1279. /*
  1280. * The headers and data are in a single large buffer. We
  1281. * copy it to a new skb and let it go. This can happen with
  1282. * jumbo mtu on a non-TCP/UDP frame.
  1283. */
  1284. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1285. skb = netdev_alloc_skb(qdev->ndev, length);
  1286. if (skb == NULL) {
  1287. QPRINTK(qdev, PROBE, DEBUG,
  1288. "No skb available, drop the packet.\n");
  1289. return NULL;
  1290. }
  1291. pci_unmap_page(qdev->pdev,
  1292. pci_unmap_addr(lbq_desc,
  1293. mapaddr),
  1294. pci_unmap_len(lbq_desc, maplen),
  1295. PCI_DMA_FROMDEVICE);
  1296. skb_reserve(skb, NET_IP_ALIGN);
  1297. QPRINTK(qdev, RX_STATUS, DEBUG,
  1298. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1299. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1300. 0, length);
  1301. skb->len += length;
  1302. skb->data_len += length;
  1303. skb->truesize += length;
  1304. length -= length;
  1305. lbq_desc->p.lbq_page = NULL;
  1306. __pskb_pull_tail(skb,
  1307. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1308. VLAN_ETH_HLEN : ETH_HLEN);
  1309. }
  1310. } else {
  1311. /*
  1312. * The data is in a chain of large buffers
  1313. * pointed to by a small buffer. We loop
  1314. * thru and chain them to the our small header
  1315. * buffer's skb.
  1316. * frags: There are 18 max frags and our small
  1317. * buffer will hold 32 of them. The thing is,
  1318. * we'll use 3 max for our 9000 byte jumbo
  1319. * frames. If the MTU goes up we could
  1320. * eventually be in trouble.
  1321. */
  1322. int size, offset, i = 0;
  1323. __le64 *bq, bq_array[8];
  1324. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1325. pci_unmap_single(qdev->pdev,
  1326. pci_unmap_addr(sbq_desc, mapaddr),
  1327. pci_unmap_len(sbq_desc, maplen),
  1328. PCI_DMA_FROMDEVICE);
  1329. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1330. /*
  1331. * This is an non TCP/UDP IP frame, so
  1332. * the headers aren't split into a small
  1333. * buffer. We have to use the small buffer
  1334. * that contains our sg list as our skb to
  1335. * send upstairs. Copy the sg list here to
  1336. * a local buffer and use it to find the
  1337. * pages to chain.
  1338. */
  1339. QPRINTK(qdev, RX_STATUS, DEBUG,
  1340. "%d bytes of headers & data in chain of large.\n", length);
  1341. skb = sbq_desc->p.skb;
  1342. bq = &bq_array[0];
  1343. memcpy(bq, skb->data, sizeof(bq_array));
  1344. sbq_desc->p.skb = NULL;
  1345. skb_reserve(skb, NET_IP_ALIGN);
  1346. } else {
  1347. QPRINTK(qdev, RX_STATUS, DEBUG,
  1348. "Headers in small, %d bytes of data in chain of large.\n", length);
  1349. bq = (__le64 *)sbq_desc->p.skb->data;
  1350. }
  1351. while (length > 0) {
  1352. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1353. pci_unmap_page(qdev->pdev,
  1354. pci_unmap_addr(lbq_desc,
  1355. mapaddr),
  1356. pci_unmap_len(lbq_desc,
  1357. maplen),
  1358. PCI_DMA_FROMDEVICE);
  1359. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1360. offset = 0;
  1361. QPRINTK(qdev, RX_STATUS, DEBUG,
  1362. "Adding page %d to skb for %d bytes.\n",
  1363. i, size);
  1364. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1365. offset, size);
  1366. skb->len += size;
  1367. skb->data_len += size;
  1368. skb->truesize += size;
  1369. length -= size;
  1370. lbq_desc->p.lbq_page = NULL;
  1371. bq++;
  1372. i++;
  1373. }
  1374. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1375. VLAN_ETH_HLEN : ETH_HLEN);
  1376. }
  1377. return skb;
  1378. }
  1379. /* Process an inbound completion from an rx ring. */
  1380. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1381. struct rx_ring *rx_ring,
  1382. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1383. {
  1384. struct net_device *ndev = qdev->ndev;
  1385. struct sk_buff *skb = NULL;
  1386. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1387. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1388. if (unlikely(!skb)) {
  1389. QPRINTK(qdev, RX_STATUS, DEBUG,
  1390. "No skb available, drop packet.\n");
  1391. return;
  1392. }
  1393. prefetch(skb->data);
  1394. skb->dev = ndev;
  1395. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1396. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1397. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1398. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1399. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1400. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1401. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1402. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1403. }
  1404. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1405. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1406. }
  1407. skb->protocol = eth_type_trans(skb, ndev);
  1408. skb->ip_summed = CHECKSUM_NONE;
  1409. /* If rx checksum is on, and there are no
  1410. * csum or frame errors.
  1411. */
  1412. if (qdev->rx_csum &&
  1413. !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
  1414. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1415. /* TCP frame. */
  1416. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1417. QPRINTK(qdev, RX_STATUS, DEBUG,
  1418. "TCP checksum done!\n");
  1419. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1420. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1421. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1422. /* Unfragmented ipv4 UDP frame. */
  1423. struct iphdr *iph = (struct iphdr *) skb->data;
  1424. if (!(iph->frag_off &
  1425. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1426. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1427. QPRINTK(qdev, RX_STATUS, DEBUG,
  1428. "TCP checksum done!\n");
  1429. }
  1430. }
  1431. }
  1432. qdev->stats.rx_packets++;
  1433. qdev->stats.rx_bytes += skb->len;
  1434. skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
  1435. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1436. QPRINTK(qdev, RX_STATUS, DEBUG,
  1437. "Passing a VLAN packet upstream.\n");
  1438. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1439. le16_to_cpu(ib_mac_rsp->vlan_id));
  1440. } else {
  1441. QPRINTK(qdev, RX_STATUS, DEBUG,
  1442. "Passing a normal packet upstream.\n");
  1443. netif_receive_skb(skb);
  1444. }
  1445. }
  1446. /* Process an outbound completion from an rx ring. */
  1447. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1448. struct ob_mac_iocb_rsp *mac_rsp)
  1449. {
  1450. struct tx_ring *tx_ring;
  1451. struct tx_ring_desc *tx_ring_desc;
  1452. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1453. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1454. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1455. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1456. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1457. qdev->stats.tx_packets++;
  1458. dev_kfree_skb(tx_ring_desc->skb);
  1459. tx_ring_desc->skb = NULL;
  1460. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1461. OB_MAC_IOCB_RSP_S |
  1462. OB_MAC_IOCB_RSP_L |
  1463. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1464. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1465. QPRINTK(qdev, TX_DONE, WARNING,
  1466. "Total descriptor length did not match transfer length.\n");
  1467. }
  1468. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1469. QPRINTK(qdev, TX_DONE, WARNING,
  1470. "Frame too short to be legal, not sent.\n");
  1471. }
  1472. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1473. QPRINTK(qdev, TX_DONE, WARNING,
  1474. "Frame too long, but sent anyway.\n");
  1475. }
  1476. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1477. QPRINTK(qdev, TX_DONE, WARNING,
  1478. "PCI backplane error. Frame not sent.\n");
  1479. }
  1480. }
  1481. atomic_inc(&tx_ring->tx_count);
  1482. }
  1483. /* Fire up a handler to reset the MPI processor. */
  1484. void ql_queue_fw_error(struct ql_adapter *qdev)
  1485. {
  1486. netif_stop_queue(qdev->ndev);
  1487. netif_carrier_off(qdev->ndev);
  1488. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1489. }
  1490. void ql_queue_asic_error(struct ql_adapter *qdev)
  1491. {
  1492. netif_stop_queue(qdev->ndev);
  1493. netif_carrier_off(qdev->ndev);
  1494. ql_disable_interrupts(qdev);
  1495. /* Clear adapter up bit to signal the recovery
  1496. * process that it shouldn't kill the reset worker
  1497. * thread
  1498. */
  1499. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1500. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1501. }
  1502. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1503. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1504. {
  1505. switch (ib_ae_rsp->event) {
  1506. case MGMT_ERR_EVENT:
  1507. QPRINTK(qdev, RX_ERR, ERR,
  1508. "Management Processor Fatal Error.\n");
  1509. ql_queue_fw_error(qdev);
  1510. return;
  1511. case CAM_LOOKUP_ERR_EVENT:
  1512. QPRINTK(qdev, LINK, ERR,
  1513. "Multiple CAM hits lookup occurred.\n");
  1514. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1515. ql_queue_asic_error(qdev);
  1516. return;
  1517. case SOFT_ECC_ERROR_EVENT:
  1518. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1519. ql_queue_asic_error(qdev);
  1520. break;
  1521. case PCI_ERR_ANON_BUF_RD:
  1522. QPRINTK(qdev, RX_ERR, ERR,
  1523. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1524. ib_ae_rsp->q_id);
  1525. ql_queue_asic_error(qdev);
  1526. break;
  1527. default:
  1528. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1529. ib_ae_rsp->event);
  1530. ql_queue_asic_error(qdev);
  1531. break;
  1532. }
  1533. }
  1534. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1535. {
  1536. struct ql_adapter *qdev = rx_ring->qdev;
  1537. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1538. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1539. int count = 0;
  1540. /* While there are entries in the completion queue. */
  1541. while (prod != rx_ring->cnsmr_idx) {
  1542. QPRINTK(qdev, RX_STATUS, DEBUG,
  1543. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1544. prod, rx_ring->cnsmr_idx);
  1545. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1546. rmb();
  1547. switch (net_rsp->opcode) {
  1548. case OPCODE_OB_MAC_TSO_IOCB:
  1549. case OPCODE_OB_MAC_IOCB:
  1550. ql_process_mac_tx_intr(qdev, net_rsp);
  1551. break;
  1552. default:
  1553. QPRINTK(qdev, RX_STATUS, DEBUG,
  1554. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1555. net_rsp->opcode);
  1556. }
  1557. count++;
  1558. ql_update_cq(rx_ring);
  1559. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1560. }
  1561. ql_write_cq_idx(rx_ring);
  1562. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1563. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1564. if (atomic_read(&tx_ring->queue_stopped) &&
  1565. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1566. /*
  1567. * The queue got stopped because the tx_ring was full.
  1568. * Wake it up, because it's now at least 25% empty.
  1569. */
  1570. netif_wake_queue(qdev->ndev);
  1571. }
  1572. return count;
  1573. }
  1574. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1575. {
  1576. struct ql_adapter *qdev = rx_ring->qdev;
  1577. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1578. struct ql_net_rsp_iocb *net_rsp;
  1579. int count = 0;
  1580. /* While there are entries in the completion queue. */
  1581. while (prod != rx_ring->cnsmr_idx) {
  1582. QPRINTK(qdev, RX_STATUS, DEBUG,
  1583. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1584. prod, rx_ring->cnsmr_idx);
  1585. net_rsp = rx_ring->curr_entry;
  1586. rmb();
  1587. switch (net_rsp->opcode) {
  1588. case OPCODE_IB_MAC_IOCB:
  1589. ql_process_mac_rx_intr(qdev, rx_ring,
  1590. (struct ib_mac_iocb_rsp *)
  1591. net_rsp);
  1592. break;
  1593. case OPCODE_IB_AE_IOCB:
  1594. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1595. net_rsp);
  1596. break;
  1597. default:
  1598. {
  1599. QPRINTK(qdev, RX_STATUS, DEBUG,
  1600. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1601. net_rsp->opcode);
  1602. }
  1603. }
  1604. count++;
  1605. ql_update_cq(rx_ring);
  1606. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1607. if (count == budget)
  1608. break;
  1609. }
  1610. ql_update_buffer_queues(qdev, rx_ring);
  1611. ql_write_cq_idx(rx_ring);
  1612. return count;
  1613. }
  1614. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1615. {
  1616. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1617. struct ql_adapter *qdev = rx_ring->qdev;
  1618. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1619. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1620. rx_ring->cq_id);
  1621. if (work_done < budget) {
  1622. __napi_complete(napi);
  1623. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1624. }
  1625. return work_done;
  1626. }
  1627. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1628. {
  1629. struct ql_adapter *qdev = netdev_priv(ndev);
  1630. qdev->vlgrp = grp;
  1631. if (grp) {
  1632. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1633. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1634. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1635. } else {
  1636. QPRINTK(qdev, IFUP, DEBUG,
  1637. "Turning off VLAN in NIC_RCV_CFG.\n");
  1638. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1639. }
  1640. }
  1641. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1642. {
  1643. struct ql_adapter *qdev = netdev_priv(ndev);
  1644. u32 enable_bit = MAC_ADDR_E;
  1645. int status;
  1646. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1647. if (status)
  1648. return;
  1649. spin_lock(&qdev->hw_lock);
  1650. if (ql_set_mac_addr_reg
  1651. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1652. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1653. }
  1654. spin_unlock(&qdev->hw_lock);
  1655. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1656. }
  1657. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1658. {
  1659. struct ql_adapter *qdev = netdev_priv(ndev);
  1660. u32 enable_bit = 0;
  1661. int status;
  1662. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1663. if (status)
  1664. return;
  1665. spin_lock(&qdev->hw_lock);
  1666. if (ql_set_mac_addr_reg
  1667. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1668. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1669. }
  1670. spin_unlock(&qdev->hw_lock);
  1671. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1672. }
  1673. /* Worker thread to process a given rx_ring that is dedicated
  1674. * to outbound completions.
  1675. */
  1676. static void ql_tx_clean(struct work_struct *work)
  1677. {
  1678. struct rx_ring *rx_ring =
  1679. container_of(work, struct rx_ring, rx_work.work);
  1680. ql_clean_outbound_rx_ring(rx_ring);
  1681. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1682. }
  1683. /* Worker thread to process a given rx_ring that is dedicated
  1684. * to inbound completions.
  1685. */
  1686. static void ql_rx_clean(struct work_struct *work)
  1687. {
  1688. struct rx_ring *rx_ring =
  1689. container_of(work, struct rx_ring, rx_work.work);
  1690. ql_clean_inbound_rx_ring(rx_ring, 64);
  1691. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1692. }
  1693. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1694. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1695. {
  1696. struct rx_ring *rx_ring = dev_id;
  1697. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1698. &rx_ring->rx_work, 0);
  1699. return IRQ_HANDLED;
  1700. }
  1701. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1702. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1703. {
  1704. struct rx_ring *rx_ring = dev_id;
  1705. napi_schedule(&rx_ring->napi);
  1706. return IRQ_HANDLED;
  1707. }
  1708. /* This handles a fatal error, MPI activity, and the default
  1709. * rx_ring in an MSI-X multiple vector environment.
  1710. * In MSI/Legacy environment it also process the rest of
  1711. * the rx_rings.
  1712. */
  1713. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1714. {
  1715. struct rx_ring *rx_ring = dev_id;
  1716. struct ql_adapter *qdev = rx_ring->qdev;
  1717. struct intr_context *intr_context = &qdev->intr_context[0];
  1718. u32 var;
  1719. int i;
  1720. int work_done = 0;
  1721. spin_lock(&qdev->hw_lock);
  1722. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1723. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1724. spin_unlock(&qdev->hw_lock);
  1725. return IRQ_NONE;
  1726. }
  1727. spin_unlock(&qdev->hw_lock);
  1728. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1729. /*
  1730. * Check for fatal error.
  1731. */
  1732. if (var & STS_FE) {
  1733. ql_queue_asic_error(qdev);
  1734. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1735. var = ql_read32(qdev, ERR_STS);
  1736. QPRINTK(qdev, INTR, ERR,
  1737. "Resetting chip. Error Status Register = 0x%x\n", var);
  1738. return IRQ_HANDLED;
  1739. }
  1740. /*
  1741. * Check MPI processor activity.
  1742. */
  1743. if (var & STS_PI) {
  1744. /*
  1745. * We've got an async event or mailbox completion.
  1746. * Handle it and clear the source of the interrupt.
  1747. */
  1748. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1749. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1750. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1751. &qdev->mpi_work, 0);
  1752. work_done++;
  1753. }
  1754. /*
  1755. * Check the default queue and wake handler if active.
  1756. */
  1757. rx_ring = &qdev->rx_ring[0];
  1758. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1759. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1760. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1761. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1762. &rx_ring->rx_work, 0);
  1763. work_done++;
  1764. }
  1765. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1766. /*
  1767. * Start the DPC for each active queue.
  1768. */
  1769. for (i = 1; i < qdev->rx_ring_count; i++) {
  1770. rx_ring = &qdev->rx_ring[i];
  1771. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1772. rx_ring->cnsmr_idx) {
  1773. QPRINTK(qdev, INTR, INFO,
  1774. "Waking handler for rx_ring[%d].\n", i);
  1775. ql_disable_completion_interrupt(qdev,
  1776. intr_context->
  1777. intr);
  1778. if (i < qdev->rss_ring_first_cq_id)
  1779. queue_delayed_work_on(rx_ring->cpu,
  1780. qdev->q_workqueue,
  1781. &rx_ring->rx_work,
  1782. 0);
  1783. else
  1784. napi_schedule(&rx_ring->napi);
  1785. work_done++;
  1786. }
  1787. }
  1788. }
  1789. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1790. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1791. }
  1792. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1793. {
  1794. if (skb_is_gso(skb)) {
  1795. int err;
  1796. if (skb_header_cloned(skb)) {
  1797. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1798. if (err)
  1799. return err;
  1800. }
  1801. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1802. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1803. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1804. mac_iocb_ptr->total_hdrs_len =
  1805. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1806. mac_iocb_ptr->net_trans_offset =
  1807. cpu_to_le16(skb_network_offset(skb) |
  1808. skb_transport_offset(skb)
  1809. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1810. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1811. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1812. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1813. struct iphdr *iph = ip_hdr(skb);
  1814. iph->check = 0;
  1815. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1816. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1817. iph->daddr, 0,
  1818. IPPROTO_TCP,
  1819. 0);
  1820. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1821. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1822. tcp_hdr(skb)->check =
  1823. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1824. &ipv6_hdr(skb)->daddr,
  1825. 0, IPPROTO_TCP, 0);
  1826. }
  1827. return 1;
  1828. }
  1829. return 0;
  1830. }
  1831. static void ql_hw_csum_setup(struct sk_buff *skb,
  1832. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1833. {
  1834. int len;
  1835. struct iphdr *iph = ip_hdr(skb);
  1836. __sum16 *check;
  1837. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1838. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1839. mac_iocb_ptr->net_trans_offset =
  1840. cpu_to_le16(skb_network_offset(skb) |
  1841. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1842. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1843. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1844. if (likely(iph->protocol == IPPROTO_TCP)) {
  1845. check = &(tcp_hdr(skb)->check);
  1846. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1847. mac_iocb_ptr->total_hdrs_len =
  1848. cpu_to_le16(skb_transport_offset(skb) +
  1849. (tcp_hdr(skb)->doff << 2));
  1850. } else {
  1851. check = &(udp_hdr(skb)->check);
  1852. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1853. mac_iocb_ptr->total_hdrs_len =
  1854. cpu_to_le16(skb_transport_offset(skb) +
  1855. sizeof(struct udphdr));
  1856. }
  1857. *check = ~csum_tcpudp_magic(iph->saddr,
  1858. iph->daddr, len, iph->protocol, 0);
  1859. }
  1860. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1861. {
  1862. struct tx_ring_desc *tx_ring_desc;
  1863. struct ob_mac_iocb_req *mac_iocb_ptr;
  1864. struct ql_adapter *qdev = netdev_priv(ndev);
  1865. int tso;
  1866. struct tx_ring *tx_ring;
  1867. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1868. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1869. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1870. QPRINTK(qdev, TX_QUEUED, INFO,
  1871. "%s: shutting down tx queue %d du to lack of resources.\n",
  1872. __func__, tx_ring_idx);
  1873. netif_stop_queue(ndev);
  1874. atomic_inc(&tx_ring->queue_stopped);
  1875. return NETDEV_TX_BUSY;
  1876. }
  1877. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1878. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1879. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1880. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1881. mac_iocb_ptr->tid = tx_ring_desc->index;
  1882. /* We use the upper 32-bits to store the tx queue for this IO.
  1883. * When we get the completion we can use it to establish the context.
  1884. */
  1885. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1886. tx_ring_desc->skb = skb;
  1887. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1888. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1889. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1890. vlan_tx_tag_get(skb));
  1891. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1892. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1893. }
  1894. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1895. if (tso < 0) {
  1896. dev_kfree_skb_any(skb);
  1897. return NETDEV_TX_OK;
  1898. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1899. ql_hw_csum_setup(skb,
  1900. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1901. }
  1902. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1903. NETDEV_TX_OK) {
  1904. QPRINTK(qdev, TX_QUEUED, ERR,
  1905. "Could not map the segments.\n");
  1906. return NETDEV_TX_BUSY;
  1907. }
  1908. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1909. tx_ring->prod_idx++;
  1910. if (tx_ring->prod_idx == tx_ring->wq_len)
  1911. tx_ring->prod_idx = 0;
  1912. wmb();
  1913. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1914. ndev->trans_start = jiffies;
  1915. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1916. tx_ring->prod_idx, skb->len);
  1917. atomic_dec(&tx_ring->tx_count);
  1918. return NETDEV_TX_OK;
  1919. }
  1920. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1921. {
  1922. if (qdev->rx_ring_shadow_reg_area) {
  1923. pci_free_consistent(qdev->pdev,
  1924. PAGE_SIZE,
  1925. qdev->rx_ring_shadow_reg_area,
  1926. qdev->rx_ring_shadow_reg_dma);
  1927. qdev->rx_ring_shadow_reg_area = NULL;
  1928. }
  1929. if (qdev->tx_ring_shadow_reg_area) {
  1930. pci_free_consistent(qdev->pdev,
  1931. PAGE_SIZE,
  1932. qdev->tx_ring_shadow_reg_area,
  1933. qdev->tx_ring_shadow_reg_dma);
  1934. qdev->tx_ring_shadow_reg_area = NULL;
  1935. }
  1936. }
  1937. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1938. {
  1939. qdev->rx_ring_shadow_reg_area =
  1940. pci_alloc_consistent(qdev->pdev,
  1941. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1942. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1943. QPRINTK(qdev, IFUP, ERR,
  1944. "Allocation of RX shadow space failed.\n");
  1945. return -ENOMEM;
  1946. }
  1947. qdev->tx_ring_shadow_reg_area =
  1948. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1949. &qdev->tx_ring_shadow_reg_dma);
  1950. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1951. QPRINTK(qdev, IFUP, ERR,
  1952. "Allocation of TX shadow space failed.\n");
  1953. goto err_wqp_sh_area;
  1954. }
  1955. return 0;
  1956. err_wqp_sh_area:
  1957. pci_free_consistent(qdev->pdev,
  1958. PAGE_SIZE,
  1959. qdev->rx_ring_shadow_reg_area,
  1960. qdev->rx_ring_shadow_reg_dma);
  1961. return -ENOMEM;
  1962. }
  1963. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1964. {
  1965. struct tx_ring_desc *tx_ring_desc;
  1966. int i;
  1967. struct ob_mac_iocb_req *mac_iocb_ptr;
  1968. mac_iocb_ptr = tx_ring->wq_base;
  1969. tx_ring_desc = tx_ring->q;
  1970. for (i = 0; i < tx_ring->wq_len; i++) {
  1971. tx_ring_desc->index = i;
  1972. tx_ring_desc->skb = NULL;
  1973. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1974. mac_iocb_ptr++;
  1975. tx_ring_desc++;
  1976. }
  1977. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1978. atomic_set(&tx_ring->queue_stopped, 0);
  1979. }
  1980. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1981. struct tx_ring *tx_ring)
  1982. {
  1983. if (tx_ring->wq_base) {
  1984. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1985. tx_ring->wq_base, tx_ring->wq_base_dma);
  1986. tx_ring->wq_base = NULL;
  1987. }
  1988. kfree(tx_ring->q);
  1989. tx_ring->q = NULL;
  1990. }
  1991. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1992. struct tx_ring *tx_ring)
  1993. {
  1994. tx_ring->wq_base =
  1995. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1996. &tx_ring->wq_base_dma);
  1997. if ((tx_ring->wq_base == NULL)
  1998. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1999. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2000. return -ENOMEM;
  2001. }
  2002. tx_ring->q =
  2003. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2004. if (tx_ring->q == NULL)
  2005. goto err;
  2006. return 0;
  2007. err:
  2008. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2009. tx_ring->wq_base, tx_ring->wq_base_dma);
  2010. return -ENOMEM;
  2011. }
  2012. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2013. {
  2014. int i;
  2015. struct bq_desc *lbq_desc;
  2016. for (i = 0; i < rx_ring->lbq_len; i++) {
  2017. lbq_desc = &rx_ring->lbq[i];
  2018. if (lbq_desc->p.lbq_page) {
  2019. pci_unmap_page(qdev->pdev,
  2020. pci_unmap_addr(lbq_desc, mapaddr),
  2021. pci_unmap_len(lbq_desc, maplen),
  2022. PCI_DMA_FROMDEVICE);
  2023. put_page(lbq_desc->p.lbq_page);
  2024. lbq_desc->p.lbq_page = NULL;
  2025. }
  2026. }
  2027. }
  2028. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2029. {
  2030. int i;
  2031. struct bq_desc *sbq_desc;
  2032. for (i = 0; i < rx_ring->sbq_len; i++) {
  2033. sbq_desc = &rx_ring->sbq[i];
  2034. if (sbq_desc == NULL) {
  2035. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2036. return;
  2037. }
  2038. if (sbq_desc->p.skb) {
  2039. pci_unmap_single(qdev->pdev,
  2040. pci_unmap_addr(sbq_desc, mapaddr),
  2041. pci_unmap_len(sbq_desc, maplen),
  2042. PCI_DMA_FROMDEVICE);
  2043. dev_kfree_skb(sbq_desc->p.skb);
  2044. sbq_desc->p.skb = NULL;
  2045. }
  2046. }
  2047. }
  2048. /* Free all large and small rx buffers associated
  2049. * with the completion queues for this device.
  2050. */
  2051. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2052. {
  2053. int i;
  2054. struct rx_ring *rx_ring;
  2055. for (i = 0; i < qdev->rx_ring_count; i++) {
  2056. rx_ring = &qdev->rx_ring[i];
  2057. if (rx_ring->lbq)
  2058. ql_free_lbq_buffers(qdev, rx_ring);
  2059. if (rx_ring->sbq)
  2060. ql_free_sbq_buffers(qdev, rx_ring);
  2061. }
  2062. }
  2063. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2064. {
  2065. struct rx_ring *rx_ring;
  2066. int i;
  2067. for (i = 0; i < qdev->rx_ring_count; i++) {
  2068. rx_ring = &qdev->rx_ring[i];
  2069. if (rx_ring->type != TX_Q)
  2070. ql_update_buffer_queues(qdev, rx_ring);
  2071. }
  2072. }
  2073. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2074. struct rx_ring *rx_ring)
  2075. {
  2076. int i;
  2077. struct bq_desc *lbq_desc;
  2078. __le64 *bq = rx_ring->lbq_base;
  2079. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2080. for (i = 0; i < rx_ring->lbq_len; i++) {
  2081. lbq_desc = &rx_ring->lbq[i];
  2082. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2083. lbq_desc->index = i;
  2084. lbq_desc->addr = bq;
  2085. bq++;
  2086. }
  2087. }
  2088. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2089. struct rx_ring *rx_ring)
  2090. {
  2091. int i;
  2092. struct bq_desc *sbq_desc;
  2093. __le64 *bq = rx_ring->sbq_base;
  2094. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2095. for (i = 0; i < rx_ring->sbq_len; i++) {
  2096. sbq_desc = &rx_ring->sbq[i];
  2097. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2098. sbq_desc->index = i;
  2099. sbq_desc->addr = bq;
  2100. bq++;
  2101. }
  2102. }
  2103. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2104. struct rx_ring *rx_ring)
  2105. {
  2106. /* Free the small buffer queue. */
  2107. if (rx_ring->sbq_base) {
  2108. pci_free_consistent(qdev->pdev,
  2109. rx_ring->sbq_size,
  2110. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2111. rx_ring->sbq_base = NULL;
  2112. }
  2113. /* Free the small buffer queue control blocks. */
  2114. kfree(rx_ring->sbq);
  2115. rx_ring->sbq = NULL;
  2116. /* Free the large buffer queue. */
  2117. if (rx_ring->lbq_base) {
  2118. pci_free_consistent(qdev->pdev,
  2119. rx_ring->lbq_size,
  2120. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2121. rx_ring->lbq_base = NULL;
  2122. }
  2123. /* Free the large buffer queue control blocks. */
  2124. kfree(rx_ring->lbq);
  2125. rx_ring->lbq = NULL;
  2126. /* Free the rx queue. */
  2127. if (rx_ring->cq_base) {
  2128. pci_free_consistent(qdev->pdev,
  2129. rx_ring->cq_size,
  2130. rx_ring->cq_base, rx_ring->cq_base_dma);
  2131. rx_ring->cq_base = NULL;
  2132. }
  2133. }
  2134. /* Allocate queues and buffers for this completions queue based
  2135. * on the values in the parameter structure. */
  2136. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2137. struct rx_ring *rx_ring)
  2138. {
  2139. /*
  2140. * Allocate the completion queue for this rx_ring.
  2141. */
  2142. rx_ring->cq_base =
  2143. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2144. &rx_ring->cq_base_dma);
  2145. if (rx_ring->cq_base == NULL) {
  2146. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2147. return -ENOMEM;
  2148. }
  2149. if (rx_ring->sbq_len) {
  2150. /*
  2151. * Allocate small buffer queue.
  2152. */
  2153. rx_ring->sbq_base =
  2154. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2155. &rx_ring->sbq_base_dma);
  2156. if (rx_ring->sbq_base == NULL) {
  2157. QPRINTK(qdev, IFUP, ERR,
  2158. "Small buffer queue allocation failed.\n");
  2159. goto err_mem;
  2160. }
  2161. /*
  2162. * Allocate small buffer queue control blocks.
  2163. */
  2164. rx_ring->sbq =
  2165. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2166. GFP_KERNEL);
  2167. if (rx_ring->sbq == NULL) {
  2168. QPRINTK(qdev, IFUP, ERR,
  2169. "Small buffer queue control block allocation failed.\n");
  2170. goto err_mem;
  2171. }
  2172. ql_init_sbq_ring(qdev, rx_ring);
  2173. }
  2174. if (rx_ring->lbq_len) {
  2175. /*
  2176. * Allocate large buffer queue.
  2177. */
  2178. rx_ring->lbq_base =
  2179. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2180. &rx_ring->lbq_base_dma);
  2181. if (rx_ring->lbq_base == NULL) {
  2182. QPRINTK(qdev, IFUP, ERR,
  2183. "Large buffer queue allocation failed.\n");
  2184. goto err_mem;
  2185. }
  2186. /*
  2187. * Allocate large buffer queue control blocks.
  2188. */
  2189. rx_ring->lbq =
  2190. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2191. GFP_KERNEL);
  2192. if (rx_ring->lbq == NULL) {
  2193. QPRINTK(qdev, IFUP, ERR,
  2194. "Large buffer queue control block allocation failed.\n");
  2195. goto err_mem;
  2196. }
  2197. ql_init_lbq_ring(qdev, rx_ring);
  2198. }
  2199. return 0;
  2200. err_mem:
  2201. ql_free_rx_resources(qdev, rx_ring);
  2202. return -ENOMEM;
  2203. }
  2204. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2205. {
  2206. struct tx_ring *tx_ring;
  2207. struct tx_ring_desc *tx_ring_desc;
  2208. int i, j;
  2209. /*
  2210. * Loop through all queues and free
  2211. * any resources.
  2212. */
  2213. for (j = 0; j < qdev->tx_ring_count; j++) {
  2214. tx_ring = &qdev->tx_ring[j];
  2215. for (i = 0; i < tx_ring->wq_len; i++) {
  2216. tx_ring_desc = &tx_ring->q[i];
  2217. if (tx_ring_desc && tx_ring_desc->skb) {
  2218. QPRINTK(qdev, IFDOWN, ERR,
  2219. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2220. tx_ring_desc->skb, j,
  2221. tx_ring_desc->index);
  2222. ql_unmap_send(qdev, tx_ring_desc,
  2223. tx_ring_desc->map_cnt);
  2224. dev_kfree_skb(tx_ring_desc->skb);
  2225. tx_ring_desc->skb = NULL;
  2226. }
  2227. }
  2228. }
  2229. }
  2230. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2231. {
  2232. int i;
  2233. for (i = 0; i < qdev->tx_ring_count; i++)
  2234. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2235. for (i = 0; i < qdev->rx_ring_count; i++)
  2236. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2237. ql_free_shadow_space(qdev);
  2238. }
  2239. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2240. {
  2241. int i;
  2242. /* Allocate space for our shadow registers and such. */
  2243. if (ql_alloc_shadow_space(qdev))
  2244. return -ENOMEM;
  2245. for (i = 0; i < qdev->rx_ring_count; i++) {
  2246. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2247. QPRINTK(qdev, IFUP, ERR,
  2248. "RX resource allocation failed.\n");
  2249. goto err_mem;
  2250. }
  2251. }
  2252. /* Allocate tx queue resources */
  2253. for (i = 0; i < qdev->tx_ring_count; i++) {
  2254. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2255. QPRINTK(qdev, IFUP, ERR,
  2256. "TX resource allocation failed.\n");
  2257. goto err_mem;
  2258. }
  2259. }
  2260. return 0;
  2261. err_mem:
  2262. ql_free_mem_resources(qdev);
  2263. return -ENOMEM;
  2264. }
  2265. /* Set up the rx ring control block and pass it to the chip.
  2266. * The control block is defined as
  2267. * "Completion Queue Initialization Control Block", or cqicb.
  2268. */
  2269. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2270. {
  2271. struct cqicb *cqicb = &rx_ring->cqicb;
  2272. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2273. (rx_ring->cq_id * sizeof(u64) * 4);
  2274. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2275. (rx_ring->cq_id * sizeof(u64) * 4);
  2276. void __iomem *doorbell_area =
  2277. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2278. int err = 0;
  2279. u16 bq_len;
  2280. /* Set up the shadow registers for this ring. */
  2281. rx_ring->prod_idx_sh_reg = shadow_reg;
  2282. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2283. shadow_reg += sizeof(u64);
  2284. shadow_reg_dma += sizeof(u64);
  2285. rx_ring->lbq_base_indirect = shadow_reg;
  2286. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2287. shadow_reg += sizeof(u64);
  2288. shadow_reg_dma += sizeof(u64);
  2289. rx_ring->sbq_base_indirect = shadow_reg;
  2290. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2291. /* PCI doorbell mem area + 0x00 for consumer index register */
  2292. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2293. rx_ring->cnsmr_idx = 0;
  2294. rx_ring->curr_entry = rx_ring->cq_base;
  2295. /* PCI doorbell mem area + 0x04 for valid register */
  2296. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2297. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2298. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2299. /* PCI doorbell mem area + 0x1c */
  2300. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2301. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2302. cqicb->msix_vect = rx_ring->irq;
  2303. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2304. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2305. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2306. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2307. /*
  2308. * Set up the control block load flags.
  2309. */
  2310. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2311. FLAGS_LV | /* Load MSI-X vector */
  2312. FLAGS_LI; /* Load irq delay values */
  2313. if (rx_ring->lbq_len) {
  2314. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2315. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2316. cqicb->lbq_addr =
  2317. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2318. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2319. (u16) rx_ring->lbq_buf_size;
  2320. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2321. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2322. (u16) rx_ring->lbq_len;
  2323. cqicb->lbq_len = cpu_to_le16(bq_len);
  2324. rx_ring->lbq_prod_idx = 0;
  2325. rx_ring->lbq_curr_idx = 0;
  2326. rx_ring->lbq_clean_idx = 0;
  2327. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2328. }
  2329. if (rx_ring->sbq_len) {
  2330. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2331. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2332. cqicb->sbq_addr =
  2333. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2334. cqicb->sbq_buf_size =
  2335. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2336. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2337. (u16) rx_ring->sbq_len;
  2338. cqicb->sbq_len = cpu_to_le16(bq_len);
  2339. rx_ring->sbq_prod_idx = 0;
  2340. rx_ring->sbq_curr_idx = 0;
  2341. rx_ring->sbq_clean_idx = 0;
  2342. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2343. }
  2344. switch (rx_ring->type) {
  2345. case TX_Q:
  2346. /* If there's only one interrupt, then we use
  2347. * worker threads to process the outbound
  2348. * completion handling rx_rings. We do this so
  2349. * they can be run on multiple CPUs. There is
  2350. * room to play with this more where we would only
  2351. * run in a worker if there are more than x number
  2352. * of outbound completions on the queue and more
  2353. * than one queue active. Some threshold that
  2354. * would indicate a benefit in spite of the cost
  2355. * of a context switch.
  2356. * If there's more than one interrupt, then the
  2357. * outbound completions are processed in the ISR.
  2358. */
  2359. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2360. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2361. else {
  2362. /* With all debug warnings on we see a WARN_ON message
  2363. * when we free the skb in the interrupt context.
  2364. */
  2365. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2366. }
  2367. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2368. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2369. break;
  2370. case DEFAULT_Q:
  2371. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2372. cqicb->irq_delay = 0;
  2373. cqicb->pkt_delay = 0;
  2374. break;
  2375. case RX_Q:
  2376. /* Inbound completion handling rx_rings run in
  2377. * separate NAPI contexts.
  2378. */
  2379. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2380. 64);
  2381. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2382. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2383. break;
  2384. default:
  2385. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2386. rx_ring->type);
  2387. }
  2388. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2389. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2390. CFG_LCQ, rx_ring->cq_id);
  2391. if (err) {
  2392. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2393. return err;
  2394. }
  2395. return err;
  2396. }
  2397. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2398. {
  2399. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2400. void __iomem *doorbell_area =
  2401. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2402. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2403. (tx_ring->wq_id * sizeof(u64));
  2404. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2405. (tx_ring->wq_id * sizeof(u64));
  2406. int err = 0;
  2407. /*
  2408. * Assign doorbell registers for this tx_ring.
  2409. */
  2410. /* TX PCI doorbell mem area for tx producer index */
  2411. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2412. tx_ring->prod_idx = 0;
  2413. /* TX PCI doorbell mem area + 0x04 */
  2414. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2415. /*
  2416. * Assign shadow registers for this tx_ring.
  2417. */
  2418. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2419. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2420. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2421. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2422. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2423. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2424. wqicb->rid = 0;
  2425. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2426. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2427. ql_init_tx_ring(qdev, tx_ring);
  2428. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2429. (u16) tx_ring->wq_id);
  2430. if (err) {
  2431. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2432. return err;
  2433. }
  2434. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2435. return err;
  2436. }
  2437. static void ql_disable_msix(struct ql_adapter *qdev)
  2438. {
  2439. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2440. pci_disable_msix(qdev->pdev);
  2441. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2442. kfree(qdev->msi_x_entry);
  2443. qdev->msi_x_entry = NULL;
  2444. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2445. pci_disable_msi(qdev->pdev);
  2446. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2447. }
  2448. }
  2449. static void ql_enable_msix(struct ql_adapter *qdev)
  2450. {
  2451. int i;
  2452. qdev->intr_count = 1;
  2453. /* Get the MSIX vectors. */
  2454. if (irq_type == MSIX_IRQ) {
  2455. /* Try to alloc space for the msix struct,
  2456. * if it fails then go to MSI/legacy.
  2457. */
  2458. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2459. sizeof(struct msix_entry),
  2460. GFP_KERNEL);
  2461. if (!qdev->msi_x_entry) {
  2462. irq_type = MSI_IRQ;
  2463. goto msi;
  2464. }
  2465. for (i = 0; i < qdev->rx_ring_count; i++)
  2466. qdev->msi_x_entry[i].entry = i;
  2467. if (!pci_enable_msix
  2468. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2469. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2470. qdev->intr_count = qdev->rx_ring_count;
  2471. QPRINTK(qdev, IFUP, DEBUG,
  2472. "MSI-X Enabled, got %d vectors.\n",
  2473. qdev->intr_count);
  2474. return;
  2475. } else {
  2476. kfree(qdev->msi_x_entry);
  2477. qdev->msi_x_entry = NULL;
  2478. QPRINTK(qdev, IFUP, WARNING,
  2479. "MSI-X Enable failed, trying MSI.\n");
  2480. irq_type = MSI_IRQ;
  2481. }
  2482. }
  2483. msi:
  2484. if (irq_type == MSI_IRQ) {
  2485. if (!pci_enable_msi(qdev->pdev)) {
  2486. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2487. QPRINTK(qdev, IFUP, INFO,
  2488. "Running with MSI interrupts.\n");
  2489. return;
  2490. }
  2491. }
  2492. irq_type = LEG_IRQ;
  2493. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2494. }
  2495. /*
  2496. * Here we build the intr_context structures based on
  2497. * our rx_ring count and intr vector count.
  2498. * The intr_context structure is used to hook each vector
  2499. * to possibly different handlers.
  2500. */
  2501. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2502. {
  2503. int i = 0;
  2504. struct intr_context *intr_context = &qdev->intr_context[0];
  2505. ql_enable_msix(qdev);
  2506. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2507. /* Each rx_ring has it's
  2508. * own intr_context since we have separate
  2509. * vectors for each queue.
  2510. * This only true when MSI-X is enabled.
  2511. */
  2512. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2513. qdev->rx_ring[i].irq = i;
  2514. intr_context->intr = i;
  2515. intr_context->qdev = qdev;
  2516. /*
  2517. * We set up each vectors enable/disable/read bits so
  2518. * there's no bit/mask calculations in the critical path.
  2519. */
  2520. intr_context->intr_en_mask =
  2521. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2522. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2523. | i;
  2524. intr_context->intr_dis_mask =
  2525. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2526. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2527. INTR_EN_IHD | i;
  2528. intr_context->intr_read_mask =
  2529. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2530. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2531. i;
  2532. if (i == 0) {
  2533. /*
  2534. * Default queue handles bcast/mcast plus
  2535. * async events. Needs buffers.
  2536. */
  2537. intr_context->handler = qlge_isr;
  2538. sprintf(intr_context->name, "%s-default-queue",
  2539. qdev->ndev->name);
  2540. } else if (i < qdev->rss_ring_first_cq_id) {
  2541. /*
  2542. * Outbound queue is for outbound completions only.
  2543. */
  2544. intr_context->handler = qlge_msix_tx_isr;
  2545. sprintf(intr_context->name, "%s-tx-%d",
  2546. qdev->ndev->name, i);
  2547. } else {
  2548. /*
  2549. * Inbound queues handle unicast frames only.
  2550. */
  2551. intr_context->handler = qlge_msix_rx_isr;
  2552. sprintf(intr_context->name, "%s-rx-%d",
  2553. qdev->ndev->name, i);
  2554. }
  2555. }
  2556. } else {
  2557. /*
  2558. * All rx_rings use the same intr_context since
  2559. * there is only one vector.
  2560. */
  2561. intr_context->intr = 0;
  2562. intr_context->qdev = qdev;
  2563. /*
  2564. * We set up each vectors enable/disable/read bits so
  2565. * there's no bit/mask calculations in the critical path.
  2566. */
  2567. intr_context->intr_en_mask =
  2568. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2569. intr_context->intr_dis_mask =
  2570. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2571. INTR_EN_TYPE_DISABLE;
  2572. intr_context->intr_read_mask =
  2573. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2574. /*
  2575. * Single interrupt means one handler for all rings.
  2576. */
  2577. intr_context->handler = qlge_isr;
  2578. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2579. for (i = 0; i < qdev->rx_ring_count; i++)
  2580. qdev->rx_ring[i].irq = 0;
  2581. }
  2582. }
  2583. static void ql_free_irq(struct ql_adapter *qdev)
  2584. {
  2585. int i;
  2586. struct intr_context *intr_context = &qdev->intr_context[0];
  2587. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2588. if (intr_context->hooked) {
  2589. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2590. free_irq(qdev->msi_x_entry[i].vector,
  2591. &qdev->rx_ring[i]);
  2592. QPRINTK(qdev, IFDOWN, DEBUG,
  2593. "freeing msix interrupt %d.\n", i);
  2594. } else {
  2595. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2596. QPRINTK(qdev, IFDOWN, DEBUG,
  2597. "freeing msi interrupt %d.\n", i);
  2598. }
  2599. }
  2600. }
  2601. ql_disable_msix(qdev);
  2602. }
  2603. static int ql_request_irq(struct ql_adapter *qdev)
  2604. {
  2605. int i;
  2606. int status = 0;
  2607. struct pci_dev *pdev = qdev->pdev;
  2608. struct intr_context *intr_context = &qdev->intr_context[0];
  2609. ql_resolve_queues_to_irqs(qdev);
  2610. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2611. atomic_set(&intr_context->irq_cnt, 0);
  2612. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2613. status = request_irq(qdev->msi_x_entry[i].vector,
  2614. intr_context->handler,
  2615. 0,
  2616. intr_context->name,
  2617. &qdev->rx_ring[i]);
  2618. if (status) {
  2619. QPRINTK(qdev, IFUP, ERR,
  2620. "Failed request for MSIX interrupt %d.\n",
  2621. i);
  2622. goto err_irq;
  2623. } else {
  2624. QPRINTK(qdev, IFUP, DEBUG,
  2625. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2626. i,
  2627. qdev->rx_ring[i].type ==
  2628. DEFAULT_Q ? "DEFAULT_Q" : "",
  2629. qdev->rx_ring[i].type ==
  2630. TX_Q ? "TX_Q" : "",
  2631. qdev->rx_ring[i].type ==
  2632. RX_Q ? "RX_Q" : "", intr_context->name);
  2633. }
  2634. } else {
  2635. QPRINTK(qdev, IFUP, DEBUG,
  2636. "trying msi or legacy interrupts.\n");
  2637. QPRINTK(qdev, IFUP, DEBUG,
  2638. "%s: irq = %d.\n", __func__, pdev->irq);
  2639. QPRINTK(qdev, IFUP, DEBUG,
  2640. "%s: context->name = %s.\n", __func__,
  2641. intr_context->name);
  2642. QPRINTK(qdev, IFUP, DEBUG,
  2643. "%s: dev_id = 0x%p.\n", __func__,
  2644. &qdev->rx_ring[0]);
  2645. status =
  2646. request_irq(pdev->irq, qlge_isr,
  2647. test_bit(QL_MSI_ENABLED,
  2648. &qdev->
  2649. flags) ? 0 : IRQF_SHARED,
  2650. intr_context->name, &qdev->rx_ring[0]);
  2651. if (status)
  2652. goto err_irq;
  2653. QPRINTK(qdev, IFUP, ERR,
  2654. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2655. i,
  2656. qdev->rx_ring[0].type ==
  2657. DEFAULT_Q ? "DEFAULT_Q" : "",
  2658. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2659. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2660. intr_context->name);
  2661. }
  2662. intr_context->hooked = 1;
  2663. }
  2664. return status;
  2665. err_irq:
  2666. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2667. ql_free_irq(qdev);
  2668. return status;
  2669. }
  2670. static int ql_start_rss(struct ql_adapter *qdev)
  2671. {
  2672. struct ricb *ricb = &qdev->ricb;
  2673. int status = 0;
  2674. int i;
  2675. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2676. memset((void *)ricb, 0, sizeof(ricb));
  2677. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2678. ricb->flags =
  2679. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2680. RSS_RT6);
  2681. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2682. /*
  2683. * Fill out the Indirection Table.
  2684. */
  2685. for (i = 0; i < 256; i++)
  2686. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2687. /*
  2688. * Random values for the IPv6 and IPv4 Hash Keys.
  2689. */
  2690. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2691. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2692. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2693. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2694. if (status) {
  2695. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2696. return status;
  2697. }
  2698. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2699. return status;
  2700. }
  2701. /* Initialize the frame-to-queue routing. */
  2702. static int ql_route_initialize(struct ql_adapter *qdev)
  2703. {
  2704. int status = 0;
  2705. int i;
  2706. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2707. if (status)
  2708. return status;
  2709. /* Clear all the entries in the routing table. */
  2710. for (i = 0; i < 16; i++) {
  2711. status = ql_set_routing_reg(qdev, i, 0, 0);
  2712. if (status) {
  2713. QPRINTK(qdev, IFUP, ERR,
  2714. "Failed to init routing register for CAM packets.\n");
  2715. goto exit;
  2716. }
  2717. }
  2718. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2719. if (status) {
  2720. QPRINTK(qdev, IFUP, ERR,
  2721. "Failed to init routing register for error packets.\n");
  2722. goto exit;
  2723. }
  2724. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2725. if (status) {
  2726. QPRINTK(qdev, IFUP, ERR,
  2727. "Failed to init routing register for broadcast packets.\n");
  2728. goto exit;
  2729. }
  2730. /* If we have more than one inbound queue, then turn on RSS in the
  2731. * routing block.
  2732. */
  2733. if (qdev->rss_ring_count > 1) {
  2734. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2735. RT_IDX_RSS_MATCH, 1);
  2736. if (status) {
  2737. QPRINTK(qdev, IFUP, ERR,
  2738. "Failed to init routing register for MATCH RSS packets.\n");
  2739. goto exit;
  2740. }
  2741. }
  2742. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2743. RT_IDX_CAM_HIT, 1);
  2744. if (status)
  2745. QPRINTK(qdev, IFUP, ERR,
  2746. "Failed to init routing register for CAM packets.\n");
  2747. exit:
  2748. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2749. return status;
  2750. }
  2751. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2752. {
  2753. int status;
  2754. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2755. if (status)
  2756. return status;
  2757. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2758. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2759. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2760. if (status) {
  2761. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2762. return status;
  2763. }
  2764. status = ql_route_initialize(qdev);
  2765. if (status)
  2766. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2767. return status;
  2768. }
  2769. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2770. {
  2771. u32 value, mask;
  2772. int i;
  2773. int status = 0;
  2774. /*
  2775. * Set up the System register to halt on errors.
  2776. */
  2777. value = SYS_EFE | SYS_FAE;
  2778. mask = value << 16;
  2779. ql_write32(qdev, SYS, mask | value);
  2780. /* Set the default queue. */
  2781. value = NIC_RCV_CFG_DFQ;
  2782. mask = NIC_RCV_CFG_DFQ_MASK;
  2783. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2784. /* Set the MPI interrupt to enabled. */
  2785. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2786. /* Enable the function, set pagesize, enable error checking. */
  2787. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2788. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2789. /* Set/clear header splitting. */
  2790. mask = FSC_VM_PAGESIZE_MASK |
  2791. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2792. ql_write32(qdev, FSC, mask | value);
  2793. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2794. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2795. /* Start up the rx queues. */
  2796. for (i = 0; i < qdev->rx_ring_count; i++) {
  2797. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2798. if (status) {
  2799. QPRINTK(qdev, IFUP, ERR,
  2800. "Failed to start rx ring[%d].\n", i);
  2801. return status;
  2802. }
  2803. }
  2804. /* If there is more than one inbound completion queue
  2805. * then download a RICB to configure RSS.
  2806. */
  2807. if (qdev->rss_ring_count > 1) {
  2808. status = ql_start_rss(qdev);
  2809. if (status) {
  2810. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2811. return status;
  2812. }
  2813. }
  2814. /* Start up the tx queues. */
  2815. for (i = 0; i < qdev->tx_ring_count; i++) {
  2816. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2817. if (status) {
  2818. QPRINTK(qdev, IFUP, ERR,
  2819. "Failed to start tx ring[%d].\n", i);
  2820. return status;
  2821. }
  2822. }
  2823. /* Initialize the port and set the max framesize. */
  2824. status = qdev->nic_ops->port_initialize(qdev);
  2825. if (status) {
  2826. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2827. return status;
  2828. }
  2829. /* Set up the MAC address and frame routing filter. */
  2830. status = ql_cam_route_initialize(qdev);
  2831. if (status) {
  2832. QPRINTK(qdev, IFUP, ERR,
  2833. "Failed to init CAM/Routing tables.\n");
  2834. return status;
  2835. }
  2836. /* Start NAPI for the RSS queues. */
  2837. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2838. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2839. i);
  2840. napi_enable(&qdev->rx_ring[i].napi);
  2841. }
  2842. return status;
  2843. }
  2844. /* Issue soft reset to chip. */
  2845. static int ql_adapter_reset(struct ql_adapter *qdev)
  2846. {
  2847. u32 value;
  2848. int status = 0;
  2849. unsigned long end_jiffies = jiffies +
  2850. max((unsigned long)1, usecs_to_jiffies(30));
  2851. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2852. do {
  2853. value = ql_read32(qdev, RST_FO);
  2854. if ((value & RST_FO_FR) == 0)
  2855. break;
  2856. cpu_relax();
  2857. } while (time_before(jiffies, end_jiffies));
  2858. if (value & RST_FO_FR) {
  2859. QPRINTK(qdev, IFDOWN, ERR,
  2860. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2861. status = -ETIMEDOUT;
  2862. }
  2863. return status;
  2864. }
  2865. static void ql_display_dev_info(struct net_device *ndev)
  2866. {
  2867. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2868. QPRINTK(qdev, PROBE, INFO,
  2869. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2870. "XG Roll = %d, XG Rev = %d.\n",
  2871. qdev->func,
  2872. qdev->chip_rev_id & 0x0000000f,
  2873. qdev->chip_rev_id >> 4 & 0x0000000f,
  2874. qdev->chip_rev_id >> 8 & 0x0000000f,
  2875. qdev->chip_rev_id >> 12 & 0x0000000f);
  2876. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2877. }
  2878. static int ql_adapter_down(struct ql_adapter *qdev)
  2879. {
  2880. struct net_device *ndev = qdev->ndev;
  2881. int i, status = 0;
  2882. struct rx_ring *rx_ring;
  2883. netif_stop_queue(ndev);
  2884. netif_carrier_off(ndev);
  2885. /* Don't kill the reset worker thread if we
  2886. * are in the process of recovery.
  2887. */
  2888. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2889. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2890. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2891. cancel_delayed_work_sync(&qdev->mpi_work);
  2892. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  2893. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  2894. /* The default queue at index 0 is always processed in
  2895. * a workqueue.
  2896. */
  2897. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2898. /* The rest of the rx_rings are processed in
  2899. * a workqueue only if it's a single interrupt
  2900. * environment (MSI/Legacy).
  2901. */
  2902. for (i = 1; i < qdev->rx_ring_count; i++) {
  2903. rx_ring = &qdev->rx_ring[i];
  2904. /* Only the RSS rings use NAPI on multi irq
  2905. * environment. Outbound completion processing
  2906. * is done in interrupt context.
  2907. */
  2908. if (i >= qdev->rss_ring_first_cq_id) {
  2909. napi_disable(&rx_ring->napi);
  2910. } else {
  2911. cancel_delayed_work_sync(&rx_ring->rx_work);
  2912. }
  2913. }
  2914. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2915. ql_disable_interrupts(qdev);
  2916. ql_tx_ring_clean(qdev);
  2917. ql_free_rx_buffers(qdev);
  2918. spin_lock(&qdev->hw_lock);
  2919. status = ql_adapter_reset(qdev);
  2920. if (status)
  2921. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2922. qdev->func);
  2923. spin_unlock(&qdev->hw_lock);
  2924. return status;
  2925. }
  2926. static int ql_adapter_up(struct ql_adapter *qdev)
  2927. {
  2928. int err = 0;
  2929. spin_lock(&qdev->hw_lock);
  2930. err = ql_adapter_initialize(qdev);
  2931. if (err) {
  2932. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2933. spin_unlock(&qdev->hw_lock);
  2934. goto err_init;
  2935. }
  2936. spin_unlock(&qdev->hw_lock);
  2937. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2938. ql_alloc_rx_buffers(qdev);
  2939. ql_enable_interrupts(qdev);
  2940. ql_enable_all_completion_interrupts(qdev);
  2941. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2942. netif_carrier_on(qdev->ndev);
  2943. netif_start_queue(qdev->ndev);
  2944. }
  2945. return 0;
  2946. err_init:
  2947. ql_adapter_reset(qdev);
  2948. return err;
  2949. }
  2950. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2951. {
  2952. ql_free_mem_resources(qdev);
  2953. ql_free_irq(qdev);
  2954. }
  2955. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2956. {
  2957. int status = 0;
  2958. if (ql_alloc_mem_resources(qdev)) {
  2959. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2960. return -ENOMEM;
  2961. }
  2962. status = ql_request_irq(qdev);
  2963. if (status)
  2964. goto err_irq;
  2965. return status;
  2966. err_irq:
  2967. ql_free_mem_resources(qdev);
  2968. return status;
  2969. }
  2970. static int qlge_close(struct net_device *ndev)
  2971. {
  2972. struct ql_adapter *qdev = netdev_priv(ndev);
  2973. /*
  2974. * Wait for device to recover from a reset.
  2975. * (Rarely happens, but possible.)
  2976. */
  2977. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2978. msleep(1);
  2979. ql_adapter_down(qdev);
  2980. ql_release_adapter_resources(qdev);
  2981. return 0;
  2982. }
  2983. static int ql_configure_rings(struct ql_adapter *qdev)
  2984. {
  2985. int i;
  2986. struct rx_ring *rx_ring;
  2987. struct tx_ring *tx_ring;
  2988. int cpu_cnt = num_online_cpus();
  2989. /*
  2990. * For each processor present we allocate one
  2991. * rx_ring for outbound completions, and one
  2992. * rx_ring for inbound completions. Plus there is
  2993. * always the one default queue. For the CPU
  2994. * counts we end up with the following rx_rings:
  2995. * rx_ring count =
  2996. * one default queue +
  2997. * (CPU count * outbound completion rx_ring) +
  2998. * (CPU count * inbound (RSS) completion rx_ring)
  2999. * To keep it simple we limit the total number of
  3000. * queues to < 32, so we truncate CPU to 8.
  3001. * This limitation can be removed when requested.
  3002. */
  3003. if (cpu_cnt > MAX_CPUS)
  3004. cpu_cnt = MAX_CPUS;
  3005. /*
  3006. * rx_ring[0] is always the default queue.
  3007. */
  3008. /* Allocate outbound completion ring for each CPU. */
  3009. qdev->tx_ring_count = cpu_cnt;
  3010. /* Allocate inbound completion (RSS) ring for each CPU. */
  3011. qdev->rss_ring_count = cpu_cnt;
  3012. /* cq_id for the first inbound ring handler. */
  3013. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3014. /*
  3015. * qdev->rx_ring_count:
  3016. * Total number of rx_rings. This includes the one
  3017. * default queue, a number of outbound completion
  3018. * handler rx_rings, and the number of inbound
  3019. * completion handler rx_rings.
  3020. */
  3021. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3022. for (i = 0; i < qdev->tx_ring_count; i++) {
  3023. tx_ring = &qdev->tx_ring[i];
  3024. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3025. tx_ring->qdev = qdev;
  3026. tx_ring->wq_id = i;
  3027. tx_ring->wq_len = qdev->tx_ring_size;
  3028. tx_ring->wq_size =
  3029. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3030. /*
  3031. * The completion queue ID for the tx rings start
  3032. * immediately after the default Q ID, which is zero.
  3033. */
  3034. tx_ring->cq_id = i + 1;
  3035. }
  3036. for (i = 0; i < qdev->rx_ring_count; i++) {
  3037. rx_ring = &qdev->rx_ring[i];
  3038. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3039. rx_ring->qdev = qdev;
  3040. rx_ring->cq_id = i;
  3041. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3042. if (i == 0) { /* Default queue at index 0. */
  3043. /*
  3044. * Default queue handles bcast/mcast plus
  3045. * async events. Needs buffers.
  3046. */
  3047. rx_ring->cq_len = qdev->rx_ring_size;
  3048. rx_ring->cq_size =
  3049. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3050. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3051. rx_ring->lbq_size =
  3052. rx_ring->lbq_len * sizeof(__le64);
  3053. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3054. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3055. rx_ring->sbq_size =
  3056. rx_ring->sbq_len * sizeof(__le64);
  3057. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3058. rx_ring->type = DEFAULT_Q;
  3059. } else if (i < qdev->rss_ring_first_cq_id) {
  3060. /*
  3061. * Outbound queue handles outbound completions only.
  3062. */
  3063. /* outbound cq is same size as tx_ring it services. */
  3064. rx_ring->cq_len = qdev->tx_ring_size;
  3065. rx_ring->cq_size =
  3066. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3067. rx_ring->lbq_len = 0;
  3068. rx_ring->lbq_size = 0;
  3069. rx_ring->lbq_buf_size = 0;
  3070. rx_ring->sbq_len = 0;
  3071. rx_ring->sbq_size = 0;
  3072. rx_ring->sbq_buf_size = 0;
  3073. rx_ring->type = TX_Q;
  3074. } else { /* Inbound completions (RSS) queues */
  3075. /*
  3076. * Inbound queues handle unicast frames only.
  3077. */
  3078. rx_ring->cq_len = qdev->rx_ring_size;
  3079. rx_ring->cq_size =
  3080. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3081. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3082. rx_ring->lbq_size =
  3083. rx_ring->lbq_len * sizeof(__le64);
  3084. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3085. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3086. rx_ring->sbq_size =
  3087. rx_ring->sbq_len * sizeof(__le64);
  3088. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3089. rx_ring->type = RX_Q;
  3090. }
  3091. }
  3092. return 0;
  3093. }
  3094. static int qlge_open(struct net_device *ndev)
  3095. {
  3096. int err = 0;
  3097. struct ql_adapter *qdev = netdev_priv(ndev);
  3098. err = ql_configure_rings(qdev);
  3099. if (err)
  3100. return err;
  3101. err = ql_get_adapter_resources(qdev);
  3102. if (err)
  3103. goto error_up;
  3104. err = ql_adapter_up(qdev);
  3105. if (err)
  3106. goto error_up;
  3107. return err;
  3108. error_up:
  3109. ql_release_adapter_resources(qdev);
  3110. return err;
  3111. }
  3112. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3113. {
  3114. struct ql_adapter *qdev = netdev_priv(ndev);
  3115. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3116. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3117. queue_delayed_work(qdev->workqueue,
  3118. &qdev->mpi_port_cfg_work, 0);
  3119. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3120. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3121. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3122. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3123. return 0;
  3124. } else
  3125. return -EINVAL;
  3126. ndev->mtu = new_mtu;
  3127. return 0;
  3128. }
  3129. static struct net_device_stats *qlge_get_stats(struct net_device
  3130. *ndev)
  3131. {
  3132. struct ql_adapter *qdev = netdev_priv(ndev);
  3133. return &qdev->stats;
  3134. }
  3135. static void qlge_set_multicast_list(struct net_device *ndev)
  3136. {
  3137. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3138. struct dev_mc_list *mc_ptr;
  3139. int i, status;
  3140. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3141. if (status)
  3142. return;
  3143. spin_lock(&qdev->hw_lock);
  3144. /*
  3145. * Set or clear promiscuous mode if a
  3146. * transition is taking place.
  3147. */
  3148. if (ndev->flags & IFF_PROMISC) {
  3149. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3150. if (ql_set_routing_reg
  3151. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3152. QPRINTK(qdev, HW, ERR,
  3153. "Failed to set promiscous mode.\n");
  3154. } else {
  3155. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3156. }
  3157. }
  3158. } else {
  3159. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3160. if (ql_set_routing_reg
  3161. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3162. QPRINTK(qdev, HW, ERR,
  3163. "Failed to clear promiscous mode.\n");
  3164. } else {
  3165. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3166. }
  3167. }
  3168. }
  3169. /*
  3170. * Set or clear all multicast mode if a
  3171. * transition is taking place.
  3172. */
  3173. if ((ndev->flags & IFF_ALLMULTI) ||
  3174. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3175. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3176. if (ql_set_routing_reg
  3177. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3178. QPRINTK(qdev, HW, ERR,
  3179. "Failed to set all-multi mode.\n");
  3180. } else {
  3181. set_bit(QL_ALLMULTI, &qdev->flags);
  3182. }
  3183. }
  3184. } else {
  3185. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3186. if (ql_set_routing_reg
  3187. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3188. QPRINTK(qdev, HW, ERR,
  3189. "Failed to clear all-multi mode.\n");
  3190. } else {
  3191. clear_bit(QL_ALLMULTI, &qdev->flags);
  3192. }
  3193. }
  3194. }
  3195. if (ndev->mc_count) {
  3196. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3197. if (status)
  3198. goto exit;
  3199. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3200. i++, mc_ptr = mc_ptr->next)
  3201. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3202. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3203. QPRINTK(qdev, HW, ERR,
  3204. "Failed to loadmulticast address.\n");
  3205. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3206. goto exit;
  3207. }
  3208. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3209. if (ql_set_routing_reg
  3210. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3211. QPRINTK(qdev, HW, ERR,
  3212. "Failed to set multicast match mode.\n");
  3213. } else {
  3214. set_bit(QL_ALLMULTI, &qdev->flags);
  3215. }
  3216. }
  3217. exit:
  3218. spin_unlock(&qdev->hw_lock);
  3219. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3220. }
  3221. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3222. {
  3223. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3224. struct sockaddr *addr = p;
  3225. int status;
  3226. if (netif_running(ndev))
  3227. return -EBUSY;
  3228. if (!is_valid_ether_addr(addr->sa_data))
  3229. return -EADDRNOTAVAIL;
  3230. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3231. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3232. if (status)
  3233. return status;
  3234. spin_lock(&qdev->hw_lock);
  3235. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3236. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3237. spin_unlock(&qdev->hw_lock);
  3238. if (status)
  3239. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3240. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3241. return status;
  3242. }
  3243. static void qlge_tx_timeout(struct net_device *ndev)
  3244. {
  3245. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3246. ql_queue_asic_error(qdev);
  3247. }
  3248. static void ql_asic_reset_work(struct work_struct *work)
  3249. {
  3250. struct ql_adapter *qdev =
  3251. container_of(work, struct ql_adapter, asic_reset_work.work);
  3252. int status;
  3253. status = ql_adapter_down(qdev);
  3254. if (status)
  3255. goto error;
  3256. status = ql_adapter_up(qdev);
  3257. if (status)
  3258. goto error;
  3259. return;
  3260. error:
  3261. QPRINTK(qdev, IFUP, ALERT,
  3262. "Driver up/down cycle failed, closing device\n");
  3263. rtnl_lock();
  3264. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3265. dev_close(qdev->ndev);
  3266. rtnl_unlock();
  3267. }
  3268. static struct nic_operations qla8012_nic_ops = {
  3269. .get_flash = ql_get_8012_flash_params,
  3270. .port_initialize = ql_8012_port_initialize,
  3271. };
  3272. static struct nic_operations qla8000_nic_ops = {
  3273. .get_flash = ql_get_8000_flash_params,
  3274. .port_initialize = ql_8000_port_initialize,
  3275. };
  3276. static void ql_get_board_info(struct ql_adapter *qdev)
  3277. {
  3278. qdev->func =
  3279. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3280. if (qdev->func) {
  3281. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3282. qdev->port_link_up = STS_PL1;
  3283. qdev->port_init = STS_PI1;
  3284. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3285. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3286. } else {
  3287. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3288. qdev->port_link_up = STS_PL0;
  3289. qdev->port_init = STS_PI0;
  3290. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3291. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3292. }
  3293. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3294. qdev->device_id = qdev->pdev->device;
  3295. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3296. qdev->nic_ops = &qla8012_nic_ops;
  3297. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3298. qdev->nic_ops = &qla8000_nic_ops;
  3299. }
  3300. static void ql_release_all(struct pci_dev *pdev)
  3301. {
  3302. struct net_device *ndev = pci_get_drvdata(pdev);
  3303. struct ql_adapter *qdev = netdev_priv(ndev);
  3304. if (qdev->workqueue) {
  3305. destroy_workqueue(qdev->workqueue);
  3306. qdev->workqueue = NULL;
  3307. }
  3308. if (qdev->q_workqueue) {
  3309. destroy_workqueue(qdev->q_workqueue);
  3310. qdev->q_workqueue = NULL;
  3311. }
  3312. if (qdev->reg_base)
  3313. iounmap(qdev->reg_base);
  3314. if (qdev->doorbell_area)
  3315. iounmap(qdev->doorbell_area);
  3316. pci_release_regions(pdev);
  3317. pci_set_drvdata(pdev, NULL);
  3318. }
  3319. static int __devinit ql_init_device(struct pci_dev *pdev,
  3320. struct net_device *ndev, int cards_found)
  3321. {
  3322. struct ql_adapter *qdev = netdev_priv(ndev);
  3323. int pos, err = 0;
  3324. u16 val16;
  3325. memset((void *)qdev, 0, sizeof(qdev));
  3326. err = pci_enable_device(pdev);
  3327. if (err) {
  3328. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3329. return err;
  3330. }
  3331. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3332. if (pos <= 0) {
  3333. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3334. "aborting.\n");
  3335. goto err_out;
  3336. } else {
  3337. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3338. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3339. val16 |= (PCI_EXP_DEVCTL_CERE |
  3340. PCI_EXP_DEVCTL_NFERE |
  3341. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3342. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3343. }
  3344. err = pci_request_regions(pdev, DRV_NAME);
  3345. if (err) {
  3346. dev_err(&pdev->dev, "PCI region request failed.\n");
  3347. goto err_out;
  3348. }
  3349. pci_set_master(pdev);
  3350. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3351. set_bit(QL_DMA64, &qdev->flags);
  3352. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3353. } else {
  3354. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3355. if (!err)
  3356. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3357. }
  3358. if (err) {
  3359. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3360. goto err_out;
  3361. }
  3362. pci_set_drvdata(pdev, ndev);
  3363. qdev->reg_base =
  3364. ioremap_nocache(pci_resource_start(pdev, 1),
  3365. pci_resource_len(pdev, 1));
  3366. if (!qdev->reg_base) {
  3367. dev_err(&pdev->dev, "Register mapping failed.\n");
  3368. err = -ENOMEM;
  3369. goto err_out;
  3370. }
  3371. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3372. qdev->doorbell_area =
  3373. ioremap_nocache(pci_resource_start(pdev, 3),
  3374. pci_resource_len(pdev, 3));
  3375. if (!qdev->doorbell_area) {
  3376. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3377. err = -ENOMEM;
  3378. goto err_out;
  3379. }
  3380. qdev->ndev = ndev;
  3381. qdev->pdev = pdev;
  3382. ql_get_board_info(qdev);
  3383. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3384. spin_lock_init(&qdev->hw_lock);
  3385. spin_lock_init(&qdev->stats_lock);
  3386. /* make sure the EEPROM is good */
  3387. err = qdev->nic_ops->get_flash(qdev);
  3388. if (err) {
  3389. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3390. goto err_out;
  3391. }
  3392. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3393. /* Set up the default ring sizes. */
  3394. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3395. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3396. /* Set up the coalescing parameters. */
  3397. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3398. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3399. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3400. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3401. /*
  3402. * Set up the operating parameters.
  3403. */
  3404. qdev->rx_csum = 1;
  3405. qdev->q_workqueue = create_workqueue(ndev->name);
  3406. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3407. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3408. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3409. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3410. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3411. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3412. mutex_init(&qdev->mpi_mutex);
  3413. init_completion(&qdev->ide_completion);
  3414. if (!cards_found) {
  3415. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3416. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3417. DRV_NAME, DRV_VERSION);
  3418. }
  3419. return 0;
  3420. err_out:
  3421. ql_release_all(pdev);
  3422. pci_disable_device(pdev);
  3423. return err;
  3424. }
  3425. static const struct net_device_ops qlge_netdev_ops = {
  3426. .ndo_open = qlge_open,
  3427. .ndo_stop = qlge_close,
  3428. .ndo_start_xmit = qlge_send,
  3429. .ndo_change_mtu = qlge_change_mtu,
  3430. .ndo_get_stats = qlge_get_stats,
  3431. .ndo_set_multicast_list = qlge_set_multicast_list,
  3432. .ndo_set_mac_address = qlge_set_mac_address,
  3433. .ndo_validate_addr = eth_validate_addr,
  3434. .ndo_tx_timeout = qlge_tx_timeout,
  3435. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3436. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3437. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3438. };
  3439. static int __devinit qlge_probe(struct pci_dev *pdev,
  3440. const struct pci_device_id *pci_entry)
  3441. {
  3442. struct net_device *ndev = NULL;
  3443. struct ql_adapter *qdev = NULL;
  3444. static int cards_found = 0;
  3445. int err = 0;
  3446. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3447. if (!ndev)
  3448. return -ENOMEM;
  3449. err = ql_init_device(pdev, ndev, cards_found);
  3450. if (err < 0) {
  3451. free_netdev(ndev);
  3452. return err;
  3453. }
  3454. qdev = netdev_priv(ndev);
  3455. SET_NETDEV_DEV(ndev, &pdev->dev);
  3456. ndev->features = (0
  3457. | NETIF_F_IP_CSUM
  3458. | NETIF_F_SG
  3459. | NETIF_F_TSO
  3460. | NETIF_F_TSO6
  3461. | NETIF_F_TSO_ECN
  3462. | NETIF_F_HW_VLAN_TX
  3463. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3464. if (test_bit(QL_DMA64, &qdev->flags))
  3465. ndev->features |= NETIF_F_HIGHDMA;
  3466. /*
  3467. * Set up net_device structure.
  3468. */
  3469. ndev->tx_queue_len = qdev->tx_ring_size;
  3470. ndev->irq = pdev->irq;
  3471. ndev->netdev_ops = &qlge_netdev_ops;
  3472. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3473. ndev->watchdog_timeo = 10 * HZ;
  3474. err = register_netdev(ndev);
  3475. if (err) {
  3476. dev_err(&pdev->dev, "net device registration failed.\n");
  3477. ql_release_all(pdev);
  3478. pci_disable_device(pdev);
  3479. return err;
  3480. }
  3481. netif_carrier_off(ndev);
  3482. netif_stop_queue(ndev);
  3483. ql_display_dev_info(ndev);
  3484. cards_found++;
  3485. return 0;
  3486. }
  3487. static void __devexit qlge_remove(struct pci_dev *pdev)
  3488. {
  3489. struct net_device *ndev = pci_get_drvdata(pdev);
  3490. unregister_netdev(ndev);
  3491. ql_release_all(pdev);
  3492. pci_disable_device(pdev);
  3493. free_netdev(ndev);
  3494. }
  3495. /*
  3496. * This callback is called by the PCI subsystem whenever
  3497. * a PCI bus error is detected.
  3498. */
  3499. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3500. enum pci_channel_state state)
  3501. {
  3502. struct net_device *ndev = pci_get_drvdata(pdev);
  3503. struct ql_adapter *qdev = netdev_priv(ndev);
  3504. if (netif_running(ndev))
  3505. ql_adapter_down(qdev);
  3506. pci_disable_device(pdev);
  3507. /* Request a slot reset. */
  3508. return PCI_ERS_RESULT_NEED_RESET;
  3509. }
  3510. /*
  3511. * This callback is called after the PCI buss has been reset.
  3512. * Basically, this tries to restart the card from scratch.
  3513. * This is a shortened version of the device probe/discovery code,
  3514. * it resembles the first-half of the () routine.
  3515. */
  3516. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3517. {
  3518. struct net_device *ndev = pci_get_drvdata(pdev);
  3519. struct ql_adapter *qdev = netdev_priv(ndev);
  3520. if (pci_enable_device(pdev)) {
  3521. QPRINTK(qdev, IFUP, ERR,
  3522. "Cannot re-enable PCI device after reset.\n");
  3523. return PCI_ERS_RESULT_DISCONNECT;
  3524. }
  3525. pci_set_master(pdev);
  3526. netif_carrier_off(ndev);
  3527. netif_stop_queue(ndev);
  3528. ql_adapter_reset(qdev);
  3529. /* Make sure the EEPROM is good */
  3530. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3531. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3532. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3533. return PCI_ERS_RESULT_DISCONNECT;
  3534. }
  3535. return PCI_ERS_RESULT_RECOVERED;
  3536. }
  3537. static void qlge_io_resume(struct pci_dev *pdev)
  3538. {
  3539. struct net_device *ndev = pci_get_drvdata(pdev);
  3540. struct ql_adapter *qdev = netdev_priv(ndev);
  3541. pci_set_master(pdev);
  3542. if (netif_running(ndev)) {
  3543. if (ql_adapter_up(qdev)) {
  3544. QPRINTK(qdev, IFUP, ERR,
  3545. "Device initialization failed after reset.\n");
  3546. return;
  3547. }
  3548. }
  3549. netif_device_attach(ndev);
  3550. }
  3551. static struct pci_error_handlers qlge_err_handler = {
  3552. .error_detected = qlge_io_error_detected,
  3553. .slot_reset = qlge_io_slot_reset,
  3554. .resume = qlge_io_resume,
  3555. };
  3556. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3557. {
  3558. struct net_device *ndev = pci_get_drvdata(pdev);
  3559. struct ql_adapter *qdev = netdev_priv(ndev);
  3560. int err, i;
  3561. netif_device_detach(ndev);
  3562. if (netif_running(ndev)) {
  3563. err = ql_adapter_down(qdev);
  3564. if (!err)
  3565. return err;
  3566. }
  3567. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3568. netif_napi_del(&qdev->rx_ring[i].napi);
  3569. err = pci_save_state(pdev);
  3570. if (err)
  3571. return err;
  3572. pci_disable_device(pdev);
  3573. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3574. return 0;
  3575. }
  3576. #ifdef CONFIG_PM
  3577. static int qlge_resume(struct pci_dev *pdev)
  3578. {
  3579. struct net_device *ndev = pci_get_drvdata(pdev);
  3580. struct ql_adapter *qdev = netdev_priv(ndev);
  3581. int err;
  3582. pci_set_power_state(pdev, PCI_D0);
  3583. pci_restore_state(pdev);
  3584. err = pci_enable_device(pdev);
  3585. if (err) {
  3586. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3587. return err;
  3588. }
  3589. pci_set_master(pdev);
  3590. pci_enable_wake(pdev, PCI_D3hot, 0);
  3591. pci_enable_wake(pdev, PCI_D3cold, 0);
  3592. if (netif_running(ndev)) {
  3593. err = ql_adapter_up(qdev);
  3594. if (err)
  3595. return err;
  3596. }
  3597. netif_device_attach(ndev);
  3598. return 0;
  3599. }
  3600. #endif /* CONFIG_PM */
  3601. static void qlge_shutdown(struct pci_dev *pdev)
  3602. {
  3603. qlge_suspend(pdev, PMSG_SUSPEND);
  3604. }
  3605. static struct pci_driver qlge_driver = {
  3606. .name = DRV_NAME,
  3607. .id_table = qlge_pci_tbl,
  3608. .probe = qlge_probe,
  3609. .remove = __devexit_p(qlge_remove),
  3610. #ifdef CONFIG_PM
  3611. .suspend = qlge_suspend,
  3612. .resume = qlge_resume,
  3613. #endif
  3614. .shutdown = qlge_shutdown,
  3615. .err_handler = &qlge_err_handler
  3616. };
  3617. static int __init qlge_init_module(void)
  3618. {
  3619. return pci_register_driver(&qlge_driver);
  3620. }
  3621. static void __exit qlge_exit(void)
  3622. {
  3623. pci_unregister_driver(&qlge_driver);
  3624. }
  3625. module_init(qlge_init_module);
  3626. module_exit(qlge_exit);