xfs_log_recover.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  50. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  51. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  52. xlog_recover_item_t *item);
  53. #if defined(DEBUG)
  54. STATIC void xlog_recover_check_summary(xlog_t *);
  55. #else
  56. #define xlog_recover_check_summary(log)
  57. #endif
  58. /*
  59. * Sector aligned buffer routines for buffer create/read/write/access
  60. */
  61. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  62. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  63. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  64. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  65. xfs_buf_t *
  66. xlog_get_bp(
  67. xlog_t *log,
  68. int num_bblks)
  69. {
  70. ASSERT(num_bblks > 0);
  71. if (log->l_sectbb_log) {
  72. if (num_bblks > 1)
  73. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  74. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  75. }
  76. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  77. }
  78. void
  79. xlog_put_bp(
  80. xfs_buf_t *bp)
  81. {
  82. xfs_buf_free(bp);
  83. }
  84. /*
  85. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  86. */
  87. int
  88. xlog_bread(
  89. xlog_t *log,
  90. xfs_daddr_t blk_no,
  91. int nbblks,
  92. xfs_buf_t *bp)
  93. {
  94. int error;
  95. if (log->l_sectbb_log) {
  96. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  97. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  98. }
  99. ASSERT(nbblks > 0);
  100. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  101. ASSERT(bp);
  102. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  103. XFS_BUF_READ(bp);
  104. XFS_BUF_BUSY(bp);
  105. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  106. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  107. xfsbdstrat(log->l_mp, bp);
  108. error = xfs_iowait(bp);
  109. if (error)
  110. xfs_ioerror_alert("xlog_bread", log->l_mp,
  111. bp, XFS_BUF_ADDR(bp));
  112. return error;
  113. }
  114. /*
  115. * Write out the buffer at the given block for the given number of blocks.
  116. * The buffer is kept locked across the write and is returned locked.
  117. * This can only be used for synchronous log writes.
  118. */
  119. STATIC int
  120. xlog_bwrite(
  121. xlog_t *log,
  122. xfs_daddr_t blk_no,
  123. int nbblks,
  124. xfs_buf_t *bp)
  125. {
  126. int error;
  127. if (log->l_sectbb_log) {
  128. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  129. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  130. }
  131. ASSERT(nbblks > 0);
  132. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  133. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  134. XFS_BUF_ZEROFLAGS(bp);
  135. XFS_BUF_BUSY(bp);
  136. XFS_BUF_HOLD(bp);
  137. XFS_BUF_PSEMA(bp, PRIBIO);
  138. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  139. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  140. if ((error = xfs_bwrite(log->l_mp, bp)))
  141. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  142. bp, XFS_BUF_ADDR(bp));
  143. return error;
  144. }
  145. STATIC xfs_caddr_t
  146. xlog_align(
  147. xlog_t *log,
  148. xfs_daddr_t blk_no,
  149. int nbblks,
  150. xfs_buf_t *bp)
  151. {
  152. xfs_caddr_t ptr;
  153. if (!log->l_sectbb_log)
  154. return XFS_BUF_PTR(bp);
  155. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  156. ASSERT(XFS_BUF_SIZE(bp) >=
  157. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  158. return ptr;
  159. }
  160. #ifdef DEBUG
  161. /*
  162. * dump debug superblock and log record information
  163. */
  164. STATIC void
  165. xlog_header_check_dump(
  166. xfs_mount_t *mp,
  167. xlog_rec_header_t *head)
  168. {
  169. int b;
  170. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  171. for (b = 0; b < 16; b++)
  172. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  173. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  174. cmn_err(CE_DEBUG, " log : uuid = ");
  175. for (b = 0; b < 16; b++)
  176. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  177. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  178. }
  179. #else
  180. #define xlog_header_check_dump(mp, head)
  181. #endif
  182. /*
  183. * check log record header for recovery
  184. */
  185. STATIC int
  186. xlog_header_check_recover(
  187. xfs_mount_t *mp,
  188. xlog_rec_header_t *head)
  189. {
  190. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  191. /*
  192. * IRIX doesn't write the h_fmt field and leaves it zeroed
  193. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  194. * a dirty log created in IRIX.
  195. */
  196. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  197. xlog_warn(
  198. "XFS: dirty log written in incompatible format - can't recover");
  199. xlog_header_check_dump(mp, head);
  200. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  201. XFS_ERRLEVEL_HIGH, mp);
  202. return XFS_ERROR(EFSCORRUPTED);
  203. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  204. xlog_warn(
  205. "XFS: dirty log entry has mismatched uuid - can't recover");
  206. xlog_header_check_dump(mp, head);
  207. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  208. XFS_ERRLEVEL_HIGH, mp);
  209. return XFS_ERROR(EFSCORRUPTED);
  210. }
  211. return 0;
  212. }
  213. /*
  214. * read the head block of the log and check the header
  215. */
  216. STATIC int
  217. xlog_header_check_mount(
  218. xfs_mount_t *mp,
  219. xlog_rec_header_t *head)
  220. {
  221. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  222. if (uuid_is_nil(&head->h_fs_uuid)) {
  223. /*
  224. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  225. * h_fs_uuid is nil, we assume this log was last mounted
  226. * by IRIX and continue.
  227. */
  228. xlog_warn("XFS: nil uuid in log - IRIX style log");
  229. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  230. xlog_warn("XFS: log has mismatched uuid - can't recover");
  231. xlog_header_check_dump(mp, head);
  232. XFS_ERROR_REPORT("xlog_header_check_mount",
  233. XFS_ERRLEVEL_HIGH, mp);
  234. return XFS_ERROR(EFSCORRUPTED);
  235. }
  236. return 0;
  237. }
  238. STATIC void
  239. xlog_recover_iodone(
  240. struct xfs_buf *bp)
  241. {
  242. xfs_mount_t *mp;
  243. ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
  244. if (XFS_BUF_GETERROR(bp)) {
  245. /*
  246. * We're not going to bother about retrying
  247. * this during recovery. One strike!
  248. */
  249. mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
  250. xfs_ioerror_alert("xlog_recover_iodone",
  251. mp, bp, XFS_BUF_ADDR(bp));
  252. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  253. }
  254. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  255. XFS_BUF_CLR_IODONE_FUNC(bp);
  256. xfs_biodone(bp);
  257. }
  258. /*
  259. * This routine finds (to an approximation) the first block in the physical
  260. * log which contains the given cycle. It uses a binary search algorithm.
  261. * Note that the algorithm can not be perfect because the disk will not
  262. * necessarily be perfect.
  263. */
  264. STATIC int
  265. xlog_find_cycle_start(
  266. xlog_t *log,
  267. xfs_buf_t *bp,
  268. xfs_daddr_t first_blk,
  269. xfs_daddr_t *last_blk,
  270. uint cycle)
  271. {
  272. xfs_caddr_t offset;
  273. xfs_daddr_t mid_blk;
  274. uint mid_cycle;
  275. int error;
  276. mid_blk = BLK_AVG(first_blk, *last_blk);
  277. while (mid_blk != first_blk && mid_blk != *last_blk) {
  278. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  279. return error;
  280. offset = xlog_align(log, mid_blk, 1, bp);
  281. mid_cycle = xlog_get_cycle(offset);
  282. if (mid_cycle == cycle) {
  283. *last_blk = mid_blk;
  284. /* last_half_cycle == mid_cycle */
  285. } else {
  286. first_blk = mid_blk;
  287. /* first_half_cycle == mid_cycle */
  288. }
  289. mid_blk = BLK_AVG(first_blk, *last_blk);
  290. }
  291. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  292. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  293. return 0;
  294. }
  295. /*
  296. * Check that the range of blocks does not contain the cycle number
  297. * given. The scan needs to occur from front to back and the ptr into the
  298. * region must be updated since a later routine will need to perform another
  299. * test. If the region is completely good, we end up returning the same
  300. * last block number.
  301. *
  302. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  303. * since we don't ever expect logs to get this large.
  304. */
  305. STATIC int
  306. xlog_find_verify_cycle(
  307. xlog_t *log,
  308. xfs_daddr_t start_blk,
  309. int nbblks,
  310. uint stop_on_cycle_no,
  311. xfs_daddr_t *new_blk)
  312. {
  313. xfs_daddr_t i, j;
  314. uint cycle;
  315. xfs_buf_t *bp;
  316. xfs_daddr_t bufblks;
  317. xfs_caddr_t buf = NULL;
  318. int error = 0;
  319. bufblks = 1 << ffs(nbblks);
  320. while (!(bp = xlog_get_bp(log, bufblks))) {
  321. /* can't get enough memory to do everything in one big buffer */
  322. bufblks >>= 1;
  323. if (bufblks <= log->l_sectbb_log)
  324. return ENOMEM;
  325. }
  326. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  327. int bcount;
  328. bcount = min(bufblks, (start_blk + nbblks - i));
  329. if ((error = xlog_bread(log, i, bcount, bp)))
  330. goto out;
  331. buf = xlog_align(log, i, bcount, bp);
  332. for (j = 0; j < bcount; j++) {
  333. cycle = xlog_get_cycle(buf);
  334. if (cycle == stop_on_cycle_no) {
  335. *new_blk = i+j;
  336. goto out;
  337. }
  338. buf += BBSIZE;
  339. }
  340. }
  341. *new_blk = -1;
  342. out:
  343. xlog_put_bp(bp);
  344. return error;
  345. }
  346. /*
  347. * Potentially backup over partial log record write.
  348. *
  349. * In the typical case, last_blk is the number of the block directly after
  350. * a good log record. Therefore, we subtract one to get the block number
  351. * of the last block in the given buffer. extra_bblks contains the number
  352. * of blocks we would have read on a previous read. This happens when the
  353. * last log record is split over the end of the physical log.
  354. *
  355. * extra_bblks is the number of blocks potentially verified on a previous
  356. * call to this routine.
  357. */
  358. STATIC int
  359. xlog_find_verify_log_record(
  360. xlog_t *log,
  361. xfs_daddr_t start_blk,
  362. xfs_daddr_t *last_blk,
  363. int extra_bblks)
  364. {
  365. xfs_daddr_t i;
  366. xfs_buf_t *bp;
  367. xfs_caddr_t offset = NULL;
  368. xlog_rec_header_t *head = NULL;
  369. int error = 0;
  370. int smallmem = 0;
  371. int num_blks = *last_blk - start_blk;
  372. int xhdrs;
  373. ASSERT(start_blk != 0 || *last_blk != start_blk);
  374. if (!(bp = xlog_get_bp(log, num_blks))) {
  375. if (!(bp = xlog_get_bp(log, 1)))
  376. return ENOMEM;
  377. smallmem = 1;
  378. } else {
  379. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  380. goto out;
  381. offset = xlog_align(log, start_blk, num_blks, bp);
  382. offset += ((num_blks - 1) << BBSHIFT);
  383. }
  384. for (i = (*last_blk) - 1; i >= 0; i--) {
  385. if (i < start_blk) {
  386. /* valid log record not found */
  387. xlog_warn(
  388. "XFS: Log inconsistent (didn't find previous header)");
  389. ASSERT(0);
  390. error = XFS_ERROR(EIO);
  391. goto out;
  392. }
  393. if (smallmem) {
  394. if ((error = xlog_bread(log, i, 1, bp)))
  395. goto out;
  396. offset = xlog_align(log, i, 1, bp);
  397. }
  398. head = (xlog_rec_header_t *)offset;
  399. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  400. break;
  401. if (!smallmem)
  402. offset -= BBSIZE;
  403. }
  404. /*
  405. * We hit the beginning of the physical log & still no header. Return
  406. * to caller. If caller can handle a return of -1, then this routine
  407. * will be called again for the end of the physical log.
  408. */
  409. if (i == -1) {
  410. error = -1;
  411. goto out;
  412. }
  413. /*
  414. * We have the final block of the good log (the first block
  415. * of the log record _before_ the head. So we check the uuid.
  416. */
  417. if ((error = xlog_header_check_mount(log->l_mp, head)))
  418. goto out;
  419. /*
  420. * We may have found a log record header before we expected one.
  421. * last_blk will be the 1st block # with a given cycle #. We may end
  422. * up reading an entire log record. In this case, we don't want to
  423. * reset last_blk. Only when last_blk points in the middle of a log
  424. * record do we update last_blk.
  425. */
  426. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  427. uint h_size = be32_to_cpu(head->h_size);
  428. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  429. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  430. xhdrs++;
  431. } else {
  432. xhdrs = 1;
  433. }
  434. if (*last_blk - i + extra_bblks !=
  435. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  436. *last_blk = i;
  437. out:
  438. xlog_put_bp(bp);
  439. return error;
  440. }
  441. /*
  442. * Head is defined to be the point of the log where the next log write
  443. * write could go. This means that incomplete LR writes at the end are
  444. * eliminated when calculating the head. We aren't guaranteed that previous
  445. * LR have complete transactions. We only know that a cycle number of
  446. * current cycle number -1 won't be present in the log if we start writing
  447. * from our current block number.
  448. *
  449. * last_blk contains the block number of the first block with a given
  450. * cycle number.
  451. *
  452. * Return: zero if normal, non-zero if error.
  453. */
  454. STATIC int
  455. xlog_find_head(
  456. xlog_t *log,
  457. xfs_daddr_t *return_head_blk)
  458. {
  459. xfs_buf_t *bp;
  460. xfs_caddr_t offset;
  461. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  462. int num_scan_bblks;
  463. uint first_half_cycle, last_half_cycle;
  464. uint stop_on_cycle;
  465. int error, log_bbnum = log->l_logBBsize;
  466. /* Is the end of the log device zeroed? */
  467. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  468. *return_head_blk = first_blk;
  469. /* Is the whole lot zeroed? */
  470. if (!first_blk) {
  471. /* Linux XFS shouldn't generate totally zeroed logs -
  472. * mkfs etc write a dummy unmount record to a fresh
  473. * log so we can store the uuid in there
  474. */
  475. xlog_warn("XFS: totally zeroed log");
  476. }
  477. return 0;
  478. } else if (error) {
  479. xlog_warn("XFS: empty log check failed");
  480. return error;
  481. }
  482. first_blk = 0; /* get cycle # of 1st block */
  483. bp = xlog_get_bp(log, 1);
  484. if (!bp)
  485. return ENOMEM;
  486. if ((error = xlog_bread(log, 0, 1, bp)))
  487. goto bp_err;
  488. offset = xlog_align(log, 0, 1, bp);
  489. first_half_cycle = xlog_get_cycle(offset);
  490. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  491. if ((error = xlog_bread(log, last_blk, 1, bp)))
  492. goto bp_err;
  493. offset = xlog_align(log, last_blk, 1, bp);
  494. last_half_cycle = xlog_get_cycle(offset);
  495. ASSERT(last_half_cycle != 0);
  496. /*
  497. * If the 1st half cycle number is equal to the last half cycle number,
  498. * then the entire log is stamped with the same cycle number. In this
  499. * case, head_blk can't be set to zero (which makes sense). The below
  500. * math doesn't work out properly with head_blk equal to zero. Instead,
  501. * we set it to log_bbnum which is an invalid block number, but this
  502. * value makes the math correct. If head_blk doesn't changed through
  503. * all the tests below, *head_blk is set to zero at the very end rather
  504. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  505. * in a circular file.
  506. */
  507. if (first_half_cycle == last_half_cycle) {
  508. /*
  509. * In this case we believe that the entire log should have
  510. * cycle number last_half_cycle. We need to scan backwards
  511. * from the end verifying that there are no holes still
  512. * containing last_half_cycle - 1. If we find such a hole,
  513. * then the start of that hole will be the new head. The
  514. * simple case looks like
  515. * x | x ... | x - 1 | x
  516. * Another case that fits this picture would be
  517. * x | x + 1 | x ... | x
  518. * In this case the head really is somewhere at the end of the
  519. * log, as one of the latest writes at the beginning was
  520. * incomplete.
  521. * One more case is
  522. * x | x + 1 | x ... | x - 1 | x
  523. * This is really the combination of the above two cases, and
  524. * the head has to end up at the start of the x-1 hole at the
  525. * end of the log.
  526. *
  527. * In the 256k log case, we will read from the beginning to the
  528. * end of the log and search for cycle numbers equal to x-1.
  529. * We don't worry about the x+1 blocks that we encounter,
  530. * because we know that they cannot be the head since the log
  531. * started with x.
  532. */
  533. head_blk = log_bbnum;
  534. stop_on_cycle = last_half_cycle - 1;
  535. } else {
  536. /*
  537. * In this case we want to find the first block with cycle
  538. * number matching last_half_cycle. We expect the log to be
  539. * some variation on
  540. * x + 1 ... | x ...
  541. * The first block with cycle number x (last_half_cycle) will
  542. * be where the new head belongs. First we do a binary search
  543. * for the first occurrence of last_half_cycle. The binary
  544. * search may not be totally accurate, so then we scan back
  545. * from there looking for occurrences of last_half_cycle before
  546. * us. If that backwards scan wraps around the beginning of
  547. * the log, then we look for occurrences of last_half_cycle - 1
  548. * at the end of the log. The cases we're looking for look
  549. * like
  550. * x + 1 ... | x | x + 1 | x ...
  551. * ^ binary search stopped here
  552. * or
  553. * x + 1 ... | x ... | x - 1 | x
  554. * <---------> less than scan distance
  555. */
  556. stop_on_cycle = last_half_cycle;
  557. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  558. &head_blk, last_half_cycle)))
  559. goto bp_err;
  560. }
  561. /*
  562. * Now validate the answer. Scan back some number of maximum possible
  563. * blocks and make sure each one has the expected cycle number. The
  564. * maximum is determined by the total possible amount of buffering
  565. * in the in-core log. The following number can be made tighter if
  566. * we actually look at the block size of the filesystem.
  567. */
  568. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  569. if (head_blk >= num_scan_bblks) {
  570. /*
  571. * We are guaranteed that the entire check can be performed
  572. * in one buffer.
  573. */
  574. start_blk = head_blk - num_scan_bblks;
  575. if ((error = xlog_find_verify_cycle(log,
  576. start_blk, num_scan_bblks,
  577. stop_on_cycle, &new_blk)))
  578. goto bp_err;
  579. if (new_blk != -1)
  580. head_blk = new_blk;
  581. } else { /* need to read 2 parts of log */
  582. /*
  583. * We are going to scan backwards in the log in two parts.
  584. * First we scan the physical end of the log. In this part
  585. * of the log, we are looking for blocks with cycle number
  586. * last_half_cycle - 1.
  587. * If we find one, then we know that the log starts there, as
  588. * we've found a hole that didn't get written in going around
  589. * the end of the physical log. The simple case for this is
  590. * x + 1 ... | x ... | x - 1 | x
  591. * <---------> less than scan distance
  592. * If all of the blocks at the end of the log have cycle number
  593. * last_half_cycle, then we check the blocks at the start of
  594. * the log looking for occurrences of last_half_cycle. If we
  595. * find one, then our current estimate for the location of the
  596. * first occurrence of last_half_cycle is wrong and we move
  597. * back to the hole we've found. This case looks like
  598. * x + 1 ... | x | x + 1 | x ...
  599. * ^ binary search stopped here
  600. * Another case we need to handle that only occurs in 256k
  601. * logs is
  602. * x + 1 ... | x ... | x+1 | x ...
  603. * ^ binary search stops here
  604. * In a 256k log, the scan at the end of the log will see the
  605. * x + 1 blocks. We need to skip past those since that is
  606. * certainly not the head of the log. By searching for
  607. * last_half_cycle-1 we accomplish that.
  608. */
  609. start_blk = log_bbnum - num_scan_bblks + head_blk;
  610. ASSERT(head_blk <= INT_MAX &&
  611. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  612. if ((error = xlog_find_verify_cycle(log, start_blk,
  613. num_scan_bblks - (int)head_blk,
  614. (stop_on_cycle - 1), &new_blk)))
  615. goto bp_err;
  616. if (new_blk != -1) {
  617. head_blk = new_blk;
  618. goto bad_blk;
  619. }
  620. /*
  621. * Scan beginning of log now. The last part of the physical
  622. * log is good. This scan needs to verify that it doesn't find
  623. * the last_half_cycle.
  624. */
  625. start_blk = 0;
  626. ASSERT(head_blk <= INT_MAX);
  627. if ((error = xlog_find_verify_cycle(log,
  628. start_blk, (int)head_blk,
  629. stop_on_cycle, &new_blk)))
  630. goto bp_err;
  631. if (new_blk != -1)
  632. head_blk = new_blk;
  633. }
  634. bad_blk:
  635. /*
  636. * Now we need to make sure head_blk is not pointing to a block in
  637. * the middle of a log record.
  638. */
  639. num_scan_bblks = XLOG_REC_SHIFT(log);
  640. if (head_blk >= num_scan_bblks) {
  641. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  642. /* start ptr at last block ptr before head_blk */
  643. if ((error = xlog_find_verify_log_record(log, start_blk,
  644. &head_blk, 0)) == -1) {
  645. error = XFS_ERROR(EIO);
  646. goto bp_err;
  647. } else if (error)
  648. goto bp_err;
  649. } else {
  650. start_blk = 0;
  651. ASSERT(head_blk <= INT_MAX);
  652. if ((error = xlog_find_verify_log_record(log, start_blk,
  653. &head_blk, 0)) == -1) {
  654. /* We hit the beginning of the log during our search */
  655. start_blk = log_bbnum - num_scan_bblks + head_blk;
  656. new_blk = log_bbnum;
  657. ASSERT(start_blk <= INT_MAX &&
  658. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  659. ASSERT(head_blk <= INT_MAX);
  660. if ((error = xlog_find_verify_log_record(log,
  661. start_blk, &new_blk,
  662. (int)head_blk)) == -1) {
  663. error = XFS_ERROR(EIO);
  664. goto bp_err;
  665. } else if (error)
  666. goto bp_err;
  667. if (new_blk != log_bbnum)
  668. head_blk = new_blk;
  669. } else if (error)
  670. goto bp_err;
  671. }
  672. xlog_put_bp(bp);
  673. if (head_blk == log_bbnum)
  674. *return_head_blk = 0;
  675. else
  676. *return_head_blk = head_blk;
  677. /*
  678. * When returning here, we have a good block number. Bad block
  679. * means that during a previous crash, we didn't have a clean break
  680. * from cycle number N to cycle number N-1. In this case, we need
  681. * to find the first block with cycle number N-1.
  682. */
  683. return 0;
  684. bp_err:
  685. xlog_put_bp(bp);
  686. if (error)
  687. xlog_warn("XFS: failed to find log head");
  688. return error;
  689. }
  690. /*
  691. * Find the sync block number or the tail of the log.
  692. *
  693. * This will be the block number of the last record to have its
  694. * associated buffers synced to disk. Every log record header has
  695. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  696. * to get a sync block number. The only concern is to figure out which
  697. * log record header to believe.
  698. *
  699. * The following algorithm uses the log record header with the largest
  700. * lsn. The entire log record does not need to be valid. We only care
  701. * that the header is valid.
  702. *
  703. * We could speed up search by using current head_blk buffer, but it is not
  704. * available.
  705. */
  706. int
  707. xlog_find_tail(
  708. xlog_t *log,
  709. xfs_daddr_t *head_blk,
  710. xfs_daddr_t *tail_blk)
  711. {
  712. xlog_rec_header_t *rhead;
  713. xlog_op_header_t *op_head;
  714. xfs_caddr_t offset = NULL;
  715. xfs_buf_t *bp;
  716. int error, i, found;
  717. xfs_daddr_t umount_data_blk;
  718. xfs_daddr_t after_umount_blk;
  719. xfs_lsn_t tail_lsn;
  720. int hblks;
  721. found = 0;
  722. /*
  723. * Find previous log record
  724. */
  725. if ((error = xlog_find_head(log, head_blk)))
  726. return error;
  727. bp = xlog_get_bp(log, 1);
  728. if (!bp)
  729. return ENOMEM;
  730. if (*head_blk == 0) { /* special case */
  731. if ((error = xlog_bread(log, 0, 1, bp)))
  732. goto bread_err;
  733. offset = xlog_align(log, 0, 1, bp);
  734. if (xlog_get_cycle(offset) == 0) {
  735. *tail_blk = 0;
  736. /* leave all other log inited values alone */
  737. goto exit;
  738. }
  739. }
  740. /*
  741. * Search backwards looking for log record header block
  742. */
  743. ASSERT(*head_blk < INT_MAX);
  744. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  745. if ((error = xlog_bread(log, i, 1, bp)))
  746. goto bread_err;
  747. offset = xlog_align(log, i, 1, bp);
  748. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  749. found = 1;
  750. break;
  751. }
  752. }
  753. /*
  754. * If we haven't found the log record header block, start looking
  755. * again from the end of the physical log. XXXmiken: There should be
  756. * a check here to make sure we didn't search more than N blocks in
  757. * the previous code.
  758. */
  759. if (!found) {
  760. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  761. if ((error = xlog_bread(log, i, 1, bp)))
  762. goto bread_err;
  763. offset = xlog_align(log, i, 1, bp);
  764. if (XLOG_HEADER_MAGIC_NUM ==
  765. be32_to_cpu(*(__be32 *)offset)) {
  766. found = 2;
  767. break;
  768. }
  769. }
  770. }
  771. if (!found) {
  772. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  773. ASSERT(0);
  774. return XFS_ERROR(EIO);
  775. }
  776. /* find blk_no of tail of log */
  777. rhead = (xlog_rec_header_t *)offset;
  778. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  779. /*
  780. * Reset log values according to the state of the log when we
  781. * crashed. In the case where head_blk == 0, we bump curr_cycle
  782. * one because the next write starts a new cycle rather than
  783. * continuing the cycle of the last good log record. At this
  784. * point we have guaranteed that all partial log records have been
  785. * accounted for. Therefore, we know that the last good log record
  786. * written was complete and ended exactly on the end boundary
  787. * of the physical log.
  788. */
  789. log->l_prev_block = i;
  790. log->l_curr_block = (int)*head_blk;
  791. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  792. if (found == 2)
  793. log->l_curr_cycle++;
  794. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  795. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  796. log->l_grant_reserve_cycle = log->l_curr_cycle;
  797. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  798. log->l_grant_write_cycle = log->l_curr_cycle;
  799. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  800. /*
  801. * Look for unmount record. If we find it, then we know there
  802. * was a clean unmount. Since 'i' could be the last block in
  803. * the physical log, we convert to a log block before comparing
  804. * to the head_blk.
  805. *
  806. * Save the current tail lsn to use to pass to
  807. * xlog_clear_stale_blocks() below. We won't want to clear the
  808. * unmount record if there is one, so we pass the lsn of the
  809. * unmount record rather than the block after it.
  810. */
  811. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  812. int h_size = be32_to_cpu(rhead->h_size);
  813. int h_version = be32_to_cpu(rhead->h_version);
  814. if ((h_version & XLOG_VERSION_2) &&
  815. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  816. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  817. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  818. hblks++;
  819. } else {
  820. hblks = 1;
  821. }
  822. } else {
  823. hblks = 1;
  824. }
  825. after_umount_blk = (i + hblks + (int)
  826. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  827. tail_lsn = log->l_tail_lsn;
  828. if (*head_blk == after_umount_blk &&
  829. be32_to_cpu(rhead->h_num_logops) == 1) {
  830. umount_data_blk = (i + hblks) % log->l_logBBsize;
  831. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  832. goto bread_err;
  833. }
  834. offset = xlog_align(log, umount_data_blk, 1, bp);
  835. op_head = (xlog_op_header_t *)offset;
  836. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  837. /*
  838. * Set tail and last sync so that newly written
  839. * log records will point recovery to after the
  840. * current unmount record.
  841. */
  842. log->l_tail_lsn =
  843. xlog_assign_lsn(log->l_curr_cycle,
  844. after_umount_blk);
  845. log->l_last_sync_lsn =
  846. xlog_assign_lsn(log->l_curr_cycle,
  847. after_umount_blk);
  848. *tail_blk = after_umount_blk;
  849. /*
  850. * Note that the unmount was clean. If the unmount
  851. * was not clean, we need to know this to rebuild the
  852. * superblock counters from the perag headers if we
  853. * have a filesystem using non-persistent counters.
  854. */
  855. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  856. }
  857. }
  858. /*
  859. * Make sure that there are no blocks in front of the head
  860. * with the same cycle number as the head. This can happen
  861. * because we allow multiple outstanding log writes concurrently,
  862. * and the later writes might make it out before earlier ones.
  863. *
  864. * We use the lsn from before modifying it so that we'll never
  865. * overwrite the unmount record after a clean unmount.
  866. *
  867. * Do this only if we are going to recover the filesystem
  868. *
  869. * NOTE: This used to say "if (!readonly)"
  870. * However on Linux, we can & do recover a read-only filesystem.
  871. * We only skip recovery if NORECOVERY is specified on mount,
  872. * in which case we would not be here.
  873. *
  874. * But... if the -device- itself is readonly, just skip this.
  875. * We can't recover this device anyway, so it won't matter.
  876. */
  877. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  878. error = xlog_clear_stale_blocks(log, tail_lsn);
  879. }
  880. bread_err:
  881. exit:
  882. xlog_put_bp(bp);
  883. if (error)
  884. xlog_warn("XFS: failed to locate log tail");
  885. return error;
  886. }
  887. /*
  888. * Is the log zeroed at all?
  889. *
  890. * The last binary search should be changed to perform an X block read
  891. * once X becomes small enough. You can then search linearly through
  892. * the X blocks. This will cut down on the number of reads we need to do.
  893. *
  894. * If the log is partially zeroed, this routine will pass back the blkno
  895. * of the first block with cycle number 0. It won't have a complete LR
  896. * preceding it.
  897. *
  898. * Return:
  899. * 0 => the log is completely written to
  900. * -1 => use *blk_no as the first block of the log
  901. * >0 => error has occurred
  902. */
  903. STATIC int
  904. xlog_find_zeroed(
  905. xlog_t *log,
  906. xfs_daddr_t *blk_no)
  907. {
  908. xfs_buf_t *bp;
  909. xfs_caddr_t offset;
  910. uint first_cycle, last_cycle;
  911. xfs_daddr_t new_blk, last_blk, start_blk;
  912. xfs_daddr_t num_scan_bblks;
  913. int error, log_bbnum = log->l_logBBsize;
  914. *blk_no = 0;
  915. /* check totally zeroed log */
  916. bp = xlog_get_bp(log, 1);
  917. if (!bp)
  918. return ENOMEM;
  919. if ((error = xlog_bread(log, 0, 1, bp)))
  920. goto bp_err;
  921. offset = xlog_align(log, 0, 1, bp);
  922. first_cycle = xlog_get_cycle(offset);
  923. if (first_cycle == 0) { /* completely zeroed log */
  924. *blk_no = 0;
  925. xlog_put_bp(bp);
  926. return -1;
  927. }
  928. /* check partially zeroed log */
  929. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  930. goto bp_err;
  931. offset = xlog_align(log, log_bbnum-1, 1, bp);
  932. last_cycle = xlog_get_cycle(offset);
  933. if (last_cycle != 0) { /* log completely written to */
  934. xlog_put_bp(bp);
  935. return 0;
  936. } else if (first_cycle != 1) {
  937. /*
  938. * If the cycle of the last block is zero, the cycle of
  939. * the first block must be 1. If it's not, maybe we're
  940. * not looking at a log... Bail out.
  941. */
  942. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  943. return XFS_ERROR(EINVAL);
  944. }
  945. /* we have a partially zeroed log */
  946. last_blk = log_bbnum-1;
  947. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  948. goto bp_err;
  949. /*
  950. * Validate the answer. Because there is no way to guarantee that
  951. * the entire log is made up of log records which are the same size,
  952. * we scan over the defined maximum blocks. At this point, the maximum
  953. * is not chosen to mean anything special. XXXmiken
  954. */
  955. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  956. ASSERT(num_scan_bblks <= INT_MAX);
  957. if (last_blk < num_scan_bblks)
  958. num_scan_bblks = last_blk;
  959. start_blk = last_blk - num_scan_bblks;
  960. /*
  961. * We search for any instances of cycle number 0 that occur before
  962. * our current estimate of the head. What we're trying to detect is
  963. * 1 ... | 0 | 1 | 0...
  964. * ^ binary search ends here
  965. */
  966. if ((error = xlog_find_verify_cycle(log, start_blk,
  967. (int)num_scan_bblks, 0, &new_blk)))
  968. goto bp_err;
  969. if (new_blk != -1)
  970. last_blk = new_blk;
  971. /*
  972. * Potentially backup over partial log record write. We don't need
  973. * to search the end of the log because we know it is zero.
  974. */
  975. if ((error = xlog_find_verify_log_record(log, start_blk,
  976. &last_blk, 0)) == -1) {
  977. error = XFS_ERROR(EIO);
  978. goto bp_err;
  979. } else if (error)
  980. goto bp_err;
  981. *blk_no = last_blk;
  982. bp_err:
  983. xlog_put_bp(bp);
  984. if (error)
  985. return error;
  986. return -1;
  987. }
  988. /*
  989. * These are simple subroutines used by xlog_clear_stale_blocks() below
  990. * to initialize a buffer full of empty log record headers and write
  991. * them into the log.
  992. */
  993. STATIC void
  994. xlog_add_record(
  995. xlog_t *log,
  996. xfs_caddr_t buf,
  997. int cycle,
  998. int block,
  999. int tail_cycle,
  1000. int tail_block)
  1001. {
  1002. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1003. memset(buf, 0, BBSIZE);
  1004. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1005. recp->h_cycle = cpu_to_be32(cycle);
  1006. recp->h_version = cpu_to_be32(
  1007. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1008. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1009. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1010. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1011. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1012. }
  1013. STATIC int
  1014. xlog_write_log_records(
  1015. xlog_t *log,
  1016. int cycle,
  1017. int start_block,
  1018. int blocks,
  1019. int tail_cycle,
  1020. int tail_block)
  1021. {
  1022. xfs_caddr_t offset;
  1023. xfs_buf_t *bp;
  1024. int balign, ealign;
  1025. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1026. int end_block = start_block + blocks;
  1027. int bufblks;
  1028. int error = 0;
  1029. int i, j = 0;
  1030. bufblks = 1 << ffs(blocks);
  1031. while (!(bp = xlog_get_bp(log, bufblks))) {
  1032. bufblks >>= 1;
  1033. if (bufblks <= log->l_sectbb_log)
  1034. return ENOMEM;
  1035. }
  1036. /* We may need to do a read at the start to fill in part of
  1037. * the buffer in the starting sector not covered by the first
  1038. * write below.
  1039. */
  1040. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1041. if (balign != start_block) {
  1042. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1043. xlog_put_bp(bp);
  1044. return error;
  1045. }
  1046. j = start_block - balign;
  1047. }
  1048. for (i = start_block; i < end_block; i += bufblks) {
  1049. int bcount, endcount;
  1050. bcount = min(bufblks, end_block - start_block);
  1051. endcount = bcount - j;
  1052. /* We may need to do a read at the end to fill in part of
  1053. * the buffer in the final sector not covered by the write.
  1054. * If this is the same sector as the above read, skip it.
  1055. */
  1056. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1057. if (j == 0 && (start_block + endcount > ealign)) {
  1058. offset = XFS_BUF_PTR(bp);
  1059. balign = BBTOB(ealign - start_block);
  1060. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1061. BBTOB(sectbb));
  1062. if (!error)
  1063. error = xlog_bread(log, ealign, sectbb, bp);
  1064. if (!error)
  1065. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1066. if (error)
  1067. break;
  1068. }
  1069. offset = xlog_align(log, start_block, endcount, bp);
  1070. for (; j < endcount; j++) {
  1071. xlog_add_record(log, offset, cycle, i+j,
  1072. tail_cycle, tail_block);
  1073. offset += BBSIZE;
  1074. }
  1075. error = xlog_bwrite(log, start_block, endcount, bp);
  1076. if (error)
  1077. break;
  1078. start_block += endcount;
  1079. j = 0;
  1080. }
  1081. xlog_put_bp(bp);
  1082. return error;
  1083. }
  1084. /*
  1085. * This routine is called to blow away any incomplete log writes out
  1086. * in front of the log head. We do this so that we won't become confused
  1087. * if we come up, write only a little bit more, and then crash again.
  1088. * If we leave the partial log records out there, this situation could
  1089. * cause us to think those partial writes are valid blocks since they
  1090. * have the current cycle number. We get rid of them by overwriting them
  1091. * with empty log records with the old cycle number rather than the
  1092. * current one.
  1093. *
  1094. * The tail lsn is passed in rather than taken from
  1095. * the log so that we will not write over the unmount record after a
  1096. * clean unmount in a 512 block log. Doing so would leave the log without
  1097. * any valid log records in it until a new one was written. If we crashed
  1098. * during that time we would not be able to recover.
  1099. */
  1100. STATIC int
  1101. xlog_clear_stale_blocks(
  1102. xlog_t *log,
  1103. xfs_lsn_t tail_lsn)
  1104. {
  1105. int tail_cycle, head_cycle;
  1106. int tail_block, head_block;
  1107. int tail_distance, max_distance;
  1108. int distance;
  1109. int error;
  1110. tail_cycle = CYCLE_LSN(tail_lsn);
  1111. tail_block = BLOCK_LSN(tail_lsn);
  1112. head_cycle = log->l_curr_cycle;
  1113. head_block = log->l_curr_block;
  1114. /*
  1115. * Figure out the distance between the new head of the log
  1116. * and the tail. We want to write over any blocks beyond the
  1117. * head that we may have written just before the crash, but
  1118. * we don't want to overwrite the tail of the log.
  1119. */
  1120. if (head_cycle == tail_cycle) {
  1121. /*
  1122. * The tail is behind the head in the physical log,
  1123. * so the distance from the head to the tail is the
  1124. * distance from the head to the end of the log plus
  1125. * the distance from the beginning of the log to the
  1126. * tail.
  1127. */
  1128. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1129. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1130. XFS_ERRLEVEL_LOW, log->l_mp);
  1131. return XFS_ERROR(EFSCORRUPTED);
  1132. }
  1133. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1134. } else {
  1135. /*
  1136. * The head is behind the tail in the physical log,
  1137. * so the distance from the head to the tail is just
  1138. * the tail block minus the head block.
  1139. */
  1140. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1141. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1142. XFS_ERRLEVEL_LOW, log->l_mp);
  1143. return XFS_ERROR(EFSCORRUPTED);
  1144. }
  1145. tail_distance = tail_block - head_block;
  1146. }
  1147. /*
  1148. * If the head is right up against the tail, we can't clear
  1149. * anything.
  1150. */
  1151. if (tail_distance <= 0) {
  1152. ASSERT(tail_distance == 0);
  1153. return 0;
  1154. }
  1155. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1156. /*
  1157. * Take the smaller of the maximum amount of outstanding I/O
  1158. * we could have and the distance to the tail to clear out.
  1159. * We take the smaller so that we don't overwrite the tail and
  1160. * we don't waste all day writing from the head to the tail
  1161. * for no reason.
  1162. */
  1163. max_distance = MIN(max_distance, tail_distance);
  1164. if ((head_block + max_distance) <= log->l_logBBsize) {
  1165. /*
  1166. * We can stomp all the blocks we need to without
  1167. * wrapping around the end of the log. Just do it
  1168. * in a single write. Use the cycle number of the
  1169. * current cycle minus one so that the log will look like:
  1170. * n ... | n - 1 ...
  1171. */
  1172. error = xlog_write_log_records(log, (head_cycle - 1),
  1173. head_block, max_distance, tail_cycle,
  1174. tail_block);
  1175. if (error)
  1176. return error;
  1177. } else {
  1178. /*
  1179. * We need to wrap around the end of the physical log in
  1180. * order to clear all the blocks. Do it in two separate
  1181. * I/Os. The first write should be from the head to the
  1182. * end of the physical log, and it should use the current
  1183. * cycle number minus one just like above.
  1184. */
  1185. distance = log->l_logBBsize - head_block;
  1186. error = xlog_write_log_records(log, (head_cycle - 1),
  1187. head_block, distance, tail_cycle,
  1188. tail_block);
  1189. if (error)
  1190. return error;
  1191. /*
  1192. * Now write the blocks at the start of the physical log.
  1193. * This writes the remainder of the blocks we want to clear.
  1194. * It uses the current cycle number since we're now on the
  1195. * same cycle as the head so that we get:
  1196. * n ... n ... | n - 1 ...
  1197. * ^^^^^ blocks we're writing
  1198. */
  1199. distance = max_distance - (log->l_logBBsize - head_block);
  1200. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1201. tail_cycle, tail_block);
  1202. if (error)
  1203. return error;
  1204. }
  1205. return 0;
  1206. }
  1207. /******************************************************************************
  1208. *
  1209. * Log recover routines
  1210. *
  1211. ******************************************************************************
  1212. */
  1213. STATIC xlog_recover_t *
  1214. xlog_recover_find_tid(
  1215. xlog_recover_t *q,
  1216. xlog_tid_t tid)
  1217. {
  1218. xlog_recover_t *p = q;
  1219. while (p != NULL) {
  1220. if (p->r_log_tid == tid)
  1221. break;
  1222. p = p->r_next;
  1223. }
  1224. return p;
  1225. }
  1226. STATIC void
  1227. xlog_recover_put_hashq(
  1228. xlog_recover_t **q,
  1229. xlog_recover_t *trans)
  1230. {
  1231. trans->r_next = *q;
  1232. *q = trans;
  1233. }
  1234. STATIC void
  1235. xlog_recover_add_item(
  1236. xlog_recover_item_t **itemq)
  1237. {
  1238. xlog_recover_item_t *item;
  1239. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1240. xlog_recover_insert_item_backq(itemq, item);
  1241. }
  1242. STATIC int
  1243. xlog_recover_add_to_cont_trans(
  1244. xlog_recover_t *trans,
  1245. xfs_caddr_t dp,
  1246. int len)
  1247. {
  1248. xlog_recover_item_t *item;
  1249. xfs_caddr_t ptr, old_ptr;
  1250. int old_len;
  1251. item = trans->r_itemq;
  1252. if (item == NULL) {
  1253. /* finish copying rest of trans header */
  1254. xlog_recover_add_item(&trans->r_itemq);
  1255. ptr = (xfs_caddr_t) &trans->r_theader +
  1256. sizeof(xfs_trans_header_t) - len;
  1257. memcpy(ptr, dp, len); /* d, s, l */
  1258. return 0;
  1259. }
  1260. item = item->ri_prev;
  1261. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1262. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1263. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1264. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1265. item->ri_buf[item->ri_cnt-1].i_len += len;
  1266. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1267. return 0;
  1268. }
  1269. /*
  1270. * The next region to add is the start of a new region. It could be
  1271. * a whole region or it could be the first part of a new region. Because
  1272. * of this, the assumption here is that the type and size fields of all
  1273. * format structures fit into the first 32 bits of the structure.
  1274. *
  1275. * This works because all regions must be 32 bit aligned. Therefore, we
  1276. * either have both fields or we have neither field. In the case we have
  1277. * neither field, the data part of the region is zero length. We only have
  1278. * a log_op_header and can throw away the header since a new one will appear
  1279. * later. If we have at least 4 bytes, then we can determine how many regions
  1280. * will appear in the current log item.
  1281. */
  1282. STATIC int
  1283. xlog_recover_add_to_trans(
  1284. xlog_recover_t *trans,
  1285. xfs_caddr_t dp,
  1286. int len)
  1287. {
  1288. xfs_inode_log_format_t *in_f; /* any will do */
  1289. xlog_recover_item_t *item;
  1290. xfs_caddr_t ptr;
  1291. if (!len)
  1292. return 0;
  1293. item = trans->r_itemq;
  1294. if (item == NULL) {
  1295. /* we need to catch log corruptions here */
  1296. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1297. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1298. "bad header magic number");
  1299. ASSERT(0);
  1300. return XFS_ERROR(EIO);
  1301. }
  1302. if (len == sizeof(xfs_trans_header_t))
  1303. xlog_recover_add_item(&trans->r_itemq);
  1304. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1305. return 0;
  1306. }
  1307. ptr = kmem_alloc(len, KM_SLEEP);
  1308. memcpy(ptr, dp, len);
  1309. in_f = (xfs_inode_log_format_t *)ptr;
  1310. if (item->ri_prev->ri_total != 0 &&
  1311. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1312. xlog_recover_add_item(&trans->r_itemq);
  1313. }
  1314. item = trans->r_itemq;
  1315. item = item->ri_prev;
  1316. if (item->ri_total == 0) { /* first region to be added */
  1317. item->ri_total = in_f->ilf_size;
  1318. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1319. item->ri_buf = kmem_zalloc((item->ri_total *
  1320. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1321. }
  1322. ASSERT(item->ri_total > item->ri_cnt);
  1323. /* Description region is ri_buf[0] */
  1324. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1325. item->ri_buf[item->ri_cnt].i_len = len;
  1326. item->ri_cnt++;
  1327. return 0;
  1328. }
  1329. STATIC void
  1330. xlog_recover_new_tid(
  1331. xlog_recover_t **q,
  1332. xlog_tid_t tid,
  1333. xfs_lsn_t lsn)
  1334. {
  1335. xlog_recover_t *trans;
  1336. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1337. trans->r_log_tid = tid;
  1338. trans->r_lsn = lsn;
  1339. xlog_recover_put_hashq(q, trans);
  1340. }
  1341. STATIC int
  1342. xlog_recover_unlink_tid(
  1343. xlog_recover_t **q,
  1344. xlog_recover_t *trans)
  1345. {
  1346. xlog_recover_t *tp;
  1347. int found = 0;
  1348. ASSERT(trans != NULL);
  1349. if (trans == *q) {
  1350. *q = (*q)->r_next;
  1351. } else {
  1352. tp = *q;
  1353. while (tp) {
  1354. if (tp->r_next == trans) {
  1355. found = 1;
  1356. break;
  1357. }
  1358. tp = tp->r_next;
  1359. }
  1360. if (!found) {
  1361. xlog_warn(
  1362. "XFS: xlog_recover_unlink_tid: trans not found");
  1363. ASSERT(0);
  1364. return XFS_ERROR(EIO);
  1365. }
  1366. tp->r_next = tp->r_next->r_next;
  1367. }
  1368. return 0;
  1369. }
  1370. STATIC void
  1371. xlog_recover_insert_item_backq(
  1372. xlog_recover_item_t **q,
  1373. xlog_recover_item_t *item)
  1374. {
  1375. if (*q == NULL) {
  1376. item->ri_prev = item->ri_next = item;
  1377. *q = item;
  1378. } else {
  1379. item->ri_next = *q;
  1380. item->ri_prev = (*q)->ri_prev;
  1381. (*q)->ri_prev = item;
  1382. item->ri_prev->ri_next = item;
  1383. }
  1384. }
  1385. STATIC void
  1386. xlog_recover_insert_item_frontq(
  1387. xlog_recover_item_t **q,
  1388. xlog_recover_item_t *item)
  1389. {
  1390. xlog_recover_insert_item_backq(q, item);
  1391. *q = item;
  1392. }
  1393. STATIC int
  1394. xlog_recover_reorder_trans(
  1395. xlog_recover_t *trans)
  1396. {
  1397. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1398. xfs_buf_log_format_t *buf_f;
  1399. ushort flags = 0;
  1400. first_item = itemq = trans->r_itemq;
  1401. trans->r_itemq = NULL;
  1402. do {
  1403. itemq_next = itemq->ri_next;
  1404. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1405. switch (ITEM_TYPE(itemq)) {
  1406. case XFS_LI_BUF:
  1407. flags = buf_f->blf_flags;
  1408. if (!(flags & XFS_BLI_CANCEL)) {
  1409. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1410. itemq);
  1411. break;
  1412. }
  1413. case XFS_LI_INODE:
  1414. case XFS_LI_DQUOT:
  1415. case XFS_LI_QUOTAOFF:
  1416. case XFS_LI_EFD:
  1417. case XFS_LI_EFI:
  1418. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1419. break;
  1420. default:
  1421. xlog_warn(
  1422. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1423. ASSERT(0);
  1424. return XFS_ERROR(EIO);
  1425. }
  1426. itemq = itemq_next;
  1427. } while (first_item != itemq);
  1428. return 0;
  1429. }
  1430. /*
  1431. * Build up the table of buf cancel records so that we don't replay
  1432. * cancelled data in the second pass. For buffer records that are
  1433. * not cancel records, there is nothing to do here so we just return.
  1434. *
  1435. * If we get a cancel record which is already in the table, this indicates
  1436. * that the buffer was cancelled multiple times. In order to ensure
  1437. * that during pass 2 we keep the record in the table until we reach its
  1438. * last occurrence in the log, we keep a reference count in the cancel
  1439. * record in the table to tell us how many times we expect to see this
  1440. * record during the second pass.
  1441. */
  1442. STATIC void
  1443. xlog_recover_do_buffer_pass1(
  1444. xlog_t *log,
  1445. xfs_buf_log_format_t *buf_f)
  1446. {
  1447. xfs_buf_cancel_t *bcp;
  1448. xfs_buf_cancel_t *nextp;
  1449. xfs_buf_cancel_t *prevp;
  1450. xfs_buf_cancel_t **bucket;
  1451. xfs_daddr_t blkno = 0;
  1452. uint len = 0;
  1453. ushort flags = 0;
  1454. switch (buf_f->blf_type) {
  1455. case XFS_LI_BUF:
  1456. blkno = buf_f->blf_blkno;
  1457. len = buf_f->blf_len;
  1458. flags = buf_f->blf_flags;
  1459. break;
  1460. }
  1461. /*
  1462. * If this isn't a cancel buffer item, then just return.
  1463. */
  1464. if (!(flags & XFS_BLI_CANCEL))
  1465. return;
  1466. /*
  1467. * Insert an xfs_buf_cancel record into the hash table of
  1468. * them. If there is already an identical record, bump
  1469. * its reference count.
  1470. */
  1471. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1472. XLOG_BC_TABLE_SIZE];
  1473. /*
  1474. * If the hash bucket is empty then just insert a new record into
  1475. * the bucket.
  1476. */
  1477. if (*bucket == NULL) {
  1478. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1479. KM_SLEEP);
  1480. bcp->bc_blkno = blkno;
  1481. bcp->bc_len = len;
  1482. bcp->bc_refcount = 1;
  1483. bcp->bc_next = NULL;
  1484. *bucket = bcp;
  1485. return;
  1486. }
  1487. /*
  1488. * The hash bucket is not empty, so search for duplicates of our
  1489. * record. If we find one them just bump its refcount. If not
  1490. * then add us at the end of the list.
  1491. */
  1492. prevp = NULL;
  1493. nextp = *bucket;
  1494. while (nextp != NULL) {
  1495. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1496. nextp->bc_refcount++;
  1497. return;
  1498. }
  1499. prevp = nextp;
  1500. nextp = nextp->bc_next;
  1501. }
  1502. ASSERT(prevp != NULL);
  1503. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1504. KM_SLEEP);
  1505. bcp->bc_blkno = blkno;
  1506. bcp->bc_len = len;
  1507. bcp->bc_refcount = 1;
  1508. bcp->bc_next = NULL;
  1509. prevp->bc_next = bcp;
  1510. }
  1511. /*
  1512. * Check to see whether the buffer being recovered has a corresponding
  1513. * entry in the buffer cancel record table. If it does then return 1
  1514. * so that it will be cancelled, otherwise return 0. If the buffer is
  1515. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1516. * the refcount on the entry in the table and remove it from the table
  1517. * if this is the last reference.
  1518. *
  1519. * We remove the cancel record from the table when we encounter its
  1520. * last occurrence in the log so that if the same buffer is re-used
  1521. * again after its last cancellation we actually replay the changes
  1522. * made at that point.
  1523. */
  1524. STATIC int
  1525. xlog_check_buffer_cancelled(
  1526. xlog_t *log,
  1527. xfs_daddr_t blkno,
  1528. uint len,
  1529. ushort flags)
  1530. {
  1531. xfs_buf_cancel_t *bcp;
  1532. xfs_buf_cancel_t *prevp;
  1533. xfs_buf_cancel_t **bucket;
  1534. if (log->l_buf_cancel_table == NULL) {
  1535. /*
  1536. * There is nothing in the table built in pass one,
  1537. * so this buffer must not be cancelled.
  1538. */
  1539. ASSERT(!(flags & XFS_BLI_CANCEL));
  1540. return 0;
  1541. }
  1542. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1543. XLOG_BC_TABLE_SIZE];
  1544. bcp = *bucket;
  1545. if (bcp == NULL) {
  1546. /*
  1547. * There is no corresponding entry in the table built
  1548. * in pass one, so this buffer has not been cancelled.
  1549. */
  1550. ASSERT(!(flags & XFS_BLI_CANCEL));
  1551. return 0;
  1552. }
  1553. /*
  1554. * Search for an entry in the buffer cancel table that
  1555. * matches our buffer.
  1556. */
  1557. prevp = NULL;
  1558. while (bcp != NULL) {
  1559. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1560. /*
  1561. * We've go a match, so return 1 so that the
  1562. * recovery of this buffer is cancelled.
  1563. * If this buffer is actually a buffer cancel
  1564. * log item, then decrement the refcount on the
  1565. * one in the table and remove it if this is the
  1566. * last reference.
  1567. */
  1568. if (flags & XFS_BLI_CANCEL) {
  1569. bcp->bc_refcount--;
  1570. if (bcp->bc_refcount == 0) {
  1571. if (prevp == NULL) {
  1572. *bucket = bcp->bc_next;
  1573. } else {
  1574. prevp->bc_next = bcp->bc_next;
  1575. }
  1576. kmem_free(bcp);
  1577. }
  1578. }
  1579. return 1;
  1580. }
  1581. prevp = bcp;
  1582. bcp = bcp->bc_next;
  1583. }
  1584. /*
  1585. * We didn't find a corresponding entry in the table, so
  1586. * return 0 so that the buffer is NOT cancelled.
  1587. */
  1588. ASSERT(!(flags & XFS_BLI_CANCEL));
  1589. return 0;
  1590. }
  1591. STATIC int
  1592. xlog_recover_do_buffer_pass2(
  1593. xlog_t *log,
  1594. xfs_buf_log_format_t *buf_f)
  1595. {
  1596. xfs_daddr_t blkno = 0;
  1597. ushort flags = 0;
  1598. uint len = 0;
  1599. switch (buf_f->blf_type) {
  1600. case XFS_LI_BUF:
  1601. blkno = buf_f->blf_blkno;
  1602. flags = buf_f->blf_flags;
  1603. len = buf_f->blf_len;
  1604. break;
  1605. }
  1606. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1607. }
  1608. /*
  1609. * Perform recovery for a buffer full of inodes. In these buffers,
  1610. * the only data which should be recovered is that which corresponds
  1611. * to the di_next_unlinked pointers in the on disk inode structures.
  1612. * The rest of the data for the inodes is always logged through the
  1613. * inodes themselves rather than the inode buffer and is recovered
  1614. * in xlog_recover_do_inode_trans().
  1615. *
  1616. * The only time when buffers full of inodes are fully recovered is
  1617. * when the buffer is full of newly allocated inodes. In this case
  1618. * the buffer will not be marked as an inode buffer and so will be
  1619. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1620. */
  1621. STATIC int
  1622. xlog_recover_do_inode_buffer(
  1623. xfs_mount_t *mp,
  1624. xlog_recover_item_t *item,
  1625. xfs_buf_t *bp,
  1626. xfs_buf_log_format_t *buf_f)
  1627. {
  1628. int i;
  1629. int item_index;
  1630. int bit;
  1631. int nbits;
  1632. int reg_buf_offset;
  1633. int reg_buf_bytes;
  1634. int next_unlinked_offset;
  1635. int inodes_per_buf;
  1636. xfs_agino_t *logged_nextp;
  1637. xfs_agino_t *buffer_nextp;
  1638. unsigned int *data_map = NULL;
  1639. unsigned int map_size = 0;
  1640. switch (buf_f->blf_type) {
  1641. case XFS_LI_BUF:
  1642. data_map = buf_f->blf_data_map;
  1643. map_size = buf_f->blf_map_size;
  1644. break;
  1645. }
  1646. /*
  1647. * Set the variables corresponding to the current region to
  1648. * 0 so that we'll initialize them on the first pass through
  1649. * the loop.
  1650. */
  1651. reg_buf_offset = 0;
  1652. reg_buf_bytes = 0;
  1653. bit = 0;
  1654. nbits = 0;
  1655. item_index = 0;
  1656. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1657. for (i = 0; i < inodes_per_buf; i++) {
  1658. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1659. offsetof(xfs_dinode_t, di_next_unlinked);
  1660. while (next_unlinked_offset >=
  1661. (reg_buf_offset + reg_buf_bytes)) {
  1662. /*
  1663. * The next di_next_unlinked field is beyond
  1664. * the current logged region. Find the next
  1665. * logged region that contains or is beyond
  1666. * the current di_next_unlinked field.
  1667. */
  1668. bit += nbits;
  1669. bit = xfs_next_bit(data_map, map_size, bit);
  1670. /*
  1671. * If there are no more logged regions in the
  1672. * buffer, then we're done.
  1673. */
  1674. if (bit == -1) {
  1675. return 0;
  1676. }
  1677. nbits = xfs_contig_bits(data_map, map_size,
  1678. bit);
  1679. ASSERT(nbits > 0);
  1680. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1681. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1682. item_index++;
  1683. }
  1684. /*
  1685. * If the current logged region starts after the current
  1686. * di_next_unlinked field, then move on to the next
  1687. * di_next_unlinked field.
  1688. */
  1689. if (next_unlinked_offset < reg_buf_offset) {
  1690. continue;
  1691. }
  1692. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1693. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1694. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1695. /*
  1696. * The current logged region contains a copy of the
  1697. * current di_next_unlinked field. Extract its value
  1698. * and copy it to the buffer copy.
  1699. */
  1700. logged_nextp = (xfs_agino_t *)
  1701. ((char *)(item->ri_buf[item_index].i_addr) +
  1702. (next_unlinked_offset - reg_buf_offset));
  1703. if (unlikely(*logged_nextp == 0)) {
  1704. xfs_fs_cmn_err(CE_ALERT, mp,
  1705. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1706. item, bp);
  1707. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1708. XFS_ERRLEVEL_LOW, mp);
  1709. return XFS_ERROR(EFSCORRUPTED);
  1710. }
  1711. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1712. next_unlinked_offset);
  1713. *buffer_nextp = *logged_nextp;
  1714. }
  1715. return 0;
  1716. }
  1717. /*
  1718. * Perform a 'normal' buffer recovery. Each logged region of the
  1719. * buffer should be copied over the corresponding region in the
  1720. * given buffer. The bitmap in the buf log format structure indicates
  1721. * where to place the logged data.
  1722. */
  1723. /*ARGSUSED*/
  1724. STATIC void
  1725. xlog_recover_do_reg_buffer(
  1726. xlog_recover_item_t *item,
  1727. xfs_buf_t *bp,
  1728. xfs_buf_log_format_t *buf_f)
  1729. {
  1730. int i;
  1731. int bit;
  1732. int nbits;
  1733. unsigned int *data_map = NULL;
  1734. unsigned int map_size = 0;
  1735. int error;
  1736. switch (buf_f->blf_type) {
  1737. case XFS_LI_BUF:
  1738. data_map = buf_f->blf_data_map;
  1739. map_size = buf_f->blf_map_size;
  1740. break;
  1741. }
  1742. bit = 0;
  1743. i = 1; /* 0 is the buf format structure */
  1744. while (1) {
  1745. bit = xfs_next_bit(data_map, map_size, bit);
  1746. if (bit == -1)
  1747. break;
  1748. nbits = xfs_contig_bits(data_map, map_size, bit);
  1749. ASSERT(nbits > 0);
  1750. ASSERT(item->ri_buf[i].i_addr != NULL);
  1751. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1752. ASSERT(XFS_BUF_COUNT(bp) >=
  1753. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1754. /*
  1755. * Do a sanity check if this is a dquot buffer. Just checking
  1756. * the first dquot in the buffer should do. XXXThis is
  1757. * probably a good thing to do for other buf types also.
  1758. */
  1759. error = 0;
  1760. if (buf_f->blf_flags &
  1761. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1762. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1763. item->ri_buf[i].i_addr,
  1764. -1, 0, XFS_QMOPT_DOWARN,
  1765. "dquot_buf_recover");
  1766. }
  1767. if (!error)
  1768. memcpy(xfs_buf_offset(bp,
  1769. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1770. item->ri_buf[i].i_addr, /* source */
  1771. nbits<<XFS_BLI_SHIFT); /* length */
  1772. i++;
  1773. bit += nbits;
  1774. }
  1775. /* Shouldn't be any more regions */
  1776. ASSERT(i == item->ri_total);
  1777. }
  1778. /*
  1779. * Do some primitive error checking on ondisk dquot data structures.
  1780. */
  1781. int
  1782. xfs_qm_dqcheck(
  1783. xfs_disk_dquot_t *ddq,
  1784. xfs_dqid_t id,
  1785. uint type, /* used only when IO_dorepair is true */
  1786. uint flags,
  1787. char *str)
  1788. {
  1789. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1790. int errs = 0;
  1791. /*
  1792. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1793. * 1. If we crash while deleting the quotainode(s), and those blks got
  1794. * used for user data. This is because we take the path of regular
  1795. * file deletion; however, the size field of quotainodes is never
  1796. * updated, so all the tricks that we play in itruncate_finish
  1797. * don't quite matter.
  1798. *
  1799. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1800. * But the allocation will be replayed so we'll end up with an
  1801. * uninitialized quota block.
  1802. *
  1803. * This is all fine; things are still consistent, and we haven't lost
  1804. * any quota information. Just don't complain about bad dquot blks.
  1805. */
  1806. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1807. if (flags & XFS_QMOPT_DOWARN)
  1808. cmn_err(CE_ALERT,
  1809. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1810. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1811. errs++;
  1812. }
  1813. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1814. if (flags & XFS_QMOPT_DOWARN)
  1815. cmn_err(CE_ALERT,
  1816. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1817. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1818. errs++;
  1819. }
  1820. if (ddq->d_flags != XFS_DQ_USER &&
  1821. ddq->d_flags != XFS_DQ_PROJ &&
  1822. ddq->d_flags != XFS_DQ_GROUP) {
  1823. if (flags & XFS_QMOPT_DOWARN)
  1824. cmn_err(CE_ALERT,
  1825. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1826. str, id, ddq->d_flags);
  1827. errs++;
  1828. }
  1829. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1830. if (flags & XFS_QMOPT_DOWARN)
  1831. cmn_err(CE_ALERT,
  1832. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1833. "0x%x expected, found id 0x%x",
  1834. str, ddq, id, be32_to_cpu(ddq->d_id));
  1835. errs++;
  1836. }
  1837. if (!errs && ddq->d_id) {
  1838. if (ddq->d_blk_softlimit &&
  1839. be64_to_cpu(ddq->d_bcount) >=
  1840. be64_to_cpu(ddq->d_blk_softlimit)) {
  1841. if (!ddq->d_btimer) {
  1842. if (flags & XFS_QMOPT_DOWARN)
  1843. cmn_err(CE_ALERT,
  1844. "%s : Dquot ID 0x%x (0x%p) "
  1845. "BLK TIMER NOT STARTED",
  1846. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1847. errs++;
  1848. }
  1849. }
  1850. if (ddq->d_ino_softlimit &&
  1851. be64_to_cpu(ddq->d_icount) >=
  1852. be64_to_cpu(ddq->d_ino_softlimit)) {
  1853. if (!ddq->d_itimer) {
  1854. if (flags & XFS_QMOPT_DOWARN)
  1855. cmn_err(CE_ALERT,
  1856. "%s : Dquot ID 0x%x (0x%p) "
  1857. "INODE TIMER NOT STARTED",
  1858. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1859. errs++;
  1860. }
  1861. }
  1862. if (ddq->d_rtb_softlimit &&
  1863. be64_to_cpu(ddq->d_rtbcount) >=
  1864. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1865. if (!ddq->d_rtbtimer) {
  1866. if (flags & XFS_QMOPT_DOWARN)
  1867. cmn_err(CE_ALERT,
  1868. "%s : Dquot ID 0x%x (0x%p) "
  1869. "RTBLK TIMER NOT STARTED",
  1870. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1871. errs++;
  1872. }
  1873. }
  1874. }
  1875. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1876. return errs;
  1877. if (flags & XFS_QMOPT_DOWARN)
  1878. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1879. /*
  1880. * Typically, a repair is only requested by quotacheck.
  1881. */
  1882. ASSERT(id != -1);
  1883. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1884. memset(d, 0, sizeof(xfs_dqblk_t));
  1885. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1886. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1887. d->dd_diskdq.d_flags = type;
  1888. d->dd_diskdq.d_id = cpu_to_be32(id);
  1889. return errs;
  1890. }
  1891. /*
  1892. * Perform a dquot buffer recovery.
  1893. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1894. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1895. * Else, treat it as a regular buffer and do recovery.
  1896. */
  1897. STATIC void
  1898. xlog_recover_do_dquot_buffer(
  1899. xfs_mount_t *mp,
  1900. xlog_t *log,
  1901. xlog_recover_item_t *item,
  1902. xfs_buf_t *bp,
  1903. xfs_buf_log_format_t *buf_f)
  1904. {
  1905. uint type;
  1906. /*
  1907. * Filesystems are required to send in quota flags at mount time.
  1908. */
  1909. if (mp->m_qflags == 0) {
  1910. return;
  1911. }
  1912. type = 0;
  1913. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1914. type |= XFS_DQ_USER;
  1915. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1916. type |= XFS_DQ_PROJ;
  1917. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1918. type |= XFS_DQ_GROUP;
  1919. /*
  1920. * This type of quotas was turned off, so ignore this buffer
  1921. */
  1922. if (log->l_quotaoffs_flag & type)
  1923. return;
  1924. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1925. }
  1926. /*
  1927. * This routine replays a modification made to a buffer at runtime.
  1928. * There are actually two types of buffer, regular and inode, which
  1929. * are handled differently. Inode buffers are handled differently
  1930. * in that we only recover a specific set of data from them, namely
  1931. * the inode di_next_unlinked fields. This is because all other inode
  1932. * data is actually logged via inode records and any data we replay
  1933. * here which overlaps that may be stale.
  1934. *
  1935. * When meta-data buffers are freed at run time we log a buffer item
  1936. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1937. * of the buffer in the log should not be replayed at recovery time.
  1938. * This is so that if the blocks covered by the buffer are reused for
  1939. * file data before we crash we don't end up replaying old, freed
  1940. * meta-data into a user's file.
  1941. *
  1942. * To handle the cancellation of buffer log items, we make two passes
  1943. * over the log during recovery. During the first we build a table of
  1944. * those buffers which have been cancelled, and during the second we
  1945. * only replay those buffers which do not have corresponding cancel
  1946. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1947. * for more details on the implementation of the table of cancel records.
  1948. */
  1949. STATIC int
  1950. xlog_recover_do_buffer_trans(
  1951. xlog_t *log,
  1952. xlog_recover_item_t *item,
  1953. int pass)
  1954. {
  1955. xfs_buf_log_format_t *buf_f;
  1956. xfs_mount_t *mp;
  1957. xfs_buf_t *bp;
  1958. int error;
  1959. int cancel;
  1960. xfs_daddr_t blkno;
  1961. int len;
  1962. ushort flags;
  1963. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1964. if (pass == XLOG_RECOVER_PASS1) {
  1965. /*
  1966. * In this pass we're only looking for buf items
  1967. * with the XFS_BLI_CANCEL bit set.
  1968. */
  1969. xlog_recover_do_buffer_pass1(log, buf_f);
  1970. return 0;
  1971. } else {
  1972. /*
  1973. * In this pass we want to recover all the buffers
  1974. * which have not been cancelled and are not
  1975. * cancellation buffers themselves. The routine
  1976. * we call here will tell us whether or not to
  1977. * continue with the replay of this buffer.
  1978. */
  1979. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1980. if (cancel) {
  1981. return 0;
  1982. }
  1983. }
  1984. switch (buf_f->blf_type) {
  1985. case XFS_LI_BUF:
  1986. blkno = buf_f->blf_blkno;
  1987. len = buf_f->blf_len;
  1988. flags = buf_f->blf_flags;
  1989. break;
  1990. default:
  1991. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1992. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1993. buf_f->blf_type, log->l_mp->m_logname ?
  1994. log->l_mp->m_logname : "internal");
  1995. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1996. XFS_ERRLEVEL_LOW, log->l_mp);
  1997. return XFS_ERROR(EFSCORRUPTED);
  1998. }
  1999. mp = log->l_mp;
  2000. if (flags & XFS_BLI_INODE_BUF) {
  2001. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  2002. XFS_BUF_LOCK);
  2003. } else {
  2004. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2005. }
  2006. if (XFS_BUF_ISERROR(bp)) {
  2007. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2008. bp, blkno);
  2009. error = XFS_BUF_GETERROR(bp);
  2010. xfs_buf_relse(bp);
  2011. return error;
  2012. }
  2013. error = 0;
  2014. if (flags & XFS_BLI_INODE_BUF) {
  2015. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2016. } else if (flags &
  2017. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2018. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2019. } else {
  2020. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2021. }
  2022. if (error)
  2023. return XFS_ERROR(error);
  2024. /*
  2025. * Perform delayed write on the buffer. Asynchronous writes will be
  2026. * slower when taking into account all the buffers to be flushed.
  2027. *
  2028. * Also make sure that only inode buffers with good sizes stay in
  2029. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2030. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2031. * buffers in the log can be a different size if the log was generated
  2032. * by an older kernel using unclustered inode buffers or a newer kernel
  2033. * running with a different inode cluster size. Regardless, if the
  2034. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2035. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2036. * the buffer out of the buffer cache so that the buffer won't
  2037. * overlap with future reads of those inodes.
  2038. */
  2039. if (XFS_DINODE_MAGIC ==
  2040. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2041. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2042. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2043. XFS_BUF_STALE(bp);
  2044. error = xfs_bwrite(mp, bp);
  2045. } else {
  2046. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2047. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2048. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2049. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2050. xfs_bdwrite(mp, bp);
  2051. }
  2052. return (error);
  2053. }
  2054. STATIC int
  2055. xlog_recover_do_inode_trans(
  2056. xlog_t *log,
  2057. xlog_recover_item_t *item,
  2058. int pass)
  2059. {
  2060. xfs_inode_log_format_t *in_f;
  2061. xfs_mount_t *mp;
  2062. xfs_buf_t *bp;
  2063. xfs_dinode_t *dip;
  2064. xfs_ino_t ino;
  2065. int len;
  2066. xfs_caddr_t src;
  2067. xfs_caddr_t dest;
  2068. int error;
  2069. int attr_index;
  2070. uint fields;
  2071. xfs_icdinode_t *dicp;
  2072. int need_free = 0;
  2073. if (pass == XLOG_RECOVER_PASS1) {
  2074. return 0;
  2075. }
  2076. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2077. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2078. } else {
  2079. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2080. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2081. need_free = 1;
  2082. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2083. if (error)
  2084. goto error;
  2085. }
  2086. ino = in_f->ilf_ino;
  2087. mp = log->l_mp;
  2088. /*
  2089. * Inode buffers can be freed, look out for it,
  2090. * and do not replay the inode.
  2091. */
  2092. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2093. in_f->ilf_len, 0)) {
  2094. error = 0;
  2095. goto error;
  2096. }
  2097. bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
  2098. in_f->ilf_len, XFS_BUF_LOCK);
  2099. if (XFS_BUF_ISERROR(bp)) {
  2100. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2101. bp, in_f->ilf_blkno);
  2102. error = XFS_BUF_GETERROR(bp);
  2103. xfs_buf_relse(bp);
  2104. goto error;
  2105. }
  2106. error = 0;
  2107. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2108. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2109. /*
  2110. * Make sure the place we're flushing out to really looks
  2111. * like an inode!
  2112. */
  2113. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2114. xfs_buf_relse(bp);
  2115. xfs_fs_cmn_err(CE_ALERT, mp,
  2116. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2117. dip, bp, ino);
  2118. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2119. XFS_ERRLEVEL_LOW, mp);
  2120. error = EFSCORRUPTED;
  2121. goto error;
  2122. }
  2123. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2124. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2125. xfs_buf_relse(bp);
  2126. xfs_fs_cmn_err(CE_ALERT, mp,
  2127. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2128. item, ino);
  2129. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2130. XFS_ERRLEVEL_LOW, mp);
  2131. error = EFSCORRUPTED;
  2132. goto error;
  2133. }
  2134. /* Skip replay when the on disk inode is newer than the log one */
  2135. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2136. /*
  2137. * Deal with the wrap case, DI_MAX_FLUSH is less
  2138. * than smaller numbers
  2139. */
  2140. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2141. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2142. /* do nothing */
  2143. } else {
  2144. xfs_buf_relse(bp);
  2145. error = 0;
  2146. goto error;
  2147. }
  2148. }
  2149. /* Take the opportunity to reset the flush iteration count */
  2150. dicp->di_flushiter = 0;
  2151. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2152. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2153. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2154. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2155. XFS_ERRLEVEL_LOW, mp, dicp);
  2156. xfs_buf_relse(bp);
  2157. xfs_fs_cmn_err(CE_ALERT, mp,
  2158. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2159. item, dip, bp, ino);
  2160. error = EFSCORRUPTED;
  2161. goto error;
  2162. }
  2163. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2164. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2165. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2166. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2167. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2168. XFS_ERRLEVEL_LOW, mp, dicp);
  2169. xfs_buf_relse(bp);
  2170. xfs_fs_cmn_err(CE_ALERT, mp,
  2171. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2172. item, dip, bp, ino);
  2173. error = EFSCORRUPTED;
  2174. goto error;
  2175. }
  2176. }
  2177. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2178. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2179. XFS_ERRLEVEL_LOW, mp, dicp);
  2180. xfs_buf_relse(bp);
  2181. xfs_fs_cmn_err(CE_ALERT, mp,
  2182. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2183. item, dip, bp, ino,
  2184. dicp->di_nextents + dicp->di_anextents,
  2185. dicp->di_nblocks);
  2186. error = EFSCORRUPTED;
  2187. goto error;
  2188. }
  2189. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2190. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2191. XFS_ERRLEVEL_LOW, mp, dicp);
  2192. xfs_buf_relse(bp);
  2193. xfs_fs_cmn_err(CE_ALERT, mp,
  2194. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2195. item, dip, bp, ino, dicp->di_forkoff);
  2196. error = EFSCORRUPTED;
  2197. goto error;
  2198. }
  2199. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2200. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2201. XFS_ERRLEVEL_LOW, mp, dicp);
  2202. xfs_buf_relse(bp);
  2203. xfs_fs_cmn_err(CE_ALERT, mp,
  2204. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2205. item->ri_buf[1].i_len, item);
  2206. error = EFSCORRUPTED;
  2207. goto error;
  2208. }
  2209. /* The core is in in-core format */
  2210. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2211. /* the rest is in on-disk format */
  2212. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2213. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2214. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2215. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2216. }
  2217. fields = in_f->ilf_fields;
  2218. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2219. case XFS_ILOG_DEV:
  2220. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2221. break;
  2222. case XFS_ILOG_UUID:
  2223. memcpy(XFS_DFORK_DPTR(dip),
  2224. &in_f->ilf_u.ilfu_uuid,
  2225. sizeof(uuid_t));
  2226. break;
  2227. }
  2228. if (in_f->ilf_size == 2)
  2229. goto write_inode_buffer;
  2230. len = item->ri_buf[2].i_len;
  2231. src = item->ri_buf[2].i_addr;
  2232. ASSERT(in_f->ilf_size <= 4);
  2233. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2234. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2235. (len == in_f->ilf_dsize));
  2236. switch (fields & XFS_ILOG_DFORK) {
  2237. case XFS_ILOG_DDATA:
  2238. case XFS_ILOG_DEXT:
  2239. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2240. break;
  2241. case XFS_ILOG_DBROOT:
  2242. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2243. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2244. XFS_DFORK_DSIZE(dip, mp));
  2245. break;
  2246. default:
  2247. /*
  2248. * There are no data fork flags set.
  2249. */
  2250. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2251. break;
  2252. }
  2253. /*
  2254. * If we logged any attribute data, recover it. There may or
  2255. * may not have been any other non-core data logged in this
  2256. * transaction.
  2257. */
  2258. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2259. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2260. attr_index = 3;
  2261. } else {
  2262. attr_index = 2;
  2263. }
  2264. len = item->ri_buf[attr_index].i_len;
  2265. src = item->ri_buf[attr_index].i_addr;
  2266. ASSERT(len == in_f->ilf_asize);
  2267. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2268. case XFS_ILOG_ADATA:
  2269. case XFS_ILOG_AEXT:
  2270. dest = XFS_DFORK_APTR(dip);
  2271. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2272. memcpy(dest, src, len);
  2273. break;
  2274. case XFS_ILOG_ABROOT:
  2275. dest = XFS_DFORK_APTR(dip);
  2276. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2277. len, (xfs_bmdr_block_t*)dest,
  2278. XFS_DFORK_ASIZE(dip, mp));
  2279. break;
  2280. default:
  2281. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2282. ASSERT(0);
  2283. xfs_buf_relse(bp);
  2284. error = EIO;
  2285. goto error;
  2286. }
  2287. }
  2288. write_inode_buffer:
  2289. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2290. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2291. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2292. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2293. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2294. xfs_bdwrite(mp, bp);
  2295. } else {
  2296. XFS_BUF_STALE(bp);
  2297. error = xfs_bwrite(mp, bp);
  2298. }
  2299. error:
  2300. if (need_free)
  2301. kmem_free(in_f);
  2302. return XFS_ERROR(error);
  2303. }
  2304. /*
  2305. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2306. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2307. * of that type.
  2308. */
  2309. STATIC int
  2310. xlog_recover_do_quotaoff_trans(
  2311. xlog_t *log,
  2312. xlog_recover_item_t *item,
  2313. int pass)
  2314. {
  2315. xfs_qoff_logformat_t *qoff_f;
  2316. if (pass == XLOG_RECOVER_PASS2) {
  2317. return (0);
  2318. }
  2319. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2320. ASSERT(qoff_f);
  2321. /*
  2322. * The logitem format's flag tells us if this was user quotaoff,
  2323. * group/project quotaoff or both.
  2324. */
  2325. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2326. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2327. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2328. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2329. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2330. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2331. return (0);
  2332. }
  2333. /*
  2334. * Recover a dquot record
  2335. */
  2336. STATIC int
  2337. xlog_recover_do_dquot_trans(
  2338. xlog_t *log,
  2339. xlog_recover_item_t *item,
  2340. int pass)
  2341. {
  2342. xfs_mount_t *mp;
  2343. xfs_buf_t *bp;
  2344. struct xfs_disk_dquot *ddq, *recddq;
  2345. int error;
  2346. xfs_dq_logformat_t *dq_f;
  2347. uint type;
  2348. if (pass == XLOG_RECOVER_PASS1) {
  2349. return 0;
  2350. }
  2351. mp = log->l_mp;
  2352. /*
  2353. * Filesystems are required to send in quota flags at mount time.
  2354. */
  2355. if (mp->m_qflags == 0)
  2356. return (0);
  2357. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2358. ASSERT(recddq);
  2359. /*
  2360. * This type of quotas was turned off, so ignore this record.
  2361. */
  2362. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2363. ASSERT(type);
  2364. if (log->l_quotaoffs_flag & type)
  2365. return (0);
  2366. /*
  2367. * At this point we know that quota was _not_ turned off.
  2368. * Since the mount flags are not indicating to us otherwise, this
  2369. * must mean that quota is on, and the dquot needs to be replayed.
  2370. * Remember that we may not have fully recovered the superblock yet,
  2371. * so we can't do the usual trick of looking at the SB quota bits.
  2372. *
  2373. * The other possibility, of course, is that the quota subsystem was
  2374. * removed since the last mount - ENOSYS.
  2375. */
  2376. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2377. ASSERT(dq_f);
  2378. if ((error = xfs_qm_dqcheck(recddq,
  2379. dq_f->qlf_id,
  2380. 0, XFS_QMOPT_DOWARN,
  2381. "xlog_recover_do_dquot_trans (log copy)"))) {
  2382. return XFS_ERROR(EIO);
  2383. }
  2384. ASSERT(dq_f->qlf_len == 1);
  2385. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2386. dq_f->qlf_blkno,
  2387. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2388. 0, &bp);
  2389. if (error) {
  2390. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2391. bp, dq_f->qlf_blkno);
  2392. return error;
  2393. }
  2394. ASSERT(bp);
  2395. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2396. /*
  2397. * At least the magic num portion should be on disk because this
  2398. * was among a chunk of dquots created earlier, and we did some
  2399. * minimal initialization then.
  2400. */
  2401. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2402. "xlog_recover_do_dquot_trans")) {
  2403. xfs_buf_relse(bp);
  2404. return XFS_ERROR(EIO);
  2405. }
  2406. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2407. ASSERT(dq_f->qlf_size == 2);
  2408. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2409. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2410. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2411. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2412. xfs_bdwrite(mp, bp);
  2413. return (0);
  2414. }
  2415. /*
  2416. * This routine is called to create an in-core extent free intent
  2417. * item from the efi format structure which was logged on disk.
  2418. * It allocates an in-core efi, copies the extents from the format
  2419. * structure into it, and adds the efi to the AIL with the given
  2420. * LSN.
  2421. */
  2422. STATIC int
  2423. xlog_recover_do_efi_trans(
  2424. xlog_t *log,
  2425. xlog_recover_item_t *item,
  2426. xfs_lsn_t lsn,
  2427. int pass)
  2428. {
  2429. int error;
  2430. xfs_mount_t *mp;
  2431. xfs_efi_log_item_t *efip;
  2432. xfs_efi_log_format_t *efi_formatp;
  2433. if (pass == XLOG_RECOVER_PASS1) {
  2434. return 0;
  2435. }
  2436. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2437. mp = log->l_mp;
  2438. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2439. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2440. &(efip->efi_format)))) {
  2441. xfs_efi_item_free(efip);
  2442. return error;
  2443. }
  2444. efip->efi_next_extent = efi_formatp->efi_nextents;
  2445. efip->efi_flags |= XFS_EFI_COMMITTED;
  2446. spin_lock(&log->l_ailp->xa_lock);
  2447. /*
  2448. * xfs_trans_ail_update() drops the AIL lock.
  2449. */
  2450. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2451. return 0;
  2452. }
  2453. /*
  2454. * This routine is called when an efd format structure is found in
  2455. * a committed transaction in the log. It's purpose is to cancel
  2456. * the corresponding efi if it was still in the log. To do this
  2457. * it searches the AIL for the efi with an id equal to that in the
  2458. * efd format structure. If we find it, we remove the efi from the
  2459. * AIL and free it.
  2460. */
  2461. STATIC void
  2462. xlog_recover_do_efd_trans(
  2463. xlog_t *log,
  2464. xlog_recover_item_t *item,
  2465. int pass)
  2466. {
  2467. xfs_efd_log_format_t *efd_formatp;
  2468. xfs_efi_log_item_t *efip = NULL;
  2469. xfs_log_item_t *lip;
  2470. __uint64_t efi_id;
  2471. struct xfs_ail_cursor cur;
  2472. struct xfs_ail *ailp = log->l_ailp;
  2473. if (pass == XLOG_RECOVER_PASS1) {
  2474. return;
  2475. }
  2476. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2477. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2478. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2479. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2480. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2481. efi_id = efd_formatp->efd_efi_id;
  2482. /*
  2483. * Search for the efi with the id in the efd format structure
  2484. * in the AIL.
  2485. */
  2486. spin_lock(&ailp->xa_lock);
  2487. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2488. while (lip != NULL) {
  2489. if (lip->li_type == XFS_LI_EFI) {
  2490. efip = (xfs_efi_log_item_t *)lip;
  2491. if (efip->efi_format.efi_id == efi_id) {
  2492. /*
  2493. * xfs_trans_ail_delete() drops the
  2494. * AIL lock.
  2495. */
  2496. xfs_trans_ail_delete(ailp, lip);
  2497. xfs_efi_item_free(efip);
  2498. spin_lock(&ailp->xa_lock);
  2499. break;
  2500. }
  2501. }
  2502. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2503. }
  2504. xfs_trans_ail_cursor_done(ailp, &cur);
  2505. spin_unlock(&ailp->xa_lock);
  2506. }
  2507. /*
  2508. * Perform the transaction
  2509. *
  2510. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2511. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2512. */
  2513. STATIC int
  2514. xlog_recover_do_trans(
  2515. xlog_t *log,
  2516. xlog_recover_t *trans,
  2517. int pass)
  2518. {
  2519. int error = 0;
  2520. xlog_recover_item_t *item, *first_item;
  2521. if ((error = xlog_recover_reorder_trans(trans)))
  2522. return error;
  2523. first_item = item = trans->r_itemq;
  2524. do {
  2525. /*
  2526. * we don't need to worry about the block number being
  2527. * truncated in > 1 TB buffers because in user-land,
  2528. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2529. * the blknos will get through the user-mode buffer
  2530. * cache properly. The only bad case is o32 kernels
  2531. * where xfs_daddr_t is 32-bits but mount will warn us
  2532. * off a > 1 TB filesystem before we get here.
  2533. */
  2534. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2535. if ((error = xlog_recover_do_buffer_trans(log, item,
  2536. pass)))
  2537. break;
  2538. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2539. if ((error = xlog_recover_do_inode_trans(log, item,
  2540. pass)))
  2541. break;
  2542. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2543. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2544. pass)))
  2545. break;
  2546. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2547. xlog_recover_do_efd_trans(log, item, pass);
  2548. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2549. if ((error = xlog_recover_do_dquot_trans(log, item,
  2550. pass)))
  2551. break;
  2552. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2553. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2554. pass)))
  2555. break;
  2556. } else {
  2557. xlog_warn("XFS: xlog_recover_do_trans");
  2558. ASSERT(0);
  2559. error = XFS_ERROR(EIO);
  2560. break;
  2561. }
  2562. item = item->ri_next;
  2563. } while (first_item != item);
  2564. return error;
  2565. }
  2566. /*
  2567. * Free up any resources allocated by the transaction
  2568. *
  2569. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2570. */
  2571. STATIC void
  2572. xlog_recover_free_trans(
  2573. xlog_recover_t *trans)
  2574. {
  2575. xlog_recover_item_t *first_item, *item, *free_item;
  2576. int i;
  2577. item = first_item = trans->r_itemq;
  2578. do {
  2579. free_item = item;
  2580. item = item->ri_next;
  2581. /* Free the regions in the item. */
  2582. for (i = 0; i < free_item->ri_cnt; i++) {
  2583. kmem_free(free_item->ri_buf[i].i_addr);
  2584. }
  2585. /* Free the item itself */
  2586. kmem_free(free_item->ri_buf);
  2587. kmem_free(free_item);
  2588. } while (first_item != item);
  2589. /* Free the transaction recover structure */
  2590. kmem_free(trans);
  2591. }
  2592. STATIC int
  2593. xlog_recover_commit_trans(
  2594. xlog_t *log,
  2595. xlog_recover_t **q,
  2596. xlog_recover_t *trans,
  2597. int pass)
  2598. {
  2599. int error;
  2600. if ((error = xlog_recover_unlink_tid(q, trans)))
  2601. return error;
  2602. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2603. return error;
  2604. xlog_recover_free_trans(trans); /* no error */
  2605. return 0;
  2606. }
  2607. STATIC int
  2608. xlog_recover_unmount_trans(
  2609. xlog_recover_t *trans)
  2610. {
  2611. /* Do nothing now */
  2612. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2613. return 0;
  2614. }
  2615. /*
  2616. * There are two valid states of the r_state field. 0 indicates that the
  2617. * transaction structure is in a normal state. We have either seen the
  2618. * start of the transaction or the last operation we added was not a partial
  2619. * operation. If the last operation we added to the transaction was a
  2620. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2621. *
  2622. * NOTE: skip LRs with 0 data length.
  2623. */
  2624. STATIC int
  2625. xlog_recover_process_data(
  2626. xlog_t *log,
  2627. xlog_recover_t *rhash[],
  2628. xlog_rec_header_t *rhead,
  2629. xfs_caddr_t dp,
  2630. int pass)
  2631. {
  2632. xfs_caddr_t lp;
  2633. int num_logops;
  2634. xlog_op_header_t *ohead;
  2635. xlog_recover_t *trans;
  2636. xlog_tid_t tid;
  2637. int error;
  2638. unsigned long hash;
  2639. uint flags;
  2640. lp = dp + be32_to_cpu(rhead->h_len);
  2641. num_logops = be32_to_cpu(rhead->h_num_logops);
  2642. /* check the log format matches our own - else we can't recover */
  2643. if (xlog_header_check_recover(log->l_mp, rhead))
  2644. return (XFS_ERROR(EIO));
  2645. while ((dp < lp) && num_logops) {
  2646. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2647. ohead = (xlog_op_header_t *)dp;
  2648. dp += sizeof(xlog_op_header_t);
  2649. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2650. ohead->oh_clientid != XFS_LOG) {
  2651. xlog_warn(
  2652. "XFS: xlog_recover_process_data: bad clientid");
  2653. ASSERT(0);
  2654. return (XFS_ERROR(EIO));
  2655. }
  2656. tid = be32_to_cpu(ohead->oh_tid);
  2657. hash = XLOG_RHASH(tid);
  2658. trans = xlog_recover_find_tid(rhash[hash], tid);
  2659. if (trans == NULL) { /* not found; add new tid */
  2660. if (ohead->oh_flags & XLOG_START_TRANS)
  2661. xlog_recover_new_tid(&rhash[hash], tid,
  2662. be64_to_cpu(rhead->h_lsn));
  2663. } else {
  2664. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2665. xlog_warn(
  2666. "XFS: xlog_recover_process_data: bad length");
  2667. WARN_ON(1);
  2668. return (XFS_ERROR(EIO));
  2669. }
  2670. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2671. if (flags & XLOG_WAS_CONT_TRANS)
  2672. flags &= ~XLOG_CONTINUE_TRANS;
  2673. switch (flags) {
  2674. case XLOG_COMMIT_TRANS:
  2675. error = xlog_recover_commit_trans(log,
  2676. &rhash[hash], trans, pass);
  2677. break;
  2678. case XLOG_UNMOUNT_TRANS:
  2679. error = xlog_recover_unmount_trans(trans);
  2680. break;
  2681. case XLOG_WAS_CONT_TRANS:
  2682. error = xlog_recover_add_to_cont_trans(trans,
  2683. dp, be32_to_cpu(ohead->oh_len));
  2684. break;
  2685. case XLOG_START_TRANS:
  2686. xlog_warn(
  2687. "XFS: xlog_recover_process_data: bad transaction");
  2688. ASSERT(0);
  2689. error = XFS_ERROR(EIO);
  2690. break;
  2691. case 0:
  2692. case XLOG_CONTINUE_TRANS:
  2693. error = xlog_recover_add_to_trans(trans,
  2694. dp, be32_to_cpu(ohead->oh_len));
  2695. break;
  2696. default:
  2697. xlog_warn(
  2698. "XFS: xlog_recover_process_data: bad flag");
  2699. ASSERT(0);
  2700. error = XFS_ERROR(EIO);
  2701. break;
  2702. }
  2703. if (error)
  2704. return error;
  2705. }
  2706. dp += be32_to_cpu(ohead->oh_len);
  2707. num_logops--;
  2708. }
  2709. return 0;
  2710. }
  2711. /*
  2712. * Process an extent free intent item that was recovered from
  2713. * the log. We need to free the extents that it describes.
  2714. */
  2715. STATIC int
  2716. xlog_recover_process_efi(
  2717. xfs_mount_t *mp,
  2718. xfs_efi_log_item_t *efip)
  2719. {
  2720. xfs_efd_log_item_t *efdp;
  2721. xfs_trans_t *tp;
  2722. int i;
  2723. int error = 0;
  2724. xfs_extent_t *extp;
  2725. xfs_fsblock_t startblock_fsb;
  2726. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2727. /*
  2728. * First check the validity of the extents described by the
  2729. * EFI. If any are bad, then assume that all are bad and
  2730. * just toss the EFI.
  2731. */
  2732. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2733. extp = &(efip->efi_format.efi_extents[i]);
  2734. startblock_fsb = XFS_BB_TO_FSB(mp,
  2735. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2736. if ((startblock_fsb == 0) ||
  2737. (extp->ext_len == 0) ||
  2738. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2739. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2740. /*
  2741. * This will pull the EFI from the AIL and
  2742. * free the memory associated with it.
  2743. */
  2744. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2745. return XFS_ERROR(EIO);
  2746. }
  2747. }
  2748. tp = xfs_trans_alloc(mp, 0);
  2749. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2750. if (error)
  2751. goto abort_error;
  2752. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2753. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2754. extp = &(efip->efi_format.efi_extents[i]);
  2755. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2756. if (error)
  2757. goto abort_error;
  2758. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2759. extp->ext_len);
  2760. }
  2761. efip->efi_flags |= XFS_EFI_RECOVERED;
  2762. error = xfs_trans_commit(tp, 0);
  2763. return error;
  2764. abort_error:
  2765. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2766. return error;
  2767. }
  2768. /*
  2769. * When this is called, all of the EFIs which did not have
  2770. * corresponding EFDs should be in the AIL. What we do now
  2771. * is free the extents associated with each one.
  2772. *
  2773. * Since we process the EFIs in normal transactions, they
  2774. * will be removed at some point after the commit. This prevents
  2775. * us from just walking down the list processing each one.
  2776. * We'll use a flag in the EFI to skip those that we've already
  2777. * processed and use the AIL iteration mechanism's generation
  2778. * count to try to speed this up at least a bit.
  2779. *
  2780. * When we start, we know that the EFIs are the only things in
  2781. * the AIL. As we process them, however, other items are added
  2782. * to the AIL. Since everything added to the AIL must come after
  2783. * everything already in the AIL, we stop processing as soon as
  2784. * we see something other than an EFI in the AIL.
  2785. */
  2786. STATIC int
  2787. xlog_recover_process_efis(
  2788. xlog_t *log)
  2789. {
  2790. xfs_log_item_t *lip;
  2791. xfs_efi_log_item_t *efip;
  2792. int error = 0;
  2793. struct xfs_ail_cursor cur;
  2794. struct xfs_ail *ailp;
  2795. ailp = log->l_ailp;
  2796. spin_lock(&ailp->xa_lock);
  2797. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2798. while (lip != NULL) {
  2799. /*
  2800. * We're done when we see something other than an EFI.
  2801. * There should be no EFIs left in the AIL now.
  2802. */
  2803. if (lip->li_type != XFS_LI_EFI) {
  2804. #ifdef DEBUG
  2805. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2806. ASSERT(lip->li_type != XFS_LI_EFI);
  2807. #endif
  2808. break;
  2809. }
  2810. /*
  2811. * Skip EFIs that we've already processed.
  2812. */
  2813. efip = (xfs_efi_log_item_t *)lip;
  2814. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2815. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2816. continue;
  2817. }
  2818. spin_unlock(&ailp->xa_lock);
  2819. error = xlog_recover_process_efi(log->l_mp, efip);
  2820. spin_lock(&ailp->xa_lock);
  2821. if (error)
  2822. goto out;
  2823. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2824. }
  2825. out:
  2826. xfs_trans_ail_cursor_done(ailp, &cur);
  2827. spin_unlock(&ailp->xa_lock);
  2828. return error;
  2829. }
  2830. /*
  2831. * This routine performs a transaction to null out a bad inode pointer
  2832. * in an agi unlinked inode hash bucket.
  2833. */
  2834. STATIC void
  2835. xlog_recover_clear_agi_bucket(
  2836. xfs_mount_t *mp,
  2837. xfs_agnumber_t agno,
  2838. int bucket)
  2839. {
  2840. xfs_trans_t *tp;
  2841. xfs_agi_t *agi;
  2842. xfs_buf_t *agibp;
  2843. int offset;
  2844. int error;
  2845. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2846. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2847. 0, 0, 0);
  2848. if (error)
  2849. goto out_abort;
  2850. error = xfs_read_agi(mp, tp, agno, &agibp);
  2851. if (error)
  2852. goto out_abort;
  2853. agi = XFS_BUF_TO_AGI(agibp);
  2854. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2855. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2856. (sizeof(xfs_agino_t) * bucket);
  2857. xfs_trans_log_buf(tp, agibp, offset,
  2858. (offset + sizeof(xfs_agino_t) - 1));
  2859. error = xfs_trans_commit(tp, 0);
  2860. if (error)
  2861. goto out_error;
  2862. return;
  2863. out_abort:
  2864. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2865. out_error:
  2866. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2867. "failed to clear agi %d. Continuing.", agno);
  2868. return;
  2869. }
  2870. STATIC xfs_agino_t
  2871. xlog_recover_process_one_iunlink(
  2872. struct xfs_mount *mp,
  2873. xfs_agnumber_t agno,
  2874. xfs_agino_t agino,
  2875. int bucket)
  2876. {
  2877. struct xfs_buf *ibp;
  2878. struct xfs_dinode *dip;
  2879. struct xfs_inode *ip;
  2880. xfs_ino_t ino;
  2881. int error;
  2882. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2883. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2884. if (error)
  2885. goto fail;
  2886. /*
  2887. * Get the on disk inode to find the next inode in the bucket.
  2888. */
  2889. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
  2890. if (error)
  2891. goto fail_iput;
  2892. ASSERT(ip->i_d.di_nlink == 0);
  2893. ASSERT(ip->i_d.di_mode != 0);
  2894. /* setup for the next pass */
  2895. agino = be32_to_cpu(dip->di_next_unlinked);
  2896. xfs_buf_relse(ibp);
  2897. /*
  2898. * Prevent any DMAPI event from being sent when the reference on
  2899. * the inode is dropped.
  2900. */
  2901. ip->i_d.di_dmevmask = 0;
  2902. IRELE(ip);
  2903. return agino;
  2904. fail_iput:
  2905. IRELE(ip);
  2906. fail:
  2907. /*
  2908. * We can't read in the inode this bucket points to, or this inode
  2909. * is messed up. Just ditch this bucket of inodes. We will lose
  2910. * some inodes and space, but at least we won't hang.
  2911. *
  2912. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2913. * clear the inode pointer in the bucket.
  2914. */
  2915. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2916. return NULLAGINO;
  2917. }
  2918. /*
  2919. * xlog_iunlink_recover
  2920. *
  2921. * This is called during recovery to process any inodes which
  2922. * we unlinked but not freed when the system crashed. These
  2923. * inodes will be on the lists in the AGI blocks. What we do
  2924. * here is scan all the AGIs and fully truncate and free any
  2925. * inodes found on the lists. Each inode is removed from the
  2926. * lists when it has been fully truncated and is freed. The
  2927. * freeing of the inode and its removal from the list must be
  2928. * atomic.
  2929. */
  2930. void
  2931. xlog_recover_process_iunlinks(
  2932. xlog_t *log)
  2933. {
  2934. xfs_mount_t *mp;
  2935. xfs_agnumber_t agno;
  2936. xfs_agi_t *agi;
  2937. xfs_buf_t *agibp;
  2938. xfs_agino_t agino;
  2939. int bucket;
  2940. int error;
  2941. uint mp_dmevmask;
  2942. mp = log->l_mp;
  2943. /*
  2944. * Prevent any DMAPI event from being sent while in this function.
  2945. */
  2946. mp_dmevmask = mp->m_dmevmask;
  2947. mp->m_dmevmask = 0;
  2948. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2949. /*
  2950. * Find the agi for this ag.
  2951. */
  2952. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2953. if (error) {
  2954. /*
  2955. * AGI is b0rked. Don't process it.
  2956. *
  2957. * We should probably mark the filesystem as corrupt
  2958. * after we've recovered all the ag's we can....
  2959. */
  2960. continue;
  2961. }
  2962. agi = XFS_BUF_TO_AGI(agibp);
  2963. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2964. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2965. while (agino != NULLAGINO) {
  2966. /*
  2967. * Release the agi buffer so that it can
  2968. * be acquired in the normal course of the
  2969. * transaction to truncate and free the inode.
  2970. */
  2971. xfs_buf_relse(agibp);
  2972. agino = xlog_recover_process_one_iunlink(mp,
  2973. agno, agino, bucket);
  2974. /*
  2975. * Reacquire the agibuffer and continue around
  2976. * the loop. This should never fail as we know
  2977. * the buffer was good earlier on.
  2978. */
  2979. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2980. ASSERT(error == 0);
  2981. agi = XFS_BUF_TO_AGI(agibp);
  2982. }
  2983. }
  2984. /*
  2985. * Release the buffer for the current agi so we can
  2986. * go on to the next one.
  2987. */
  2988. xfs_buf_relse(agibp);
  2989. }
  2990. mp->m_dmevmask = mp_dmevmask;
  2991. }
  2992. #ifdef DEBUG
  2993. STATIC void
  2994. xlog_pack_data_checksum(
  2995. xlog_t *log,
  2996. xlog_in_core_t *iclog,
  2997. int size)
  2998. {
  2999. int i;
  3000. __be32 *up;
  3001. uint chksum = 0;
  3002. up = (__be32 *)iclog->ic_datap;
  3003. /* divide length by 4 to get # words */
  3004. for (i = 0; i < (size >> 2); i++) {
  3005. chksum ^= be32_to_cpu(*up);
  3006. up++;
  3007. }
  3008. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3009. }
  3010. #else
  3011. #define xlog_pack_data_checksum(log, iclog, size)
  3012. #endif
  3013. /*
  3014. * Stamp cycle number in every block
  3015. */
  3016. void
  3017. xlog_pack_data(
  3018. xlog_t *log,
  3019. xlog_in_core_t *iclog,
  3020. int roundoff)
  3021. {
  3022. int i, j, k;
  3023. int size = iclog->ic_offset + roundoff;
  3024. __be32 cycle_lsn;
  3025. xfs_caddr_t dp;
  3026. xlog_pack_data_checksum(log, iclog, size);
  3027. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3028. dp = iclog->ic_datap;
  3029. for (i = 0; i < BTOBB(size) &&
  3030. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3031. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3032. *(__be32 *)dp = cycle_lsn;
  3033. dp += BBSIZE;
  3034. }
  3035. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3036. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3037. for ( ; i < BTOBB(size); i++) {
  3038. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3039. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3040. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3041. *(__be32 *)dp = cycle_lsn;
  3042. dp += BBSIZE;
  3043. }
  3044. for (i = 1; i < log->l_iclog_heads; i++) {
  3045. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3046. }
  3047. }
  3048. }
  3049. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3050. STATIC void
  3051. xlog_unpack_data_checksum(
  3052. xlog_rec_header_t *rhead,
  3053. xfs_caddr_t dp,
  3054. xlog_t *log)
  3055. {
  3056. __be32 *up = (__be32 *)dp;
  3057. uint chksum = 0;
  3058. int i;
  3059. /* divide length by 4 to get # words */
  3060. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3061. chksum ^= be32_to_cpu(*up);
  3062. up++;
  3063. }
  3064. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3065. if (rhead->h_chksum ||
  3066. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3067. cmn_err(CE_DEBUG,
  3068. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3069. be32_to_cpu(rhead->h_chksum), chksum);
  3070. cmn_err(CE_DEBUG,
  3071. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3072. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3073. cmn_err(CE_DEBUG,
  3074. "XFS: LogR this is a LogV2 filesystem\n");
  3075. }
  3076. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3077. }
  3078. }
  3079. }
  3080. #else
  3081. #define xlog_unpack_data_checksum(rhead, dp, log)
  3082. #endif
  3083. STATIC void
  3084. xlog_unpack_data(
  3085. xlog_rec_header_t *rhead,
  3086. xfs_caddr_t dp,
  3087. xlog_t *log)
  3088. {
  3089. int i, j, k;
  3090. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3091. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3092. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3093. dp += BBSIZE;
  3094. }
  3095. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3096. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3097. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3098. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3099. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3100. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3101. dp += BBSIZE;
  3102. }
  3103. }
  3104. xlog_unpack_data_checksum(rhead, dp, log);
  3105. }
  3106. STATIC int
  3107. xlog_valid_rec_header(
  3108. xlog_t *log,
  3109. xlog_rec_header_t *rhead,
  3110. xfs_daddr_t blkno)
  3111. {
  3112. int hlen;
  3113. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3114. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3115. XFS_ERRLEVEL_LOW, log->l_mp);
  3116. return XFS_ERROR(EFSCORRUPTED);
  3117. }
  3118. if (unlikely(
  3119. (!rhead->h_version ||
  3120. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3121. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3122. __func__, be32_to_cpu(rhead->h_version));
  3123. return XFS_ERROR(EIO);
  3124. }
  3125. /* LR body must have data or it wouldn't have been written */
  3126. hlen = be32_to_cpu(rhead->h_len);
  3127. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3128. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3129. XFS_ERRLEVEL_LOW, log->l_mp);
  3130. return XFS_ERROR(EFSCORRUPTED);
  3131. }
  3132. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3133. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3134. XFS_ERRLEVEL_LOW, log->l_mp);
  3135. return XFS_ERROR(EFSCORRUPTED);
  3136. }
  3137. return 0;
  3138. }
  3139. /*
  3140. * Read the log from tail to head and process the log records found.
  3141. * Handle the two cases where the tail and head are in the same cycle
  3142. * and where the active portion of the log wraps around the end of
  3143. * the physical log separately. The pass parameter is passed through
  3144. * to the routines called to process the data and is not looked at
  3145. * here.
  3146. */
  3147. STATIC int
  3148. xlog_do_recovery_pass(
  3149. xlog_t *log,
  3150. xfs_daddr_t head_blk,
  3151. xfs_daddr_t tail_blk,
  3152. int pass)
  3153. {
  3154. xlog_rec_header_t *rhead;
  3155. xfs_daddr_t blk_no;
  3156. xfs_caddr_t bufaddr, offset;
  3157. xfs_buf_t *hbp, *dbp;
  3158. int error = 0, h_size;
  3159. int bblks, split_bblks;
  3160. int hblks, split_hblks, wrapped_hblks;
  3161. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3162. ASSERT(head_blk != tail_blk);
  3163. /*
  3164. * Read the header of the tail block and get the iclog buffer size from
  3165. * h_size. Use this to tell how many sectors make up the log header.
  3166. */
  3167. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3168. /*
  3169. * When using variable length iclogs, read first sector of
  3170. * iclog header and extract the header size from it. Get a
  3171. * new hbp that is the correct size.
  3172. */
  3173. hbp = xlog_get_bp(log, 1);
  3174. if (!hbp)
  3175. return ENOMEM;
  3176. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3177. goto bread_err1;
  3178. offset = xlog_align(log, tail_blk, 1, hbp);
  3179. rhead = (xlog_rec_header_t *)offset;
  3180. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3181. if (error)
  3182. goto bread_err1;
  3183. h_size = be32_to_cpu(rhead->h_size);
  3184. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3185. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3186. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3187. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3188. hblks++;
  3189. xlog_put_bp(hbp);
  3190. hbp = xlog_get_bp(log, hblks);
  3191. } else {
  3192. hblks = 1;
  3193. }
  3194. } else {
  3195. ASSERT(log->l_sectbb_log == 0);
  3196. hblks = 1;
  3197. hbp = xlog_get_bp(log, 1);
  3198. h_size = XLOG_BIG_RECORD_BSIZE;
  3199. }
  3200. if (!hbp)
  3201. return ENOMEM;
  3202. dbp = xlog_get_bp(log, BTOBB(h_size));
  3203. if (!dbp) {
  3204. xlog_put_bp(hbp);
  3205. return ENOMEM;
  3206. }
  3207. memset(rhash, 0, sizeof(rhash));
  3208. if (tail_blk <= head_blk) {
  3209. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3210. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3211. goto bread_err2;
  3212. offset = xlog_align(log, blk_no, hblks, hbp);
  3213. rhead = (xlog_rec_header_t *)offset;
  3214. error = xlog_valid_rec_header(log, rhead, blk_no);
  3215. if (error)
  3216. goto bread_err2;
  3217. /* blocks in data section */
  3218. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3219. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3220. if (error)
  3221. goto bread_err2;
  3222. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3223. xlog_unpack_data(rhead, offset, log);
  3224. if ((error = xlog_recover_process_data(log,
  3225. rhash, rhead, offset, pass)))
  3226. goto bread_err2;
  3227. blk_no += bblks + hblks;
  3228. }
  3229. } else {
  3230. /*
  3231. * Perform recovery around the end of the physical log.
  3232. * When the head is not on the same cycle number as the tail,
  3233. * we can't do a sequential recovery as above.
  3234. */
  3235. blk_no = tail_blk;
  3236. while (blk_no < log->l_logBBsize) {
  3237. /*
  3238. * Check for header wrapping around physical end-of-log
  3239. */
  3240. offset = NULL;
  3241. split_hblks = 0;
  3242. wrapped_hblks = 0;
  3243. if (blk_no + hblks <= log->l_logBBsize) {
  3244. /* Read header in one read */
  3245. error = xlog_bread(log, blk_no, hblks, hbp);
  3246. if (error)
  3247. goto bread_err2;
  3248. offset = xlog_align(log, blk_no, hblks, hbp);
  3249. } else {
  3250. /* This LR is split across physical log end */
  3251. if (blk_no != log->l_logBBsize) {
  3252. /* some data before physical log end */
  3253. ASSERT(blk_no <= INT_MAX);
  3254. split_hblks = log->l_logBBsize - (int)blk_no;
  3255. ASSERT(split_hblks > 0);
  3256. if ((error = xlog_bread(log, blk_no,
  3257. split_hblks, hbp)))
  3258. goto bread_err2;
  3259. offset = xlog_align(log, blk_no,
  3260. split_hblks, hbp);
  3261. }
  3262. /*
  3263. * Note: this black magic still works with
  3264. * large sector sizes (non-512) only because:
  3265. * - we increased the buffer size originally
  3266. * by 1 sector giving us enough extra space
  3267. * for the second read;
  3268. * - the log start is guaranteed to be sector
  3269. * aligned;
  3270. * - we read the log end (LR header start)
  3271. * _first_, then the log start (LR header end)
  3272. * - order is important.
  3273. */
  3274. wrapped_hblks = hblks - split_hblks;
  3275. bufaddr = XFS_BUF_PTR(hbp);
  3276. error = XFS_BUF_SET_PTR(hbp,
  3277. bufaddr + BBTOB(split_hblks),
  3278. BBTOB(hblks - split_hblks));
  3279. if (!error)
  3280. error = xlog_bread(log, 0,
  3281. wrapped_hblks, hbp);
  3282. if (!error)
  3283. error = XFS_BUF_SET_PTR(hbp, bufaddr,
  3284. BBTOB(hblks));
  3285. if (error)
  3286. goto bread_err2;
  3287. if (!offset)
  3288. offset = xlog_align(log, 0,
  3289. wrapped_hblks, hbp);
  3290. }
  3291. rhead = (xlog_rec_header_t *)offset;
  3292. error = xlog_valid_rec_header(log, rhead,
  3293. split_hblks ? blk_no : 0);
  3294. if (error)
  3295. goto bread_err2;
  3296. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3297. blk_no += hblks;
  3298. /* Read in data for log record */
  3299. if (blk_no + bblks <= log->l_logBBsize) {
  3300. error = xlog_bread(log, blk_no, bblks, dbp);
  3301. if (error)
  3302. goto bread_err2;
  3303. offset = xlog_align(log, blk_no, bblks, dbp);
  3304. } else {
  3305. /* This log record is split across the
  3306. * physical end of log */
  3307. offset = NULL;
  3308. split_bblks = 0;
  3309. if (blk_no != log->l_logBBsize) {
  3310. /* some data is before the physical
  3311. * end of log */
  3312. ASSERT(!wrapped_hblks);
  3313. ASSERT(blk_no <= INT_MAX);
  3314. split_bblks =
  3315. log->l_logBBsize - (int)blk_no;
  3316. ASSERT(split_bblks > 0);
  3317. if ((error = xlog_bread(log, blk_no,
  3318. split_bblks, dbp)))
  3319. goto bread_err2;
  3320. offset = xlog_align(log, blk_no,
  3321. split_bblks, dbp);
  3322. }
  3323. /*
  3324. * Note: this black magic still works with
  3325. * large sector sizes (non-512) only because:
  3326. * - we increased the buffer size originally
  3327. * by 1 sector giving us enough extra space
  3328. * for the second read;
  3329. * - the log start is guaranteed to be sector
  3330. * aligned;
  3331. * - we read the log end (LR header start)
  3332. * _first_, then the log start (LR header end)
  3333. * - order is important.
  3334. */
  3335. bufaddr = XFS_BUF_PTR(dbp);
  3336. error = XFS_BUF_SET_PTR(dbp,
  3337. bufaddr + BBTOB(split_bblks),
  3338. BBTOB(bblks - split_bblks));
  3339. if (!error)
  3340. error = xlog_bread(log, wrapped_hblks,
  3341. bblks - split_bblks,
  3342. dbp);
  3343. if (!error)
  3344. error = XFS_BUF_SET_PTR(dbp, bufaddr,
  3345. h_size);
  3346. if (error)
  3347. goto bread_err2;
  3348. if (!offset)
  3349. offset = xlog_align(log, wrapped_hblks,
  3350. bblks - split_bblks, dbp);
  3351. }
  3352. xlog_unpack_data(rhead, offset, log);
  3353. if ((error = xlog_recover_process_data(log, rhash,
  3354. rhead, offset, pass)))
  3355. goto bread_err2;
  3356. blk_no += bblks;
  3357. }
  3358. ASSERT(blk_no >= log->l_logBBsize);
  3359. blk_no -= log->l_logBBsize;
  3360. /* read first part of physical log */
  3361. while (blk_no < head_blk) {
  3362. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3363. goto bread_err2;
  3364. offset = xlog_align(log, blk_no, hblks, hbp);
  3365. rhead = (xlog_rec_header_t *)offset;
  3366. error = xlog_valid_rec_header(log, rhead, blk_no);
  3367. if (error)
  3368. goto bread_err2;
  3369. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3370. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3371. goto bread_err2;
  3372. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3373. xlog_unpack_data(rhead, offset, log);
  3374. if ((error = xlog_recover_process_data(log, rhash,
  3375. rhead, offset, pass)))
  3376. goto bread_err2;
  3377. blk_no += bblks + hblks;
  3378. }
  3379. }
  3380. bread_err2:
  3381. xlog_put_bp(dbp);
  3382. bread_err1:
  3383. xlog_put_bp(hbp);
  3384. return error;
  3385. }
  3386. /*
  3387. * Do the recovery of the log. We actually do this in two phases.
  3388. * The two passes are necessary in order to implement the function
  3389. * of cancelling a record written into the log. The first pass
  3390. * determines those things which have been cancelled, and the
  3391. * second pass replays log items normally except for those which
  3392. * have been cancelled. The handling of the replay and cancellations
  3393. * takes place in the log item type specific routines.
  3394. *
  3395. * The table of items which have cancel records in the log is allocated
  3396. * and freed at this level, since only here do we know when all of
  3397. * the log recovery has been completed.
  3398. */
  3399. STATIC int
  3400. xlog_do_log_recovery(
  3401. xlog_t *log,
  3402. xfs_daddr_t head_blk,
  3403. xfs_daddr_t tail_blk)
  3404. {
  3405. int error;
  3406. ASSERT(head_blk != tail_blk);
  3407. /*
  3408. * First do a pass to find all of the cancelled buf log items.
  3409. * Store them in the buf_cancel_table for use in the second pass.
  3410. */
  3411. log->l_buf_cancel_table =
  3412. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3413. sizeof(xfs_buf_cancel_t*),
  3414. KM_SLEEP);
  3415. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3416. XLOG_RECOVER_PASS1);
  3417. if (error != 0) {
  3418. kmem_free(log->l_buf_cancel_table);
  3419. log->l_buf_cancel_table = NULL;
  3420. return error;
  3421. }
  3422. /*
  3423. * Then do a second pass to actually recover the items in the log.
  3424. * When it is complete free the table of buf cancel items.
  3425. */
  3426. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3427. XLOG_RECOVER_PASS2);
  3428. #ifdef DEBUG
  3429. if (!error) {
  3430. int i;
  3431. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3432. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3433. }
  3434. #endif /* DEBUG */
  3435. kmem_free(log->l_buf_cancel_table);
  3436. log->l_buf_cancel_table = NULL;
  3437. return error;
  3438. }
  3439. /*
  3440. * Do the actual recovery
  3441. */
  3442. STATIC int
  3443. xlog_do_recover(
  3444. xlog_t *log,
  3445. xfs_daddr_t head_blk,
  3446. xfs_daddr_t tail_blk)
  3447. {
  3448. int error;
  3449. xfs_buf_t *bp;
  3450. xfs_sb_t *sbp;
  3451. /*
  3452. * First replay the images in the log.
  3453. */
  3454. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3455. if (error) {
  3456. return error;
  3457. }
  3458. XFS_bflush(log->l_mp->m_ddev_targp);
  3459. /*
  3460. * If IO errors happened during recovery, bail out.
  3461. */
  3462. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3463. return (EIO);
  3464. }
  3465. /*
  3466. * We now update the tail_lsn since much of the recovery has completed
  3467. * and there may be space available to use. If there were no extent
  3468. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3469. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3470. * lsn of the last known good LR on disk. If there are extent frees
  3471. * or iunlinks they will have some entries in the AIL; so we look at
  3472. * the AIL to determine how to set the tail_lsn.
  3473. */
  3474. xlog_assign_tail_lsn(log->l_mp);
  3475. /*
  3476. * Now that we've finished replaying all buffer and inode
  3477. * updates, re-read in the superblock.
  3478. */
  3479. bp = xfs_getsb(log->l_mp, 0);
  3480. XFS_BUF_UNDONE(bp);
  3481. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3482. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3483. XFS_BUF_READ(bp);
  3484. XFS_BUF_UNASYNC(bp);
  3485. xfsbdstrat(log->l_mp, bp);
  3486. error = xfs_iowait(bp);
  3487. if (error) {
  3488. xfs_ioerror_alert("xlog_do_recover",
  3489. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3490. ASSERT(0);
  3491. xfs_buf_relse(bp);
  3492. return error;
  3493. }
  3494. /* Convert superblock from on-disk format */
  3495. sbp = &log->l_mp->m_sb;
  3496. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3497. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3498. ASSERT(xfs_sb_good_version(sbp));
  3499. xfs_buf_relse(bp);
  3500. /* We've re-read the superblock so re-initialize per-cpu counters */
  3501. xfs_icsb_reinit_counters(log->l_mp);
  3502. xlog_recover_check_summary(log);
  3503. /* Normal transactions can now occur */
  3504. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3505. return 0;
  3506. }
  3507. /*
  3508. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3509. *
  3510. * Return error or zero.
  3511. */
  3512. int
  3513. xlog_recover(
  3514. xlog_t *log)
  3515. {
  3516. xfs_daddr_t head_blk, tail_blk;
  3517. int error;
  3518. /* find the tail of the log */
  3519. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3520. return error;
  3521. if (tail_blk != head_blk) {
  3522. /* There used to be a comment here:
  3523. *
  3524. * disallow recovery on read-only mounts. note -- mount
  3525. * checks for ENOSPC and turns it into an intelligent
  3526. * error message.
  3527. * ...but this is no longer true. Now, unless you specify
  3528. * NORECOVERY (in which case this function would never be
  3529. * called), we just go ahead and recover. We do this all
  3530. * under the vfs layer, so we can get away with it unless
  3531. * the device itself is read-only, in which case we fail.
  3532. */
  3533. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3534. return error;
  3535. }
  3536. cmn_err(CE_NOTE,
  3537. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3538. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3539. log->l_mp->m_logname : "internal");
  3540. error = xlog_do_recover(log, head_blk, tail_blk);
  3541. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3542. }
  3543. return error;
  3544. }
  3545. /*
  3546. * In the first part of recovery we replay inodes and buffers and build
  3547. * up the list of extent free items which need to be processed. Here
  3548. * we process the extent free items and clean up the on disk unlinked
  3549. * inode lists. This is separated from the first part of recovery so
  3550. * that the root and real-time bitmap inodes can be read in from disk in
  3551. * between the two stages. This is necessary so that we can free space
  3552. * in the real-time portion of the file system.
  3553. */
  3554. int
  3555. xlog_recover_finish(
  3556. xlog_t *log)
  3557. {
  3558. /*
  3559. * Now we're ready to do the transactions needed for the
  3560. * rest of recovery. Start with completing all the extent
  3561. * free intent records and then process the unlinked inode
  3562. * lists. At this point, we essentially run in normal mode
  3563. * except that we're still performing recovery actions
  3564. * rather than accepting new requests.
  3565. */
  3566. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3567. int error;
  3568. error = xlog_recover_process_efis(log);
  3569. if (error) {
  3570. cmn_err(CE_ALERT,
  3571. "Failed to recover EFIs on filesystem: %s",
  3572. log->l_mp->m_fsname);
  3573. return error;
  3574. }
  3575. /*
  3576. * Sync the log to get all the EFIs out of the AIL.
  3577. * This isn't absolutely necessary, but it helps in
  3578. * case the unlink transactions would have problems
  3579. * pushing the EFIs out of the way.
  3580. */
  3581. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3582. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3583. xlog_recover_process_iunlinks(log);
  3584. xlog_recover_check_summary(log);
  3585. cmn_err(CE_NOTE,
  3586. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3587. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3588. log->l_mp->m_logname : "internal");
  3589. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3590. } else {
  3591. cmn_err(CE_DEBUG,
  3592. "!Ending clean XFS mount for filesystem: %s\n",
  3593. log->l_mp->m_fsname);
  3594. }
  3595. return 0;
  3596. }
  3597. #if defined(DEBUG)
  3598. /*
  3599. * Read all of the agf and agi counters and check that they
  3600. * are consistent with the superblock counters.
  3601. */
  3602. void
  3603. xlog_recover_check_summary(
  3604. xlog_t *log)
  3605. {
  3606. xfs_mount_t *mp;
  3607. xfs_agf_t *agfp;
  3608. xfs_buf_t *agfbp;
  3609. xfs_buf_t *agibp;
  3610. xfs_buf_t *sbbp;
  3611. #ifdef XFS_LOUD_RECOVERY
  3612. xfs_sb_t *sbp;
  3613. #endif
  3614. xfs_agnumber_t agno;
  3615. __uint64_t freeblks;
  3616. __uint64_t itotal;
  3617. __uint64_t ifree;
  3618. int error;
  3619. mp = log->l_mp;
  3620. freeblks = 0LL;
  3621. itotal = 0LL;
  3622. ifree = 0LL;
  3623. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3624. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3625. if (error) {
  3626. xfs_fs_cmn_err(CE_ALERT, mp,
  3627. "xlog_recover_check_summary(agf)"
  3628. "agf read failed agno %d error %d",
  3629. agno, error);
  3630. } else {
  3631. agfp = XFS_BUF_TO_AGF(agfbp);
  3632. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3633. be32_to_cpu(agfp->agf_flcount);
  3634. xfs_buf_relse(agfbp);
  3635. }
  3636. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3637. if (!error) {
  3638. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3639. itotal += be32_to_cpu(agi->agi_count);
  3640. ifree += be32_to_cpu(agi->agi_freecount);
  3641. xfs_buf_relse(agibp);
  3642. }
  3643. }
  3644. sbbp = xfs_getsb(mp, 0);
  3645. #ifdef XFS_LOUD_RECOVERY
  3646. sbp = &mp->m_sb;
  3647. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3648. cmn_err(CE_NOTE,
  3649. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3650. sbp->sb_icount, itotal);
  3651. cmn_err(CE_NOTE,
  3652. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3653. sbp->sb_ifree, ifree);
  3654. cmn_err(CE_NOTE,
  3655. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3656. sbp->sb_fdblocks, freeblks);
  3657. #if 0
  3658. /*
  3659. * This is turned off until I account for the allocation
  3660. * btree blocks which live in free space.
  3661. */
  3662. ASSERT(sbp->sb_icount == itotal);
  3663. ASSERT(sbp->sb_ifree == ifree);
  3664. ASSERT(sbp->sb_fdblocks == freeblks);
  3665. #endif
  3666. #endif
  3667. xfs_buf_relse(sbbp);
  3668. }
  3669. #endif /* DEBUG */