dib3000mc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /*
  2. * Driver for DiBcom DiB3000MC/P-demodulator.
  3. *
  4. * Copyright (C) 2004-6 DiBcom (http://www.dibcom.fr/)
  5. * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
  6. *
  7. * This code is partially based on the previous dib3000mc.c .
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation, version 2.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/i2c.h>
  15. //#include <linux/init.h>
  16. //#include <linux/delay.h>
  17. //#include <linux/string.h>
  18. //#include <linux/slab.h>
  19. #include "dvb_frontend.h"
  20. #include "dib3000mc.h"
  21. static int debug;
  22. module_param(debug, int, 0644);
  23. MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
  24. #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); } } while (0)
  25. struct dib3000mc_state {
  26. struct dvb_frontend demod;
  27. struct dib3000mc_config *cfg;
  28. u8 i2c_addr;
  29. struct i2c_adapter *i2c_adap;
  30. struct dibx000_i2c_master i2c_master;
  31. fe_bandwidth_t current_bandwidth;
  32. u16 dev_id;
  33. };
  34. static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg)
  35. {
  36. u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
  37. u8 rb[2];
  38. struct i2c_msg msg[2] = {
  39. { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
  40. { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
  41. };
  42. if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
  43. dprintk("i2c read error on %d\n",reg);
  44. return (rb[0] << 8) | rb[1];
  45. }
  46. static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
  47. {
  48. u8 b[4] = {
  49. (reg >> 8) & 0xff, reg & 0xff,
  50. (val >> 8) & 0xff, val & 0xff,
  51. };
  52. struct i2c_msg msg = {
  53. .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
  54. };
  55. return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
  56. }
  57. static int dib3000mc_identify(struct dib3000mc_state *state)
  58. {
  59. u16 value;
  60. if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) {
  61. dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value);
  62. return -EREMOTEIO;
  63. }
  64. value = dib3000mc_read_word(state, 1026);
  65. if (value != 0x3001 && value != 0x3002) {
  66. dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value);
  67. return -EREMOTEIO;
  68. }
  69. state->dev_id = value;
  70. dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id);
  71. return 0;
  72. }
  73. static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw, u8 update_offset)
  74. {
  75. /*
  76. u32 timf_msb, timf_lsb, i;
  77. int tim_sgn ;
  78. LUInt comp1, comp2, comp ;
  79. // u32 tim_offset ;
  80. comp = 27700 * BW_INDEX_TO_KHZ(bw) / 1000;
  81. timf_msb = (comp >> 16) & 0x00FF;
  82. timf_lsb = comp & 0xFFFF;
  83. // Update the timing offset ;
  84. if (update_offset) {
  85. if (state->timing_offset_comp_done == 0) {
  86. usleep(200000);
  87. state->timing_offset_comp_done = 1;
  88. }
  89. tim_offset = dib3000mc_read_word(state, 416);
  90. if ((tim_offset & 0x2000) == 0x2000)
  91. tim_offset |= 0xC000; // PB: This only works if tim_offset is s16 - weird
  92. if (nfft == 0)
  93. tim_offset = tim_offset << 2; // PB: Do not store the offset for different things in one variable
  94. state->timing_offset += tim_offset;
  95. }
  96. tim_offset = state->timing_offset;
  97. if (tim_offset < 0) {
  98. tim_sgn = 1;
  99. tim_offset = -tim_offset;
  100. } else
  101. tim_sgn = 0;
  102. comp1 = tim_offset * timf_lsb;
  103. comp2 = tim_offset * timf_msb;
  104. comp = ((comp1 >> 16) + comp2) >> 7;
  105. if (tim_sgn == 0)
  106. comp = timf_msb * (1<<16) + timf_lsb + comp;
  107. else
  108. comp = timf_msb * (1<<16) + timf_lsb - comp;
  109. timf_msb = (comp>>16)&0xFF ;
  110. timf_lsb = comp&0xFFFF;
  111. */
  112. u32 timf = 1384402 * (BW_INDEX_TO_KHZ(bw) / 1000);
  113. dib3000mc_write_word(state, 23, timf >> 16);
  114. dib3000mc_write_word(state, 24, timf & 0xffff);
  115. return 0;
  116. }
  117. static int dib3000mc_setup_pwm3_state(struct dib3000mc_state *state)
  118. {
  119. if (state->cfg->pwm3_inversion) {
  120. dib3000mc_write_word(state, 51, (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0));
  121. dib3000mc_write_word(state, 52, (0 << 8) | (5 << 5) | (1 << 4) | (1 << 3) | (1 << 2) | (2 << 0));
  122. } else {
  123. dib3000mc_write_word(state, 51, (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0));
  124. dib3000mc_write_word(state, 52, (1 << 8) | (5 << 5) | (1 << 4) | (1 << 3) | (0 << 2) | (2 << 0));
  125. }
  126. if (state->cfg->use_pwm3)
  127. dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0));
  128. else
  129. dib3000mc_write_word(state, 245, 0);
  130. dib3000mc_write_word(state, 1040, 0x3);
  131. return 0;
  132. }
  133. static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
  134. {
  135. int ret = 0;
  136. u16 fifo_threshold = 1792;
  137. u16 outreg = 0;
  138. u16 outmode = 0;
  139. u16 elecout = 1;
  140. u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */
  141. dprintk("-I- Setting output mode for demod %p to %d\n",
  142. &state->demod, mode);
  143. switch (mode) {
  144. case OUTMODE_HIGH_Z: // disable
  145. elecout = 0;
  146. break;
  147. case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
  148. outmode = 0;
  149. break;
  150. case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
  151. outmode = 1;
  152. break;
  153. case OUTMODE_MPEG2_SERIAL: // STBs with serial input
  154. outmode = 2;
  155. break;
  156. case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
  157. elecout = 3;
  158. /*ADDR @ 206 :
  159. P_smo_error_discard [1;6:6] = 0
  160. P_smo_rs_discard [1;5:5] = 0
  161. P_smo_pid_parse [1;4:4] = 0
  162. P_smo_fifo_flush [1;3:3] = 0
  163. P_smo_mode [2;2:1] = 11
  164. P_smo_ovf_prot [1;0:0] = 0
  165. */
  166. smo_reg |= 3 << 1;
  167. fifo_threshold = 512;
  168. outmode = 5;
  169. break;
  170. case OUTMODE_DIVERSITY:
  171. outmode = 4;
  172. elecout = 1;
  173. break;
  174. default:
  175. dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
  176. outmode = 0;
  177. break;
  178. }
  179. if ((state->cfg->output_mpeg2_in_188_bytes))
  180. smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1
  181. outreg = dib3000mc_read_word(state, 244) & 0x07FF;
  182. outreg |= (outmode << 11);
  183. ret |= dib3000mc_write_word(state, 244, outreg);
  184. ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/
  185. ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */
  186. ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */
  187. return ret;
  188. }
  189. static int dib3000mc_set_bandwidth(struct dvb_frontend *demod, u8 bw)
  190. {
  191. struct dib3000mc_state *state = demod->demodulator_priv;
  192. u16 bw_cfg[6] = { 0 };
  193. u16 imp_bw_cfg[3] = { 0 };
  194. u16 reg;
  195. /* settings here are for 27.7MHz */
  196. switch (bw) {
  197. case BANDWIDTH_8_MHZ:
  198. bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
  199. imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
  200. break;
  201. case BANDWIDTH_7_MHZ:
  202. bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
  203. imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
  204. break;
  205. case BANDWIDTH_6_MHZ:
  206. bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
  207. imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
  208. break;
  209. case 255 /* BANDWIDTH_5_MHZ */:
  210. bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
  211. imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
  212. break;
  213. default: return -EINVAL;
  214. }
  215. for (reg = 6; reg < 12; reg++)
  216. dib3000mc_write_word(state, reg, bw_cfg[reg - 6]);
  217. dib3000mc_write_word(state, 12, 0x0000);
  218. dib3000mc_write_word(state, 13, 0x03e8);
  219. dib3000mc_write_word(state, 14, 0x0000);
  220. dib3000mc_write_word(state, 15, 0x03f2);
  221. dib3000mc_write_word(state, 16, 0x0001);
  222. dib3000mc_write_word(state, 17, 0xb0d0);
  223. // P_sec_len
  224. dib3000mc_write_word(state, 18, 0x0393);
  225. dib3000mc_write_word(state, 19, 0x8700);
  226. for (reg = 55; reg < 58; reg++)
  227. dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
  228. // Timing configuration
  229. dib3000mc_set_timing(state, 0, bw, 0);
  230. return 0;
  231. }
  232. static u16 impulse_noise_val[29] =
  233. {
  234. 0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3,
  235. 0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2,
  236. 0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd
  237. };
  238. static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft)
  239. {
  240. u16 i;
  241. for (i = 58; i < 87; i++)
  242. dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
  243. if (nfft == 1) {
  244. dib3000mc_write_word(state, 58, 0x3b);
  245. dib3000mc_write_word(state, 84, 0x00);
  246. dib3000mc_write_word(state, 85, 0x8200);
  247. }
  248. dib3000mc_write_word(state, 34, 0x1294);
  249. dib3000mc_write_word(state, 35, 0x1ff8);
  250. if (mode == 1)
  251. dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10));
  252. }
  253. static int dib3000mc_init(struct dvb_frontend *demod)
  254. {
  255. struct dib3000mc_state *state = demod->demodulator_priv;
  256. struct dibx000_agc_config *agc = state->cfg->agc;
  257. // Restart Configuration
  258. dib3000mc_write_word(state, 1027, 0x8000);
  259. dib3000mc_write_word(state, 1027, 0x0000);
  260. // power up the demod + mobility configuration
  261. dib3000mc_write_word(state, 140, 0x0000);
  262. dib3000mc_write_word(state, 1031, 0);
  263. if (state->cfg->mobile_mode) {
  264. dib3000mc_write_word(state, 139, 0x0000);
  265. dib3000mc_write_word(state, 141, 0x0000);
  266. dib3000mc_write_word(state, 175, 0x0002);
  267. dib3000mc_write_word(state, 1032, 0x0000);
  268. } else {
  269. dib3000mc_write_word(state, 139, 0x0001);
  270. dib3000mc_write_word(state, 141, 0x0000);
  271. dib3000mc_write_word(state, 175, 0x0000);
  272. dib3000mc_write_word(state, 1032, 0x012C);
  273. }
  274. dib3000mc_write_word(state, 1033, 0);
  275. // P_clk_cfg
  276. dib3000mc_write_word(state, 1037, 12592);
  277. // other configurations
  278. // P_ctrl_sfreq
  279. dib3000mc_write_word(state, 33, (5 << 0));
  280. dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0));
  281. // Phase noise control
  282. // P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange
  283. dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0));
  284. if (state->cfg->phase_noise_mode == 0)
  285. dib3000mc_write_word(state, 111, 0x00);
  286. else
  287. dib3000mc_write_word(state, 111, 0x02);
  288. // P_agc_global
  289. dib3000mc_write_word(state, 50, 0x8000);
  290. // agc setup misc
  291. dib3000mc_setup_pwm3_state(state);
  292. // P_agc_counter_lock
  293. dib3000mc_write_word(state, 53, 0x87);
  294. // P_agc_counter_unlock
  295. dib3000mc_write_word(state, 54, 0x87);
  296. /* agc */
  297. dib3000mc_write_word(state, 36, state->cfg->max_time);
  298. dib3000mc_write_word(state, 37, agc->setup);
  299. dib3000mc_write_word(state, 38, state->cfg->pwm3_value);
  300. dib3000mc_write_word(state, 39, state->cfg->ln_adc_level);
  301. // set_agc_loop_Bw
  302. dib3000mc_write_word(state, 40, 0x0179);
  303. dib3000mc_write_word(state, 41, 0x03f0);
  304. dib3000mc_write_word(state, 42, agc->agc1_max);
  305. dib3000mc_write_word(state, 43, agc->agc1_min);
  306. dib3000mc_write_word(state, 44, agc->agc2_max);
  307. dib3000mc_write_word(state, 45, agc->agc2_min);
  308. dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
  309. dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
  310. dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
  311. dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
  312. // Begin: TimeOut registers
  313. // P_pha3_thres
  314. dib3000mc_write_word(state, 110, 3277);
  315. // P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80
  316. dib3000mc_write_word(state, 26, 0x6680);
  317. // lock_mask0
  318. dib3000mc_write_word(state, 1, 4);
  319. // lock_mask1
  320. dib3000mc_write_word(state, 2, 4);
  321. // lock_mask2
  322. dib3000mc_write_word(state, 3, 0x1000);
  323. // P_search_maxtrial=1
  324. dib3000mc_write_word(state, 5, 1);
  325. dib3000mc_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ);
  326. // div_lock_mask
  327. dib3000mc_write_word(state, 4, 0x814);
  328. dib3000mc_write_word(state, 21, (1 << 9) | 0x164);
  329. dib3000mc_write_word(state, 22, 0x463d);
  330. // Spurious rm cfg
  331. // P_cspu_regul, P_cspu_win_cut
  332. dib3000mc_write_word(state, 120, 0x200f);
  333. // P_adp_selec_monit
  334. dib3000mc_write_word(state, 134, 0);
  335. // Fec cfg
  336. dib3000mc_write_word(state, 195, 0x10);
  337. // diversity register: P_dvsy_sync_wait..
  338. dib3000mc_write_word(state, 180, 0x2FF0);
  339. // Impulse noise configuration
  340. dib3000mc_set_impulse_noise(state, 0, 1);
  341. // output mode set-up
  342. dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
  343. /* close the i2c-gate */
  344. dib3000mc_write_word(state, 769, (1 << 7) );
  345. return 0;
  346. }
  347. static int dib3000mc_sleep(struct dvb_frontend *demod)
  348. {
  349. struct dib3000mc_state *state = demod->demodulator_priv;
  350. dib3000mc_write_word(state, 1037, dib3000mc_read_word(state, 1037) | 0x0003);
  351. dib3000mc_write_word(state, 1031, 0xFFFF);
  352. dib3000mc_write_word(state, 1032, 0xFFFF);
  353. dib3000mc_write_word(state, 1033, 0xFFF4); // **** Bin2
  354. return 0;
  355. }
  356. static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
  357. {
  358. u16 cfg[4] = { 0 },reg;
  359. switch (qam) {
  360. case 0:
  361. cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
  362. break;
  363. case 1:
  364. cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
  365. break;
  366. case 2:
  367. cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
  368. break;
  369. }
  370. for (reg = 129; reg < 133; reg++)
  371. dib3000mc_write_word(state, reg, cfg[reg - 129]);
  372. }
  373. static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx000_ofdm_channel *chan, u16 seq)
  374. {
  375. u16 tmp;
  376. dib3000mc_set_timing(state, chan->nfft, chan->Bw, 0);
  377. // if (boost)
  378. // dib3000mc_write_word(state, 100, (11 << 6) + 6);
  379. // else
  380. dib3000mc_write_word(state, 100, (16 << 6) + 9);
  381. dib3000mc_write_word(state, 1027, 0x0800);
  382. dib3000mc_write_word(state, 1027, 0x0000);
  383. //Default cfg isi offset adp
  384. dib3000mc_write_word(state, 26, 0x6680);
  385. dib3000mc_write_word(state, 29, 0x1273);
  386. dib3000mc_write_word(state, 33, 5);
  387. dib3000mc_set_adp_cfg(state, 1);
  388. dib3000mc_write_word(state, 133, 15564);
  389. dib3000mc_write_word(state, 12 , 0x0);
  390. dib3000mc_write_word(state, 13 , 0x3e8);
  391. dib3000mc_write_word(state, 14 , 0x0);
  392. dib3000mc_write_word(state, 15 , 0x3f2);
  393. dib3000mc_write_word(state, 93,0);
  394. dib3000mc_write_word(state, 94,0);
  395. dib3000mc_write_word(state, 95,0);
  396. dib3000mc_write_word(state, 96,0);
  397. dib3000mc_write_word(state, 97,0);
  398. dib3000mc_write_word(state, 98,0);
  399. dib3000mc_set_impulse_noise(state, 0, chan->nfft);
  400. tmp = ((chan->nfft & 0x1) << 7) | (chan->guard << 5) | (chan->nqam << 3) | chan->vit_alpha;
  401. dib3000mc_write_word(state, 0, tmp);
  402. dib3000mc_write_word(state, 5, seq);
  403. tmp = (chan->vit_hrch << 4) | (chan->vit_select_hp);
  404. if (!chan->vit_hrch || (chan->vit_hrch && chan->vit_select_hp))
  405. tmp |= chan->vit_code_rate_hp << 1;
  406. else
  407. tmp |= chan->vit_code_rate_lp << 1;
  408. dib3000mc_write_word(state, 181, tmp);
  409. // diversity synchro delay
  410. tmp = dib3000mc_read_word(state, 180) & 0x000f;
  411. tmp |= ((chan->nfft == 0) ? 64 : 256) * ((1 << (chan->guard)) * 3 / 2) << 4; // add 50% SFN margin
  412. dib3000mc_write_word(state, 180, tmp);
  413. // restart demod
  414. tmp = dib3000mc_read_word(state, 0);
  415. dib3000mc_write_word(state, 0, tmp | (1 << 9));
  416. dib3000mc_write_word(state, 0, tmp);
  417. msleep(30);
  418. dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, chan->nfft);
  419. }
  420. static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *chan)
  421. {
  422. struct dib3000mc_state *state = demod->demodulator_priv;
  423. u16 reg;
  424. // u32 val;
  425. struct dibx000_ofdm_channel fchan;
  426. INIT_OFDM_CHANNEL(&fchan);
  427. fchan = *chan;
  428. /* a channel for autosearch */
  429. reg = 0;
  430. if (chan->nfft == -1 && chan->guard == -1) reg = 7;
  431. if (chan->nfft == -1 && chan->guard != -1) reg = 2;
  432. if (chan->nfft != -1 && chan->guard == -1) reg = 3;
  433. fchan.nfft = 1; fchan.guard = 0; fchan.nqam = 2;
  434. fchan.vit_alpha = 1; fchan.vit_code_rate_hp = 2; fchan.vit_code_rate_lp = 2;
  435. fchan.vit_hrch = 0; fchan.vit_select_hp = 1;
  436. dib3000mc_set_channel_cfg(state, &fchan, reg);
  437. reg = dib3000mc_read_word(state, 0);
  438. dib3000mc_write_word(state, 0, reg | (1 << 8));
  439. dib3000mc_write_word(state, 0, reg);
  440. return 0;
  441. }
  442. static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
  443. {
  444. struct dib3000mc_state *state = demod->demodulator_priv;
  445. u16 irq_pending = dib3000mc_read_word(state, 511);
  446. if (irq_pending & 0x1) // failed
  447. return 1;
  448. if (irq_pending & 0x2) // succeeded
  449. return 2;
  450. return 0; // still pending
  451. }
  452. static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch)
  453. {
  454. struct dib3000mc_state *state = demod->demodulator_priv;
  455. // ** configure demod **
  456. dib3000mc_set_channel_cfg(state, ch, 0);
  457. // activates isi
  458. dib3000mc_write_word(state, 29, 0x1073);
  459. dib3000mc_set_adp_cfg(state, (u8)ch->nqam);
  460. if (ch->nfft == 1) {
  461. dib3000mc_write_word(state, 26, 38528);
  462. dib3000mc_write_word(state, 33, 8);
  463. } else {
  464. dib3000mc_write_word(state, 26, 30336);
  465. dib3000mc_write_word(state, 33, 6);
  466. }
  467. // if (lock)
  468. // dib3000mc_set_timing(state, ch->nfft, ch->Bw, 1);
  469. return 0;
  470. }
  471. struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating)
  472. {
  473. struct dib3000mc_state *st = demod->demodulator_priv;
  474. return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating);
  475. }
  476. EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master);
  477. static int dib3000mc_get_frontend(struct dvb_frontend* fe,
  478. struct dvb_frontend_parameters *fep)
  479. {
  480. struct dib3000mc_state *state = fe->demodulator_priv;
  481. u16 tps = dib3000mc_read_word(state,458);
  482. fep->inversion = INVERSION_AUTO;
  483. fep->u.ofdm.bandwidth = state->current_bandwidth;
  484. switch ((tps >> 8) & 0x1) {
  485. case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
  486. case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
  487. }
  488. switch (tps & 0x3) {
  489. case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
  490. case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
  491. case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
  492. case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
  493. }
  494. switch ((tps >> 13) & 0x3) {
  495. case 0: fep->u.ofdm.constellation = QPSK; break;
  496. case 1: fep->u.ofdm.constellation = QAM_16; break;
  497. case 2:
  498. default: fep->u.ofdm.constellation = QAM_64; break;
  499. }
  500. /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
  501. /* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */
  502. fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
  503. switch ((tps >> 5) & 0x7) {
  504. case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
  505. case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
  506. case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
  507. case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
  508. case 7:
  509. default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
  510. }
  511. switch ((tps >> 2) & 0x7) {
  512. case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
  513. case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
  514. case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
  515. case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
  516. case 7:
  517. default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
  518. }
  519. return 0;
  520. }
  521. static int dib3000mc_set_frontend(struct dvb_frontend* fe,
  522. struct dvb_frontend_parameters *fep)
  523. {
  524. struct dib3000mc_state *state = fe->demodulator_priv;
  525. struct dibx000_ofdm_channel ch;
  526. INIT_OFDM_CHANNEL(&ch);
  527. FEP2DIB(fep,&ch);
  528. state->current_bandwidth = fep->u.ofdm.bandwidth;
  529. dib3000mc_set_bandwidth(fe, fep->u.ofdm.bandwidth);
  530. if (fe->ops.tuner_ops.set_params) {
  531. fe->ops.tuner_ops.set_params(fe, fep);
  532. msleep(100);
  533. }
  534. if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
  535. fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
  536. fep->u.ofdm.constellation == QAM_AUTO ||
  537. fep->u.ofdm.code_rate_HP == FEC_AUTO) {
  538. int i = 100, found;
  539. dib3000mc_autosearch_start(fe, &ch);
  540. do {
  541. msleep(1);
  542. found = dib3000mc_autosearch_is_irq(fe);
  543. } while (found == 0 && i--);
  544. dprintk("autosearch returns: %d\n",found);
  545. if (found == 0 || found == 1)
  546. return 0; // no channel found
  547. dib3000mc_get_frontend(fe, fep);
  548. FEP2DIB(fep,&ch);
  549. }
  550. /* make this a config parameter */
  551. dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
  552. return dib3000mc_tune(fe, &ch);
  553. }
  554. static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat)
  555. {
  556. struct dib3000mc_state *state = fe->demodulator_priv;
  557. u16 lock = dib3000mc_read_word(state, 509);
  558. *stat = 0;
  559. if (lock & 0x8000)
  560. *stat |= FE_HAS_SIGNAL;
  561. if (lock & 0x3000)
  562. *stat |= FE_HAS_CARRIER;
  563. if (lock & 0x0100)
  564. *stat |= FE_HAS_VITERBI;
  565. if (lock & 0x0010)
  566. *stat |= FE_HAS_SYNC;
  567. if (lock & 0x0008)
  568. *stat |= FE_HAS_LOCK;
  569. return 0;
  570. }
  571. static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber)
  572. {
  573. struct dib3000mc_state *state = fe->demodulator_priv;
  574. *ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501);
  575. return 0;
  576. }
  577. static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
  578. {
  579. struct dib3000mc_state *state = fe->demodulator_priv;
  580. *unc = dib3000mc_read_word(state, 508);
  581. return 0;
  582. }
  583. static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  584. {
  585. struct dib3000mc_state *state = fe->demodulator_priv;
  586. u16 val = dib3000mc_read_word(state, 392);
  587. *strength = 65535 - val;
  588. return 0;
  589. }
  590. static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
  591. {
  592. *snr = 0x0000;
  593. return 0;
  594. }
  595. static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
  596. {
  597. tune->min_delay_ms = 1000;
  598. return 0;
  599. }
  600. static void dib3000mc_release(struct dvb_frontend *fe)
  601. {
  602. struct dib3000mc_state *state = fe->demodulator_priv;
  603. dibx000_exit_i2c_master(&state->i2c_master);
  604. kfree(state);
  605. }
  606. int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff)
  607. {
  608. struct dib3000mc_state *state = fe->demodulator_priv;
  609. dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0);
  610. return 0;
  611. }
  612. EXPORT_SYMBOL(dib3000mc_pid_control);
  613. int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
  614. {
  615. struct dib3000mc_state *state = fe->demodulator_priv;
  616. u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4);
  617. tmp |= (onoff << 4);
  618. return dib3000mc_write_word(state, 206, tmp);
  619. }
  620. EXPORT_SYMBOL(dib3000mc_pid_parse);
  621. void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg)
  622. {
  623. struct dib3000mc_state *state = fe->demodulator_priv;
  624. state->cfg = cfg;
  625. }
  626. EXPORT_SYMBOL(dib3000mc_set_config);
  627. int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[])
  628. {
  629. struct dib3000mc_state st = { .i2c_adap = i2c };
  630. int k;
  631. u8 new_addr;
  632. static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26};
  633. for (k = no_of_demods-1; k >= 0; k--) {
  634. st.cfg = &cfg[k];
  635. /* designated i2c address */
  636. new_addr = DIB3000MC_I2C_ADDRESS[k];
  637. st.i2c_addr = new_addr;
  638. if (dib3000mc_identify(&st) != 0) {
  639. st.i2c_addr = default_addr;
  640. if (dib3000mc_identify(&st) != 0) {
  641. dprintk("-E- DiB3000P/MC #%d: not identified\n", k);
  642. return -ENODEV;
  643. }
  644. }
  645. dib3000mc_set_output_mode(&st, OUTMODE_MPEG2_PAR_CONT_CLK);
  646. // set new i2c address and force divstr (Bit 1) to value 0 (Bit 0)
  647. dib3000mc_write_word(&st, 1024, (new_addr << 3) | 0x1);
  648. st.i2c_addr = new_addr;
  649. }
  650. for (k = 0; k < no_of_demods; k++) {
  651. st.cfg = &cfg[k];
  652. st.i2c_addr = DIB3000MC_I2C_ADDRESS[k];
  653. dib3000mc_write_word(&st, 1024, st.i2c_addr << 3);
  654. /* turn off data output */
  655. dib3000mc_set_output_mode(&st, OUTMODE_HIGH_Z);
  656. }
  657. return 0;
  658. }
  659. EXPORT_SYMBOL(dib3000mc_i2c_enumeration);
  660. static struct dvb_frontend_ops dib3000mc_ops;
  661. struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg)
  662. {
  663. struct dvb_frontend *demod;
  664. struct dib3000mc_state *st;
  665. st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
  666. if (st == NULL)
  667. return NULL;
  668. st->cfg = cfg;
  669. st->i2c_adap = i2c_adap;
  670. st->i2c_addr = i2c_addr;
  671. demod = &st->demod;
  672. demod->demodulator_priv = st;
  673. memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
  674. if (dib3000mc_identify(st) != 0)
  675. goto error;
  676. dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr);
  677. return demod;
  678. error:
  679. kfree(st);
  680. return NULL;
  681. }
  682. EXPORT_SYMBOL(dib3000mc_attach);
  683. static struct dvb_frontend_ops dib3000mc_ops = {
  684. .info = {
  685. .name = "DiBcom 3000MC/P",
  686. .type = FE_OFDM,
  687. .frequency_min = 44250000,
  688. .frequency_max = 867250000,
  689. .frequency_stepsize = 62500,
  690. .caps = FE_CAN_INVERSION_AUTO |
  691. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  692. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  693. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  694. FE_CAN_TRANSMISSION_MODE_AUTO |
  695. FE_CAN_GUARD_INTERVAL_AUTO |
  696. FE_CAN_RECOVER |
  697. FE_CAN_HIERARCHY_AUTO,
  698. },
  699. .release = dib3000mc_release,
  700. .init = dib3000mc_init,
  701. .sleep = dib3000mc_sleep,
  702. .set_frontend = dib3000mc_set_frontend,
  703. .get_tune_settings = dib3000mc_fe_get_tune_settings,
  704. .get_frontend = dib3000mc_get_frontend,
  705. .read_status = dib3000mc_read_status,
  706. .read_ber = dib3000mc_read_ber,
  707. .read_signal_strength = dib3000mc_read_signal_strength,
  708. .read_snr = dib3000mc_read_snr,
  709. .read_ucblocks = dib3000mc_read_unc_blocks,
  710. };
  711. MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
  712. MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator");
  713. MODULE_LICENSE("GPL");