phy_lp.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static inline u16 channel2freq_lp(u8 channel)
  24. {
  25. if (channel < 14)
  26. return (2407 + 5 * channel);
  27. else if (channel == 14)
  28. return 2484;
  29. else if (channel < 184)
  30. return (5000 + 5 * channel);
  31. else
  32. return (4000 + 5 * channel);
  33. }
  34. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  35. {
  36. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  37. return 1;
  38. return 36;
  39. }
  40. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  41. {
  42. struct b43_phy_lp *lpphy;
  43. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  44. if (!lpphy)
  45. return -ENOMEM;
  46. dev->phy.lp = lpphy;
  47. return 0;
  48. }
  49. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  50. {
  51. struct b43_phy *phy = &dev->phy;
  52. struct b43_phy_lp *lpphy = phy->lp;
  53. memset(lpphy, 0, sizeof(*lpphy));
  54. //TODO
  55. }
  56. static void b43_lpphy_op_free(struct b43_wldev *dev)
  57. {
  58. struct b43_phy_lp *lpphy = dev->phy.lp;
  59. kfree(lpphy);
  60. dev->phy.lp = NULL;
  61. }
  62. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  63. {
  64. struct b43_phy_lp *lpphy = dev->phy.lp;
  65. struct ssb_bus *bus = dev->dev->bus;
  66. u16 cckpo, maxpwr;
  67. u32 ofdmpo;
  68. int i;
  69. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  70. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  71. lpphy->bx_arch = bus->sprom.bxa2g;
  72. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  73. lpphy->rssi_vf = bus->sprom.rssismf2g;
  74. lpphy->rssi_vc = bus->sprom.rssismc2g;
  75. lpphy->rssi_gs = bus->sprom.rssisav2g;
  76. lpphy->txpa[0] = bus->sprom.pa0b0;
  77. lpphy->txpa[1] = bus->sprom.pa0b1;
  78. lpphy->txpa[2] = bus->sprom.pa0b2;
  79. maxpwr = bus->sprom.maxpwr_bg;
  80. lpphy->max_tx_pwr_med_band = maxpwr;
  81. cckpo = bus->sprom.cck2gpo;
  82. ofdmpo = bus->sprom.ofdm2gpo;
  83. if (cckpo) {
  84. for (i = 0; i < 4; i++) {
  85. lpphy->tx_max_rate[i] =
  86. maxpwr - (ofdmpo & 0xF) * 2;
  87. ofdmpo >>= 4;
  88. }
  89. ofdmpo = bus->sprom.ofdm2gpo;
  90. for (i = 4; i < 15; i++) {
  91. lpphy->tx_max_rate[i] =
  92. maxpwr - (ofdmpo & 0xF) * 2;
  93. ofdmpo >>= 4;
  94. }
  95. } else {
  96. ofdmpo &= 0xFF;
  97. for (i = 0; i < 4; i++)
  98. lpphy->tx_max_rate[i] = maxpwr;
  99. for (i = 4; i < 15; i++)
  100. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  101. }
  102. } else { /* 5GHz */
  103. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  104. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  105. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  106. lpphy->bx_arch = bus->sprom.bxa5g;
  107. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  108. lpphy->rssi_vf = bus->sprom.rssismf5g;
  109. lpphy->rssi_vc = bus->sprom.rssismc5g;
  110. lpphy->rssi_gs = bus->sprom.rssisav5g;
  111. lpphy->txpa[0] = bus->sprom.pa1b0;
  112. lpphy->txpa[1] = bus->sprom.pa1b1;
  113. lpphy->txpa[2] = bus->sprom.pa1b2;
  114. lpphy->txpal[0] = bus->sprom.pa1lob0;
  115. lpphy->txpal[1] = bus->sprom.pa1lob1;
  116. lpphy->txpal[2] = bus->sprom.pa1lob2;
  117. lpphy->txpah[0] = bus->sprom.pa1hib0;
  118. lpphy->txpah[1] = bus->sprom.pa1hib1;
  119. lpphy->txpah[2] = bus->sprom.pa1hib2;
  120. maxpwr = bus->sprom.maxpwr_al;
  121. ofdmpo = bus->sprom.ofdm5glpo;
  122. lpphy->max_tx_pwr_low_band = maxpwr;
  123. for (i = 4; i < 12; i++) {
  124. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  125. ofdmpo >>= 4;
  126. }
  127. maxpwr = bus->sprom.maxpwr_a;
  128. ofdmpo = bus->sprom.ofdm5gpo;
  129. lpphy->max_tx_pwr_med_band = maxpwr;
  130. for (i = 4; i < 12; i++) {
  131. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  132. ofdmpo >>= 4;
  133. }
  134. maxpwr = bus->sprom.maxpwr_ah;
  135. ofdmpo = bus->sprom.ofdm5ghpo;
  136. lpphy->max_tx_pwr_hi_band = maxpwr;
  137. for (i = 4; i < 12; i++) {
  138. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  139. ofdmpo >>= 4;
  140. }
  141. }
  142. }
  143. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  144. {
  145. struct b43_phy_lp *lpphy = dev->phy.lp;
  146. u16 temp[3];
  147. u16 isolation;
  148. B43_WARN_ON(dev->phy.rev >= 2);
  149. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  150. isolation = lpphy->tx_isolation_med_band;
  151. else if (freq <= 5320)
  152. isolation = lpphy->tx_isolation_low_band;
  153. else if (freq <= 5700)
  154. isolation = lpphy->tx_isolation_med_band;
  155. else
  156. isolation = lpphy->tx_isolation_hi_band;
  157. temp[0] = ((isolation - 26) / 12) << 12;
  158. temp[1] = temp[0] + 0x1000;
  159. temp[2] = temp[0] + 0x2000;
  160. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  161. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  162. }
  163. static void lpphy_table_init(struct b43_wldev *dev)
  164. {
  165. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  166. if (dev->phy.rev < 2)
  167. lpphy_rev0_1_table_init(dev);
  168. else
  169. lpphy_rev2plus_table_init(dev);
  170. lpphy_init_tx_gain_table(dev);
  171. if (dev->phy.rev < 2)
  172. lpphy_adjust_gain_table(dev, freq);
  173. }
  174. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  175. {
  176. struct ssb_bus *bus = dev->dev->bus;
  177. u16 tmp, tmp2;
  178. if (dev->phy.rev == 1 &&
  179. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  180. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  181. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  182. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  183. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  184. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  185. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  186. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  187. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  188. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  189. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  190. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  191. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  192. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  193. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  194. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  195. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  196. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  197. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  198. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  199. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  200. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  201. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  202. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  203. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  204. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  205. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  206. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  207. } else if (dev->phy.rev == 1 ||
  208. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  209. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  210. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  211. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  212. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  213. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  214. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  215. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  216. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  217. } else {
  218. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  219. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  220. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  221. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  222. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  223. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  224. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  225. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  226. }
  227. if (dev->phy.rev == 1) {
  228. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  229. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  230. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  231. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  232. }
  233. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  234. (bus->chip_id == 0x5354) &&
  235. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  236. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  237. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  238. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  239. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  240. }
  241. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  242. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  243. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  244. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  245. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  246. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  247. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  248. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  249. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  250. } else { /* 5GHz */
  251. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  252. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  253. }
  254. if (dev->phy.rev == 1) {
  255. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  256. tmp2 = (tmp & 0x03E0) >> 5;
  257. tmp2 |= tmp << 5;
  258. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  259. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  260. tmp2 = (tmp & 0x1F00) >> 8;
  261. tmp2 |= tmp << 5;
  262. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  263. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  264. tmp2 = tmp & 0x00FF;
  265. tmp2 |= tmp << 8;
  266. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  267. }
  268. }
  269. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  270. {
  271. static const u16 addr[] = {
  272. B43_PHY_OFDM(0xC1),
  273. B43_PHY_OFDM(0xC2),
  274. B43_PHY_OFDM(0xC3),
  275. B43_PHY_OFDM(0xC4),
  276. B43_PHY_OFDM(0xC5),
  277. B43_PHY_OFDM(0xC6),
  278. B43_PHY_OFDM(0xC7),
  279. B43_PHY_OFDM(0xC8),
  280. B43_PHY_OFDM(0xCF),
  281. };
  282. static const u16 coefs[] = {
  283. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  284. 0x0026, 0x1420, 0x0020, 0xFE08,
  285. 0x0008,
  286. };
  287. struct b43_phy_lp *lpphy = dev->phy.lp;
  288. int i;
  289. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  290. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  291. b43_phy_write(dev, addr[i], coefs[i]);
  292. }
  293. }
  294. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  295. {
  296. static const u16 addr[] = {
  297. B43_PHY_OFDM(0xC1),
  298. B43_PHY_OFDM(0xC2),
  299. B43_PHY_OFDM(0xC3),
  300. B43_PHY_OFDM(0xC4),
  301. B43_PHY_OFDM(0xC5),
  302. B43_PHY_OFDM(0xC6),
  303. B43_PHY_OFDM(0xC7),
  304. B43_PHY_OFDM(0xC8),
  305. B43_PHY_OFDM(0xCF),
  306. };
  307. struct b43_phy_lp *lpphy = dev->phy.lp;
  308. int i;
  309. for (i = 0; i < ARRAY_SIZE(addr); i++)
  310. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  311. }
  312. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  313. {
  314. struct ssb_bus *bus = dev->dev->bus;
  315. struct b43_phy_lp *lpphy = dev->phy.lp;
  316. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  317. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  318. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  319. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  320. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  321. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  322. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  323. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  324. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  325. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  326. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  327. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  328. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  329. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  330. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  331. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  332. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  333. if (bus->boardinfo.rev >= 0x18) {
  334. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  335. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  336. } else {
  337. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  338. }
  339. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  340. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  341. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  342. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  343. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  344. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  345. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  346. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  347. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xF81F, 0xA0);
  348. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  349. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  350. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  351. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  352. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  353. } else {
  354. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  355. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  356. }
  357. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  358. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  359. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  360. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  361. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  362. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  363. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  364. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  365. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  366. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  367. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 1)) {
  368. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  369. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  370. }
  371. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  372. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  373. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  374. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  375. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  376. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  377. } else /* 5GHz */
  378. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  379. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  380. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  381. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  382. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  383. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  384. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  385. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  386. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  387. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  388. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  389. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  390. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  391. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  392. }
  393. lpphy_save_dig_flt_state(dev);
  394. }
  395. static void lpphy_baseband_init(struct b43_wldev *dev)
  396. {
  397. lpphy_table_init(dev);
  398. if (dev->phy.rev >= 2)
  399. lpphy_baseband_rev2plus_init(dev);
  400. else
  401. lpphy_baseband_rev0_1_init(dev);
  402. }
  403. struct b2062_freqdata {
  404. u16 freq;
  405. u8 data[6];
  406. };
  407. /* Initialize the 2062 radio. */
  408. static void lpphy_2062_init(struct b43_wldev *dev)
  409. {
  410. struct b43_phy_lp *lpphy = dev->phy.lp;
  411. struct ssb_bus *bus = dev->dev->bus;
  412. u32 crystalfreq, tmp, ref;
  413. unsigned int i;
  414. const struct b2062_freqdata *fd = NULL;
  415. static const struct b2062_freqdata freqdata_tab[] = {
  416. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  417. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  418. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  419. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  420. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  421. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  422. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  423. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  424. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  425. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  426. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  427. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  428. };
  429. b2062_upload_init_table(dev);
  430. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  431. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  432. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  433. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  434. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  435. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  436. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  437. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  438. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  439. else
  440. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  441. /* Get the crystal freq, in Hz. */
  442. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  443. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  444. B43_WARN_ON(crystalfreq == 0);
  445. if (crystalfreq >= 30000000) {
  446. lpphy->pdiv = 1;
  447. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  448. } else {
  449. lpphy->pdiv = 2;
  450. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  451. }
  452. tmp = (800000000 * lpphy->pdiv + crystalfreq) /
  453. (32000000 * lpphy->pdiv);
  454. tmp = (tmp - 1) & 0xFF;
  455. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  456. tmp = (2 * crystalfreq + 1000000 * lpphy->pdiv) /
  457. (2000000 * lpphy->pdiv);
  458. tmp = ((tmp & 0xFF) - 1) & 0xFFFF;
  459. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  460. ref = (1000 * lpphy->pdiv + 2 * crystalfreq) / (2000 * lpphy->pdiv);
  461. ref &= 0xFFFF;
  462. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  463. if (ref < freqdata_tab[i].freq) {
  464. fd = &freqdata_tab[i];
  465. break;
  466. }
  467. }
  468. if (!fd)
  469. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  470. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  471. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  472. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  473. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  474. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  475. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  476. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  477. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  478. }
  479. /* Initialize the 2063 radio. */
  480. static void lpphy_2063_init(struct b43_wldev *dev)
  481. {
  482. b2063_upload_init_table(dev);
  483. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  484. b43_radio_set(dev, B2063_COMM8, 0x38);
  485. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  486. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  487. b43_radio_write(dev, B2063_PA_SP7, 0);
  488. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  489. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  490. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  491. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  492. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  493. }
  494. struct lpphy_stx_table_entry {
  495. u16 phy_offset;
  496. u16 phy_shift;
  497. u16 rf_addr;
  498. u16 rf_shift;
  499. u16 mask;
  500. };
  501. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  502. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  503. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  504. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  505. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  506. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  507. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  508. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  509. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  510. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  511. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  512. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  513. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  514. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  515. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  516. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  517. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  518. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  519. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  520. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  521. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  522. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  523. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  524. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  525. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  526. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  527. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  528. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  529. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  530. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  531. };
  532. static void lpphy_sync_stx(struct b43_wldev *dev)
  533. {
  534. const struct lpphy_stx_table_entry *e;
  535. unsigned int i;
  536. u16 tmp;
  537. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  538. e = &lpphy_stx_table[i];
  539. tmp = b43_radio_read(dev, e->rf_addr);
  540. tmp >>= e->rf_shift;
  541. tmp <<= e->phy_shift;
  542. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  543. ~(e->mask << e->phy_shift), tmp);
  544. }
  545. }
  546. static void lpphy_radio_init(struct b43_wldev *dev)
  547. {
  548. /* The radio is attached through the 4wire bus. */
  549. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  550. udelay(1);
  551. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  552. udelay(1);
  553. if (dev->phy.rev < 2) {
  554. lpphy_2062_init(dev);
  555. } else {
  556. lpphy_2063_init(dev);
  557. lpphy_sync_stx(dev);
  558. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  559. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  560. if (dev->dev->bus->chip_id == 0x4325) {
  561. // TODO SSB PMU recalibration
  562. }
  563. }
  564. }
  565. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  566. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  567. {
  568. u8 rc_cap = dev->phy.lp->rc_cap;
  569. b43_radio_write(dev, B2062_N_RXBB_CALIB2, max_t(u8, rc_cap-4, 0x80));
  570. b43_radio_write(dev, B2062_N_TX_CTL_A, ((rc_cap & 0x1F) >> 1) | 0x80);
  571. b43_radio_write(dev, B2062_S_RXG_CNT16, ((rc_cap & 0x1F) >> 2) | 0x80);
  572. }
  573. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  574. {
  575. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  576. }
  577. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  578. {
  579. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  580. }
  581. static void lpphy_disable_crs(struct b43_wldev *dev)
  582. {
  583. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  584. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x1);
  585. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  586. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  587. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  588. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  589. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  590. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  591. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  592. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  593. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  594. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  595. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  596. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  597. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  598. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  599. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  600. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  601. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  602. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  603. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  604. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  605. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  606. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  607. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  608. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  609. }
  610. static void lpphy_restore_crs(struct b43_wldev *dev)
  611. {
  612. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  613. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x60);
  614. else
  615. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x20);
  616. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  617. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  618. }
  619. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  620. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  621. {
  622. struct lpphy_tx_gains gains;
  623. u16 tmp;
  624. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  625. if (dev->phy.rev < 2) {
  626. tmp = b43_phy_read(dev,
  627. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  628. gains.gm = tmp & 0x0007;
  629. gains.pga = (tmp & 0x0078) >> 3;
  630. gains.pad = (tmp & 0x780) >> 7;
  631. } else {
  632. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  633. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  634. gains.gm = tmp & 0xFF;
  635. gains.pga = (tmp >> 8) & 0xFF;
  636. }
  637. return gains;
  638. }
  639. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  640. {
  641. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  642. ctl |= dac << 7;
  643. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  644. }
  645. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  646. struct lpphy_tx_gains gains)
  647. {
  648. u16 rf_gain, pa_gain;
  649. if (dev->phy.rev < 2) {
  650. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  651. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  652. 0xF800, rf_gain);
  653. } else {
  654. pa_gain = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F00;
  655. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  656. (gains.pga << 8) | gains.gm);
  657. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  658. 0x8000, gains.pad | pa_gain);
  659. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  660. (gains.pga << 8) | gains.gm);
  661. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  662. 0x8000, gains.pad | pa_gain);
  663. }
  664. lpphy_set_dac_gain(dev, gains.dac);
  665. if (dev->phy.rev < 2) {
  666. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF, 1 << 8);
  667. } else {
  668. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F, 1 << 7);
  669. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF, 1 << 14);
  670. }
  671. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFBF, 1 << 4);
  672. }
  673. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  674. {
  675. u16 trsw = gain & 0x1;
  676. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  677. u16 ext_lna = (gain & 2) >> 1;
  678. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  679. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  680. 0xFBFF, ext_lna << 10);
  681. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  682. 0xF7FF, ext_lna << 11);
  683. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  684. }
  685. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  686. {
  687. u16 low_gain = gain & 0xFFFF;
  688. u16 high_gain = (gain >> 16) & 0xF;
  689. u16 ext_lna = (gain >> 21) & 0x1;
  690. u16 trsw = ~(gain >> 20) & 0x1;
  691. u16 tmp;
  692. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  693. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  694. 0xFDFF, ext_lna << 9);
  695. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  696. 0xFBFF, ext_lna << 10);
  697. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  698. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  699. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  700. tmp = (gain >> 2) & 0x3;
  701. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  702. 0xE7FF, tmp<<11);
  703. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  704. }
  705. }
  706. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  707. {
  708. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  709. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  710. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  711. if (dev->phy.rev >= 2) {
  712. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  713. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  714. return;
  715. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  716. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFF7);
  717. } else {
  718. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  719. }
  720. }
  721. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  722. {
  723. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  724. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  725. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  726. if (dev->phy.rev >= 2) {
  727. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  728. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  729. return;
  730. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  731. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x8);
  732. } else {
  733. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  734. }
  735. }
  736. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  737. {
  738. if (dev->phy.rev < 2)
  739. lpphy_rev0_1_set_rx_gain(dev, gain);
  740. else
  741. lpphy_rev2plus_set_rx_gain(dev, gain);
  742. lpphy_enable_rx_gain_override(dev);
  743. }
  744. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  745. {
  746. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  747. lpphy_set_rx_gain(dev, gain);
  748. }
  749. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  750. {
  751. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  752. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  753. }
  754. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  755. int incr1, int incr2, int scale_idx)
  756. {
  757. lpphy_stop_ddfs(dev);
  758. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  759. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  760. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  761. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  762. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  763. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  764. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  765. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  766. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  767. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x20);
  768. }
  769. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  770. struct lpphy_iq_est *iq_est)
  771. {
  772. int i;
  773. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  774. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  775. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  776. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  777. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFDFF);
  778. for (i = 0; i < 500; i++) {
  779. if (!(b43_phy_read(dev,
  780. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  781. break;
  782. msleep(1);
  783. }
  784. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  785. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  786. return false;
  787. }
  788. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  789. iq_est->iq_prod <<= 16;
  790. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  791. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  792. iq_est->i_pwr <<= 16;
  793. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  794. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  795. iq_est->q_pwr <<= 16;
  796. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  797. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  798. return true;
  799. }
  800. static int lpphy_loopback(struct b43_wldev *dev)
  801. {
  802. struct lpphy_iq_est iq_est;
  803. int i, index = -1;
  804. u32 tmp;
  805. memset(&iq_est, 0, sizeof(iq_est));
  806. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x3);
  807. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  808. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  809. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  810. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  811. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  812. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  813. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  814. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  815. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  816. for (i = 0; i < 32; i++) {
  817. lpphy_set_rx_gain_by_index(dev, i);
  818. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  819. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  820. continue;
  821. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  822. if ((tmp > 4000) && (tmp < 10000)) {
  823. index = i;
  824. break;
  825. }
  826. }
  827. lpphy_stop_ddfs(dev);
  828. return index;
  829. }
  830. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  831. {
  832. u32 quotient, remainder, rbit, roundup, tmp;
  833. if (divisor == 0) {
  834. quotient = 0;
  835. remainder = 0;
  836. } else {
  837. quotient = dividend / divisor;
  838. remainder = dividend % divisor;
  839. }
  840. rbit = divisor & 0x1;
  841. roundup = (divisor >> 1) + rbit;
  842. precision--;
  843. while (precision != 0xFF) {
  844. tmp = remainder - roundup;
  845. quotient <<= 1;
  846. remainder <<= 1;
  847. if (remainder >= roundup) {
  848. remainder = (tmp << 1) + rbit;
  849. quotient--;
  850. }
  851. precision--;
  852. }
  853. if (remainder >= roundup)
  854. quotient++;
  855. return quotient;
  856. }
  857. /* Read the TX power control mode from hardware. */
  858. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  859. {
  860. struct b43_phy_lp *lpphy = dev->phy.lp;
  861. u16 ctl;
  862. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  863. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  864. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  865. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  866. break;
  867. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  868. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  869. break;
  870. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  871. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  872. break;
  873. default:
  874. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  875. B43_WARN_ON(1);
  876. break;
  877. }
  878. }
  879. /* Set the TX power control mode in hardware. */
  880. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  881. {
  882. struct b43_phy_lp *lpphy = dev->phy.lp;
  883. u16 ctl;
  884. switch (lpphy->txpctl_mode) {
  885. case B43_LPPHY_TXPCTL_OFF:
  886. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  887. break;
  888. case B43_LPPHY_TXPCTL_HW:
  889. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  890. break;
  891. case B43_LPPHY_TXPCTL_SW:
  892. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  893. break;
  894. default:
  895. ctl = 0;
  896. B43_WARN_ON(1);
  897. }
  898. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  899. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  900. }
  901. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  902. enum b43_lpphy_txpctl_mode mode)
  903. {
  904. struct b43_phy_lp *lpphy = dev->phy.lp;
  905. enum b43_lpphy_txpctl_mode oldmode;
  906. oldmode = lpphy->txpctl_mode;
  907. lpphy_read_tx_pctl_mode_from_hardware(dev);
  908. if (lpphy->txpctl_mode == mode)
  909. return;
  910. lpphy->txpctl_mode = mode;
  911. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  912. //TODO Update TX Power NPT
  913. //TODO Clear all TX Power offsets
  914. } else {
  915. if (mode == B43_LPPHY_TXPCTL_HW) {
  916. //TODO Recalculate target TX power
  917. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  918. 0xFF80, lpphy->tssi_idx);
  919. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  920. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  921. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  922. //TODO Disable TX gain override
  923. lpphy->tx_pwr_idx_over = -1;
  924. }
  925. }
  926. if (dev->phy.rev >= 2) {
  927. if (mode == B43_LPPHY_TXPCTL_HW)
  928. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  929. else
  930. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  931. }
  932. lpphy_write_tx_pctl_mode_to_hardware(dev);
  933. }
  934. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  935. {
  936. struct b43_phy_lp *lpphy = dev->phy.lp;
  937. struct lpphy_iq_est iq_est;
  938. struct lpphy_tx_gains tx_gains;
  939. static const u32 ideal_pwr_table[22] = {
  940. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  941. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  942. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  943. 0x0004c, 0x0002c, 0x0001a, 0xc0006,
  944. };
  945. bool old_txg_ovr;
  946. u8 old_bbmult;
  947. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  948. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl, old_txpctl;
  949. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  950. int loopback, i, j, inner_sum;
  951. memset(&iq_est, 0, sizeof(iq_est));
  952. b43_switch_channel(dev, 7);
  953. old_txg_ovr = (b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) >> 6) & 1;
  954. old_bbmult = lpphy_get_bb_mult(dev);
  955. if (old_txg_ovr)
  956. tx_gains = lpphy_get_tx_gains(dev);
  957. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  958. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  959. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  960. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  961. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  962. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  963. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  964. old_txpctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD) &
  965. B43_LPPHY_TX_PWR_CTL_CMD_MODE;
  966. lpphy_set_tx_power_control(dev, B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  967. lpphy_disable_crs(dev);
  968. loopback = lpphy_loopback(dev);
  969. if (loopback == -1)
  970. goto finish;
  971. lpphy_set_rx_gain_by_index(dev, loopback);
  972. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  973. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  974. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  975. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  976. for (i = 128; i <= 159; i++) {
  977. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  978. inner_sum = 0;
  979. for (j = 5; j <= 25; j++) {
  980. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  981. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  982. goto finish;
  983. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  984. if (j == 5)
  985. tmp = mean_sq_pwr;
  986. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  987. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  988. mean_sq_pwr = ideal_pwr - normal_pwr;
  989. mean_sq_pwr *= mean_sq_pwr;
  990. inner_sum += mean_sq_pwr;
  991. if ((i = 128) || (inner_sum < mean_sq_pwr_min)) {
  992. lpphy->rc_cap = i;
  993. mean_sq_pwr_min = inner_sum;
  994. }
  995. }
  996. }
  997. lpphy_stop_ddfs(dev);
  998. finish:
  999. lpphy_restore_crs(dev);
  1000. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  1001. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  1002. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1003. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1004. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1005. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1006. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1007. lpphy_set_bb_mult(dev, old_bbmult);
  1008. if (old_txg_ovr) {
  1009. /*
  1010. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1011. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1012. * has a Set here, while v4.174.64.19 has a Get - regression in
  1013. * the vendor driver? This should be tested this once the code
  1014. * is testable.
  1015. */
  1016. lpphy_set_tx_gains(dev, tx_gains);
  1017. }
  1018. lpphy_set_tx_power_control(dev, old_txpctl);
  1019. if (lpphy->rc_cap)
  1020. lpphy_set_rc_cap(dev);
  1021. }
  1022. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1023. {
  1024. struct ssb_bus *bus = dev->dev->bus;
  1025. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1026. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1027. int i;
  1028. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1029. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1030. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1031. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1032. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1033. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1034. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1035. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1036. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1037. for (i = 0; i < 10000; i++) {
  1038. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1039. break;
  1040. msleep(1);
  1041. }
  1042. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1043. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1044. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1045. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1046. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1047. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1048. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1049. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1050. if (crystal_freq == 24000000) {
  1051. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1052. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1053. } else {
  1054. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1055. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1056. }
  1057. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1058. for (i = 0; i < 10000; i++) {
  1059. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1060. break;
  1061. msleep(1);
  1062. }
  1063. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1064. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1065. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1066. }
  1067. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1068. {
  1069. struct b43_phy_lp *lpphy = dev->phy.lp;
  1070. if (dev->phy.rev >= 2) {
  1071. lpphy_rev2plus_rc_calib(dev);
  1072. } else if (!lpphy->rc_cap) {
  1073. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1074. lpphy_rev0_1_rc_calib(dev);
  1075. } else {
  1076. lpphy_set_rc_cap(dev);
  1077. }
  1078. }
  1079. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1080. {
  1081. struct b43_phy_lp *lpphy = dev->phy.lp;
  1082. lpphy->tx_pwr_idx_over = index;
  1083. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1084. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1085. //TODO
  1086. }
  1087. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1088. {
  1089. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1090. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1091. }
  1092. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1093. {
  1094. struct b43_phy_lp *lpphy = dev->phy.lp;
  1095. u32 *saved_tab;
  1096. const unsigned int saved_tab_size = 256;
  1097. enum b43_lpphy_txpctl_mode txpctl_mode;
  1098. s8 tx_pwr_idx_over;
  1099. u16 tssi_npt, tssi_idx;
  1100. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1101. if (!saved_tab) {
  1102. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1103. return;
  1104. }
  1105. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1106. txpctl_mode = lpphy->txpctl_mode;
  1107. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1108. tssi_npt = lpphy->tssi_npt;
  1109. tssi_idx = lpphy->tssi_idx;
  1110. if (dev->phy.rev < 2) {
  1111. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1112. saved_tab_size, saved_tab);
  1113. } else {
  1114. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1115. saved_tab_size, saved_tab);
  1116. }
  1117. //TODO
  1118. kfree(saved_tab);
  1119. }
  1120. static void lpphy_calibration(struct b43_wldev *dev)
  1121. {
  1122. struct b43_phy_lp *lpphy = dev->phy.lp;
  1123. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1124. b43_mac_suspend(dev);
  1125. lpphy_btcoex_override(dev);
  1126. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1127. saved_pctl_mode = lpphy->txpctl_mode;
  1128. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1129. //TODO Perform transmit power table I/Q LO calibration
  1130. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1131. lpphy_pr41573_workaround(dev);
  1132. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  1133. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1134. //TODO Perform I/Q calibration with a single control value set
  1135. b43_mac_enable(dev);
  1136. }
  1137. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1138. {
  1139. if (mode != TSSI_MUX_EXT) {
  1140. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1141. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1142. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1143. if (mode == TSSI_MUX_POSTPA) {
  1144. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1145. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1146. } else {
  1147. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1148. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1149. 0xFFC7, 0x20);
  1150. }
  1151. } else {
  1152. B43_WARN_ON(1);
  1153. }
  1154. }
  1155. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1156. {
  1157. u16 tmp;
  1158. int i;
  1159. //SPEC TODO Call LP PHY Clear TX Power offsets
  1160. for (i = 0; i < 64; i++) {
  1161. if (dev->phy.rev >= 2)
  1162. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1163. else
  1164. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1165. }
  1166. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1167. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1168. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1169. if (dev->phy.rev < 2) {
  1170. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1171. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1172. } else {
  1173. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1174. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1175. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1176. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1177. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1178. }
  1179. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1180. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1181. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1182. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1183. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1184. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1185. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1186. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1187. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1188. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1189. if (dev->phy.rev < 2) {
  1190. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1191. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1192. } else {
  1193. lpphy_set_tx_power_by_index(dev, 0x7F);
  1194. }
  1195. b43_dummy_transmission(dev, true, true);
  1196. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1197. if (tmp & 0x8000) {
  1198. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1199. 0xFFC0, (tmp & 0xFF) - 32);
  1200. }
  1201. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1202. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1203. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1204. }
  1205. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1206. {
  1207. struct lpphy_tx_gains gains;
  1208. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1209. gains.gm = 4;
  1210. gains.pad = 12;
  1211. gains.pga = 12;
  1212. gains.dac = 0;
  1213. } else {
  1214. gains.gm = 7;
  1215. gains.pad = 14;
  1216. gains.pga = 15;
  1217. gains.dac = 0;
  1218. }
  1219. lpphy_set_tx_gains(dev, gains);
  1220. lpphy_set_bb_mult(dev, 150);
  1221. }
  1222. /* Initialize TX power control */
  1223. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1224. {
  1225. if (0/*FIXME HWPCTL capable */) {
  1226. lpphy_tx_pctl_init_hw(dev);
  1227. } else { /* This device is only software TX power control capable. */
  1228. lpphy_tx_pctl_init_sw(dev);
  1229. }
  1230. }
  1231. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1232. {
  1233. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1234. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1235. }
  1236. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1237. {
  1238. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1239. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1240. }
  1241. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1242. {
  1243. /* Register 1 is a 32-bit register. */
  1244. B43_WARN_ON(reg == 1);
  1245. /* LP-PHY needs a special bit set for read access */
  1246. if (dev->phy.rev < 2) {
  1247. if (reg != 0x4001)
  1248. reg |= 0x100;
  1249. } else
  1250. reg |= 0x200;
  1251. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1252. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1253. }
  1254. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1255. {
  1256. /* Register 1 is a 32-bit register. */
  1257. B43_WARN_ON(reg == 1);
  1258. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1259. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1260. }
  1261. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1262. bool blocked)
  1263. {
  1264. //TODO
  1265. }
  1266. struct b206x_channel {
  1267. u8 channel;
  1268. u16 freq;
  1269. u8 data[12];
  1270. };
  1271. static const struct b206x_channel b2062_chantbl[] = {
  1272. { .channel = 1, .freq = 2412, .data[0] = 0xFF, .data[1] = 0xFF,
  1273. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1274. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1275. { .channel = 2, .freq = 2417, .data[0] = 0xFF, .data[1] = 0xFF,
  1276. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1277. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1278. { .channel = 3, .freq = 2422, .data[0] = 0xFF, .data[1] = 0xFF,
  1279. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1280. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1281. { .channel = 4, .freq = 2427, .data[0] = 0xFF, .data[1] = 0xFF,
  1282. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1283. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1284. { .channel = 5, .freq = 2432, .data[0] = 0xFF, .data[1] = 0xFF,
  1285. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1286. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1287. { .channel = 6, .freq = 2437, .data[0] = 0xFF, .data[1] = 0xFF,
  1288. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1289. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1290. { .channel = 7, .freq = 2442, .data[0] = 0xFF, .data[1] = 0xFF,
  1291. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1292. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1293. { .channel = 8, .freq = 2447, .data[0] = 0xFF, .data[1] = 0xFF,
  1294. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1295. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1296. { .channel = 9, .freq = 2452, .data[0] = 0xFF, .data[1] = 0xFF,
  1297. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1298. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1299. { .channel = 10, .freq = 2457, .data[0] = 0xFF, .data[1] = 0xFF,
  1300. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1301. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1302. { .channel = 11, .freq = 2462, .data[0] = 0xFF, .data[1] = 0xFF,
  1303. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1304. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1305. { .channel = 12, .freq = 2467, .data[0] = 0xFF, .data[1] = 0xFF,
  1306. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1307. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1308. { .channel = 13, .freq = 2472, .data[0] = 0xFF, .data[1] = 0xFF,
  1309. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1310. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1311. { .channel = 14, .freq = 2484, .data[0] = 0xFF, .data[1] = 0xFF,
  1312. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1313. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1314. { .channel = 34, .freq = 5170, .data[0] = 0x00, .data[1] = 0x22,
  1315. .data[2] = 0x20, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1316. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1317. { .channel = 38, .freq = 5190, .data[0] = 0x00, .data[1] = 0x11,
  1318. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1319. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1320. { .channel = 42, .freq = 5210, .data[0] = 0x00, .data[1] = 0x11,
  1321. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1322. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1323. { .channel = 46, .freq = 5230, .data[0] = 0x00, .data[1] = 0x00,
  1324. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1325. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1326. { .channel = 36, .freq = 5180, .data[0] = 0x00, .data[1] = 0x11,
  1327. .data[2] = 0x20, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1328. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1329. { .channel = 40, .freq = 5200, .data[0] = 0x00, .data[1] = 0x11,
  1330. .data[2] = 0x10, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1331. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1332. { .channel = 44, .freq = 5220, .data[0] = 0x00, .data[1] = 0x11,
  1333. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1334. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1335. { .channel = 48, .freq = 5240, .data[0] = 0x00, .data[1] = 0x00,
  1336. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1337. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1338. { .channel = 52, .freq = 5260, .data[0] = 0x00, .data[1] = 0x00,
  1339. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1340. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1341. { .channel = 56, .freq = 5280, .data[0] = 0x00, .data[1] = 0x00,
  1342. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1343. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1344. { .channel = 60, .freq = 5300, .data[0] = 0x00, .data[1] = 0x00,
  1345. .data[2] = 0x00, .data[3] = 0x63, .data[4] = 0x3C, .data[5] = 0x77,
  1346. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1347. { .channel = 64, .freq = 5320, .data[0] = 0x00, .data[1] = 0x00,
  1348. .data[2] = 0x00, .data[3] = 0x62, .data[4] = 0x3C, .data[5] = 0x77,
  1349. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1350. { .channel = 100, .freq = 5500, .data[0] = 0x00, .data[1] = 0x00,
  1351. .data[2] = 0x00, .data[3] = 0x30, .data[4] = 0x3C, .data[5] = 0x77,
  1352. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1353. { .channel = 104, .freq = 5520, .data[0] = 0x00, .data[1] = 0x00,
  1354. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1355. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1356. { .channel = 108, .freq = 5540, .data[0] = 0x00, .data[1] = 0x00,
  1357. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1358. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1359. { .channel = 112, .freq = 5560, .data[0] = 0x00, .data[1] = 0x00,
  1360. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1361. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1362. { .channel = 116, .freq = 5580, .data[0] = 0x00, .data[1] = 0x00,
  1363. .data[2] = 0x00, .data[3] = 0x10, .data[4] = 0x3C, .data[5] = 0x77,
  1364. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1365. { .channel = 120, .freq = 5600, .data[0] = 0x00, .data[1] = 0x00,
  1366. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1367. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1368. { .channel = 124, .freq = 5620, .data[0] = 0x00, .data[1] = 0x00,
  1369. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1370. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1371. { .channel = 128, .freq = 5640, .data[0] = 0x00, .data[1] = 0x00,
  1372. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1373. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1374. { .channel = 132, .freq = 5660, .data[0] = 0x00, .data[1] = 0x00,
  1375. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1376. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1377. { .channel = 136, .freq = 5680, .data[0] = 0x00, .data[1] = 0x00,
  1378. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1379. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1380. { .channel = 140, .freq = 5700, .data[0] = 0x00, .data[1] = 0x00,
  1381. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1382. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1383. { .channel = 149, .freq = 5745, .data[0] = 0x00, .data[1] = 0x00,
  1384. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1385. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1386. { .channel = 153, .freq = 5765, .data[0] = 0x00, .data[1] = 0x00,
  1387. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1388. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1389. { .channel = 157, .freq = 5785, .data[0] = 0x00, .data[1] = 0x00,
  1390. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1391. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1392. { .channel = 161, .freq = 5805, .data[0] = 0x00, .data[1] = 0x00,
  1393. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1394. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1395. { .channel = 165, .freq = 5825, .data[0] = 0x00, .data[1] = 0x00,
  1396. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1397. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1398. { .channel = 184, .freq = 4920, .data[0] = 0x55, .data[1] = 0x77,
  1399. .data[2] = 0x90, .data[3] = 0xF7, .data[4] = 0x3C, .data[5] = 0x77,
  1400. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1401. { .channel = 188, .freq = 4940, .data[0] = 0x44, .data[1] = 0x77,
  1402. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1403. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1404. { .channel = 192, .freq = 4960, .data[0] = 0x44, .data[1] = 0x66,
  1405. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1406. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1407. { .channel = 196, .freq = 4980, .data[0] = 0x33, .data[1] = 0x66,
  1408. .data[2] = 0x70, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1409. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1410. { .channel = 200, .freq = 5000, .data[0] = 0x22, .data[1] = 0x55,
  1411. .data[2] = 0x60, .data[3] = 0xD7, .data[4] = 0x3C, .data[5] = 0x77,
  1412. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1413. { .channel = 204, .freq = 5020, .data[0] = 0x22, .data[1] = 0x55,
  1414. .data[2] = 0x60, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1415. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1416. { .channel = 208, .freq = 5040, .data[0] = 0x22, .data[1] = 0x44,
  1417. .data[2] = 0x50, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1418. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1419. { .channel = 212, .freq = 5060, .data[0] = 0x11, .data[1] = 0x44,
  1420. .data[2] = 0x50, .data[3] = 0xA5, .data[4] = 0x3C, .data[5] = 0x77,
  1421. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1422. { .channel = 216, .freq = 5080, .data[0] = 0x00, .data[1] = 0x44,
  1423. .data[2] = 0x40, .data[3] = 0xB6, .data[4] = 0x3C, .data[5] = 0x77,
  1424. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1425. };
  1426. static const struct b206x_channel b2063_chantbl[] = {
  1427. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  1428. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1429. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1430. .data[10] = 0x80, .data[11] = 0x70, },
  1431. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  1432. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1433. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1434. .data[10] = 0x80, .data[11] = 0x70, },
  1435. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  1436. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1437. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1438. .data[10] = 0x80, .data[11] = 0x70, },
  1439. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  1440. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1441. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1442. .data[10] = 0x80, .data[11] = 0x70, },
  1443. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  1444. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1445. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1446. .data[10] = 0x80, .data[11] = 0x70, },
  1447. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  1448. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1449. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1450. .data[10] = 0x80, .data[11] = 0x70, },
  1451. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  1452. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1453. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1454. .data[10] = 0x80, .data[11] = 0x70, },
  1455. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  1456. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1457. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1458. .data[10] = 0x80, .data[11] = 0x70, },
  1459. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  1460. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1461. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1462. .data[10] = 0x80, .data[11] = 0x70, },
  1463. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  1464. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1465. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1466. .data[10] = 0x80, .data[11] = 0x70, },
  1467. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  1468. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1469. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1470. .data[10] = 0x80, .data[11] = 0x70, },
  1471. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  1472. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1473. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1474. .data[10] = 0x80, .data[11] = 0x70, },
  1475. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  1476. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1477. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1478. .data[10] = 0x80, .data[11] = 0x70, },
  1479. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  1480. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1481. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1482. .data[10] = 0x80, .data[11] = 0x70, },
  1483. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  1484. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  1485. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  1486. .data[10] = 0x20, .data[11] = 0x00, },
  1487. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  1488. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  1489. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1490. .data[10] = 0x20, .data[11] = 0x00, },
  1491. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  1492. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1493. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1494. .data[10] = 0x20, .data[11] = 0x00, },
  1495. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  1496. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1497. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1498. .data[10] = 0x20, .data[11] = 0x00, },
  1499. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  1500. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1501. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1502. .data[10] = 0x20, .data[11] = 0x00, },
  1503. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  1504. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  1505. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1506. .data[10] = 0x20, .data[11] = 0x00, },
  1507. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  1508. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1509. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1510. .data[10] = 0x20, .data[11] = 0x00, },
  1511. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  1512. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1513. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  1514. .data[10] = 0x20, .data[11] = 0x00, },
  1515. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  1516. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  1517. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  1518. .data[10] = 0x20, .data[11] = 0x00, },
  1519. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  1520. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1521. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1522. .data[10] = 0x10, .data[11] = 0x00, },
  1523. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  1524. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1525. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1526. .data[10] = 0x10, .data[11] = 0x00, },
  1527. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  1528. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1529. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1530. .data[10] = 0x10, .data[11] = 0x00, },
  1531. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  1532. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1533. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1534. .data[10] = 0x00, .data[11] = 0x00, },
  1535. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  1536. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1537. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1538. .data[10] = 0x00, .data[11] = 0x00, },
  1539. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  1540. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1541. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1542. .data[10] = 0x00, .data[11] = 0x00, },
  1543. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  1544. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1545. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1546. .data[10] = 0x00, .data[11] = 0x00, },
  1547. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  1548. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1549. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1550. .data[10] = 0x00, .data[11] = 0x00, },
  1551. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  1552. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1553. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1554. .data[10] = 0x00, .data[11] = 0x00, },
  1555. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  1556. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1557. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1558. .data[10] = 0x00, .data[11] = 0x00, },
  1559. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  1560. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1561. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1562. .data[10] = 0x00, .data[11] = 0x00, },
  1563. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  1564. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1565. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1566. .data[10] = 0x00, .data[11] = 0x00, },
  1567. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  1568. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1569. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1570. .data[10] = 0x00, .data[11] = 0x00, },
  1571. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  1572. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1573. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1574. .data[10] = 0x00, .data[11] = 0x00, },
  1575. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  1576. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1577. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1578. .data[10] = 0x00, .data[11] = 0x00, },
  1579. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  1580. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1581. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1582. .data[10] = 0x00, .data[11] = 0x00, },
  1583. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  1584. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1585. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1586. .data[10] = 0x00, .data[11] = 0x00, },
  1587. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  1588. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1589. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1590. .data[10] = 0x00, .data[11] = 0x00, },
  1591. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  1592. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1593. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1594. .data[10] = 0x00, .data[11] = 0x00, },
  1595. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  1596. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  1597. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  1598. .data[10] = 0x50, .data[11] = 0x00, },
  1599. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  1600. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  1601. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1602. .data[10] = 0x50, .data[11] = 0x00, },
  1603. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  1604. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1605. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1606. .data[10] = 0x50, .data[11] = 0x00, },
  1607. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  1608. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1609. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1610. .data[10] = 0x40, .data[11] = 0x00, },
  1611. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  1612. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  1613. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1614. .data[10] = 0x40, .data[11] = 0x00, },
  1615. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  1616. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  1617. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1618. .data[10] = 0x40, .data[11] = 0x00, },
  1619. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  1620. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  1621. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1622. .data[10] = 0x40, .data[11] = 0x00, },
  1623. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  1624. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  1625. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1626. .data[10] = 0x40, .data[11] = 0x00, },
  1627. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  1628. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  1629. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1630. .data[10] = 0x40, .data[11] = 0x00, },
  1631. };
  1632. static void lpphy_b2062_reset_pll_bias(struct b43_wldev *dev)
  1633. {
  1634. struct ssb_bus *bus = dev->dev->bus;
  1635. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0xFF);
  1636. udelay(20);
  1637. if (bus->chip_id == 0x5354) {
  1638. b43_radio_write(dev, B2062_N_COMM1, 4);
  1639. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 4);
  1640. } else {
  1641. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0);
  1642. }
  1643. udelay(5);
  1644. }
  1645. static void lpphy_b2062_vco_calib(struct b43_wldev *dev)
  1646. {
  1647. b43_phy_write(dev, B2062_S_RFPLL_CTL21, 0x42);
  1648. b43_phy_write(dev, B2062_S_RFPLL_CTL21, 0x62);
  1649. udelay(200);
  1650. }
  1651. static int lpphy_b2062_tune(struct b43_wldev *dev,
  1652. unsigned int channel)
  1653. {
  1654. struct b43_phy_lp *lpphy = dev->phy.lp;
  1655. struct ssb_bus *bus = dev->dev->bus;
  1656. static const struct b206x_channel *chandata = NULL;
  1657. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1658. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
  1659. int i, err = 0;
  1660. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  1661. if (b2063_chantbl[i].channel == channel) {
  1662. chandata = &b2063_chantbl[i];
  1663. break;
  1664. }
  1665. }
  1666. if (B43_WARN_ON(!chandata))
  1667. return -EINVAL;
  1668. b43_radio_set(dev, B2062_S_RFPLL_CTL14, 0x04);
  1669. b43_radio_write(dev, B2062_N_LGENA_TUNE0, chandata->data[0]);
  1670. b43_radio_write(dev, B2062_N_LGENA_TUNE2, chandata->data[1]);
  1671. b43_radio_write(dev, B2062_N_LGENA_TUNE3, chandata->data[2]);
  1672. b43_radio_write(dev, B2062_N_TX_TUNE, chandata->data[3]);
  1673. b43_radio_write(dev, B2062_S_LGENG_CTL1, chandata->data[4]);
  1674. b43_radio_write(dev, B2062_N_LGENA_CTL5, chandata->data[5]);
  1675. b43_radio_write(dev, B2062_N_LGENA_CTL6, chandata->data[6]);
  1676. b43_radio_write(dev, B2062_N_TX_PGA, chandata->data[7]);
  1677. b43_radio_write(dev, B2062_N_TX_PAD, chandata->data[8]);
  1678. tmp1 = crystal_freq / 1000;
  1679. tmp2 = lpphy->pdiv * 1000;
  1680. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xCC);
  1681. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0x07);
  1682. lpphy_b2062_reset_pll_bias(dev);
  1683. tmp3 = tmp2 * channel2freq_lp(channel);
  1684. if (channel2freq_lp(channel) < 4000)
  1685. tmp3 *= 2;
  1686. tmp4 = 48 * tmp1;
  1687. tmp6 = tmp3 / tmp4;
  1688. tmp7 = tmp3 % tmp4;
  1689. b43_radio_write(dev, B2062_S_RFPLL_CTL26, tmp6);
  1690. tmp5 = tmp7 * 0x100;
  1691. tmp6 = tmp5 / tmp4;
  1692. tmp7 = tmp5 % tmp4;
  1693. b43_radio_write(dev, B2062_S_RFPLL_CTL28, tmp6);
  1694. tmp5 = tmp7 * 0x100;
  1695. tmp6 = tmp5 / tmp4;
  1696. tmp7 = tmp5 % tmp4;
  1697. b43_radio_write(dev, B2062_S_RFPLL_CTL29, tmp6 + ((2 * tmp7) / tmp4));
  1698. tmp8 = b43_phy_read(dev, B2062_S_RFPLL_CTL19);
  1699. tmp9 = ((2 * tmp3 * (tmp8 + 1)) + (3 * tmp1)) / (6 * tmp1);
  1700. b43_radio_write(dev, B2062_S_RFPLL_CTL23, tmp9 >> 8);
  1701. b43_radio_write(dev, B2062_S_RFPLL_CTL24, tmp9 & 0xFF);
  1702. lpphy_b2062_vco_calib(dev);
  1703. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10) {
  1704. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xFC);
  1705. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0);
  1706. lpphy_b2062_reset_pll_bias(dev);
  1707. lpphy_b2062_vco_calib(dev);
  1708. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10)
  1709. err = -EINVAL;
  1710. }
  1711. b43_radio_mask(dev, B2062_S_RFPLL_CTL14, ~0x04);
  1712. return err;
  1713. }
  1714. static void lpphy_japan_filter(struct b43_wldev *dev, int channel)
  1715. {
  1716. struct b43_phy_lp *lpphy = dev->phy.lp;
  1717. u16 tmp = (channel == 14); //SPEC FIXME check japanwidefilter!
  1718. if (dev->phy.rev < 2) { //SPEC FIXME Isn't this rev0/1-specific?
  1719. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFCFF, tmp << 9);
  1720. if ((dev->phy.rev == 1) && (lpphy->rc_cap))
  1721. lpphy_set_rc_cap(dev);
  1722. } else {
  1723. b43_radio_write(dev, B2063_TX_BB_SP3, 0x3F);
  1724. }
  1725. }
  1726. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  1727. {
  1728. u16 tmp;
  1729. b43_phy_mask(dev, B2063_PLL_SP1, ~0x40);
  1730. tmp = b43_phy_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  1731. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  1732. udelay(1);
  1733. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  1734. udelay(1);
  1735. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  1736. udelay(1);
  1737. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  1738. udelay(300);
  1739. b43_phy_set(dev, B2063_PLL_SP1, 0x40);
  1740. }
  1741. static int lpphy_b2063_tune(struct b43_wldev *dev,
  1742. unsigned int channel)
  1743. {
  1744. struct ssb_bus *bus = dev->dev->bus;
  1745. static const struct b206x_channel *chandata = NULL;
  1746. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1747. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  1748. u16 old_comm15, scale;
  1749. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  1750. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  1751. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  1752. if (b2063_chantbl[i].channel == channel) {
  1753. chandata = &b2063_chantbl[i];
  1754. break;
  1755. }
  1756. }
  1757. if (B43_WARN_ON(!chandata))
  1758. return -EINVAL;
  1759. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  1760. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  1761. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  1762. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  1763. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  1764. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  1765. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  1766. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  1767. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  1768. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  1769. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  1770. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  1771. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  1772. b43_radio_set(dev, B2063_COMM15, 0x1E);
  1773. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  1774. vco_freq = chandata->freq << 1;
  1775. else
  1776. vco_freq = chandata->freq << 2;
  1777. freqref = crystal_freq * 3;
  1778. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  1779. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  1780. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  1781. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  1782. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  1783. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  1784. 0xFFF8, timeout >> 2);
  1785. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1786. 0xFF9F,timeout << 5);
  1787. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  1788. 999999) / 1000000) + 1;
  1789. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  1790. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  1791. count *= (timeout + 1) * (timeoutref + 1);
  1792. count--;
  1793. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1794. 0xF0, count >> 8);
  1795. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  1796. tmp1 = ((val3 * 62500) / freqref) << 4;
  1797. tmp2 = ((val3 * 62500) % freqref) << 4;
  1798. while (tmp2 >= freqref) {
  1799. tmp1++;
  1800. tmp2 -= freqref;
  1801. }
  1802. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  1803. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  1804. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  1805. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  1806. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  1807. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  1808. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  1809. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  1810. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  1811. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  1812. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  1813. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  1814. scale = 1;
  1815. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  1816. } else {
  1817. scale = 0;
  1818. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  1819. }
  1820. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  1821. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  1822. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  1823. tmp6 *= (tmp5 * 8) * (scale + 1);
  1824. if (tmp6 > 150)
  1825. tmp6 = 0;
  1826. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  1827. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  1828. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  1829. if (crystal_freq > 26000000)
  1830. b43_phy_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  1831. else
  1832. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  1833. if (val1 == 45)
  1834. b43_phy_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  1835. else
  1836. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  1837. b43_phy_set(dev, B2063_PLL_SP2, 0x3);
  1838. udelay(1);
  1839. b43_phy_mask(dev, B2063_PLL_SP2, 0xFFFC);
  1840. lpphy_b2063_vco_calib(dev);
  1841. b43_radio_write(dev, B2063_COMM15, old_comm15);
  1842. return 0;
  1843. }
  1844. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1845. unsigned int new_channel)
  1846. {
  1847. int err;
  1848. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  1849. if (dev->phy.radio_ver == 0x2063) {
  1850. err = lpphy_b2063_tune(dev, new_channel);
  1851. if (err)
  1852. return err;
  1853. } else {
  1854. err = lpphy_b2062_tune(dev, new_channel);
  1855. if (err)
  1856. return err;
  1857. lpphy_japan_filter(dev, new_channel);
  1858. }
  1859. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  1860. return 0;
  1861. }
  1862. static int b43_lpphy_op_init(struct b43_wldev *dev)
  1863. {
  1864. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  1865. lpphy_baseband_init(dev);
  1866. lpphy_radio_init(dev);
  1867. lpphy_calibrate_rc(dev);
  1868. b43_lpphy_op_switch_channel(dev, b43_lpphy_op_get_default_chan(dev));
  1869. lpphy_tx_pctl_init(dev);
  1870. lpphy_calibration(dev);
  1871. //TODO ACI init
  1872. return 0;
  1873. }
  1874. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1875. {
  1876. //TODO
  1877. }
  1878. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  1879. {
  1880. //TODO
  1881. }
  1882. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  1883. bool ignore_tssi)
  1884. {
  1885. //TODO
  1886. return B43_TXPWR_RES_DONE;
  1887. }
  1888. const struct b43_phy_operations b43_phyops_lp = {
  1889. .allocate = b43_lpphy_op_allocate,
  1890. .free = b43_lpphy_op_free,
  1891. .prepare_structs = b43_lpphy_op_prepare_structs,
  1892. .init = b43_lpphy_op_init,
  1893. .phy_read = b43_lpphy_op_read,
  1894. .phy_write = b43_lpphy_op_write,
  1895. .radio_read = b43_lpphy_op_radio_read,
  1896. .radio_write = b43_lpphy_op_radio_write,
  1897. .software_rfkill = b43_lpphy_op_software_rfkill,
  1898. .switch_analog = b43_phyop_switch_analog_generic,
  1899. .switch_channel = b43_lpphy_op_switch_channel,
  1900. .get_default_chan = b43_lpphy_op_get_default_chan,
  1901. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  1902. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  1903. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  1904. };