recv.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
  18. struct ieee80211_hdr *hdr)
  19. {
  20. struct ieee80211_hw *hw = sc->pri_wiphy->hw;
  21. int i;
  22. spin_lock_bh(&sc->wiphy_lock);
  23. for (i = 0; i < sc->num_sec_wiphy; i++) {
  24. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  25. if (aphy == NULL)
  26. continue;
  27. if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
  28. == 0) {
  29. hw = aphy->hw;
  30. break;
  31. }
  32. }
  33. spin_unlock_bh(&sc->wiphy_lock);
  34. return hw;
  35. }
  36. /*
  37. * Setup and link descriptors.
  38. *
  39. * 11N: we can no longer afford to self link the last descriptor.
  40. * MAC acknowledges BA status as long as it copies frames to host
  41. * buffer (or rx fifo). This can incorrectly acknowledge packets
  42. * to a sender if last desc is self-linked.
  43. */
  44. static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
  45. {
  46. struct ath_hw *ah = sc->sc_ah;
  47. struct ath_desc *ds;
  48. struct sk_buff *skb;
  49. ATH_RXBUF_RESET(bf);
  50. ds = bf->bf_desc;
  51. ds->ds_link = 0; /* link to null */
  52. ds->ds_data = bf->bf_buf_addr;
  53. /* virtual addr of the beginning of the buffer. */
  54. skb = bf->bf_mpdu;
  55. ASSERT(skb != NULL);
  56. ds->ds_vdata = skb->data;
  57. /* setup rx descriptors. The rx.bufsize here tells the harware
  58. * how much data it can DMA to us and that we are prepared
  59. * to process */
  60. ath9k_hw_setuprxdesc(ah, ds,
  61. sc->rx.bufsize,
  62. 0);
  63. if (sc->rx.rxlink == NULL)
  64. ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  65. else
  66. *sc->rx.rxlink = bf->bf_daddr;
  67. sc->rx.rxlink = &ds->ds_link;
  68. ath9k_hw_rxena(ah);
  69. }
  70. static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
  71. {
  72. /* XXX block beacon interrupts */
  73. ath9k_hw_setantenna(sc->sc_ah, antenna);
  74. sc->rx.defant = antenna;
  75. sc->rx.rxotherant = 0;
  76. }
  77. /*
  78. * Extend 15-bit time stamp from rx descriptor to
  79. * a full 64-bit TSF using the current h/w TSF.
  80. */
  81. static u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
  82. {
  83. u64 tsf;
  84. tsf = ath9k_hw_gettsf64(sc->sc_ah);
  85. if ((tsf & 0x7fff) < rstamp)
  86. tsf -= 0x8000;
  87. return (tsf & ~0x7fff) | rstamp;
  88. }
  89. /*
  90. * For Decrypt or Demic errors, we only mark packet status here and always push
  91. * up the frame up to let mac80211 handle the actual error case, be it no
  92. * decryption key or real decryption error. This let us keep statistics there.
  93. */
  94. static int ath_rx_prepare(struct sk_buff *skb, struct ath_desc *ds,
  95. struct ieee80211_rx_status *rx_status, bool *decrypt_error,
  96. struct ath_softc *sc)
  97. {
  98. struct ieee80211_hdr *hdr;
  99. u8 ratecode;
  100. __le16 fc;
  101. struct ieee80211_hw *hw;
  102. struct ieee80211_sta *sta;
  103. struct ath_node *an;
  104. int last_rssi = ATH_RSSI_DUMMY_MARKER;
  105. hdr = (struct ieee80211_hdr *)skb->data;
  106. fc = hdr->frame_control;
  107. memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
  108. hw = ath_get_virt_hw(sc, hdr);
  109. if (ds->ds_rxstat.rs_more) {
  110. /*
  111. * Frame spans multiple descriptors; this cannot happen yet
  112. * as we don't support jumbograms. If not in monitor mode,
  113. * discard the frame. Enable this if you want to see
  114. * error frames in Monitor mode.
  115. */
  116. if (sc->sc_ah->opmode != NL80211_IFTYPE_MONITOR)
  117. goto rx_next;
  118. } else if (ds->ds_rxstat.rs_status != 0) {
  119. if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
  120. rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
  121. if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY)
  122. goto rx_next;
  123. if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
  124. *decrypt_error = true;
  125. } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
  126. if (ieee80211_is_ctl(fc))
  127. /*
  128. * Sometimes, we get invalid
  129. * MIC failures on valid control frames.
  130. * Remove these mic errors.
  131. */
  132. ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC;
  133. else
  134. rx_status->flag |= RX_FLAG_MMIC_ERROR;
  135. }
  136. /*
  137. * Reject error frames with the exception of
  138. * decryption and MIC failures. For monitor mode,
  139. * we also ignore the CRC error.
  140. */
  141. if (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR) {
  142. if (ds->ds_rxstat.rs_status &
  143. ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
  144. ATH9K_RXERR_CRC))
  145. goto rx_next;
  146. } else {
  147. if (ds->ds_rxstat.rs_status &
  148. ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
  149. goto rx_next;
  150. }
  151. }
  152. }
  153. ratecode = ds->ds_rxstat.rs_rate;
  154. if (ratecode & 0x80) {
  155. /* HT rate */
  156. rx_status->flag |= RX_FLAG_HT;
  157. if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040)
  158. rx_status->flag |= RX_FLAG_40MHZ;
  159. if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
  160. rx_status->flag |= RX_FLAG_SHORT_GI;
  161. rx_status->rate_idx = ratecode & 0x7f;
  162. } else {
  163. int i = 0, cur_band, n_rates;
  164. cur_band = hw->conf.channel->band;
  165. n_rates = sc->sbands[cur_band].n_bitrates;
  166. for (i = 0; i < n_rates; i++) {
  167. if (sc->sbands[cur_band].bitrates[i].hw_value ==
  168. ratecode) {
  169. rx_status->rate_idx = i;
  170. break;
  171. }
  172. if (sc->sbands[cur_band].bitrates[i].hw_value_short ==
  173. ratecode) {
  174. rx_status->rate_idx = i;
  175. rx_status->flag |= RX_FLAG_SHORTPRE;
  176. break;
  177. }
  178. }
  179. }
  180. rcu_read_lock();
  181. sta = ieee80211_find_sta(sc->hw, hdr->addr2);
  182. if (sta) {
  183. an = (struct ath_node *) sta->drv_priv;
  184. if (ds->ds_rxstat.rs_rssi != ATH9K_RSSI_BAD &&
  185. !ds->ds_rxstat.rs_moreaggr)
  186. ATH_RSSI_LPF(an->last_rssi, ds->ds_rxstat.rs_rssi);
  187. last_rssi = an->last_rssi;
  188. }
  189. rcu_read_unlock();
  190. if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
  191. ds->ds_rxstat.rs_rssi = ATH_EP_RND(last_rssi,
  192. ATH_RSSI_EP_MULTIPLIER);
  193. if (ds->ds_rxstat.rs_rssi < 0)
  194. ds->ds_rxstat.rs_rssi = 0;
  195. else if (ds->ds_rxstat.rs_rssi > 127)
  196. ds->ds_rxstat.rs_rssi = 127;
  197. /* Update Beacon RSSI, this is used by ANI. */
  198. if (ieee80211_is_beacon(fc))
  199. sc->nodestats.ns_avgbrssi = ds->ds_rxstat.rs_rssi;
  200. rx_status->mactime = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
  201. rx_status->band = hw->conf.channel->band;
  202. rx_status->freq = hw->conf.channel->center_freq;
  203. rx_status->noise = sc->ani.noise_floor;
  204. rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + ds->ds_rxstat.rs_rssi;
  205. rx_status->antenna = ds->ds_rxstat.rs_antenna;
  206. /*
  207. * Theory for reporting quality:
  208. *
  209. * At a hardware RSSI of 45 you will be able to use MCS 7 reliably.
  210. * At a hardware RSSI of 45 you will be able to use MCS 15 reliably.
  211. * At a hardware RSSI of 35 you should be able use 54 Mbps reliably.
  212. *
  213. * MCS 7 is the highets MCS index usable by a 1-stream device.
  214. * MCS 15 is the highest MCS index usable by a 2-stream device.
  215. *
  216. * All ath9k devices are either 1-stream or 2-stream.
  217. *
  218. * How many bars you see is derived from the qual reporting.
  219. *
  220. * A more elaborate scheme can be used here but it requires tables
  221. * of SNR/throughput for each possible mode used. For the MCS table
  222. * you can refer to the wireless wiki:
  223. *
  224. * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
  225. *
  226. */
  227. if (conf_is_ht(&hw->conf))
  228. rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 45;
  229. else
  230. rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 35;
  231. /* rssi can be more than 45 though, anything above that
  232. * should be considered at 100% */
  233. if (rx_status->qual > 100)
  234. rx_status->qual = 100;
  235. rx_status->flag |= RX_FLAG_TSFT;
  236. return 1;
  237. rx_next:
  238. return 0;
  239. }
  240. static void ath_opmode_init(struct ath_softc *sc)
  241. {
  242. struct ath_hw *ah = sc->sc_ah;
  243. u32 rfilt, mfilt[2];
  244. /* configure rx filter */
  245. rfilt = ath_calcrxfilter(sc);
  246. ath9k_hw_setrxfilter(ah, rfilt);
  247. /* configure bssid mask */
  248. if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  249. ath9k_hw_setbssidmask(sc);
  250. /* configure operational mode */
  251. ath9k_hw_setopmode(ah);
  252. /* Handle any link-level address change. */
  253. ath9k_hw_setmac(ah, sc->sc_ah->macaddr);
  254. /* calculate and install multicast filter */
  255. mfilt[0] = mfilt[1] = ~0;
  256. ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
  257. }
  258. int ath_rx_init(struct ath_softc *sc, int nbufs)
  259. {
  260. struct sk_buff *skb;
  261. struct ath_buf *bf;
  262. int error = 0;
  263. spin_lock_init(&sc->rx.rxflushlock);
  264. sc->sc_flags &= ~SC_OP_RXFLUSH;
  265. spin_lock_init(&sc->rx.rxbuflock);
  266. sc->rx.bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
  267. min(sc->common.cachelsz, (u16)64));
  268. DPRINTF(sc, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
  269. sc->common.cachelsz, sc->rx.bufsize);
  270. /* Initialize rx descriptors */
  271. error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
  272. "rx", nbufs, 1);
  273. if (error != 0) {
  274. DPRINTF(sc, ATH_DBG_FATAL,
  275. "failed to allocate rx descriptors: %d\n", error);
  276. goto err;
  277. }
  278. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  279. skb = ath_rxbuf_alloc(&sc->common, sc->rx.bufsize, GFP_KERNEL);
  280. if (skb == NULL) {
  281. error = -ENOMEM;
  282. goto err;
  283. }
  284. bf->bf_mpdu = skb;
  285. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  286. sc->rx.bufsize,
  287. DMA_FROM_DEVICE);
  288. if (unlikely(dma_mapping_error(sc->dev,
  289. bf->bf_buf_addr))) {
  290. dev_kfree_skb_any(skb);
  291. bf->bf_mpdu = NULL;
  292. DPRINTF(sc, ATH_DBG_FATAL,
  293. "dma_mapping_error() on RX init\n");
  294. error = -ENOMEM;
  295. goto err;
  296. }
  297. bf->bf_dmacontext = bf->bf_buf_addr;
  298. }
  299. sc->rx.rxlink = NULL;
  300. err:
  301. if (error)
  302. ath_rx_cleanup(sc);
  303. return error;
  304. }
  305. void ath_rx_cleanup(struct ath_softc *sc)
  306. {
  307. struct sk_buff *skb;
  308. struct ath_buf *bf;
  309. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  310. skb = bf->bf_mpdu;
  311. if (skb) {
  312. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  313. sc->rx.bufsize, DMA_FROM_DEVICE);
  314. dev_kfree_skb(skb);
  315. }
  316. }
  317. if (sc->rx.rxdma.dd_desc_len != 0)
  318. ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
  319. }
  320. /*
  321. * Calculate the receive filter according to the
  322. * operating mode and state:
  323. *
  324. * o always accept unicast, broadcast, and multicast traffic
  325. * o maintain current state of phy error reception (the hal
  326. * may enable phy error frames for noise immunity work)
  327. * o probe request frames are accepted only when operating in
  328. * hostap, adhoc, or monitor modes
  329. * o enable promiscuous mode according to the interface state
  330. * o accept beacons:
  331. * - when operating in adhoc mode so the 802.11 layer creates
  332. * node table entries for peers,
  333. * - when operating in station mode for collecting rssi data when
  334. * the station is otherwise quiet, or
  335. * - when operating as a repeater so we see repeater-sta beacons
  336. * - when scanning
  337. */
  338. u32 ath_calcrxfilter(struct ath_softc *sc)
  339. {
  340. #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
  341. u32 rfilt;
  342. rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
  343. | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
  344. | ATH9K_RX_FILTER_MCAST;
  345. /* If not a STA, enable processing of Probe Requests */
  346. if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
  347. rfilt |= ATH9K_RX_FILTER_PROBEREQ;
  348. /*
  349. * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
  350. * mode interface or when in monitor mode. AP mode does not need this
  351. * since it receives all in-BSS frames anyway.
  352. */
  353. if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
  354. (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
  355. (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
  356. rfilt |= ATH9K_RX_FILTER_PROM;
  357. if (sc->rx.rxfilter & FIF_CONTROL)
  358. rfilt |= ATH9K_RX_FILTER_CONTROL;
  359. if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
  360. !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
  361. rfilt |= ATH9K_RX_FILTER_MYBEACON;
  362. else
  363. rfilt |= ATH9K_RX_FILTER_BEACON;
  364. if (sc->rx.rxfilter & FIF_PSPOLL)
  365. rfilt |= ATH9K_RX_FILTER_PSPOLL;
  366. if (sc->sec_wiphy) {
  367. /* TODO: only needed if more than one BSSID is in use in
  368. * station/adhoc mode */
  369. /* TODO: for older chips, may need to add ATH9K_RX_FILTER_PROM
  370. */
  371. rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
  372. }
  373. return rfilt;
  374. #undef RX_FILTER_PRESERVE
  375. }
  376. int ath_startrecv(struct ath_softc *sc)
  377. {
  378. struct ath_hw *ah = sc->sc_ah;
  379. struct ath_buf *bf, *tbf;
  380. spin_lock_bh(&sc->rx.rxbuflock);
  381. if (list_empty(&sc->rx.rxbuf))
  382. goto start_recv;
  383. sc->rx.rxlink = NULL;
  384. list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
  385. ath_rx_buf_link(sc, bf);
  386. }
  387. /* We could have deleted elements so the list may be empty now */
  388. if (list_empty(&sc->rx.rxbuf))
  389. goto start_recv;
  390. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  391. ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  392. ath9k_hw_rxena(ah);
  393. start_recv:
  394. spin_unlock_bh(&sc->rx.rxbuflock);
  395. ath_opmode_init(sc);
  396. ath9k_hw_startpcureceive(ah);
  397. return 0;
  398. }
  399. bool ath_stoprecv(struct ath_softc *sc)
  400. {
  401. struct ath_hw *ah = sc->sc_ah;
  402. bool stopped;
  403. ath9k_hw_stoppcurecv(ah);
  404. ath9k_hw_setrxfilter(ah, 0);
  405. stopped = ath9k_hw_stopdmarecv(ah);
  406. sc->rx.rxlink = NULL;
  407. return stopped;
  408. }
  409. void ath_flushrecv(struct ath_softc *sc)
  410. {
  411. spin_lock_bh(&sc->rx.rxflushlock);
  412. sc->sc_flags |= SC_OP_RXFLUSH;
  413. ath_rx_tasklet(sc, 1);
  414. sc->sc_flags &= ~SC_OP_RXFLUSH;
  415. spin_unlock_bh(&sc->rx.rxflushlock);
  416. }
  417. static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
  418. {
  419. /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
  420. struct ieee80211_mgmt *mgmt;
  421. u8 *pos, *end, id, elen;
  422. struct ieee80211_tim_ie *tim;
  423. mgmt = (struct ieee80211_mgmt *)skb->data;
  424. pos = mgmt->u.beacon.variable;
  425. end = skb->data + skb->len;
  426. while (pos + 2 < end) {
  427. id = *pos++;
  428. elen = *pos++;
  429. if (pos + elen > end)
  430. break;
  431. if (id == WLAN_EID_TIM) {
  432. if (elen < sizeof(*tim))
  433. break;
  434. tim = (struct ieee80211_tim_ie *) pos;
  435. if (tim->dtim_count != 0)
  436. break;
  437. return tim->bitmap_ctrl & 0x01;
  438. }
  439. pos += elen;
  440. }
  441. return false;
  442. }
  443. static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
  444. {
  445. struct ieee80211_mgmt *mgmt;
  446. if (skb->len < 24 + 8 + 2 + 2)
  447. return;
  448. mgmt = (struct ieee80211_mgmt *)skb->data;
  449. if (memcmp(sc->curbssid, mgmt->bssid, ETH_ALEN) != 0)
  450. return; /* not from our current AP */
  451. sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
  452. if (sc->sc_flags & SC_OP_BEACON_SYNC) {
  453. sc->sc_flags &= ~SC_OP_BEACON_SYNC;
  454. DPRINTF(sc, ATH_DBG_PS, "Reconfigure Beacon timers based on "
  455. "timestamp from the AP\n");
  456. ath_beacon_config(sc, NULL);
  457. }
  458. if (ath_beacon_dtim_pending_cab(skb)) {
  459. /*
  460. * Remain awake waiting for buffered broadcast/multicast
  461. * frames. If the last broadcast/multicast frame is not
  462. * received properly, the next beacon frame will work as
  463. * a backup trigger for returning into NETWORK SLEEP state,
  464. * so we are waiting for it as well.
  465. */
  466. DPRINTF(sc, ATH_DBG_PS, "Received DTIM beacon indicating "
  467. "buffered broadcast/multicast frame(s)\n");
  468. sc->sc_flags |= SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_BEACON;
  469. return;
  470. }
  471. if (sc->sc_flags & SC_OP_WAIT_FOR_CAB) {
  472. /*
  473. * This can happen if a broadcast frame is dropped or the AP
  474. * fails to send a frame indicating that all CAB frames have
  475. * been delivered.
  476. */
  477. sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB;
  478. DPRINTF(sc, ATH_DBG_PS, "PS wait for CAB frames timed out\n");
  479. }
  480. }
  481. static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
  482. {
  483. struct ieee80211_hdr *hdr;
  484. hdr = (struct ieee80211_hdr *)skb->data;
  485. /* Process Beacon and CAB receive in PS state */
  486. if ((sc->sc_flags & SC_OP_WAIT_FOR_BEACON) &&
  487. ieee80211_is_beacon(hdr->frame_control))
  488. ath_rx_ps_beacon(sc, skb);
  489. else if ((sc->sc_flags & SC_OP_WAIT_FOR_CAB) &&
  490. (ieee80211_is_data(hdr->frame_control) ||
  491. ieee80211_is_action(hdr->frame_control)) &&
  492. is_multicast_ether_addr(hdr->addr1) &&
  493. !ieee80211_has_moredata(hdr->frame_control)) {
  494. /*
  495. * No more broadcast/multicast frames to be received at this
  496. * point.
  497. */
  498. sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB;
  499. DPRINTF(sc, ATH_DBG_PS, "All PS CAB frames received, back to "
  500. "sleep\n");
  501. } else if ((sc->sc_flags & SC_OP_WAIT_FOR_PSPOLL_DATA) &&
  502. !is_multicast_ether_addr(hdr->addr1) &&
  503. !ieee80211_has_morefrags(hdr->frame_control)) {
  504. sc->sc_flags &= ~SC_OP_WAIT_FOR_PSPOLL_DATA;
  505. DPRINTF(sc, ATH_DBG_PS, "Going back to sleep after having "
  506. "received PS-Poll data (0x%x)\n",
  507. sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
  508. SC_OP_WAIT_FOR_CAB |
  509. SC_OP_WAIT_FOR_PSPOLL_DATA |
  510. SC_OP_WAIT_FOR_TX_ACK));
  511. }
  512. }
  513. static void ath_rx_send_to_mac80211(struct ath_softc *sc, struct sk_buff *skb,
  514. struct ieee80211_rx_status *rx_status)
  515. {
  516. struct ieee80211_hdr *hdr;
  517. hdr = (struct ieee80211_hdr *)skb->data;
  518. /* Send the frame to mac80211 */
  519. if (is_multicast_ether_addr(hdr->addr1)) {
  520. int i;
  521. /*
  522. * Deliver broadcast/multicast frames to all suitable
  523. * virtual wiphys.
  524. */
  525. /* TODO: filter based on channel configuration */
  526. for (i = 0; i < sc->num_sec_wiphy; i++) {
  527. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  528. struct sk_buff *nskb;
  529. if (aphy == NULL)
  530. continue;
  531. nskb = skb_copy(skb, GFP_ATOMIC);
  532. if (nskb) {
  533. memcpy(IEEE80211_SKB_RXCB(nskb), rx_status,
  534. sizeof(*rx_status));
  535. ieee80211_rx(aphy->hw, nskb);
  536. }
  537. }
  538. memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
  539. ieee80211_rx(sc->hw, skb);
  540. } else {
  541. /* Deliver unicast frames based on receiver address */
  542. memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
  543. ieee80211_rx(ath_get_virt_hw(sc, hdr), skb);
  544. }
  545. }
  546. int ath_rx_tasklet(struct ath_softc *sc, int flush)
  547. {
  548. #define PA2DESC(_sc, _pa) \
  549. ((struct ath_desc *)((caddr_t)(_sc)->rx.rxdma.dd_desc + \
  550. ((_pa) - (_sc)->rx.rxdma.dd_desc_paddr)))
  551. struct ath_buf *bf;
  552. struct ath_desc *ds;
  553. struct sk_buff *skb = NULL, *requeue_skb;
  554. struct ieee80211_rx_status rx_status;
  555. struct ath_hw *ah = sc->sc_ah;
  556. struct ieee80211_hdr *hdr;
  557. int hdrlen, padsize, retval;
  558. bool decrypt_error = false;
  559. u8 keyix;
  560. __le16 fc;
  561. spin_lock_bh(&sc->rx.rxbuflock);
  562. do {
  563. /* If handling rx interrupt and flush is in progress => exit */
  564. if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
  565. break;
  566. if (list_empty(&sc->rx.rxbuf)) {
  567. sc->rx.rxlink = NULL;
  568. break;
  569. }
  570. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  571. ds = bf->bf_desc;
  572. /*
  573. * Must provide the virtual address of the current
  574. * descriptor, the physical address, and the virtual
  575. * address of the next descriptor in the h/w chain.
  576. * This allows the HAL to look ahead to see if the
  577. * hardware is done with a descriptor by checking the
  578. * done bit in the following descriptor and the address
  579. * of the current descriptor the DMA engine is working
  580. * on. All this is necessary because of our use of
  581. * a self-linked list to avoid rx overruns.
  582. */
  583. retval = ath9k_hw_rxprocdesc(ah, ds,
  584. bf->bf_daddr,
  585. PA2DESC(sc, ds->ds_link),
  586. 0);
  587. if (retval == -EINPROGRESS) {
  588. struct ath_buf *tbf;
  589. struct ath_desc *tds;
  590. if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
  591. sc->rx.rxlink = NULL;
  592. break;
  593. }
  594. tbf = list_entry(bf->list.next, struct ath_buf, list);
  595. /*
  596. * On some hardware the descriptor status words could
  597. * get corrupted, including the done bit. Because of
  598. * this, check if the next descriptor's done bit is
  599. * set or not.
  600. *
  601. * If the next descriptor's done bit is set, the current
  602. * descriptor has been corrupted. Force s/w to discard
  603. * this descriptor and continue...
  604. */
  605. tds = tbf->bf_desc;
  606. retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr,
  607. PA2DESC(sc, tds->ds_link), 0);
  608. if (retval == -EINPROGRESS) {
  609. break;
  610. }
  611. }
  612. skb = bf->bf_mpdu;
  613. if (!skb)
  614. continue;
  615. /*
  616. * Synchronize the DMA transfer with CPU before
  617. * 1. accessing the frame
  618. * 2. requeueing the same buffer to h/w
  619. */
  620. dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
  621. sc->rx.bufsize,
  622. DMA_FROM_DEVICE);
  623. /*
  624. * If we're asked to flush receive queue, directly
  625. * chain it back at the queue without processing it.
  626. */
  627. if (flush)
  628. goto requeue;
  629. if (!ds->ds_rxstat.rs_datalen)
  630. goto requeue;
  631. /* The status portion of the descriptor could get corrupted. */
  632. if (sc->rx.bufsize < ds->ds_rxstat.rs_datalen)
  633. goto requeue;
  634. if (!ath_rx_prepare(skb, ds, &rx_status, &decrypt_error, sc))
  635. goto requeue;
  636. /* Ensure we always have an skb to requeue once we are done
  637. * processing the current buffer's skb */
  638. requeue_skb = ath_rxbuf_alloc(&sc->common, sc->rx.bufsize, GFP_ATOMIC);
  639. /* If there is no memory we ignore the current RX'd frame,
  640. * tell hardware it can give us a new frame using the old
  641. * skb and put it at the tail of the sc->rx.rxbuf list for
  642. * processing. */
  643. if (!requeue_skb)
  644. goto requeue;
  645. /* Unmap the frame */
  646. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  647. sc->rx.bufsize,
  648. DMA_FROM_DEVICE);
  649. skb_put(skb, ds->ds_rxstat.rs_datalen);
  650. /* see if any padding is done by the hw and remove it */
  651. hdr = (struct ieee80211_hdr *)skb->data;
  652. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  653. fc = hdr->frame_control;
  654. /* The MAC header is padded to have 32-bit boundary if the
  655. * packet payload is non-zero. The general calculation for
  656. * padsize would take into account odd header lengths:
  657. * padsize = (4 - hdrlen % 4) % 4; However, since only
  658. * even-length headers are used, padding can only be 0 or 2
  659. * bytes and we can optimize this a bit. In addition, we must
  660. * not try to remove padding from short control frames that do
  661. * not have payload. */
  662. padsize = hdrlen & 3;
  663. if (padsize && hdrlen >= 24) {
  664. memmove(skb->data + padsize, skb->data, hdrlen);
  665. skb_pull(skb, padsize);
  666. }
  667. keyix = ds->ds_rxstat.rs_keyix;
  668. if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error) {
  669. rx_status.flag |= RX_FLAG_DECRYPTED;
  670. } else if (ieee80211_has_protected(fc)
  671. && !decrypt_error && skb->len >= hdrlen + 4) {
  672. keyix = skb->data[hdrlen + 3] >> 6;
  673. if (test_bit(keyix, sc->keymap))
  674. rx_status.flag |= RX_FLAG_DECRYPTED;
  675. }
  676. if (ah->sw_mgmt_crypto &&
  677. (rx_status.flag & RX_FLAG_DECRYPTED) &&
  678. ieee80211_is_mgmt(fc)) {
  679. /* Use software decrypt for management frames. */
  680. rx_status.flag &= ~RX_FLAG_DECRYPTED;
  681. }
  682. /* We will now give hardware our shiny new allocated skb */
  683. bf->bf_mpdu = requeue_skb;
  684. bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
  685. sc->rx.bufsize,
  686. DMA_FROM_DEVICE);
  687. if (unlikely(dma_mapping_error(sc->dev,
  688. bf->bf_buf_addr))) {
  689. dev_kfree_skb_any(requeue_skb);
  690. bf->bf_mpdu = NULL;
  691. DPRINTF(sc, ATH_DBG_FATAL,
  692. "dma_mapping_error() on RX\n");
  693. ath_rx_send_to_mac80211(sc, skb, &rx_status);
  694. break;
  695. }
  696. bf->bf_dmacontext = bf->bf_buf_addr;
  697. /*
  698. * change the default rx antenna if rx diversity chooses the
  699. * other antenna 3 times in a row.
  700. */
  701. if (sc->rx.defant != ds->ds_rxstat.rs_antenna) {
  702. if (++sc->rx.rxotherant >= 3)
  703. ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna);
  704. } else {
  705. sc->rx.rxotherant = 0;
  706. }
  707. if (unlikely(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
  708. SC_OP_WAIT_FOR_CAB |
  709. SC_OP_WAIT_FOR_PSPOLL_DATA)))
  710. ath_rx_ps(sc, skb);
  711. ath_rx_send_to_mac80211(sc, skb, &rx_status);
  712. requeue:
  713. list_move_tail(&bf->list, &sc->rx.rxbuf);
  714. ath_rx_buf_link(sc, bf);
  715. } while (1);
  716. spin_unlock_bh(&sc->rx.rxbuflock);
  717. return 0;
  718. #undef PA2DESC
  719. }