af_netlink.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  13. * added netlink_proto_exit
  14. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  15. * use nlk_sk, as sk->protinfo is on a diet 8)
  16. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  17. * - inc module use count of module that owns
  18. * the kernel socket in case userspace opens
  19. * socket of same protocol
  20. * - remove all module support, since netlink is
  21. * mandatory if CONFIG_NET=y these days
  22. */
  23. #include <linux/module.h>
  24. #include <linux/capability.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/signal.h>
  28. #include <linux/sched.h>
  29. #include <linux/errno.h>
  30. #include <linux/string.h>
  31. #include <linux/stat.h>
  32. #include <linux/socket.h>
  33. #include <linux/un.h>
  34. #include <linux/fcntl.h>
  35. #include <linux/termios.h>
  36. #include <linux/sockios.h>
  37. #include <linux/net.h>
  38. #include <linux/fs.h>
  39. #include <linux/slab.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/netdevice.h>
  43. #include <linux/rtnetlink.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/notifier.h>
  47. #include <linux/security.h>
  48. #include <linux/jhash.h>
  49. #include <linux/jiffies.h>
  50. #include <linux/random.h>
  51. #include <linux/bitops.h>
  52. #include <linux/mm.h>
  53. #include <linux/types.h>
  54. #include <linux/audit.h>
  55. #include <linux/mutex.h>
  56. #include <net/net_namespace.h>
  57. #include <net/sock.h>
  58. #include <net/scm.h>
  59. #include <net/netlink.h>
  60. #define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
  61. #define NLGRPLONGS(x) (NLGRPSZ(x)/sizeof(unsigned long))
  62. struct netlink_sock {
  63. /* struct sock has to be the first member of netlink_sock */
  64. struct sock sk;
  65. u32 pid;
  66. u32 dst_pid;
  67. u32 dst_group;
  68. u32 flags;
  69. u32 subscriptions;
  70. u32 ngroups;
  71. unsigned long *groups;
  72. unsigned long state;
  73. wait_queue_head_t wait;
  74. struct netlink_callback *cb;
  75. struct mutex *cb_mutex;
  76. struct mutex cb_def_mutex;
  77. void (*netlink_rcv)(struct sk_buff *skb);
  78. struct module *module;
  79. };
  80. struct listeners {
  81. struct rcu_head rcu;
  82. unsigned long masks[0];
  83. };
  84. #define NETLINK_KERNEL_SOCKET 0x1
  85. #define NETLINK_RECV_PKTINFO 0x2
  86. #define NETLINK_BROADCAST_SEND_ERROR 0x4
  87. #define NETLINK_RECV_NO_ENOBUFS 0x8
  88. static inline struct netlink_sock *nlk_sk(struct sock *sk)
  89. {
  90. return container_of(sk, struct netlink_sock, sk);
  91. }
  92. static inline int netlink_is_kernel(struct sock *sk)
  93. {
  94. return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
  95. }
  96. struct nl_pid_hash {
  97. struct hlist_head *table;
  98. unsigned long rehash_time;
  99. unsigned int mask;
  100. unsigned int shift;
  101. unsigned int entries;
  102. unsigned int max_shift;
  103. u32 rnd;
  104. };
  105. struct netlink_table {
  106. struct nl_pid_hash hash;
  107. struct hlist_head mc_list;
  108. struct listeners __rcu *listeners;
  109. unsigned int nl_nonroot;
  110. unsigned int groups;
  111. struct mutex *cb_mutex;
  112. struct module *module;
  113. int registered;
  114. };
  115. static struct netlink_table *nl_table;
  116. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  117. static int netlink_dump(struct sock *sk);
  118. static DEFINE_RWLOCK(nl_table_lock);
  119. static atomic_t nl_table_users = ATOMIC_INIT(0);
  120. static ATOMIC_NOTIFIER_HEAD(netlink_chain);
  121. static inline u32 netlink_group_mask(u32 group)
  122. {
  123. return group ? 1 << (group - 1) : 0;
  124. }
  125. static inline struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
  126. {
  127. return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
  128. }
  129. static void netlink_destroy_callback(struct netlink_callback *cb)
  130. {
  131. kfree_skb(cb->skb);
  132. kfree(cb);
  133. }
  134. static void netlink_consume_callback(struct netlink_callback *cb)
  135. {
  136. consume_skb(cb->skb);
  137. kfree(cb);
  138. }
  139. static void netlink_sock_destruct(struct sock *sk)
  140. {
  141. struct netlink_sock *nlk = nlk_sk(sk);
  142. if (nlk->cb) {
  143. if (nlk->cb->done)
  144. nlk->cb->done(nlk->cb);
  145. netlink_destroy_callback(nlk->cb);
  146. }
  147. skb_queue_purge(&sk->sk_receive_queue);
  148. if (!sock_flag(sk, SOCK_DEAD)) {
  149. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  150. return;
  151. }
  152. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  153. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  154. WARN_ON(nlk_sk(sk)->groups);
  155. }
  156. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  157. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  158. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  159. * this, _but_ remember, it adds useless work on UP machines.
  160. */
  161. void netlink_table_grab(void)
  162. __acquires(nl_table_lock)
  163. {
  164. might_sleep();
  165. write_lock_irq(&nl_table_lock);
  166. if (atomic_read(&nl_table_users)) {
  167. DECLARE_WAITQUEUE(wait, current);
  168. add_wait_queue_exclusive(&nl_table_wait, &wait);
  169. for (;;) {
  170. set_current_state(TASK_UNINTERRUPTIBLE);
  171. if (atomic_read(&nl_table_users) == 0)
  172. break;
  173. write_unlock_irq(&nl_table_lock);
  174. schedule();
  175. write_lock_irq(&nl_table_lock);
  176. }
  177. __set_current_state(TASK_RUNNING);
  178. remove_wait_queue(&nl_table_wait, &wait);
  179. }
  180. }
  181. void netlink_table_ungrab(void)
  182. __releases(nl_table_lock)
  183. {
  184. write_unlock_irq(&nl_table_lock);
  185. wake_up(&nl_table_wait);
  186. }
  187. static inline void
  188. netlink_lock_table(void)
  189. {
  190. /* read_lock() synchronizes us to netlink_table_grab */
  191. read_lock(&nl_table_lock);
  192. atomic_inc(&nl_table_users);
  193. read_unlock(&nl_table_lock);
  194. }
  195. static inline void
  196. netlink_unlock_table(void)
  197. {
  198. if (atomic_dec_and_test(&nl_table_users))
  199. wake_up(&nl_table_wait);
  200. }
  201. static struct sock *netlink_lookup(struct net *net, int protocol, u32 pid)
  202. {
  203. struct nl_pid_hash *hash = &nl_table[protocol].hash;
  204. struct hlist_head *head;
  205. struct sock *sk;
  206. struct hlist_node *node;
  207. read_lock(&nl_table_lock);
  208. head = nl_pid_hashfn(hash, pid);
  209. sk_for_each(sk, node, head) {
  210. if (net_eq(sock_net(sk), net) && (nlk_sk(sk)->pid == pid)) {
  211. sock_hold(sk);
  212. goto found;
  213. }
  214. }
  215. sk = NULL;
  216. found:
  217. read_unlock(&nl_table_lock);
  218. return sk;
  219. }
  220. static struct hlist_head *nl_pid_hash_zalloc(size_t size)
  221. {
  222. if (size <= PAGE_SIZE)
  223. return kzalloc(size, GFP_ATOMIC);
  224. else
  225. return (struct hlist_head *)
  226. __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
  227. get_order(size));
  228. }
  229. static void nl_pid_hash_free(struct hlist_head *table, size_t size)
  230. {
  231. if (size <= PAGE_SIZE)
  232. kfree(table);
  233. else
  234. free_pages((unsigned long)table, get_order(size));
  235. }
  236. static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
  237. {
  238. unsigned int omask, mask, shift;
  239. size_t osize, size;
  240. struct hlist_head *otable, *table;
  241. int i;
  242. omask = mask = hash->mask;
  243. osize = size = (mask + 1) * sizeof(*table);
  244. shift = hash->shift;
  245. if (grow) {
  246. if (++shift > hash->max_shift)
  247. return 0;
  248. mask = mask * 2 + 1;
  249. size *= 2;
  250. }
  251. table = nl_pid_hash_zalloc(size);
  252. if (!table)
  253. return 0;
  254. otable = hash->table;
  255. hash->table = table;
  256. hash->mask = mask;
  257. hash->shift = shift;
  258. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  259. for (i = 0; i <= omask; i++) {
  260. struct sock *sk;
  261. struct hlist_node *node, *tmp;
  262. sk_for_each_safe(sk, node, tmp, &otable[i])
  263. __sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
  264. }
  265. nl_pid_hash_free(otable, osize);
  266. hash->rehash_time = jiffies + 10 * 60 * HZ;
  267. return 1;
  268. }
  269. static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
  270. {
  271. int avg = hash->entries >> hash->shift;
  272. if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
  273. return 1;
  274. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  275. nl_pid_hash_rehash(hash, 0);
  276. return 1;
  277. }
  278. return 0;
  279. }
  280. static const struct proto_ops netlink_ops;
  281. static void
  282. netlink_update_listeners(struct sock *sk)
  283. {
  284. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  285. struct hlist_node *node;
  286. unsigned long mask;
  287. unsigned int i;
  288. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  289. mask = 0;
  290. sk_for_each_bound(sk, node, &tbl->mc_list) {
  291. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  292. mask |= nlk_sk(sk)->groups[i];
  293. }
  294. tbl->listeners->masks[i] = mask;
  295. }
  296. /* this function is only called with the netlink table "grabbed", which
  297. * makes sure updates are visible before bind or setsockopt return. */
  298. }
  299. static int netlink_insert(struct sock *sk, struct net *net, u32 pid)
  300. {
  301. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  302. struct hlist_head *head;
  303. int err = -EADDRINUSE;
  304. struct sock *osk;
  305. struct hlist_node *node;
  306. int len;
  307. netlink_table_grab();
  308. head = nl_pid_hashfn(hash, pid);
  309. len = 0;
  310. sk_for_each(osk, node, head) {
  311. if (net_eq(sock_net(osk), net) && (nlk_sk(osk)->pid == pid))
  312. break;
  313. len++;
  314. }
  315. if (node)
  316. goto err;
  317. err = -EBUSY;
  318. if (nlk_sk(sk)->pid)
  319. goto err;
  320. err = -ENOMEM;
  321. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  322. goto err;
  323. if (len && nl_pid_hash_dilute(hash, len))
  324. head = nl_pid_hashfn(hash, pid);
  325. hash->entries++;
  326. nlk_sk(sk)->pid = pid;
  327. sk_add_node(sk, head);
  328. err = 0;
  329. err:
  330. netlink_table_ungrab();
  331. return err;
  332. }
  333. static void netlink_remove(struct sock *sk)
  334. {
  335. netlink_table_grab();
  336. if (sk_del_node_init(sk))
  337. nl_table[sk->sk_protocol].hash.entries--;
  338. if (nlk_sk(sk)->subscriptions)
  339. __sk_del_bind_node(sk);
  340. netlink_table_ungrab();
  341. }
  342. static struct proto netlink_proto = {
  343. .name = "NETLINK",
  344. .owner = THIS_MODULE,
  345. .obj_size = sizeof(struct netlink_sock),
  346. };
  347. static int __netlink_create(struct net *net, struct socket *sock,
  348. struct mutex *cb_mutex, int protocol)
  349. {
  350. struct sock *sk;
  351. struct netlink_sock *nlk;
  352. sock->ops = &netlink_ops;
  353. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
  354. if (!sk)
  355. return -ENOMEM;
  356. sock_init_data(sock, sk);
  357. nlk = nlk_sk(sk);
  358. if (cb_mutex) {
  359. nlk->cb_mutex = cb_mutex;
  360. } else {
  361. nlk->cb_mutex = &nlk->cb_def_mutex;
  362. mutex_init(nlk->cb_mutex);
  363. }
  364. init_waitqueue_head(&nlk->wait);
  365. sk->sk_destruct = netlink_sock_destruct;
  366. sk->sk_protocol = protocol;
  367. return 0;
  368. }
  369. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  370. int kern)
  371. {
  372. struct module *module = NULL;
  373. struct mutex *cb_mutex;
  374. struct netlink_sock *nlk;
  375. int err = 0;
  376. sock->state = SS_UNCONNECTED;
  377. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  378. return -ESOCKTNOSUPPORT;
  379. if (protocol < 0 || protocol >= MAX_LINKS)
  380. return -EPROTONOSUPPORT;
  381. netlink_lock_table();
  382. #ifdef CONFIG_MODULES
  383. if (!nl_table[protocol].registered) {
  384. netlink_unlock_table();
  385. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  386. netlink_lock_table();
  387. }
  388. #endif
  389. if (nl_table[protocol].registered &&
  390. try_module_get(nl_table[protocol].module))
  391. module = nl_table[protocol].module;
  392. else
  393. err = -EPROTONOSUPPORT;
  394. cb_mutex = nl_table[protocol].cb_mutex;
  395. netlink_unlock_table();
  396. if (err < 0)
  397. goto out;
  398. err = __netlink_create(net, sock, cb_mutex, protocol);
  399. if (err < 0)
  400. goto out_module;
  401. local_bh_disable();
  402. sock_prot_inuse_add(net, &netlink_proto, 1);
  403. local_bh_enable();
  404. nlk = nlk_sk(sock->sk);
  405. nlk->module = module;
  406. out:
  407. return err;
  408. out_module:
  409. module_put(module);
  410. goto out;
  411. }
  412. static int netlink_release(struct socket *sock)
  413. {
  414. struct sock *sk = sock->sk;
  415. struct netlink_sock *nlk;
  416. if (!sk)
  417. return 0;
  418. netlink_remove(sk);
  419. sock_orphan(sk);
  420. nlk = nlk_sk(sk);
  421. /*
  422. * OK. Socket is unlinked, any packets that arrive now
  423. * will be purged.
  424. */
  425. sock->sk = NULL;
  426. wake_up_interruptible_all(&nlk->wait);
  427. skb_queue_purge(&sk->sk_write_queue);
  428. if (nlk->pid) {
  429. struct netlink_notify n = {
  430. .net = sock_net(sk),
  431. .protocol = sk->sk_protocol,
  432. .pid = nlk->pid,
  433. };
  434. atomic_notifier_call_chain(&netlink_chain,
  435. NETLINK_URELEASE, &n);
  436. }
  437. module_put(nlk->module);
  438. netlink_table_grab();
  439. if (netlink_is_kernel(sk)) {
  440. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  441. if (--nl_table[sk->sk_protocol].registered == 0) {
  442. kfree(nl_table[sk->sk_protocol].listeners);
  443. nl_table[sk->sk_protocol].module = NULL;
  444. nl_table[sk->sk_protocol].registered = 0;
  445. }
  446. } else if (nlk->subscriptions) {
  447. netlink_update_listeners(sk);
  448. }
  449. netlink_table_ungrab();
  450. kfree(nlk->groups);
  451. nlk->groups = NULL;
  452. local_bh_disable();
  453. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  454. local_bh_enable();
  455. sock_put(sk);
  456. return 0;
  457. }
  458. static int netlink_autobind(struct socket *sock)
  459. {
  460. struct sock *sk = sock->sk;
  461. struct net *net = sock_net(sk);
  462. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  463. struct hlist_head *head;
  464. struct sock *osk;
  465. struct hlist_node *node;
  466. s32 pid = task_tgid_vnr(current);
  467. int err;
  468. static s32 rover = -4097;
  469. retry:
  470. cond_resched();
  471. netlink_table_grab();
  472. head = nl_pid_hashfn(hash, pid);
  473. sk_for_each(osk, node, head) {
  474. if (!net_eq(sock_net(osk), net))
  475. continue;
  476. if (nlk_sk(osk)->pid == pid) {
  477. /* Bind collision, search negative pid values. */
  478. pid = rover--;
  479. if (rover > -4097)
  480. rover = -4097;
  481. netlink_table_ungrab();
  482. goto retry;
  483. }
  484. }
  485. netlink_table_ungrab();
  486. err = netlink_insert(sk, net, pid);
  487. if (err == -EADDRINUSE)
  488. goto retry;
  489. /* If 2 threads race to autobind, that is fine. */
  490. if (err == -EBUSY)
  491. err = 0;
  492. return err;
  493. }
  494. static inline int netlink_capable(const struct socket *sock, unsigned int flag)
  495. {
  496. return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
  497. capable(CAP_NET_ADMIN);
  498. }
  499. static void
  500. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  501. {
  502. struct netlink_sock *nlk = nlk_sk(sk);
  503. if (nlk->subscriptions && !subscriptions)
  504. __sk_del_bind_node(sk);
  505. else if (!nlk->subscriptions && subscriptions)
  506. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  507. nlk->subscriptions = subscriptions;
  508. }
  509. static int netlink_realloc_groups(struct sock *sk)
  510. {
  511. struct netlink_sock *nlk = nlk_sk(sk);
  512. unsigned int groups;
  513. unsigned long *new_groups;
  514. int err = 0;
  515. netlink_table_grab();
  516. groups = nl_table[sk->sk_protocol].groups;
  517. if (!nl_table[sk->sk_protocol].registered) {
  518. err = -ENOENT;
  519. goto out_unlock;
  520. }
  521. if (nlk->ngroups >= groups)
  522. goto out_unlock;
  523. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  524. if (new_groups == NULL) {
  525. err = -ENOMEM;
  526. goto out_unlock;
  527. }
  528. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  529. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  530. nlk->groups = new_groups;
  531. nlk->ngroups = groups;
  532. out_unlock:
  533. netlink_table_ungrab();
  534. return err;
  535. }
  536. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  537. int addr_len)
  538. {
  539. struct sock *sk = sock->sk;
  540. struct net *net = sock_net(sk);
  541. struct netlink_sock *nlk = nlk_sk(sk);
  542. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  543. int err;
  544. if (nladdr->nl_family != AF_NETLINK)
  545. return -EINVAL;
  546. /* Only superuser is allowed to listen multicasts */
  547. if (nladdr->nl_groups) {
  548. if (!netlink_capable(sock, NL_NONROOT_RECV))
  549. return -EPERM;
  550. err = netlink_realloc_groups(sk);
  551. if (err)
  552. return err;
  553. }
  554. if (nlk->pid) {
  555. if (nladdr->nl_pid != nlk->pid)
  556. return -EINVAL;
  557. } else {
  558. err = nladdr->nl_pid ?
  559. netlink_insert(sk, net, nladdr->nl_pid) :
  560. netlink_autobind(sock);
  561. if (err)
  562. return err;
  563. }
  564. if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  565. return 0;
  566. netlink_table_grab();
  567. netlink_update_subscriptions(sk, nlk->subscriptions +
  568. hweight32(nladdr->nl_groups) -
  569. hweight32(nlk->groups[0]));
  570. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
  571. netlink_update_listeners(sk);
  572. netlink_table_ungrab();
  573. return 0;
  574. }
  575. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  576. int alen, int flags)
  577. {
  578. int err = 0;
  579. struct sock *sk = sock->sk;
  580. struct netlink_sock *nlk = nlk_sk(sk);
  581. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  582. if (alen < sizeof(addr->sa_family))
  583. return -EINVAL;
  584. if (addr->sa_family == AF_UNSPEC) {
  585. sk->sk_state = NETLINK_UNCONNECTED;
  586. nlk->dst_pid = 0;
  587. nlk->dst_group = 0;
  588. return 0;
  589. }
  590. if (addr->sa_family != AF_NETLINK)
  591. return -EINVAL;
  592. /* Only superuser is allowed to send multicasts */
  593. if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
  594. return -EPERM;
  595. if (!nlk->pid)
  596. err = netlink_autobind(sock);
  597. if (err == 0) {
  598. sk->sk_state = NETLINK_CONNECTED;
  599. nlk->dst_pid = nladdr->nl_pid;
  600. nlk->dst_group = ffs(nladdr->nl_groups);
  601. }
  602. return err;
  603. }
  604. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  605. int *addr_len, int peer)
  606. {
  607. struct sock *sk = sock->sk;
  608. struct netlink_sock *nlk = nlk_sk(sk);
  609. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  610. nladdr->nl_family = AF_NETLINK;
  611. nladdr->nl_pad = 0;
  612. *addr_len = sizeof(*nladdr);
  613. if (peer) {
  614. nladdr->nl_pid = nlk->dst_pid;
  615. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  616. } else {
  617. nladdr->nl_pid = nlk->pid;
  618. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  619. }
  620. return 0;
  621. }
  622. static void netlink_overrun(struct sock *sk)
  623. {
  624. struct netlink_sock *nlk = nlk_sk(sk);
  625. if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
  626. if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
  627. sk->sk_err = ENOBUFS;
  628. sk->sk_error_report(sk);
  629. }
  630. }
  631. atomic_inc(&sk->sk_drops);
  632. }
  633. static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
  634. {
  635. struct sock *sock;
  636. struct netlink_sock *nlk;
  637. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, pid);
  638. if (!sock)
  639. return ERR_PTR(-ECONNREFUSED);
  640. /* Don't bother queuing skb if kernel socket has no input function */
  641. nlk = nlk_sk(sock);
  642. if (sock->sk_state == NETLINK_CONNECTED &&
  643. nlk->dst_pid != nlk_sk(ssk)->pid) {
  644. sock_put(sock);
  645. return ERR_PTR(-ECONNREFUSED);
  646. }
  647. return sock;
  648. }
  649. struct sock *netlink_getsockbyfilp(struct file *filp)
  650. {
  651. struct inode *inode = filp->f_path.dentry->d_inode;
  652. struct sock *sock;
  653. if (!S_ISSOCK(inode->i_mode))
  654. return ERR_PTR(-ENOTSOCK);
  655. sock = SOCKET_I(inode)->sk;
  656. if (sock->sk_family != AF_NETLINK)
  657. return ERR_PTR(-EINVAL);
  658. sock_hold(sock);
  659. return sock;
  660. }
  661. /*
  662. * Attach a skb to a netlink socket.
  663. * The caller must hold a reference to the destination socket. On error, the
  664. * reference is dropped. The skb is not send to the destination, just all
  665. * all error checks are performed and memory in the queue is reserved.
  666. * Return values:
  667. * < 0: error. skb freed, reference to sock dropped.
  668. * 0: continue
  669. * 1: repeat lookup - reference dropped while waiting for socket memory.
  670. */
  671. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  672. long *timeo, struct sock *ssk)
  673. {
  674. struct netlink_sock *nlk;
  675. nlk = nlk_sk(sk);
  676. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  677. test_bit(0, &nlk->state)) {
  678. DECLARE_WAITQUEUE(wait, current);
  679. if (!*timeo) {
  680. if (!ssk || netlink_is_kernel(ssk))
  681. netlink_overrun(sk);
  682. sock_put(sk);
  683. kfree_skb(skb);
  684. return -EAGAIN;
  685. }
  686. __set_current_state(TASK_INTERRUPTIBLE);
  687. add_wait_queue(&nlk->wait, &wait);
  688. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  689. test_bit(0, &nlk->state)) &&
  690. !sock_flag(sk, SOCK_DEAD))
  691. *timeo = schedule_timeout(*timeo);
  692. __set_current_state(TASK_RUNNING);
  693. remove_wait_queue(&nlk->wait, &wait);
  694. sock_put(sk);
  695. if (signal_pending(current)) {
  696. kfree_skb(skb);
  697. return sock_intr_errno(*timeo);
  698. }
  699. return 1;
  700. }
  701. skb_set_owner_r(skb, sk);
  702. return 0;
  703. }
  704. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  705. {
  706. int len = skb->len;
  707. skb_queue_tail(&sk->sk_receive_queue, skb);
  708. sk->sk_data_ready(sk, len);
  709. return len;
  710. }
  711. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  712. {
  713. int len = __netlink_sendskb(sk, skb);
  714. sock_put(sk);
  715. return len;
  716. }
  717. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  718. {
  719. kfree_skb(skb);
  720. sock_put(sk);
  721. }
  722. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  723. {
  724. int delta;
  725. skb_orphan(skb);
  726. delta = skb->end - skb->tail;
  727. if (delta * 2 < skb->truesize)
  728. return skb;
  729. if (skb_shared(skb)) {
  730. struct sk_buff *nskb = skb_clone(skb, allocation);
  731. if (!nskb)
  732. return skb;
  733. consume_skb(skb);
  734. skb = nskb;
  735. }
  736. if (!pskb_expand_head(skb, 0, -delta, allocation))
  737. skb->truesize -= delta;
  738. return skb;
  739. }
  740. static void netlink_rcv_wake(struct sock *sk)
  741. {
  742. struct netlink_sock *nlk = nlk_sk(sk);
  743. if (skb_queue_empty(&sk->sk_receive_queue))
  744. clear_bit(0, &nlk->state);
  745. if (!test_bit(0, &nlk->state))
  746. wake_up_interruptible(&nlk->wait);
  747. }
  748. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb)
  749. {
  750. int ret;
  751. struct netlink_sock *nlk = nlk_sk(sk);
  752. ret = -ECONNREFUSED;
  753. if (nlk->netlink_rcv != NULL) {
  754. ret = skb->len;
  755. skb_set_owner_r(skb, sk);
  756. nlk->netlink_rcv(skb);
  757. consume_skb(skb);
  758. } else {
  759. kfree_skb(skb);
  760. }
  761. sock_put(sk);
  762. return ret;
  763. }
  764. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  765. u32 pid, int nonblock)
  766. {
  767. struct sock *sk;
  768. int err;
  769. long timeo;
  770. skb = netlink_trim(skb, gfp_any());
  771. timeo = sock_sndtimeo(ssk, nonblock);
  772. retry:
  773. sk = netlink_getsockbypid(ssk, pid);
  774. if (IS_ERR(sk)) {
  775. kfree_skb(skb);
  776. return PTR_ERR(sk);
  777. }
  778. if (netlink_is_kernel(sk))
  779. return netlink_unicast_kernel(sk, skb);
  780. if (sk_filter(sk, skb)) {
  781. err = skb->len;
  782. kfree_skb(skb);
  783. sock_put(sk);
  784. return err;
  785. }
  786. err = netlink_attachskb(sk, skb, &timeo, ssk);
  787. if (err == 1)
  788. goto retry;
  789. if (err)
  790. return err;
  791. return netlink_sendskb(sk, skb);
  792. }
  793. EXPORT_SYMBOL(netlink_unicast);
  794. int netlink_has_listeners(struct sock *sk, unsigned int group)
  795. {
  796. int res = 0;
  797. struct listeners *listeners;
  798. BUG_ON(!netlink_is_kernel(sk));
  799. rcu_read_lock();
  800. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  801. if (group - 1 < nl_table[sk->sk_protocol].groups)
  802. res = test_bit(group - 1, listeners->masks);
  803. rcu_read_unlock();
  804. return res;
  805. }
  806. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  807. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  808. {
  809. struct netlink_sock *nlk = nlk_sk(sk);
  810. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  811. !test_bit(0, &nlk->state)) {
  812. skb_set_owner_r(skb, sk);
  813. __netlink_sendskb(sk, skb);
  814. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  815. }
  816. return -1;
  817. }
  818. struct netlink_broadcast_data {
  819. struct sock *exclude_sk;
  820. struct net *net;
  821. u32 pid;
  822. u32 group;
  823. int failure;
  824. int delivery_failure;
  825. int congested;
  826. int delivered;
  827. gfp_t allocation;
  828. struct sk_buff *skb, *skb2;
  829. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  830. void *tx_data;
  831. };
  832. static int do_one_broadcast(struct sock *sk,
  833. struct netlink_broadcast_data *p)
  834. {
  835. struct netlink_sock *nlk = nlk_sk(sk);
  836. int val;
  837. if (p->exclude_sk == sk)
  838. goto out;
  839. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  840. !test_bit(p->group - 1, nlk->groups))
  841. goto out;
  842. if (!net_eq(sock_net(sk), p->net))
  843. goto out;
  844. if (p->failure) {
  845. netlink_overrun(sk);
  846. goto out;
  847. }
  848. sock_hold(sk);
  849. if (p->skb2 == NULL) {
  850. if (skb_shared(p->skb)) {
  851. p->skb2 = skb_clone(p->skb, p->allocation);
  852. } else {
  853. p->skb2 = skb_get(p->skb);
  854. /*
  855. * skb ownership may have been set when
  856. * delivered to a previous socket.
  857. */
  858. skb_orphan(p->skb2);
  859. }
  860. }
  861. if (p->skb2 == NULL) {
  862. netlink_overrun(sk);
  863. /* Clone failed. Notify ALL listeners. */
  864. p->failure = 1;
  865. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  866. p->delivery_failure = 1;
  867. } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  868. kfree_skb(p->skb2);
  869. p->skb2 = NULL;
  870. } else if (sk_filter(sk, p->skb2)) {
  871. kfree_skb(p->skb2);
  872. p->skb2 = NULL;
  873. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  874. netlink_overrun(sk);
  875. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  876. p->delivery_failure = 1;
  877. } else {
  878. p->congested |= val;
  879. p->delivered = 1;
  880. p->skb2 = NULL;
  881. }
  882. sock_put(sk);
  883. out:
  884. return 0;
  885. }
  886. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 pid,
  887. u32 group, gfp_t allocation,
  888. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  889. void *filter_data)
  890. {
  891. struct net *net = sock_net(ssk);
  892. struct netlink_broadcast_data info;
  893. struct hlist_node *node;
  894. struct sock *sk;
  895. skb = netlink_trim(skb, allocation);
  896. info.exclude_sk = ssk;
  897. info.net = net;
  898. info.pid = pid;
  899. info.group = group;
  900. info.failure = 0;
  901. info.delivery_failure = 0;
  902. info.congested = 0;
  903. info.delivered = 0;
  904. info.allocation = allocation;
  905. info.skb = skb;
  906. info.skb2 = NULL;
  907. info.tx_filter = filter;
  908. info.tx_data = filter_data;
  909. /* While we sleep in clone, do not allow to change socket list */
  910. netlink_lock_table();
  911. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  912. do_one_broadcast(sk, &info);
  913. consume_skb(skb);
  914. netlink_unlock_table();
  915. if (info.delivery_failure) {
  916. kfree_skb(info.skb2);
  917. return -ENOBUFS;
  918. }
  919. consume_skb(info.skb2);
  920. if (info.delivered) {
  921. if (info.congested && (allocation & __GFP_WAIT))
  922. yield();
  923. return 0;
  924. }
  925. return -ESRCH;
  926. }
  927. EXPORT_SYMBOL(netlink_broadcast_filtered);
  928. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
  929. u32 group, gfp_t allocation)
  930. {
  931. return netlink_broadcast_filtered(ssk, skb, pid, group, allocation,
  932. NULL, NULL);
  933. }
  934. EXPORT_SYMBOL(netlink_broadcast);
  935. struct netlink_set_err_data {
  936. struct sock *exclude_sk;
  937. u32 pid;
  938. u32 group;
  939. int code;
  940. };
  941. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  942. {
  943. struct netlink_sock *nlk = nlk_sk(sk);
  944. int ret = 0;
  945. if (sk == p->exclude_sk)
  946. goto out;
  947. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  948. goto out;
  949. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  950. !test_bit(p->group - 1, nlk->groups))
  951. goto out;
  952. if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
  953. ret = 1;
  954. goto out;
  955. }
  956. sk->sk_err = p->code;
  957. sk->sk_error_report(sk);
  958. out:
  959. return ret;
  960. }
  961. /**
  962. * netlink_set_err - report error to broadcast listeners
  963. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  964. * @pid: the PID of a process that we want to skip (if any)
  965. * @groups: the broadcast group that will notice the error
  966. * @code: error code, must be negative (as usual in kernelspace)
  967. *
  968. * This function returns the number of broadcast listeners that have set the
  969. * NETLINK_RECV_NO_ENOBUFS socket option.
  970. */
  971. int netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
  972. {
  973. struct netlink_set_err_data info;
  974. struct hlist_node *node;
  975. struct sock *sk;
  976. int ret = 0;
  977. info.exclude_sk = ssk;
  978. info.pid = pid;
  979. info.group = group;
  980. /* sk->sk_err wants a positive error value */
  981. info.code = -code;
  982. read_lock(&nl_table_lock);
  983. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  984. ret += do_one_set_err(sk, &info);
  985. read_unlock(&nl_table_lock);
  986. return ret;
  987. }
  988. EXPORT_SYMBOL(netlink_set_err);
  989. /* must be called with netlink table grabbed */
  990. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  991. unsigned int group,
  992. int is_new)
  993. {
  994. int old, new = !!is_new, subscriptions;
  995. old = test_bit(group - 1, nlk->groups);
  996. subscriptions = nlk->subscriptions - old + new;
  997. if (new)
  998. __set_bit(group - 1, nlk->groups);
  999. else
  1000. __clear_bit(group - 1, nlk->groups);
  1001. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1002. netlink_update_listeners(&nlk->sk);
  1003. }
  1004. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1005. char __user *optval, unsigned int optlen)
  1006. {
  1007. struct sock *sk = sock->sk;
  1008. struct netlink_sock *nlk = nlk_sk(sk);
  1009. unsigned int val = 0;
  1010. int err;
  1011. if (level != SOL_NETLINK)
  1012. return -ENOPROTOOPT;
  1013. if (optlen >= sizeof(int) &&
  1014. get_user(val, (unsigned int __user *)optval))
  1015. return -EFAULT;
  1016. switch (optname) {
  1017. case NETLINK_PKTINFO:
  1018. if (val)
  1019. nlk->flags |= NETLINK_RECV_PKTINFO;
  1020. else
  1021. nlk->flags &= ~NETLINK_RECV_PKTINFO;
  1022. err = 0;
  1023. break;
  1024. case NETLINK_ADD_MEMBERSHIP:
  1025. case NETLINK_DROP_MEMBERSHIP: {
  1026. if (!netlink_capable(sock, NL_NONROOT_RECV))
  1027. return -EPERM;
  1028. err = netlink_realloc_groups(sk);
  1029. if (err)
  1030. return err;
  1031. if (!val || val - 1 >= nlk->ngroups)
  1032. return -EINVAL;
  1033. netlink_table_grab();
  1034. netlink_update_socket_mc(nlk, val,
  1035. optname == NETLINK_ADD_MEMBERSHIP);
  1036. netlink_table_ungrab();
  1037. err = 0;
  1038. break;
  1039. }
  1040. case NETLINK_BROADCAST_ERROR:
  1041. if (val)
  1042. nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
  1043. else
  1044. nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
  1045. err = 0;
  1046. break;
  1047. case NETLINK_NO_ENOBUFS:
  1048. if (val) {
  1049. nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
  1050. clear_bit(0, &nlk->state);
  1051. wake_up_interruptible(&nlk->wait);
  1052. } else {
  1053. nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
  1054. }
  1055. err = 0;
  1056. break;
  1057. default:
  1058. err = -ENOPROTOOPT;
  1059. }
  1060. return err;
  1061. }
  1062. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1063. char __user *optval, int __user *optlen)
  1064. {
  1065. struct sock *sk = sock->sk;
  1066. struct netlink_sock *nlk = nlk_sk(sk);
  1067. int len, val, err;
  1068. if (level != SOL_NETLINK)
  1069. return -ENOPROTOOPT;
  1070. if (get_user(len, optlen))
  1071. return -EFAULT;
  1072. if (len < 0)
  1073. return -EINVAL;
  1074. switch (optname) {
  1075. case NETLINK_PKTINFO:
  1076. if (len < sizeof(int))
  1077. return -EINVAL;
  1078. len = sizeof(int);
  1079. val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
  1080. if (put_user(len, optlen) ||
  1081. put_user(val, optval))
  1082. return -EFAULT;
  1083. err = 0;
  1084. break;
  1085. case NETLINK_BROADCAST_ERROR:
  1086. if (len < sizeof(int))
  1087. return -EINVAL;
  1088. len = sizeof(int);
  1089. val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
  1090. if (put_user(len, optlen) ||
  1091. put_user(val, optval))
  1092. return -EFAULT;
  1093. err = 0;
  1094. break;
  1095. case NETLINK_NO_ENOBUFS:
  1096. if (len < sizeof(int))
  1097. return -EINVAL;
  1098. len = sizeof(int);
  1099. val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
  1100. if (put_user(len, optlen) ||
  1101. put_user(val, optval))
  1102. return -EFAULT;
  1103. err = 0;
  1104. break;
  1105. default:
  1106. err = -ENOPROTOOPT;
  1107. }
  1108. return err;
  1109. }
  1110. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1111. {
  1112. struct nl_pktinfo info;
  1113. info.group = NETLINK_CB(skb).dst_group;
  1114. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1115. }
  1116. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  1117. struct msghdr *msg, size_t len)
  1118. {
  1119. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1120. struct sock *sk = sock->sk;
  1121. struct netlink_sock *nlk = nlk_sk(sk);
  1122. struct sockaddr_nl *addr = msg->msg_name;
  1123. u32 dst_pid;
  1124. u32 dst_group;
  1125. struct sk_buff *skb;
  1126. int err;
  1127. struct scm_cookie scm;
  1128. if (msg->msg_flags&MSG_OOB)
  1129. return -EOPNOTSUPP;
  1130. if (NULL == siocb->scm)
  1131. siocb->scm = &scm;
  1132. err = scm_send(sock, msg, siocb->scm);
  1133. if (err < 0)
  1134. return err;
  1135. if (msg->msg_namelen) {
  1136. err = -EINVAL;
  1137. if (addr->nl_family != AF_NETLINK)
  1138. goto out;
  1139. dst_pid = addr->nl_pid;
  1140. dst_group = ffs(addr->nl_groups);
  1141. err = -EPERM;
  1142. if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
  1143. goto out;
  1144. } else {
  1145. dst_pid = nlk->dst_pid;
  1146. dst_group = nlk->dst_group;
  1147. }
  1148. if (!nlk->pid) {
  1149. err = netlink_autobind(sock);
  1150. if (err)
  1151. goto out;
  1152. }
  1153. err = -EMSGSIZE;
  1154. if (len > sk->sk_sndbuf - 32)
  1155. goto out;
  1156. err = -ENOBUFS;
  1157. skb = alloc_skb(len, GFP_KERNEL);
  1158. if (skb == NULL)
  1159. goto out;
  1160. NETLINK_CB(skb).pid = nlk->pid;
  1161. NETLINK_CB(skb).dst_group = dst_group;
  1162. memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
  1163. err = -EFAULT;
  1164. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  1165. kfree_skb(skb);
  1166. goto out;
  1167. }
  1168. err = security_netlink_send(sk, skb);
  1169. if (err) {
  1170. kfree_skb(skb);
  1171. goto out;
  1172. }
  1173. if (dst_group) {
  1174. atomic_inc(&skb->users);
  1175. netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
  1176. }
  1177. err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
  1178. out:
  1179. scm_destroy(siocb->scm);
  1180. return err;
  1181. }
  1182. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  1183. struct msghdr *msg, size_t len,
  1184. int flags)
  1185. {
  1186. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1187. struct scm_cookie scm;
  1188. struct sock *sk = sock->sk;
  1189. struct netlink_sock *nlk = nlk_sk(sk);
  1190. int noblock = flags&MSG_DONTWAIT;
  1191. size_t copied;
  1192. struct sk_buff *skb, *data_skb;
  1193. int err, ret;
  1194. if (flags&MSG_OOB)
  1195. return -EOPNOTSUPP;
  1196. copied = 0;
  1197. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1198. if (skb == NULL)
  1199. goto out;
  1200. data_skb = skb;
  1201. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1202. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1203. /*
  1204. * If this skb has a frag_list, then here that means that we
  1205. * will have to use the frag_list skb's data for compat tasks
  1206. * and the regular skb's data for normal (non-compat) tasks.
  1207. *
  1208. * If we need to send the compat skb, assign it to the
  1209. * 'data_skb' variable so that it will be used below for data
  1210. * copying. We keep 'skb' for everything else, including
  1211. * freeing both later.
  1212. */
  1213. if (flags & MSG_CMSG_COMPAT)
  1214. data_skb = skb_shinfo(skb)->frag_list;
  1215. }
  1216. #endif
  1217. msg->msg_namelen = 0;
  1218. copied = data_skb->len;
  1219. if (len < copied) {
  1220. msg->msg_flags |= MSG_TRUNC;
  1221. copied = len;
  1222. }
  1223. skb_reset_transport_header(data_skb);
  1224. err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
  1225. if (msg->msg_name) {
  1226. struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
  1227. addr->nl_family = AF_NETLINK;
  1228. addr->nl_pad = 0;
  1229. addr->nl_pid = NETLINK_CB(skb).pid;
  1230. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1231. msg->msg_namelen = sizeof(*addr);
  1232. }
  1233. if (nlk->flags & NETLINK_RECV_PKTINFO)
  1234. netlink_cmsg_recv_pktinfo(msg, skb);
  1235. if (NULL == siocb->scm) {
  1236. memset(&scm, 0, sizeof(scm));
  1237. siocb->scm = &scm;
  1238. }
  1239. siocb->scm->creds = *NETLINK_CREDS(skb);
  1240. if (flags & MSG_TRUNC)
  1241. copied = data_skb->len;
  1242. skb_free_datagram(sk, skb);
  1243. if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1244. ret = netlink_dump(sk);
  1245. if (ret) {
  1246. sk->sk_err = ret;
  1247. sk->sk_error_report(sk);
  1248. }
  1249. }
  1250. scm_recv(sock, msg, siocb->scm, flags);
  1251. out:
  1252. netlink_rcv_wake(sk);
  1253. return err ? : copied;
  1254. }
  1255. static void netlink_data_ready(struct sock *sk, int len)
  1256. {
  1257. BUG();
  1258. }
  1259. /*
  1260. * We export these functions to other modules. They provide a
  1261. * complete set of kernel non-blocking support for message
  1262. * queueing.
  1263. */
  1264. struct sock *
  1265. netlink_kernel_create(struct net *net, int unit, unsigned int groups,
  1266. void (*input)(struct sk_buff *skb),
  1267. struct mutex *cb_mutex, struct module *module)
  1268. {
  1269. struct socket *sock;
  1270. struct sock *sk;
  1271. struct netlink_sock *nlk;
  1272. struct listeners *listeners = NULL;
  1273. BUG_ON(!nl_table);
  1274. if (unit < 0 || unit >= MAX_LINKS)
  1275. return NULL;
  1276. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1277. return NULL;
  1278. /*
  1279. * We have to just have a reference on the net from sk, but don't
  1280. * get_net it. Besides, we cannot get and then put the net here.
  1281. * So we create one inside init_net and the move it to net.
  1282. */
  1283. if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
  1284. goto out_sock_release_nosk;
  1285. sk = sock->sk;
  1286. sk_change_net(sk, net);
  1287. if (groups < 32)
  1288. groups = 32;
  1289. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1290. if (!listeners)
  1291. goto out_sock_release;
  1292. sk->sk_data_ready = netlink_data_ready;
  1293. if (input)
  1294. nlk_sk(sk)->netlink_rcv = input;
  1295. if (netlink_insert(sk, net, 0))
  1296. goto out_sock_release;
  1297. nlk = nlk_sk(sk);
  1298. nlk->flags |= NETLINK_KERNEL_SOCKET;
  1299. netlink_table_grab();
  1300. if (!nl_table[unit].registered) {
  1301. nl_table[unit].groups = groups;
  1302. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1303. nl_table[unit].cb_mutex = cb_mutex;
  1304. nl_table[unit].module = module;
  1305. nl_table[unit].registered = 1;
  1306. } else {
  1307. kfree(listeners);
  1308. nl_table[unit].registered++;
  1309. }
  1310. netlink_table_ungrab();
  1311. return sk;
  1312. out_sock_release:
  1313. kfree(listeners);
  1314. netlink_kernel_release(sk);
  1315. return NULL;
  1316. out_sock_release_nosk:
  1317. sock_release(sock);
  1318. return NULL;
  1319. }
  1320. EXPORT_SYMBOL(netlink_kernel_create);
  1321. void
  1322. netlink_kernel_release(struct sock *sk)
  1323. {
  1324. sk_release_kernel(sk);
  1325. }
  1326. EXPORT_SYMBOL(netlink_kernel_release);
  1327. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1328. {
  1329. struct listeners *new, *old;
  1330. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1331. if (groups < 32)
  1332. groups = 32;
  1333. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1334. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1335. if (!new)
  1336. return -ENOMEM;
  1337. old = rcu_dereference_protected(tbl->listeners, 1);
  1338. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1339. rcu_assign_pointer(tbl->listeners, new);
  1340. kfree_rcu(old, rcu);
  1341. }
  1342. tbl->groups = groups;
  1343. return 0;
  1344. }
  1345. /**
  1346. * netlink_change_ngroups - change number of multicast groups
  1347. *
  1348. * This changes the number of multicast groups that are available
  1349. * on a certain netlink family. Note that it is not possible to
  1350. * change the number of groups to below 32. Also note that it does
  1351. * not implicitly call netlink_clear_multicast_users() when the
  1352. * number of groups is reduced.
  1353. *
  1354. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1355. * @groups: The new number of groups.
  1356. */
  1357. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1358. {
  1359. int err;
  1360. netlink_table_grab();
  1361. err = __netlink_change_ngroups(sk, groups);
  1362. netlink_table_ungrab();
  1363. return err;
  1364. }
  1365. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1366. {
  1367. struct sock *sk;
  1368. struct hlist_node *node;
  1369. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1370. sk_for_each_bound(sk, node, &tbl->mc_list)
  1371. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1372. }
  1373. /**
  1374. * netlink_clear_multicast_users - kick off multicast listeners
  1375. *
  1376. * This function removes all listeners from the given group.
  1377. * @ksk: The kernel netlink socket, as returned by
  1378. * netlink_kernel_create().
  1379. * @group: The multicast group to clear.
  1380. */
  1381. void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1382. {
  1383. netlink_table_grab();
  1384. __netlink_clear_multicast_users(ksk, group);
  1385. netlink_table_ungrab();
  1386. }
  1387. void netlink_set_nonroot(int protocol, unsigned int flags)
  1388. {
  1389. if ((unsigned int)protocol < MAX_LINKS)
  1390. nl_table[protocol].nl_nonroot = flags;
  1391. }
  1392. EXPORT_SYMBOL(netlink_set_nonroot);
  1393. struct nlmsghdr *
  1394. __nlmsg_put(struct sk_buff *skb, u32 pid, u32 seq, int type, int len, int flags)
  1395. {
  1396. struct nlmsghdr *nlh;
  1397. int size = NLMSG_LENGTH(len);
  1398. nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
  1399. nlh->nlmsg_type = type;
  1400. nlh->nlmsg_len = size;
  1401. nlh->nlmsg_flags = flags;
  1402. nlh->nlmsg_pid = pid;
  1403. nlh->nlmsg_seq = seq;
  1404. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1405. memset(NLMSG_DATA(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1406. return nlh;
  1407. }
  1408. EXPORT_SYMBOL(__nlmsg_put);
  1409. /*
  1410. * It looks a bit ugly.
  1411. * It would be better to create kernel thread.
  1412. */
  1413. static int netlink_dump(struct sock *sk)
  1414. {
  1415. struct netlink_sock *nlk = nlk_sk(sk);
  1416. struct netlink_callback *cb;
  1417. struct sk_buff *skb = NULL;
  1418. struct nlmsghdr *nlh;
  1419. int len, err = -ENOBUFS;
  1420. int alloc_size;
  1421. mutex_lock(nlk->cb_mutex);
  1422. cb = nlk->cb;
  1423. if (cb == NULL) {
  1424. err = -EINVAL;
  1425. goto errout_skb;
  1426. }
  1427. alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1428. skb = sock_rmalloc(sk, alloc_size, 0, GFP_KERNEL);
  1429. if (!skb)
  1430. goto errout_skb;
  1431. len = cb->dump(skb, cb);
  1432. if (len > 0) {
  1433. mutex_unlock(nlk->cb_mutex);
  1434. if (sk_filter(sk, skb))
  1435. kfree_skb(skb);
  1436. else
  1437. __netlink_sendskb(sk, skb);
  1438. return 0;
  1439. }
  1440. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
  1441. if (!nlh)
  1442. goto errout_skb;
  1443. nl_dump_check_consistent(cb, nlh);
  1444. memcpy(nlmsg_data(nlh), &len, sizeof(len));
  1445. if (sk_filter(sk, skb))
  1446. kfree_skb(skb);
  1447. else
  1448. __netlink_sendskb(sk, skb);
  1449. if (cb->done)
  1450. cb->done(cb);
  1451. nlk->cb = NULL;
  1452. mutex_unlock(nlk->cb_mutex);
  1453. netlink_consume_callback(cb);
  1454. return 0;
  1455. errout_skb:
  1456. mutex_unlock(nlk->cb_mutex);
  1457. kfree_skb(skb);
  1458. return err;
  1459. }
  1460. int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1461. const struct nlmsghdr *nlh,
  1462. struct netlink_dump_control *control)
  1463. {
  1464. struct netlink_callback *cb;
  1465. struct sock *sk;
  1466. struct netlink_sock *nlk;
  1467. int ret;
  1468. cb = kzalloc(sizeof(*cb), GFP_KERNEL);
  1469. if (cb == NULL)
  1470. return -ENOBUFS;
  1471. cb->dump = control->dump;
  1472. cb->done = control->done;
  1473. cb->nlh = nlh;
  1474. cb->data = control->data;
  1475. cb->min_dump_alloc = control->min_dump_alloc;
  1476. atomic_inc(&skb->users);
  1477. cb->skb = skb;
  1478. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).pid);
  1479. if (sk == NULL) {
  1480. netlink_destroy_callback(cb);
  1481. return -ECONNREFUSED;
  1482. }
  1483. nlk = nlk_sk(sk);
  1484. /* A dump is in progress... */
  1485. mutex_lock(nlk->cb_mutex);
  1486. if (nlk->cb) {
  1487. mutex_unlock(nlk->cb_mutex);
  1488. netlink_destroy_callback(cb);
  1489. sock_put(sk);
  1490. return -EBUSY;
  1491. }
  1492. nlk->cb = cb;
  1493. mutex_unlock(nlk->cb_mutex);
  1494. ret = netlink_dump(sk);
  1495. sock_put(sk);
  1496. if (ret)
  1497. return ret;
  1498. /* We successfully started a dump, by returning -EINTR we
  1499. * signal not to send ACK even if it was requested.
  1500. */
  1501. return -EINTR;
  1502. }
  1503. EXPORT_SYMBOL(netlink_dump_start);
  1504. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  1505. {
  1506. struct sk_buff *skb;
  1507. struct nlmsghdr *rep;
  1508. struct nlmsgerr *errmsg;
  1509. size_t payload = sizeof(*errmsg);
  1510. /* error messages get the original request appened */
  1511. if (err)
  1512. payload += nlmsg_len(nlh);
  1513. skb = nlmsg_new(payload, GFP_KERNEL);
  1514. if (!skb) {
  1515. struct sock *sk;
  1516. sk = netlink_lookup(sock_net(in_skb->sk),
  1517. in_skb->sk->sk_protocol,
  1518. NETLINK_CB(in_skb).pid);
  1519. if (sk) {
  1520. sk->sk_err = ENOBUFS;
  1521. sk->sk_error_report(sk);
  1522. sock_put(sk);
  1523. }
  1524. return;
  1525. }
  1526. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
  1527. NLMSG_ERROR, payload, 0);
  1528. errmsg = nlmsg_data(rep);
  1529. errmsg->error = err;
  1530. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
  1531. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
  1532. }
  1533. EXPORT_SYMBOL(netlink_ack);
  1534. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  1535. struct nlmsghdr *))
  1536. {
  1537. struct nlmsghdr *nlh;
  1538. int err;
  1539. while (skb->len >= nlmsg_total_size(0)) {
  1540. int msglen;
  1541. nlh = nlmsg_hdr(skb);
  1542. err = 0;
  1543. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  1544. return 0;
  1545. /* Only requests are handled by the kernel */
  1546. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  1547. goto ack;
  1548. /* Skip control messages */
  1549. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  1550. goto ack;
  1551. err = cb(skb, nlh);
  1552. if (err == -EINTR)
  1553. goto skip;
  1554. ack:
  1555. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  1556. netlink_ack(skb, nlh, err);
  1557. skip:
  1558. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  1559. if (msglen > skb->len)
  1560. msglen = skb->len;
  1561. skb_pull(skb, msglen);
  1562. }
  1563. return 0;
  1564. }
  1565. EXPORT_SYMBOL(netlink_rcv_skb);
  1566. /**
  1567. * nlmsg_notify - send a notification netlink message
  1568. * @sk: netlink socket to use
  1569. * @skb: notification message
  1570. * @pid: destination netlink pid for reports or 0
  1571. * @group: destination multicast group or 0
  1572. * @report: 1 to report back, 0 to disable
  1573. * @flags: allocation flags
  1574. */
  1575. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 pid,
  1576. unsigned int group, int report, gfp_t flags)
  1577. {
  1578. int err = 0;
  1579. if (group) {
  1580. int exclude_pid = 0;
  1581. if (report) {
  1582. atomic_inc(&skb->users);
  1583. exclude_pid = pid;
  1584. }
  1585. /* errors reported via destination sk->sk_err, but propagate
  1586. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  1587. err = nlmsg_multicast(sk, skb, exclude_pid, group, flags);
  1588. }
  1589. if (report) {
  1590. int err2;
  1591. err2 = nlmsg_unicast(sk, skb, pid);
  1592. if (!err || err == -ESRCH)
  1593. err = err2;
  1594. }
  1595. return err;
  1596. }
  1597. EXPORT_SYMBOL(nlmsg_notify);
  1598. #ifdef CONFIG_PROC_FS
  1599. struct nl_seq_iter {
  1600. struct seq_net_private p;
  1601. int link;
  1602. int hash_idx;
  1603. };
  1604. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  1605. {
  1606. struct nl_seq_iter *iter = seq->private;
  1607. int i, j;
  1608. struct sock *s;
  1609. struct hlist_node *node;
  1610. loff_t off = 0;
  1611. for (i = 0; i < MAX_LINKS; i++) {
  1612. struct nl_pid_hash *hash = &nl_table[i].hash;
  1613. for (j = 0; j <= hash->mask; j++) {
  1614. sk_for_each(s, node, &hash->table[j]) {
  1615. if (sock_net(s) != seq_file_net(seq))
  1616. continue;
  1617. if (off == pos) {
  1618. iter->link = i;
  1619. iter->hash_idx = j;
  1620. return s;
  1621. }
  1622. ++off;
  1623. }
  1624. }
  1625. }
  1626. return NULL;
  1627. }
  1628. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  1629. __acquires(nl_table_lock)
  1630. {
  1631. read_lock(&nl_table_lock);
  1632. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  1633. }
  1634. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1635. {
  1636. struct sock *s;
  1637. struct nl_seq_iter *iter;
  1638. int i, j;
  1639. ++*pos;
  1640. if (v == SEQ_START_TOKEN)
  1641. return netlink_seq_socket_idx(seq, 0);
  1642. iter = seq->private;
  1643. s = v;
  1644. do {
  1645. s = sk_next(s);
  1646. } while (s && sock_net(s) != seq_file_net(seq));
  1647. if (s)
  1648. return s;
  1649. i = iter->link;
  1650. j = iter->hash_idx + 1;
  1651. do {
  1652. struct nl_pid_hash *hash = &nl_table[i].hash;
  1653. for (; j <= hash->mask; j++) {
  1654. s = sk_head(&hash->table[j]);
  1655. while (s && sock_net(s) != seq_file_net(seq))
  1656. s = sk_next(s);
  1657. if (s) {
  1658. iter->link = i;
  1659. iter->hash_idx = j;
  1660. return s;
  1661. }
  1662. }
  1663. j = 0;
  1664. } while (++i < MAX_LINKS);
  1665. return NULL;
  1666. }
  1667. static void netlink_seq_stop(struct seq_file *seq, void *v)
  1668. __releases(nl_table_lock)
  1669. {
  1670. read_unlock(&nl_table_lock);
  1671. }
  1672. static int netlink_seq_show(struct seq_file *seq, void *v)
  1673. {
  1674. if (v == SEQ_START_TOKEN) {
  1675. seq_puts(seq,
  1676. "sk Eth Pid Groups "
  1677. "Rmem Wmem Dump Locks Drops Inode\n");
  1678. } else {
  1679. struct sock *s = v;
  1680. struct netlink_sock *nlk = nlk_sk(s);
  1681. seq_printf(seq, "%pK %-3d %-6d %08x %-8d %-8d %pK %-8d %-8d %-8lu\n",
  1682. s,
  1683. s->sk_protocol,
  1684. nlk->pid,
  1685. nlk->groups ? (u32)nlk->groups[0] : 0,
  1686. sk_rmem_alloc_get(s),
  1687. sk_wmem_alloc_get(s),
  1688. nlk->cb,
  1689. atomic_read(&s->sk_refcnt),
  1690. atomic_read(&s->sk_drops),
  1691. sock_i_ino(s)
  1692. );
  1693. }
  1694. return 0;
  1695. }
  1696. static const struct seq_operations netlink_seq_ops = {
  1697. .start = netlink_seq_start,
  1698. .next = netlink_seq_next,
  1699. .stop = netlink_seq_stop,
  1700. .show = netlink_seq_show,
  1701. };
  1702. static int netlink_seq_open(struct inode *inode, struct file *file)
  1703. {
  1704. return seq_open_net(inode, file, &netlink_seq_ops,
  1705. sizeof(struct nl_seq_iter));
  1706. }
  1707. static const struct file_operations netlink_seq_fops = {
  1708. .owner = THIS_MODULE,
  1709. .open = netlink_seq_open,
  1710. .read = seq_read,
  1711. .llseek = seq_lseek,
  1712. .release = seq_release_net,
  1713. };
  1714. #endif
  1715. int netlink_register_notifier(struct notifier_block *nb)
  1716. {
  1717. return atomic_notifier_chain_register(&netlink_chain, nb);
  1718. }
  1719. EXPORT_SYMBOL(netlink_register_notifier);
  1720. int netlink_unregister_notifier(struct notifier_block *nb)
  1721. {
  1722. return atomic_notifier_chain_unregister(&netlink_chain, nb);
  1723. }
  1724. EXPORT_SYMBOL(netlink_unregister_notifier);
  1725. static const struct proto_ops netlink_ops = {
  1726. .family = PF_NETLINK,
  1727. .owner = THIS_MODULE,
  1728. .release = netlink_release,
  1729. .bind = netlink_bind,
  1730. .connect = netlink_connect,
  1731. .socketpair = sock_no_socketpair,
  1732. .accept = sock_no_accept,
  1733. .getname = netlink_getname,
  1734. .poll = datagram_poll,
  1735. .ioctl = sock_no_ioctl,
  1736. .listen = sock_no_listen,
  1737. .shutdown = sock_no_shutdown,
  1738. .setsockopt = netlink_setsockopt,
  1739. .getsockopt = netlink_getsockopt,
  1740. .sendmsg = netlink_sendmsg,
  1741. .recvmsg = netlink_recvmsg,
  1742. .mmap = sock_no_mmap,
  1743. .sendpage = sock_no_sendpage,
  1744. };
  1745. static const struct net_proto_family netlink_family_ops = {
  1746. .family = PF_NETLINK,
  1747. .create = netlink_create,
  1748. .owner = THIS_MODULE, /* for consistency 8) */
  1749. };
  1750. static int __net_init netlink_net_init(struct net *net)
  1751. {
  1752. #ifdef CONFIG_PROC_FS
  1753. if (!proc_net_fops_create(net, "netlink", 0, &netlink_seq_fops))
  1754. return -ENOMEM;
  1755. #endif
  1756. return 0;
  1757. }
  1758. static void __net_exit netlink_net_exit(struct net *net)
  1759. {
  1760. #ifdef CONFIG_PROC_FS
  1761. proc_net_remove(net, "netlink");
  1762. #endif
  1763. }
  1764. static void __init netlink_add_usersock_entry(void)
  1765. {
  1766. struct listeners *listeners;
  1767. int groups = 32;
  1768. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1769. if (!listeners)
  1770. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  1771. netlink_table_grab();
  1772. nl_table[NETLINK_USERSOCK].groups = groups;
  1773. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  1774. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  1775. nl_table[NETLINK_USERSOCK].registered = 1;
  1776. netlink_table_ungrab();
  1777. }
  1778. static struct pernet_operations __net_initdata netlink_net_ops = {
  1779. .init = netlink_net_init,
  1780. .exit = netlink_net_exit,
  1781. };
  1782. static int __init netlink_proto_init(void)
  1783. {
  1784. struct sk_buff *dummy_skb;
  1785. int i;
  1786. unsigned long limit;
  1787. unsigned int order;
  1788. int err = proto_register(&netlink_proto, 0);
  1789. if (err != 0)
  1790. goto out;
  1791. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb));
  1792. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  1793. if (!nl_table)
  1794. goto panic;
  1795. if (totalram_pages >= (128 * 1024))
  1796. limit = totalram_pages >> (21 - PAGE_SHIFT);
  1797. else
  1798. limit = totalram_pages >> (23 - PAGE_SHIFT);
  1799. order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
  1800. limit = (1UL << order) / sizeof(struct hlist_head);
  1801. order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
  1802. for (i = 0; i < MAX_LINKS; i++) {
  1803. struct nl_pid_hash *hash = &nl_table[i].hash;
  1804. hash->table = nl_pid_hash_zalloc(1 * sizeof(*hash->table));
  1805. if (!hash->table) {
  1806. while (i-- > 0)
  1807. nl_pid_hash_free(nl_table[i].hash.table,
  1808. 1 * sizeof(*hash->table));
  1809. kfree(nl_table);
  1810. goto panic;
  1811. }
  1812. hash->max_shift = order;
  1813. hash->shift = 0;
  1814. hash->mask = 0;
  1815. hash->rehash_time = jiffies;
  1816. }
  1817. netlink_add_usersock_entry();
  1818. sock_register(&netlink_family_ops);
  1819. register_pernet_subsys(&netlink_net_ops);
  1820. /* The netlink device handler may be needed early. */
  1821. rtnetlink_init();
  1822. out:
  1823. return err;
  1824. panic:
  1825. panic("netlink_init: Cannot allocate nl_table\n");
  1826. }
  1827. core_initcall(netlink_proto_init);