messenger.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. /*
  36. * When skipping (ignoring) a block of input we read it into a "skip
  37. * buffer," which is this many bytes in size.
  38. */
  39. #define SKIP_BUF_SIZE 1024
  40. static void queue_con(struct ceph_connection *con);
  41. static void con_work(struct work_struct *);
  42. static void ceph_fault(struct ceph_connection *con);
  43. /*
  44. * Nicely render a sockaddr as a string. An array of formatted
  45. * strings is used, to approximate reentrancy.
  46. */
  47. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  48. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  49. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  50. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  51. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  52. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  53. static struct page *zero_page; /* used in certain error cases */
  54. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  55. {
  56. int i;
  57. char *s;
  58. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  59. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  60. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  61. s = addr_str[i];
  62. switch (ss->ss_family) {
  63. case AF_INET:
  64. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  65. ntohs(in4->sin_port));
  66. break;
  67. case AF_INET6:
  68. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  69. ntohs(in6->sin6_port));
  70. break;
  71. default:
  72. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  73. ss->ss_family);
  74. }
  75. return s;
  76. }
  77. EXPORT_SYMBOL(ceph_pr_addr);
  78. static void encode_my_addr(struct ceph_messenger *msgr)
  79. {
  80. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  81. ceph_encode_addr(&msgr->my_enc_addr);
  82. }
  83. /*
  84. * work queue for all reading and writing to/from the socket.
  85. */
  86. static struct workqueue_struct *ceph_msgr_wq;
  87. void _ceph_msgr_exit(void)
  88. {
  89. if (ceph_msgr_wq) {
  90. destroy_workqueue(ceph_msgr_wq);
  91. ceph_msgr_wq = NULL;
  92. }
  93. BUG_ON(zero_page == NULL);
  94. kunmap(zero_page);
  95. page_cache_release(zero_page);
  96. zero_page = NULL;
  97. }
  98. int ceph_msgr_init(void)
  99. {
  100. BUG_ON(zero_page != NULL);
  101. zero_page = ZERO_PAGE(0);
  102. page_cache_get(zero_page);
  103. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  104. if (ceph_msgr_wq)
  105. return 0;
  106. pr_err("msgr_init failed to create workqueue\n");
  107. _ceph_msgr_exit();
  108. return -ENOMEM;
  109. }
  110. EXPORT_SYMBOL(ceph_msgr_init);
  111. void ceph_msgr_exit(void)
  112. {
  113. BUG_ON(ceph_msgr_wq == NULL);
  114. _ceph_msgr_exit();
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_exit);
  117. void ceph_msgr_flush(void)
  118. {
  119. flush_workqueue(ceph_msgr_wq);
  120. }
  121. EXPORT_SYMBOL(ceph_msgr_flush);
  122. /*
  123. * socket callback functions
  124. */
  125. /* data available on socket, or listen socket received a connect */
  126. static void ceph_data_ready(struct sock *sk, int count_unused)
  127. {
  128. struct ceph_connection *con = sk->sk_user_data;
  129. if (sk->sk_state != TCP_CLOSE_WAIT) {
  130. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  131. con, con->state);
  132. queue_con(con);
  133. }
  134. }
  135. /* socket has buffer space for writing */
  136. static void ceph_write_space(struct sock *sk)
  137. {
  138. struct ceph_connection *con = sk->sk_user_data;
  139. /* only queue to workqueue if there is data we want to write,
  140. * and there is sufficient space in the socket buffer to accept
  141. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  142. * doesn't get called again until try_write() fills the socket
  143. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  144. * and net/core/stream.c:sk_stream_write_space().
  145. */
  146. if (test_bit(WRITE_PENDING, &con->state)) {
  147. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  148. dout("ceph_write_space %p queueing write work\n", con);
  149. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  150. queue_con(con);
  151. }
  152. } else {
  153. dout("ceph_write_space %p nothing to write\n", con);
  154. }
  155. }
  156. /* socket's state has changed */
  157. static void ceph_state_change(struct sock *sk)
  158. {
  159. struct ceph_connection *con = sk->sk_user_data;
  160. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  161. con, con->state, sk->sk_state);
  162. if (test_bit(CLOSED, &con->state))
  163. return;
  164. switch (sk->sk_state) {
  165. case TCP_CLOSE:
  166. dout("ceph_state_change TCP_CLOSE\n");
  167. case TCP_CLOSE_WAIT:
  168. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  169. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  170. if (test_bit(CONNECTING, &con->state))
  171. con->error_msg = "connection failed";
  172. else
  173. con->error_msg = "socket closed";
  174. queue_con(con);
  175. }
  176. break;
  177. case TCP_ESTABLISHED:
  178. dout("ceph_state_change TCP_ESTABLISHED\n");
  179. queue_con(con);
  180. break;
  181. default: /* Everything else is uninteresting */
  182. break;
  183. }
  184. }
  185. /*
  186. * set up socket callbacks
  187. */
  188. static void set_sock_callbacks(struct socket *sock,
  189. struct ceph_connection *con)
  190. {
  191. struct sock *sk = sock->sk;
  192. sk->sk_user_data = con;
  193. sk->sk_data_ready = ceph_data_ready;
  194. sk->sk_write_space = ceph_write_space;
  195. sk->sk_state_change = ceph_state_change;
  196. }
  197. /*
  198. * socket helpers
  199. */
  200. /*
  201. * initiate connection to a remote socket.
  202. */
  203. static int ceph_tcp_connect(struct ceph_connection *con)
  204. {
  205. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  206. struct socket *sock;
  207. int ret;
  208. BUG_ON(con->sock);
  209. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  210. IPPROTO_TCP, &sock);
  211. if (ret)
  212. return ret;
  213. sock->sk->sk_allocation = GFP_NOFS;
  214. #ifdef CONFIG_LOCKDEP
  215. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  216. #endif
  217. set_sock_callbacks(sock, con);
  218. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  219. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  220. O_NONBLOCK);
  221. if (ret == -EINPROGRESS) {
  222. dout("connect %s EINPROGRESS sk_state = %u\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr),
  224. sock->sk->sk_state);
  225. } else if (ret < 0) {
  226. pr_err("connect %s error %d\n",
  227. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  228. sock_release(sock);
  229. con->error_msg = "connect error";
  230. return ret;
  231. }
  232. con->sock = sock;
  233. return 0;
  234. }
  235. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  236. {
  237. struct kvec iov = {buf, len};
  238. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  239. int r;
  240. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  241. if (r == -EAGAIN)
  242. r = 0;
  243. return r;
  244. }
  245. /*
  246. * write something. @more is true if caller will be sending more data
  247. * shortly.
  248. */
  249. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  250. size_t kvlen, size_t len, int more)
  251. {
  252. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  253. int r;
  254. if (more)
  255. msg.msg_flags |= MSG_MORE;
  256. else
  257. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  258. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  259. if (r == -EAGAIN)
  260. r = 0;
  261. return r;
  262. }
  263. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  264. int offset, size_t size, int more)
  265. {
  266. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  267. int ret;
  268. ret = kernel_sendpage(sock, page, offset, size, flags);
  269. if (ret == -EAGAIN)
  270. ret = 0;
  271. return ret;
  272. }
  273. /*
  274. * Shutdown/close the socket for the given connection.
  275. */
  276. static int con_close_socket(struct ceph_connection *con)
  277. {
  278. int rc;
  279. dout("con_close_socket on %p sock %p\n", con, con->sock);
  280. if (!con->sock)
  281. return 0;
  282. set_bit(SOCK_CLOSED, &con->state);
  283. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  284. sock_release(con->sock);
  285. con->sock = NULL;
  286. clear_bit(SOCK_CLOSED, &con->state);
  287. return rc;
  288. }
  289. /*
  290. * Reset a connection. Discard all incoming and outgoing messages
  291. * and clear *_seq state.
  292. */
  293. static void ceph_msg_remove(struct ceph_msg *msg)
  294. {
  295. list_del_init(&msg->list_head);
  296. ceph_msg_put(msg);
  297. }
  298. static void ceph_msg_remove_list(struct list_head *head)
  299. {
  300. while (!list_empty(head)) {
  301. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  302. list_head);
  303. ceph_msg_remove(msg);
  304. }
  305. }
  306. static void reset_connection(struct ceph_connection *con)
  307. {
  308. /* reset connection, out_queue, msg_ and connect_seq */
  309. /* discard existing out_queue and msg_seq */
  310. ceph_msg_remove_list(&con->out_queue);
  311. ceph_msg_remove_list(&con->out_sent);
  312. if (con->in_msg) {
  313. ceph_msg_put(con->in_msg);
  314. con->in_msg = NULL;
  315. }
  316. con->connect_seq = 0;
  317. con->out_seq = 0;
  318. if (con->out_msg) {
  319. ceph_msg_put(con->out_msg);
  320. con->out_msg = NULL;
  321. }
  322. con->in_seq = 0;
  323. con->in_seq_acked = 0;
  324. }
  325. /*
  326. * mark a peer down. drop any open connections.
  327. */
  328. void ceph_con_close(struct ceph_connection *con)
  329. {
  330. dout("con_close %p peer %s\n", con,
  331. ceph_pr_addr(&con->peer_addr.in_addr));
  332. set_bit(CLOSED, &con->state); /* in case there's queued work */
  333. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  334. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  335. clear_bit(KEEPALIVE_PENDING, &con->state);
  336. clear_bit(WRITE_PENDING, &con->state);
  337. mutex_lock(&con->mutex);
  338. reset_connection(con);
  339. con->peer_global_seq = 0;
  340. cancel_delayed_work(&con->work);
  341. mutex_unlock(&con->mutex);
  342. queue_con(con);
  343. }
  344. EXPORT_SYMBOL(ceph_con_close);
  345. /*
  346. * Reopen a closed connection, with a new peer address.
  347. */
  348. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  349. {
  350. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  351. set_bit(OPENING, &con->state);
  352. clear_bit(CLOSED, &con->state);
  353. memcpy(&con->peer_addr, addr, sizeof(*addr));
  354. con->delay = 0; /* reset backoff memory */
  355. queue_con(con);
  356. }
  357. EXPORT_SYMBOL(ceph_con_open);
  358. /*
  359. * return true if this connection ever successfully opened
  360. */
  361. bool ceph_con_opened(struct ceph_connection *con)
  362. {
  363. return con->connect_seq > 0;
  364. }
  365. /*
  366. * generic get/put
  367. */
  368. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  369. {
  370. int nref = __atomic_add_unless(&con->nref, 1, 0);
  371. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  372. return nref ? con : NULL;
  373. }
  374. void ceph_con_put(struct ceph_connection *con)
  375. {
  376. int nref = atomic_dec_return(&con->nref);
  377. BUG_ON(nref < 0);
  378. if (nref == 0) {
  379. BUG_ON(con->sock);
  380. kfree(con);
  381. }
  382. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  383. }
  384. /*
  385. * initialize a new connection.
  386. */
  387. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  388. {
  389. dout("con_init %p\n", con);
  390. memset(con, 0, sizeof(*con));
  391. atomic_set(&con->nref, 1);
  392. con->msgr = msgr;
  393. mutex_init(&con->mutex);
  394. INIT_LIST_HEAD(&con->out_queue);
  395. INIT_LIST_HEAD(&con->out_sent);
  396. INIT_DELAYED_WORK(&con->work, con_work);
  397. }
  398. EXPORT_SYMBOL(ceph_con_init);
  399. /*
  400. * We maintain a global counter to order connection attempts. Get
  401. * a unique seq greater than @gt.
  402. */
  403. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  404. {
  405. u32 ret;
  406. spin_lock(&msgr->global_seq_lock);
  407. if (msgr->global_seq < gt)
  408. msgr->global_seq = gt;
  409. ret = ++msgr->global_seq;
  410. spin_unlock(&msgr->global_seq_lock);
  411. return ret;
  412. }
  413. static void ceph_con_out_kvec_reset(struct ceph_connection *con)
  414. {
  415. con->out_kvec_left = 0;
  416. con->out_kvec_bytes = 0;
  417. con->out_kvec_cur = &con->out_kvec[0];
  418. }
  419. static void ceph_con_out_kvec_add(struct ceph_connection *con,
  420. size_t size, void *data)
  421. {
  422. int index;
  423. index = con->out_kvec_left;
  424. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  425. con->out_kvec[index].iov_len = size;
  426. con->out_kvec[index].iov_base = data;
  427. con->out_kvec_left++;
  428. con->out_kvec_bytes += size;
  429. }
  430. /*
  431. * Prepare footer for currently outgoing message, and finish things
  432. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  433. */
  434. static void prepare_write_message_footer(struct ceph_connection *con)
  435. {
  436. struct ceph_msg *m = con->out_msg;
  437. int v = con->out_kvec_left;
  438. dout("prepare_write_message_footer %p\n", con);
  439. con->out_kvec_is_msg = true;
  440. con->out_kvec[v].iov_base = &m->footer;
  441. con->out_kvec[v].iov_len = sizeof(m->footer);
  442. con->out_kvec_bytes += sizeof(m->footer);
  443. con->out_kvec_left++;
  444. con->out_more = m->more_to_follow;
  445. con->out_msg_done = true;
  446. }
  447. /*
  448. * Prepare headers for the next outgoing message.
  449. */
  450. static void prepare_write_message(struct ceph_connection *con)
  451. {
  452. struct ceph_msg *m;
  453. u32 crc;
  454. ceph_con_out_kvec_reset(con);
  455. con->out_kvec_is_msg = true;
  456. con->out_msg_done = false;
  457. /* Sneak an ack in there first? If we can get it into the same
  458. * TCP packet that's a good thing. */
  459. if (con->in_seq > con->in_seq_acked) {
  460. con->in_seq_acked = con->in_seq;
  461. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  462. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  463. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  464. &con->out_temp_ack);
  465. }
  466. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  467. con->out_msg = m;
  468. /* put message on sent list */
  469. ceph_msg_get(m);
  470. list_move_tail(&m->list_head, &con->out_sent);
  471. /*
  472. * only assign outgoing seq # if we haven't sent this message
  473. * yet. if it is requeued, resend with it's original seq.
  474. */
  475. if (m->needs_out_seq) {
  476. m->hdr.seq = cpu_to_le64(++con->out_seq);
  477. m->needs_out_seq = false;
  478. }
  479. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  480. m, con->out_seq, le16_to_cpu(m->hdr.type),
  481. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  482. le32_to_cpu(m->hdr.data_len),
  483. m->nr_pages);
  484. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  485. /* tag + hdr + front + middle */
  486. ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  487. ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  488. ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  489. if (m->middle)
  490. ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
  491. m->middle->vec.iov_base);
  492. /* fill in crc (except data pages), footer */
  493. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  494. con->out_msg->hdr.crc = cpu_to_le32(crc);
  495. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  496. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  497. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  498. if (m->middle) {
  499. crc = crc32c(0, m->middle->vec.iov_base,
  500. m->middle->vec.iov_len);
  501. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  502. } else
  503. con->out_msg->footer.middle_crc = 0;
  504. con->out_msg->footer.data_crc = 0;
  505. dout("prepare_write_message front_crc %u data_crc %u\n",
  506. le32_to_cpu(con->out_msg->footer.front_crc),
  507. le32_to_cpu(con->out_msg->footer.middle_crc));
  508. /* is there a data payload? */
  509. if (le32_to_cpu(m->hdr.data_len) > 0) {
  510. /* initialize page iterator */
  511. con->out_msg_pos.page = 0;
  512. if (m->pages)
  513. con->out_msg_pos.page_pos = m->page_alignment;
  514. else
  515. con->out_msg_pos.page_pos = 0;
  516. con->out_msg_pos.data_pos = 0;
  517. con->out_msg_pos.did_page_crc = false;
  518. con->out_more = 1; /* data + footer will follow */
  519. } else {
  520. /* no, queue up footer too and be done */
  521. prepare_write_message_footer(con);
  522. }
  523. set_bit(WRITE_PENDING, &con->state);
  524. }
  525. /*
  526. * Prepare an ack.
  527. */
  528. static void prepare_write_ack(struct ceph_connection *con)
  529. {
  530. dout("prepare_write_ack %p %llu -> %llu\n", con,
  531. con->in_seq_acked, con->in_seq);
  532. con->in_seq_acked = con->in_seq;
  533. ceph_con_out_kvec_reset(con);
  534. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  535. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  536. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  537. &con->out_temp_ack);
  538. con->out_more = 1; /* more will follow.. eventually.. */
  539. set_bit(WRITE_PENDING, &con->state);
  540. }
  541. /*
  542. * Prepare to write keepalive byte.
  543. */
  544. static void prepare_write_keepalive(struct ceph_connection *con)
  545. {
  546. dout("prepare_write_keepalive %p\n", con);
  547. ceph_con_out_kvec_reset(con);
  548. ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  549. set_bit(WRITE_PENDING, &con->state);
  550. }
  551. /*
  552. * Connection negotiation.
  553. */
  554. static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
  555. int *auth_proto)
  556. {
  557. struct ceph_auth_handshake *auth;
  558. if (!con->ops->get_authorizer) {
  559. con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
  560. con->out_connect.authorizer_len = 0;
  561. return NULL;
  562. }
  563. /* Can't hold the mutex while getting authorizer */
  564. mutex_unlock(&con->mutex);
  565. auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
  566. mutex_lock(&con->mutex);
  567. if (IS_ERR(auth))
  568. return auth;
  569. if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
  570. return ERR_PTR(-EAGAIN);
  571. con->auth_reply_buf = auth->authorizer_reply_buf;
  572. con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
  573. return auth;
  574. }
  575. /*
  576. * We connected to a peer and are saying hello.
  577. */
  578. static void prepare_write_banner(struct ceph_connection *con)
  579. {
  580. ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  581. ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
  582. &con->msgr->my_enc_addr);
  583. con->out_more = 0;
  584. set_bit(WRITE_PENDING, &con->state);
  585. }
  586. static int prepare_write_connect(struct ceph_connection *con)
  587. {
  588. unsigned int global_seq = get_global_seq(con->msgr, 0);
  589. int proto;
  590. int auth_proto;
  591. struct ceph_auth_handshake *auth;
  592. switch (con->peer_name.type) {
  593. case CEPH_ENTITY_TYPE_MON:
  594. proto = CEPH_MONC_PROTOCOL;
  595. break;
  596. case CEPH_ENTITY_TYPE_OSD:
  597. proto = CEPH_OSDC_PROTOCOL;
  598. break;
  599. case CEPH_ENTITY_TYPE_MDS:
  600. proto = CEPH_MDSC_PROTOCOL;
  601. break;
  602. default:
  603. BUG();
  604. }
  605. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  606. con->connect_seq, global_seq, proto);
  607. con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
  608. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  609. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  610. con->out_connect.global_seq = cpu_to_le32(global_seq);
  611. con->out_connect.protocol_version = cpu_to_le32(proto);
  612. con->out_connect.flags = 0;
  613. auth_proto = CEPH_AUTH_UNKNOWN;
  614. auth = get_connect_authorizer(con, &auth_proto);
  615. if (IS_ERR(auth))
  616. return PTR_ERR(auth);
  617. con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
  618. con->out_connect.authorizer_len = auth ?
  619. cpu_to_le32(auth->authorizer_buf_len) : 0;
  620. ceph_con_out_kvec_add(con, sizeof (con->out_connect),
  621. &con->out_connect);
  622. if (auth && auth->authorizer_buf_len)
  623. ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
  624. auth->authorizer_buf);
  625. con->out_more = 0;
  626. set_bit(WRITE_PENDING, &con->state);
  627. return 0;
  628. }
  629. /*
  630. * write as much of pending kvecs to the socket as we can.
  631. * 1 -> done
  632. * 0 -> socket full, but more to do
  633. * <0 -> error
  634. */
  635. static int write_partial_kvec(struct ceph_connection *con)
  636. {
  637. int ret;
  638. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  639. while (con->out_kvec_bytes > 0) {
  640. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  641. con->out_kvec_left, con->out_kvec_bytes,
  642. con->out_more);
  643. if (ret <= 0)
  644. goto out;
  645. con->out_kvec_bytes -= ret;
  646. if (con->out_kvec_bytes == 0)
  647. break; /* done */
  648. /* account for full iov entries consumed */
  649. while (ret >= con->out_kvec_cur->iov_len) {
  650. BUG_ON(!con->out_kvec_left);
  651. ret -= con->out_kvec_cur->iov_len;
  652. con->out_kvec_cur++;
  653. con->out_kvec_left--;
  654. }
  655. /* and for a partially-consumed entry */
  656. if (ret) {
  657. con->out_kvec_cur->iov_len -= ret;
  658. con->out_kvec_cur->iov_base += ret;
  659. }
  660. }
  661. con->out_kvec_left = 0;
  662. con->out_kvec_is_msg = false;
  663. ret = 1;
  664. out:
  665. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  666. con->out_kvec_bytes, con->out_kvec_left, ret);
  667. return ret; /* done! */
  668. }
  669. #ifdef CONFIG_BLOCK
  670. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  671. {
  672. if (!bio) {
  673. *iter = NULL;
  674. *seg = 0;
  675. return;
  676. }
  677. *iter = bio;
  678. *seg = bio->bi_idx;
  679. }
  680. static void iter_bio_next(struct bio **bio_iter, int *seg)
  681. {
  682. if (*bio_iter == NULL)
  683. return;
  684. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  685. (*seg)++;
  686. if (*seg == (*bio_iter)->bi_vcnt)
  687. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  688. }
  689. #endif
  690. /*
  691. * Write as much message data payload as we can. If we finish, queue
  692. * up the footer.
  693. * 1 -> done, footer is now queued in out_kvec[].
  694. * 0 -> socket full, but more to do
  695. * <0 -> error
  696. */
  697. static int write_partial_msg_pages(struct ceph_connection *con)
  698. {
  699. struct ceph_msg *msg = con->out_msg;
  700. unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
  701. size_t len;
  702. bool do_datacrc = !con->msgr->nocrc;
  703. int ret;
  704. int total_max_write;
  705. int in_trail = 0;
  706. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  707. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  708. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  709. con->out_msg_pos.page_pos);
  710. #ifdef CONFIG_BLOCK
  711. if (msg->bio && !msg->bio_iter)
  712. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  713. #endif
  714. while (data_len > con->out_msg_pos.data_pos) {
  715. struct page *page = NULL;
  716. int max_write = PAGE_SIZE;
  717. int bio_offset = 0;
  718. total_max_write = data_len - trail_len -
  719. con->out_msg_pos.data_pos;
  720. /*
  721. * if we are calculating the data crc (the default), we need
  722. * to map the page. if our pages[] has been revoked, use the
  723. * zero page.
  724. */
  725. /* have we reached the trail part of the data? */
  726. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  727. in_trail = 1;
  728. total_max_write = data_len - con->out_msg_pos.data_pos;
  729. page = list_first_entry(&msg->trail->head,
  730. struct page, lru);
  731. max_write = PAGE_SIZE;
  732. } else if (msg->pages) {
  733. page = msg->pages[con->out_msg_pos.page];
  734. } else if (msg->pagelist) {
  735. page = list_first_entry(&msg->pagelist->head,
  736. struct page, lru);
  737. #ifdef CONFIG_BLOCK
  738. } else if (msg->bio) {
  739. struct bio_vec *bv;
  740. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  741. page = bv->bv_page;
  742. bio_offset = bv->bv_offset;
  743. max_write = bv->bv_len;
  744. #endif
  745. } else {
  746. page = zero_page;
  747. }
  748. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  749. total_max_write);
  750. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  751. void *base;
  752. u32 crc;
  753. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  754. char *kaddr;
  755. kaddr = kmap(page);
  756. BUG_ON(kaddr == NULL);
  757. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  758. crc = crc32c(tmpcrc, base, len);
  759. con->out_msg->footer.data_crc = cpu_to_le32(crc);
  760. con->out_msg_pos.did_page_crc = true;
  761. }
  762. ret = ceph_tcp_sendpage(con->sock, page,
  763. con->out_msg_pos.page_pos + bio_offset,
  764. len, 1);
  765. if (do_datacrc)
  766. kunmap(page);
  767. if (ret <= 0)
  768. goto out;
  769. con->out_msg_pos.data_pos += ret;
  770. con->out_msg_pos.page_pos += ret;
  771. if (ret == len) {
  772. con->out_msg_pos.page_pos = 0;
  773. con->out_msg_pos.page++;
  774. con->out_msg_pos.did_page_crc = false;
  775. if (in_trail)
  776. list_move_tail(&page->lru,
  777. &msg->trail->head);
  778. else if (msg->pagelist)
  779. list_move_tail(&page->lru,
  780. &msg->pagelist->head);
  781. #ifdef CONFIG_BLOCK
  782. else if (msg->bio)
  783. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  784. #endif
  785. }
  786. }
  787. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  788. /* prepare and queue up footer, too */
  789. if (!do_datacrc)
  790. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  791. ceph_con_out_kvec_reset(con);
  792. prepare_write_message_footer(con);
  793. ret = 1;
  794. out:
  795. return ret;
  796. }
  797. /*
  798. * write some zeros
  799. */
  800. static int write_partial_skip(struct ceph_connection *con)
  801. {
  802. int ret;
  803. while (con->out_skip > 0) {
  804. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  805. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  806. if (ret <= 0)
  807. goto out;
  808. con->out_skip -= ret;
  809. }
  810. ret = 1;
  811. out:
  812. return ret;
  813. }
  814. /*
  815. * Prepare to read connection handshake, or an ack.
  816. */
  817. static void prepare_read_banner(struct ceph_connection *con)
  818. {
  819. dout("prepare_read_banner %p\n", con);
  820. con->in_base_pos = 0;
  821. }
  822. static void prepare_read_connect(struct ceph_connection *con)
  823. {
  824. dout("prepare_read_connect %p\n", con);
  825. con->in_base_pos = 0;
  826. }
  827. static void prepare_read_ack(struct ceph_connection *con)
  828. {
  829. dout("prepare_read_ack %p\n", con);
  830. con->in_base_pos = 0;
  831. }
  832. static void prepare_read_tag(struct ceph_connection *con)
  833. {
  834. dout("prepare_read_tag %p\n", con);
  835. con->in_base_pos = 0;
  836. con->in_tag = CEPH_MSGR_TAG_READY;
  837. }
  838. /*
  839. * Prepare to read a message.
  840. */
  841. static int prepare_read_message(struct ceph_connection *con)
  842. {
  843. dout("prepare_read_message %p\n", con);
  844. BUG_ON(con->in_msg != NULL);
  845. con->in_base_pos = 0;
  846. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  847. return 0;
  848. }
  849. static int read_partial(struct ceph_connection *con,
  850. int end, int size, void *object)
  851. {
  852. while (con->in_base_pos < end) {
  853. int left = end - con->in_base_pos;
  854. int have = size - left;
  855. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  856. if (ret <= 0)
  857. return ret;
  858. con->in_base_pos += ret;
  859. }
  860. return 1;
  861. }
  862. /*
  863. * Read all or part of the connect-side handshake on a new connection
  864. */
  865. static int read_partial_banner(struct ceph_connection *con)
  866. {
  867. int size;
  868. int end;
  869. int ret;
  870. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  871. /* peer's banner */
  872. size = strlen(CEPH_BANNER);
  873. end = size;
  874. ret = read_partial(con, end, size, con->in_banner);
  875. if (ret <= 0)
  876. goto out;
  877. size = sizeof (con->actual_peer_addr);
  878. end += size;
  879. ret = read_partial(con, end, size, &con->actual_peer_addr);
  880. if (ret <= 0)
  881. goto out;
  882. size = sizeof (con->peer_addr_for_me);
  883. end += size;
  884. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  885. if (ret <= 0)
  886. goto out;
  887. out:
  888. return ret;
  889. }
  890. static int read_partial_connect(struct ceph_connection *con)
  891. {
  892. int size;
  893. int end;
  894. int ret;
  895. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  896. size = sizeof (con->in_reply);
  897. end = size;
  898. ret = read_partial(con, end, size, &con->in_reply);
  899. if (ret <= 0)
  900. goto out;
  901. size = le32_to_cpu(con->in_reply.authorizer_len);
  902. end += size;
  903. ret = read_partial(con, end, size, con->auth_reply_buf);
  904. if (ret <= 0)
  905. goto out;
  906. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  907. con, (int)con->in_reply.tag,
  908. le32_to_cpu(con->in_reply.connect_seq),
  909. le32_to_cpu(con->in_reply.global_seq));
  910. out:
  911. return ret;
  912. }
  913. /*
  914. * Verify the hello banner looks okay.
  915. */
  916. static int verify_hello(struct ceph_connection *con)
  917. {
  918. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  919. pr_err("connect to %s got bad banner\n",
  920. ceph_pr_addr(&con->peer_addr.in_addr));
  921. con->error_msg = "protocol error, bad banner";
  922. return -1;
  923. }
  924. return 0;
  925. }
  926. static bool addr_is_blank(struct sockaddr_storage *ss)
  927. {
  928. switch (ss->ss_family) {
  929. case AF_INET:
  930. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  931. case AF_INET6:
  932. return
  933. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  934. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  935. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  936. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  937. }
  938. return false;
  939. }
  940. static int addr_port(struct sockaddr_storage *ss)
  941. {
  942. switch (ss->ss_family) {
  943. case AF_INET:
  944. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  945. case AF_INET6:
  946. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  947. }
  948. return 0;
  949. }
  950. static void addr_set_port(struct sockaddr_storage *ss, int p)
  951. {
  952. switch (ss->ss_family) {
  953. case AF_INET:
  954. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  955. break;
  956. case AF_INET6:
  957. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  958. break;
  959. }
  960. }
  961. /*
  962. * Unlike other *_pton function semantics, zero indicates success.
  963. */
  964. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  965. char delim, const char **ipend)
  966. {
  967. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  968. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  969. memset(ss, 0, sizeof(*ss));
  970. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  971. ss->ss_family = AF_INET;
  972. return 0;
  973. }
  974. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  975. ss->ss_family = AF_INET6;
  976. return 0;
  977. }
  978. return -EINVAL;
  979. }
  980. /*
  981. * Extract hostname string and resolve using kernel DNS facility.
  982. */
  983. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  984. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  985. struct sockaddr_storage *ss, char delim, const char **ipend)
  986. {
  987. const char *end, *delim_p;
  988. char *colon_p, *ip_addr = NULL;
  989. int ip_len, ret;
  990. /*
  991. * The end of the hostname occurs immediately preceding the delimiter or
  992. * the port marker (':') where the delimiter takes precedence.
  993. */
  994. delim_p = memchr(name, delim, namelen);
  995. colon_p = memchr(name, ':', namelen);
  996. if (delim_p && colon_p)
  997. end = delim_p < colon_p ? delim_p : colon_p;
  998. else if (!delim_p && colon_p)
  999. end = colon_p;
  1000. else {
  1001. end = delim_p;
  1002. if (!end) /* case: hostname:/ */
  1003. end = name + namelen;
  1004. }
  1005. if (end <= name)
  1006. return -EINVAL;
  1007. /* do dns_resolve upcall */
  1008. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1009. if (ip_len > 0)
  1010. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1011. else
  1012. ret = -ESRCH;
  1013. kfree(ip_addr);
  1014. *ipend = end;
  1015. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1016. ret, ret ? "failed" : ceph_pr_addr(ss));
  1017. return ret;
  1018. }
  1019. #else
  1020. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1021. struct sockaddr_storage *ss, char delim, const char **ipend)
  1022. {
  1023. return -EINVAL;
  1024. }
  1025. #endif
  1026. /*
  1027. * Parse a server name (IP or hostname). If a valid IP address is not found
  1028. * then try to extract a hostname to resolve using userspace DNS upcall.
  1029. */
  1030. static int ceph_parse_server_name(const char *name, size_t namelen,
  1031. struct sockaddr_storage *ss, char delim, const char **ipend)
  1032. {
  1033. int ret;
  1034. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1035. if (ret)
  1036. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1037. return ret;
  1038. }
  1039. /*
  1040. * Parse an ip[:port] list into an addr array. Use the default
  1041. * monitor port if a port isn't specified.
  1042. */
  1043. int ceph_parse_ips(const char *c, const char *end,
  1044. struct ceph_entity_addr *addr,
  1045. int max_count, int *count)
  1046. {
  1047. int i, ret = -EINVAL;
  1048. const char *p = c;
  1049. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1050. for (i = 0; i < max_count; i++) {
  1051. const char *ipend;
  1052. struct sockaddr_storage *ss = &addr[i].in_addr;
  1053. int port;
  1054. char delim = ',';
  1055. if (*p == '[') {
  1056. delim = ']';
  1057. p++;
  1058. }
  1059. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1060. if (ret)
  1061. goto bad;
  1062. ret = -EINVAL;
  1063. p = ipend;
  1064. if (delim == ']') {
  1065. if (*p != ']') {
  1066. dout("missing matching ']'\n");
  1067. goto bad;
  1068. }
  1069. p++;
  1070. }
  1071. /* port? */
  1072. if (p < end && *p == ':') {
  1073. port = 0;
  1074. p++;
  1075. while (p < end && *p >= '0' && *p <= '9') {
  1076. port = (port * 10) + (*p - '0');
  1077. p++;
  1078. }
  1079. if (port > 65535 || port == 0)
  1080. goto bad;
  1081. } else {
  1082. port = CEPH_MON_PORT;
  1083. }
  1084. addr_set_port(ss, port);
  1085. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1086. if (p == end)
  1087. break;
  1088. if (*p != ',')
  1089. goto bad;
  1090. p++;
  1091. }
  1092. if (p != end)
  1093. goto bad;
  1094. if (count)
  1095. *count = i + 1;
  1096. return 0;
  1097. bad:
  1098. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1099. return ret;
  1100. }
  1101. EXPORT_SYMBOL(ceph_parse_ips);
  1102. static int process_banner(struct ceph_connection *con)
  1103. {
  1104. dout("process_banner on %p\n", con);
  1105. if (verify_hello(con) < 0)
  1106. return -1;
  1107. ceph_decode_addr(&con->actual_peer_addr);
  1108. ceph_decode_addr(&con->peer_addr_for_me);
  1109. /*
  1110. * Make sure the other end is who we wanted. note that the other
  1111. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1112. * them the benefit of the doubt.
  1113. */
  1114. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1115. sizeof(con->peer_addr)) != 0 &&
  1116. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1117. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1118. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1119. ceph_pr_addr(&con->peer_addr.in_addr),
  1120. (int)le32_to_cpu(con->peer_addr.nonce),
  1121. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1122. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1123. con->error_msg = "wrong peer at address";
  1124. return -1;
  1125. }
  1126. /*
  1127. * did we learn our address?
  1128. */
  1129. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1130. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1131. memcpy(&con->msgr->inst.addr.in_addr,
  1132. &con->peer_addr_for_me.in_addr,
  1133. sizeof(con->peer_addr_for_me.in_addr));
  1134. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1135. encode_my_addr(con->msgr);
  1136. dout("process_banner learned my addr is %s\n",
  1137. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1138. }
  1139. set_bit(NEGOTIATING, &con->state);
  1140. prepare_read_connect(con);
  1141. return 0;
  1142. }
  1143. static void fail_protocol(struct ceph_connection *con)
  1144. {
  1145. reset_connection(con);
  1146. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1147. mutex_unlock(&con->mutex);
  1148. if (con->ops->bad_proto)
  1149. con->ops->bad_proto(con);
  1150. mutex_lock(&con->mutex);
  1151. }
  1152. static int process_connect(struct ceph_connection *con)
  1153. {
  1154. u64 sup_feat = con->msgr->supported_features;
  1155. u64 req_feat = con->msgr->required_features;
  1156. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1157. int ret;
  1158. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1159. switch (con->in_reply.tag) {
  1160. case CEPH_MSGR_TAG_FEATURES:
  1161. pr_err("%s%lld %s feature set mismatch,"
  1162. " my %llx < server's %llx, missing %llx\n",
  1163. ENTITY_NAME(con->peer_name),
  1164. ceph_pr_addr(&con->peer_addr.in_addr),
  1165. sup_feat, server_feat, server_feat & ~sup_feat);
  1166. con->error_msg = "missing required protocol features";
  1167. fail_protocol(con);
  1168. return -1;
  1169. case CEPH_MSGR_TAG_BADPROTOVER:
  1170. pr_err("%s%lld %s protocol version mismatch,"
  1171. " my %d != server's %d\n",
  1172. ENTITY_NAME(con->peer_name),
  1173. ceph_pr_addr(&con->peer_addr.in_addr),
  1174. le32_to_cpu(con->out_connect.protocol_version),
  1175. le32_to_cpu(con->in_reply.protocol_version));
  1176. con->error_msg = "protocol version mismatch";
  1177. fail_protocol(con);
  1178. return -1;
  1179. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1180. con->auth_retry++;
  1181. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1182. con->auth_retry);
  1183. if (con->auth_retry == 2) {
  1184. con->error_msg = "connect authorization failure";
  1185. return -1;
  1186. }
  1187. con->auth_retry = 1;
  1188. ceph_con_out_kvec_reset(con);
  1189. ret = prepare_write_connect(con);
  1190. if (ret < 0)
  1191. return ret;
  1192. prepare_read_connect(con);
  1193. break;
  1194. case CEPH_MSGR_TAG_RESETSESSION:
  1195. /*
  1196. * If we connected with a large connect_seq but the peer
  1197. * has no record of a session with us (no connection, or
  1198. * connect_seq == 0), they will send RESETSESION to indicate
  1199. * that they must have reset their session, and may have
  1200. * dropped messages.
  1201. */
  1202. dout("process_connect got RESET peer seq %u\n",
  1203. le32_to_cpu(con->in_connect.connect_seq));
  1204. pr_err("%s%lld %s connection reset\n",
  1205. ENTITY_NAME(con->peer_name),
  1206. ceph_pr_addr(&con->peer_addr.in_addr));
  1207. reset_connection(con);
  1208. ceph_con_out_kvec_reset(con);
  1209. ret = prepare_write_connect(con);
  1210. if (ret < 0)
  1211. return ret;
  1212. prepare_read_connect(con);
  1213. /* Tell ceph about it. */
  1214. mutex_unlock(&con->mutex);
  1215. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1216. if (con->ops->peer_reset)
  1217. con->ops->peer_reset(con);
  1218. mutex_lock(&con->mutex);
  1219. if (test_bit(CLOSED, &con->state) ||
  1220. test_bit(OPENING, &con->state))
  1221. return -EAGAIN;
  1222. break;
  1223. case CEPH_MSGR_TAG_RETRY_SESSION:
  1224. /*
  1225. * If we sent a smaller connect_seq than the peer has, try
  1226. * again with a larger value.
  1227. */
  1228. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1229. le32_to_cpu(con->out_connect.connect_seq),
  1230. le32_to_cpu(con->in_connect.connect_seq));
  1231. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1232. ceph_con_out_kvec_reset(con);
  1233. ret = prepare_write_connect(con);
  1234. if (ret < 0)
  1235. return ret;
  1236. prepare_read_connect(con);
  1237. break;
  1238. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1239. /*
  1240. * If we sent a smaller global_seq than the peer has, try
  1241. * again with a larger value.
  1242. */
  1243. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1244. con->peer_global_seq,
  1245. le32_to_cpu(con->in_connect.global_seq));
  1246. get_global_seq(con->msgr,
  1247. le32_to_cpu(con->in_connect.global_seq));
  1248. ceph_con_out_kvec_reset(con);
  1249. ret = prepare_write_connect(con);
  1250. if (ret < 0)
  1251. return ret;
  1252. prepare_read_connect(con);
  1253. break;
  1254. case CEPH_MSGR_TAG_READY:
  1255. if (req_feat & ~server_feat) {
  1256. pr_err("%s%lld %s protocol feature mismatch,"
  1257. " my required %llx > server's %llx, need %llx\n",
  1258. ENTITY_NAME(con->peer_name),
  1259. ceph_pr_addr(&con->peer_addr.in_addr),
  1260. req_feat, server_feat, req_feat & ~server_feat);
  1261. con->error_msg = "missing required protocol features";
  1262. fail_protocol(con);
  1263. return -1;
  1264. }
  1265. clear_bit(CONNECTING, &con->state);
  1266. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1267. con->connect_seq++;
  1268. con->peer_features = server_feat;
  1269. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1270. con->peer_global_seq,
  1271. le32_to_cpu(con->in_reply.connect_seq),
  1272. con->connect_seq);
  1273. WARN_ON(con->connect_seq !=
  1274. le32_to_cpu(con->in_reply.connect_seq));
  1275. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1276. set_bit(LOSSYTX, &con->state);
  1277. prepare_read_tag(con);
  1278. break;
  1279. case CEPH_MSGR_TAG_WAIT:
  1280. /*
  1281. * If there is a connection race (we are opening
  1282. * connections to each other), one of us may just have
  1283. * to WAIT. This shouldn't happen if we are the
  1284. * client.
  1285. */
  1286. pr_err("process_connect got WAIT as client\n");
  1287. con->error_msg = "protocol error, got WAIT as client";
  1288. return -1;
  1289. default:
  1290. pr_err("connect protocol error, will retry\n");
  1291. con->error_msg = "protocol error, garbage tag during connect";
  1292. return -1;
  1293. }
  1294. return 0;
  1295. }
  1296. /*
  1297. * read (part of) an ack
  1298. */
  1299. static int read_partial_ack(struct ceph_connection *con)
  1300. {
  1301. int size = sizeof (con->in_temp_ack);
  1302. int end = size;
  1303. return read_partial(con, end, size, &con->in_temp_ack);
  1304. }
  1305. /*
  1306. * We can finally discard anything that's been acked.
  1307. */
  1308. static void process_ack(struct ceph_connection *con)
  1309. {
  1310. struct ceph_msg *m;
  1311. u64 ack = le64_to_cpu(con->in_temp_ack);
  1312. u64 seq;
  1313. while (!list_empty(&con->out_sent)) {
  1314. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1315. list_head);
  1316. seq = le64_to_cpu(m->hdr.seq);
  1317. if (seq > ack)
  1318. break;
  1319. dout("got ack for seq %llu type %d at %p\n", seq,
  1320. le16_to_cpu(m->hdr.type), m);
  1321. m->ack_stamp = jiffies;
  1322. ceph_msg_remove(m);
  1323. }
  1324. prepare_read_tag(con);
  1325. }
  1326. static int read_partial_message_section(struct ceph_connection *con,
  1327. struct kvec *section,
  1328. unsigned int sec_len, u32 *crc)
  1329. {
  1330. int ret, left;
  1331. BUG_ON(!section);
  1332. while (section->iov_len < sec_len) {
  1333. BUG_ON(section->iov_base == NULL);
  1334. left = sec_len - section->iov_len;
  1335. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1336. section->iov_len, left);
  1337. if (ret <= 0)
  1338. return ret;
  1339. section->iov_len += ret;
  1340. }
  1341. if (section->iov_len == sec_len)
  1342. *crc = crc32c(0, section->iov_base, section->iov_len);
  1343. return 1;
  1344. }
  1345. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1346. struct ceph_msg_header *hdr,
  1347. int *skip);
  1348. static int read_partial_message_pages(struct ceph_connection *con,
  1349. struct page **pages,
  1350. unsigned int data_len, bool do_datacrc)
  1351. {
  1352. void *p;
  1353. int ret;
  1354. int left;
  1355. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1356. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1357. /* (page) data */
  1358. BUG_ON(pages == NULL);
  1359. p = kmap(pages[con->in_msg_pos.page]);
  1360. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1361. left);
  1362. if (ret > 0 && do_datacrc)
  1363. con->in_data_crc =
  1364. crc32c(con->in_data_crc,
  1365. p + con->in_msg_pos.page_pos, ret);
  1366. kunmap(pages[con->in_msg_pos.page]);
  1367. if (ret <= 0)
  1368. return ret;
  1369. con->in_msg_pos.data_pos += ret;
  1370. con->in_msg_pos.page_pos += ret;
  1371. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1372. con->in_msg_pos.page_pos = 0;
  1373. con->in_msg_pos.page++;
  1374. }
  1375. return ret;
  1376. }
  1377. #ifdef CONFIG_BLOCK
  1378. static int read_partial_message_bio(struct ceph_connection *con,
  1379. struct bio **bio_iter, int *bio_seg,
  1380. unsigned int data_len, bool do_datacrc)
  1381. {
  1382. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1383. void *p;
  1384. int ret, left;
  1385. if (IS_ERR(bv))
  1386. return PTR_ERR(bv);
  1387. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1388. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1389. p = kmap(bv->bv_page) + bv->bv_offset;
  1390. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1391. left);
  1392. if (ret > 0 && do_datacrc)
  1393. con->in_data_crc =
  1394. crc32c(con->in_data_crc,
  1395. p + con->in_msg_pos.page_pos, ret);
  1396. kunmap(bv->bv_page);
  1397. if (ret <= 0)
  1398. return ret;
  1399. con->in_msg_pos.data_pos += ret;
  1400. con->in_msg_pos.page_pos += ret;
  1401. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1402. con->in_msg_pos.page_pos = 0;
  1403. iter_bio_next(bio_iter, bio_seg);
  1404. }
  1405. return ret;
  1406. }
  1407. #endif
  1408. /*
  1409. * read (part of) a message.
  1410. */
  1411. static int read_partial_message(struct ceph_connection *con)
  1412. {
  1413. struct ceph_msg *m = con->in_msg;
  1414. int size;
  1415. int end;
  1416. int ret;
  1417. unsigned int front_len, middle_len, data_len;
  1418. bool do_datacrc = !con->msgr->nocrc;
  1419. int skip;
  1420. u64 seq;
  1421. u32 crc;
  1422. dout("read_partial_message con %p msg %p\n", con, m);
  1423. /* header */
  1424. size = sizeof (con->in_hdr);
  1425. end = size;
  1426. ret = read_partial(con, end, size, &con->in_hdr);
  1427. if (ret <= 0)
  1428. return ret;
  1429. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1430. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1431. pr_err("read_partial_message bad hdr "
  1432. " crc %u != expected %u\n",
  1433. crc, con->in_hdr.crc);
  1434. return -EBADMSG;
  1435. }
  1436. front_len = le32_to_cpu(con->in_hdr.front_len);
  1437. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1438. return -EIO;
  1439. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1440. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1441. return -EIO;
  1442. data_len = le32_to_cpu(con->in_hdr.data_len);
  1443. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1444. return -EIO;
  1445. /* verify seq# */
  1446. seq = le64_to_cpu(con->in_hdr.seq);
  1447. if ((s64)seq - (s64)con->in_seq < 1) {
  1448. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1449. ENTITY_NAME(con->peer_name),
  1450. ceph_pr_addr(&con->peer_addr.in_addr),
  1451. seq, con->in_seq + 1);
  1452. con->in_base_pos = -front_len - middle_len - data_len -
  1453. sizeof(m->footer);
  1454. con->in_tag = CEPH_MSGR_TAG_READY;
  1455. return 0;
  1456. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1457. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1458. seq, con->in_seq + 1);
  1459. con->error_msg = "bad message sequence # for incoming message";
  1460. return -EBADMSG;
  1461. }
  1462. /* allocate message? */
  1463. if (!con->in_msg) {
  1464. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1465. con->in_hdr.front_len, con->in_hdr.data_len);
  1466. skip = 0;
  1467. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1468. if (skip) {
  1469. /* skip this message */
  1470. dout("alloc_msg said skip message\n");
  1471. BUG_ON(con->in_msg);
  1472. con->in_base_pos = -front_len - middle_len - data_len -
  1473. sizeof(m->footer);
  1474. con->in_tag = CEPH_MSGR_TAG_READY;
  1475. con->in_seq++;
  1476. return 0;
  1477. }
  1478. if (!con->in_msg) {
  1479. con->error_msg =
  1480. "error allocating memory for incoming message";
  1481. return -ENOMEM;
  1482. }
  1483. m = con->in_msg;
  1484. m->front.iov_len = 0; /* haven't read it yet */
  1485. if (m->middle)
  1486. m->middle->vec.iov_len = 0;
  1487. con->in_msg_pos.page = 0;
  1488. if (m->pages)
  1489. con->in_msg_pos.page_pos = m->page_alignment;
  1490. else
  1491. con->in_msg_pos.page_pos = 0;
  1492. con->in_msg_pos.data_pos = 0;
  1493. }
  1494. /* front */
  1495. ret = read_partial_message_section(con, &m->front, front_len,
  1496. &con->in_front_crc);
  1497. if (ret <= 0)
  1498. return ret;
  1499. /* middle */
  1500. if (m->middle) {
  1501. ret = read_partial_message_section(con, &m->middle->vec,
  1502. middle_len,
  1503. &con->in_middle_crc);
  1504. if (ret <= 0)
  1505. return ret;
  1506. }
  1507. #ifdef CONFIG_BLOCK
  1508. if (m->bio && !m->bio_iter)
  1509. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1510. #endif
  1511. /* (page) data */
  1512. while (con->in_msg_pos.data_pos < data_len) {
  1513. if (m->pages) {
  1514. ret = read_partial_message_pages(con, m->pages,
  1515. data_len, do_datacrc);
  1516. if (ret <= 0)
  1517. return ret;
  1518. #ifdef CONFIG_BLOCK
  1519. } else if (m->bio) {
  1520. ret = read_partial_message_bio(con,
  1521. &m->bio_iter, &m->bio_seg,
  1522. data_len, do_datacrc);
  1523. if (ret <= 0)
  1524. return ret;
  1525. #endif
  1526. } else {
  1527. BUG_ON(1);
  1528. }
  1529. }
  1530. /* footer */
  1531. size = sizeof (m->footer);
  1532. end += size;
  1533. ret = read_partial(con, end, size, &m->footer);
  1534. if (ret <= 0)
  1535. return ret;
  1536. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1537. m, front_len, m->footer.front_crc, middle_len,
  1538. m->footer.middle_crc, data_len, m->footer.data_crc);
  1539. /* crc ok? */
  1540. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1541. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1542. m, con->in_front_crc, m->footer.front_crc);
  1543. return -EBADMSG;
  1544. }
  1545. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1546. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1547. m, con->in_middle_crc, m->footer.middle_crc);
  1548. return -EBADMSG;
  1549. }
  1550. if (do_datacrc &&
  1551. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1552. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1553. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1554. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1555. return -EBADMSG;
  1556. }
  1557. return 1; /* done! */
  1558. }
  1559. /*
  1560. * Process message. This happens in the worker thread. The callback should
  1561. * be careful not to do anything that waits on other incoming messages or it
  1562. * may deadlock.
  1563. */
  1564. static void process_message(struct ceph_connection *con)
  1565. {
  1566. struct ceph_msg *msg;
  1567. msg = con->in_msg;
  1568. con->in_msg = NULL;
  1569. /* if first message, set peer_name */
  1570. if (con->peer_name.type == 0)
  1571. con->peer_name = msg->hdr.src;
  1572. con->in_seq++;
  1573. mutex_unlock(&con->mutex);
  1574. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1575. msg, le64_to_cpu(msg->hdr.seq),
  1576. ENTITY_NAME(msg->hdr.src),
  1577. le16_to_cpu(msg->hdr.type),
  1578. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1579. le32_to_cpu(msg->hdr.front_len),
  1580. le32_to_cpu(msg->hdr.data_len),
  1581. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1582. con->ops->dispatch(con, msg);
  1583. mutex_lock(&con->mutex);
  1584. prepare_read_tag(con);
  1585. }
  1586. /*
  1587. * Write something to the socket. Called in a worker thread when the
  1588. * socket appears to be writeable and we have something ready to send.
  1589. */
  1590. static int try_write(struct ceph_connection *con)
  1591. {
  1592. int ret = 1;
  1593. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1594. atomic_read(&con->nref));
  1595. more:
  1596. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1597. /* open the socket first? */
  1598. if (con->sock == NULL) {
  1599. ceph_con_out_kvec_reset(con);
  1600. prepare_write_banner(con);
  1601. ret = prepare_write_connect(con);
  1602. if (ret < 0)
  1603. goto out;
  1604. prepare_read_banner(con);
  1605. set_bit(CONNECTING, &con->state);
  1606. clear_bit(NEGOTIATING, &con->state);
  1607. BUG_ON(con->in_msg);
  1608. con->in_tag = CEPH_MSGR_TAG_READY;
  1609. dout("try_write initiating connect on %p new state %lu\n",
  1610. con, con->state);
  1611. ret = ceph_tcp_connect(con);
  1612. if (ret < 0) {
  1613. con->error_msg = "connect error";
  1614. goto out;
  1615. }
  1616. }
  1617. more_kvec:
  1618. /* kvec data queued? */
  1619. if (con->out_skip) {
  1620. ret = write_partial_skip(con);
  1621. if (ret <= 0)
  1622. goto out;
  1623. }
  1624. if (con->out_kvec_left) {
  1625. ret = write_partial_kvec(con);
  1626. if (ret <= 0)
  1627. goto out;
  1628. }
  1629. /* msg pages? */
  1630. if (con->out_msg) {
  1631. if (con->out_msg_done) {
  1632. ceph_msg_put(con->out_msg);
  1633. con->out_msg = NULL; /* we're done with this one */
  1634. goto do_next;
  1635. }
  1636. ret = write_partial_msg_pages(con);
  1637. if (ret == 1)
  1638. goto more_kvec; /* we need to send the footer, too! */
  1639. if (ret == 0)
  1640. goto out;
  1641. if (ret < 0) {
  1642. dout("try_write write_partial_msg_pages err %d\n",
  1643. ret);
  1644. goto out;
  1645. }
  1646. }
  1647. do_next:
  1648. if (!test_bit(CONNECTING, &con->state)) {
  1649. /* is anything else pending? */
  1650. if (!list_empty(&con->out_queue)) {
  1651. prepare_write_message(con);
  1652. goto more;
  1653. }
  1654. if (con->in_seq > con->in_seq_acked) {
  1655. prepare_write_ack(con);
  1656. goto more;
  1657. }
  1658. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1659. prepare_write_keepalive(con);
  1660. goto more;
  1661. }
  1662. }
  1663. /* Nothing to do! */
  1664. clear_bit(WRITE_PENDING, &con->state);
  1665. dout("try_write nothing else to write.\n");
  1666. ret = 0;
  1667. out:
  1668. dout("try_write done on %p ret %d\n", con, ret);
  1669. return ret;
  1670. }
  1671. /*
  1672. * Read what we can from the socket.
  1673. */
  1674. static int try_read(struct ceph_connection *con)
  1675. {
  1676. int ret = -1;
  1677. if (!con->sock)
  1678. return 0;
  1679. if (test_bit(STANDBY, &con->state))
  1680. return 0;
  1681. dout("try_read start on %p\n", con);
  1682. more:
  1683. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1684. con->in_base_pos);
  1685. /*
  1686. * process_connect and process_message drop and re-take
  1687. * con->mutex. make sure we handle a racing close or reopen.
  1688. */
  1689. if (test_bit(CLOSED, &con->state) ||
  1690. test_bit(OPENING, &con->state)) {
  1691. ret = -EAGAIN;
  1692. goto out;
  1693. }
  1694. if (test_bit(CONNECTING, &con->state)) {
  1695. if (!test_bit(NEGOTIATING, &con->state)) {
  1696. dout("try_read connecting\n");
  1697. ret = read_partial_banner(con);
  1698. if (ret <= 0)
  1699. goto out;
  1700. ret = process_banner(con);
  1701. if (ret < 0)
  1702. goto out;
  1703. }
  1704. ret = read_partial_connect(con);
  1705. if (ret <= 0)
  1706. goto out;
  1707. ret = process_connect(con);
  1708. if (ret < 0)
  1709. goto out;
  1710. goto more;
  1711. }
  1712. if (con->in_base_pos < 0) {
  1713. /*
  1714. * skipping + discarding content.
  1715. *
  1716. * FIXME: there must be a better way to do this!
  1717. */
  1718. static char buf[SKIP_BUF_SIZE];
  1719. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1720. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1721. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1722. if (ret <= 0)
  1723. goto out;
  1724. con->in_base_pos += ret;
  1725. if (con->in_base_pos)
  1726. goto more;
  1727. }
  1728. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1729. /*
  1730. * what's next?
  1731. */
  1732. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1733. if (ret <= 0)
  1734. goto out;
  1735. dout("try_read got tag %d\n", (int)con->in_tag);
  1736. switch (con->in_tag) {
  1737. case CEPH_MSGR_TAG_MSG:
  1738. prepare_read_message(con);
  1739. break;
  1740. case CEPH_MSGR_TAG_ACK:
  1741. prepare_read_ack(con);
  1742. break;
  1743. case CEPH_MSGR_TAG_CLOSE:
  1744. set_bit(CLOSED, &con->state); /* fixme */
  1745. goto out;
  1746. default:
  1747. goto bad_tag;
  1748. }
  1749. }
  1750. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1751. ret = read_partial_message(con);
  1752. if (ret <= 0) {
  1753. switch (ret) {
  1754. case -EBADMSG:
  1755. con->error_msg = "bad crc";
  1756. ret = -EIO;
  1757. break;
  1758. case -EIO:
  1759. con->error_msg = "io error";
  1760. break;
  1761. }
  1762. goto out;
  1763. }
  1764. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1765. goto more;
  1766. process_message(con);
  1767. goto more;
  1768. }
  1769. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1770. ret = read_partial_ack(con);
  1771. if (ret <= 0)
  1772. goto out;
  1773. process_ack(con);
  1774. goto more;
  1775. }
  1776. out:
  1777. dout("try_read done on %p ret %d\n", con, ret);
  1778. return ret;
  1779. bad_tag:
  1780. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1781. con->error_msg = "protocol error, garbage tag";
  1782. ret = -1;
  1783. goto out;
  1784. }
  1785. /*
  1786. * Atomically queue work on a connection. Bump @con reference to
  1787. * avoid races with connection teardown.
  1788. */
  1789. static void queue_con(struct ceph_connection *con)
  1790. {
  1791. if (test_bit(DEAD, &con->state)) {
  1792. dout("queue_con %p ignoring: DEAD\n",
  1793. con);
  1794. return;
  1795. }
  1796. if (!con->ops->get(con)) {
  1797. dout("queue_con %p ref count 0\n", con);
  1798. return;
  1799. }
  1800. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1801. dout("queue_con %p - already queued\n", con);
  1802. con->ops->put(con);
  1803. } else {
  1804. dout("queue_con %p\n", con);
  1805. }
  1806. }
  1807. /*
  1808. * Do some work on a connection. Drop a connection ref when we're done.
  1809. */
  1810. static void con_work(struct work_struct *work)
  1811. {
  1812. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1813. work.work);
  1814. int ret;
  1815. mutex_lock(&con->mutex);
  1816. restart:
  1817. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1818. dout("con_work %p backing off\n", con);
  1819. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1820. round_jiffies_relative(con->delay))) {
  1821. dout("con_work %p backoff %lu\n", con, con->delay);
  1822. mutex_unlock(&con->mutex);
  1823. return;
  1824. } else {
  1825. con->ops->put(con);
  1826. dout("con_work %p FAILED to back off %lu\n", con,
  1827. con->delay);
  1828. }
  1829. }
  1830. if (test_bit(STANDBY, &con->state)) {
  1831. dout("con_work %p STANDBY\n", con);
  1832. goto done;
  1833. }
  1834. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1835. dout("con_work CLOSED\n");
  1836. con_close_socket(con);
  1837. goto done;
  1838. }
  1839. if (test_and_clear_bit(OPENING, &con->state)) {
  1840. /* reopen w/ new peer */
  1841. dout("con_work OPENING\n");
  1842. con_close_socket(con);
  1843. }
  1844. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1845. goto fault;
  1846. ret = try_read(con);
  1847. if (ret == -EAGAIN)
  1848. goto restart;
  1849. if (ret < 0)
  1850. goto fault;
  1851. ret = try_write(con);
  1852. if (ret == -EAGAIN)
  1853. goto restart;
  1854. if (ret < 0)
  1855. goto fault;
  1856. done:
  1857. mutex_unlock(&con->mutex);
  1858. done_unlocked:
  1859. con->ops->put(con);
  1860. return;
  1861. fault:
  1862. mutex_unlock(&con->mutex);
  1863. ceph_fault(con); /* error/fault path */
  1864. goto done_unlocked;
  1865. }
  1866. /*
  1867. * Generic error/fault handler. A retry mechanism is used with
  1868. * exponential backoff
  1869. */
  1870. static void ceph_fault(struct ceph_connection *con)
  1871. {
  1872. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1873. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1874. dout("fault %p state %lu to peer %s\n",
  1875. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1876. if (test_bit(LOSSYTX, &con->state)) {
  1877. dout("fault on LOSSYTX channel\n");
  1878. goto out;
  1879. }
  1880. mutex_lock(&con->mutex);
  1881. if (test_bit(CLOSED, &con->state))
  1882. goto out_unlock;
  1883. con_close_socket(con);
  1884. if (con->in_msg) {
  1885. ceph_msg_put(con->in_msg);
  1886. con->in_msg = NULL;
  1887. }
  1888. /* Requeue anything that hasn't been acked */
  1889. list_splice_init(&con->out_sent, &con->out_queue);
  1890. /* If there are no messages queued or keepalive pending, place
  1891. * the connection in a STANDBY state */
  1892. if (list_empty(&con->out_queue) &&
  1893. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1894. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1895. clear_bit(WRITE_PENDING, &con->state);
  1896. set_bit(STANDBY, &con->state);
  1897. } else {
  1898. /* retry after a delay. */
  1899. if (con->delay == 0)
  1900. con->delay = BASE_DELAY_INTERVAL;
  1901. else if (con->delay < MAX_DELAY_INTERVAL)
  1902. con->delay *= 2;
  1903. con->ops->get(con);
  1904. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1905. round_jiffies_relative(con->delay))) {
  1906. dout("fault queued %p delay %lu\n", con, con->delay);
  1907. } else {
  1908. con->ops->put(con);
  1909. dout("fault failed to queue %p delay %lu, backoff\n",
  1910. con, con->delay);
  1911. /*
  1912. * In many cases we see a socket state change
  1913. * while con_work is running and end up
  1914. * queuing (non-delayed) work, such that we
  1915. * can't backoff with a delay. Set a flag so
  1916. * that when con_work restarts we schedule the
  1917. * delay then.
  1918. */
  1919. set_bit(BACKOFF, &con->state);
  1920. }
  1921. }
  1922. out_unlock:
  1923. mutex_unlock(&con->mutex);
  1924. out:
  1925. /*
  1926. * in case we faulted due to authentication, invalidate our
  1927. * current tickets so that we can get new ones.
  1928. */
  1929. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1930. dout("calling invalidate_authorizer()\n");
  1931. con->ops->invalidate_authorizer(con);
  1932. }
  1933. if (con->ops->fault)
  1934. con->ops->fault(con);
  1935. }
  1936. /*
  1937. * create a new messenger instance
  1938. */
  1939. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1940. u32 supported_features,
  1941. u32 required_features)
  1942. {
  1943. struct ceph_messenger *msgr;
  1944. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1945. if (msgr == NULL)
  1946. return ERR_PTR(-ENOMEM);
  1947. msgr->supported_features = supported_features;
  1948. msgr->required_features = required_features;
  1949. spin_lock_init(&msgr->global_seq_lock);
  1950. if (myaddr)
  1951. msgr->inst.addr = *myaddr;
  1952. /* select a random nonce */
  1953. msgr->inst.addr.type = 0;
  1954. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1955. encode_my_addr(msgr);
  1956. dout("messenger_create %p\n", msgr);
  1957. return msgr;
  1958. }
  1959. EXPORT_SYMBOL(ceph_messenger_create);
  1960. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1961. {
  1962. dout("destroy %p\n", msgr);
  1963. kfree(msgr);
  1964. dout("destroyed messenger %p\n", msgr);
  1965. }
  1966. EXPORT_SYMBOL(ceph_messenger_destroy);
  1967. static void clear_standby(struct ceph_connection *con)
  1968. {
  1969. /* come back from STANDBY? */
  1970. if (test_and_clear_bit(STANDBY, &con->state)) {
  1971. mutex_lock(&con->mutex);
  1972. dout("clear_standby %p and ++connect_seq\n", con);
  1973. con->connect_seq++;
  1974. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1975. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1976. mutex_unlock(&con->mutex);
  1977. }
  1978. }
  1979. /*
  1980. * Queue up an outgoing message on the given connection.
  1981. */
  1982. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1983. {
  1984. if (test_bit(CLOSED, &con->state)) {
  1985. dout("con_send %p closed, dropping %p\n", con, msg);
  1986. ceph_msg_put(msg);
  1987. return;
  1988. }
  1989. /* set src+dst */
  1990. msg->hdr.src = con->msgr->inst.name;
  1991. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1992. msg->needs_out_seq = true;
  1993. /* queue */
  1994. mutex_lock(&con->mutex);
  1995. BUG_ON(!list_empty(&msg->list_head));
  1996. list_add_tail(&msg->list_head, &con->out_queue);
  1997. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1998. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1999. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  2000. le32_to_cpu(msg->hdr.front_len),
  2001. le32_to_cpu(msg->hdr.middle_len),
  2002. le32_to_cpu(msg->hdr.data_len));
  2003. mutex_unlock(&con->mutex);
  2004. /* if there wasn't anything waiting to send before, queue
  2005. * new work */
  2006. clear_standby(con);
  2007. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2008. queue_con(con);
  2009. }
  2010. EXPORT_SYMBOL(ceph_con_send);
  2011. /*
  2012. * Revoke a message that was previously queued for send
  2013. */
  2014. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2015. {
  2016. mutex_lock(&con->mutex);
  2017. if (!list_empty(&msg->list_head)) {
  2018. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2019. list_del_init(&msg->list_head);
  2020. ceph_msg_put(msg);
  2021. msg->hdr.seq = 0;
  2022. }
  2023. if (con->out_msg == msg) {
  2024. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2025. con->out_msg = NULL;
  2026. if (con->out_kvec_is_msg) {
  2027. con->out_skip = con->out_kvec_bytes;
  2028. con->out_kvec_is_msg = false;
  2029. }
  2030. ceph_msg_put(msg);
  2031. msg->hdr.seq = 0;
  2032. }
  2033. mutex_unlock(&con->mutex);
  2034. }
  2035. /*
  2036. * Revoke a message that we may be reading data into
  2037. */
  2038. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2039. {
  2040. mutex_lock(&con->mutex);
  2041. if (con->in_msg && con->in_msg == msg) {
  2042. unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
  2043. unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2044. unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
  2045. /* skip rest of message */
  2046. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2047. con->in_base_pos = con->in_base_pos -
  2048. sizeof(struct ceph_msg_header) -
  2049. front_len -
  2050. middle_len -
  2051. data_len -
  2052. sizeof(struct ceph_msg_footer);
  2053. ceph_msg_put(con->in_msg);
  2054. con->in_msg = NULL;
  2055. con->in_tag = CEPH_MSGR_TAG_READY;
  2056. con->in_seq++;
  2057. } else {
  2058. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2059. con, con->in_msg, msg);
  2060. }
  2061. mutex_unlock(&con->mutex);
  2062. }
  2063. /*
  2064. * Queue a keepalive byte to ensure the tcp connection is alive.
  2065. */
  2066. void ceph_con_keepalive(struct ceph_connection *con)
  2067. {
  2068. dout("con_keepalive %p\n", con);
  2069. clear_standby(con);
  2070. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2071. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2072. queue_con(con);
  2073. }
  2074. EXPORT_SYMBOL(ceph_con_keepalive);
  2075. /*
  2076. * construct a new message with given type, size
  2077. * the new msg has a ref count of 1.
  2078. */
  2079. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2080. bool can_fail)
  2081. {
  2082. struct ceph_msg *m;
  2083. m = kmalloc(sizeof(*m), flags);
  2084. if (m == NULL)
  2085. goto out;
  2086. kref_init(&m->kref);
  2087. INIT_LIST_HEAD(&m->list_head);
  2088. m->hdr.tid = 0;
  2089. m->hdr.type = cpu_to_le16(type);
  2090. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2091. m->hdr.version = 0;
  2092. m->hdr.front_len = cpu_to_le32(front_len);
  2093. m->hdr.middle_len = 0;
  2094. m->hdr.data_len = 0;
  2095. m->hdr.data_off = 0;
  2096. m->hdr.reserved = 0;
  2097. m->footer.front_crc = 0;
  2098. m->footer.middle_crc = 0;
  2099. m->footer.data_crc = 0;
  2100. m->footer.flags = 0;
  2101. m->front_max = front_len;
  2102. m->front_is_vmalloc = false;
  2103. m->more_to_follow = false;
  2104. m->ack_stamp = 0;
  2105. m->pool = NULL;
  2106. /* middle */
  2107. m->middle = NULL;
  2108. /* data */
  2109. m->nr_pages = 0;
  2110. m->page_alignment = 0;
  2111. m->pages = NULL;
  2112. m->pagelist = NULL;
  2113. m->bio = NULL;
  2114. m->bio_iter = NULL;
  2115. m->bio_seg = 0;
  2116. m->trail = NULL;
  2117. /* front */
  2118. if (front_len) {
  2119. if (front_len > PAGE_CACHE_SIZE) {
  2120. m->front.iov_base = __vmalloc(front_len, flags,
  2121. PAGE_KERNEL);
  2122. m->front_is_vmalloc = true;
  2123. } else {
  2124. m->front.iov_base = kmalloc(front_len, flags);
  2125. }
  2126. if (m->front.iov_base == NULL) {
  2127. dout("ceph_msg_new can't allocate %d bytes\n",
  2128. front_len);
  2129. goto out2;
  2130. }
  2131. } else {
  2132. m->front.iov_base = NULL;
  2133. }
  2134. m->front.iov_len = front_len;
  2135. dout("ceph_msg_new %p front %d\n", m, front_len);
  2136. return m;
  2137. out2:
  2138. ceph_msg_put(m);
  2139. out:
  2140. if (!can_fail) {
  2141. pr_err("msg_new can't create type %d front %d\n", type,
  2142. front_len);
  2143. WARN_ON(1);
  2144. } else {
  2145. dout("msg_new can't create type %d front %d\n", type,
  2146. front_len);
  2147. }
  2148. return NULL;
  2149. }
  2150. EXPORT_SYMBOL(ceph_msg_new);
  2151. /*
  2152. * Allocate "middle" portion of a message, if it is needed and wasn't
  2153. * allocated by alloc_msg. This allows us to read a small fixed-size
  2154. * per-type header in the front and then gracefully fail (i.e.,
  2155. * propagate the error to the caller based on info in the front) when
  2156. * the middle is too large.
  2157. */
  2158. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2159. {
  2160. int type = le16_to_cpu(msg->hdr.type);
  2161. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2162. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2163. ceph_msg_type_name(type), middle_len);
  2164. BUG_ON(!middle_len);
  2165. BUG_ON(msg->middle);
  2166. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2167. if (!msg->middle)
  2168. return -ENOMEM;
  2169. return 0;
  2170. }
  2171. /*
  2172. * Generic message allocator, for incoming messages.
  2173. */
  2174. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2175. struct ceph_msg_header *hdr,
  2176. int *skip)
  2177. {
  2178. int type = le16_to_cpu(hdr->type);
  2179. int front_len = le32_to_cpu(hdr->front_len);
  2180. int middle_len = le32_to_cpu(hdr->middle_len);
  2181. struct ceph_msg *msg = NULL;
  2182. int ret;
  2183. if (con->ops->alloc_msg) {
  2184. mutex_unlock(&con->mutex);
  2185. msg = con->ops->alloc_msg(con, hdr, skip);
  2186. mutex_lock(&con->mutex);
  2187. if (!msg || *skip)
  2188. return NULL;
  2189. }
  2190. if (!msg) {
  2191. *skip = 0;
  2192. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2193. if (!msg) {
  2194. pr_err("unable to allocate msg type %d len %d\n",
  2195. type, front_len);
  2196. return NULL;
  2197. }
  2198. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2199. }
  2200. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2201. if (middle_len && !msg->middle) {
  2202. ret = ceph_alloc_middle(con, msg);
  2203. if (ret < 0) {
  2204. ceph_msg_put(msg);
  2205. return NULL;
  2206. }
  2207. }
  2208. return msg;
  2209. }
  2210. /*
  2211. * Free a generically kmalloc'd message.
  2212. */
  2213. void ceph_msg_kfree(struct ceph_msg *m)
  2214. {
  2215. dout("msg_kfree %p\n", m);
  2216. if (m->front_is_vmalloc)
  2217. vfree(m->front.iov_base);
  2218. else
  2219. kfree(m->front.iov_base);
  2220. kfree(m);
  2221. }
  2222. /*
  2223. * Drop a msg ref. Destroy as needed.
  2224. */
  2225. void ceph_msg_last_put(struct kref *kref)
  2226. {
  2227. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2228. dout("ceph_msg_put last one on %p\n", m);
  2229. WARN_ON(!list_empty(&m->list_head));
  2230. /* drop middle, data, if any */
  2231. if (m->middle) {
  2232. ceph_buffer_put(m->middle);
  2233. m->middle = NULL;
  2234. }
  2235. m->nr_pages = 0;
  2236. m->pages = NULL;
  2237. if (m->pagelist) {
  2238. ceph_pagelist_release(m->pagelist);
  2239. kfree(m->pagelist);
  2240. m->pagelist = NULL;
  2241. }
  2242. m->trail = NULL;
  2243. if (m->pool)
  2244. ceph_msgpool_put(m->pool, m);
  2245. else
  2246. ceph_msg_kfree(m);
  2247. }
  2248. EXPORT_SYMBOL(ceph_msg_last_put);
  2249. void ceph_msg_dump(struct ceph_msg *msg)
  2250. {
  2251. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2252. msg->front_max, msg->nr_pages);
  2253. print_hex_dump(KERN_DEBUG, "header: ",
  2254. DUMP_PREFIX_OFFSET, 16, 1,
  2255. &msg->hdr, sizeof(msg->hdr), true);
  2256. print_hex_dump(KERN_DEBUG, " front: ",
  2257. DUMP_PREFIX_OFFSET, 16, 1,
  2258. msg->front.iov_base, msg->front.iov_len, true);
  2259. if (msg->middle)
  2260. print_hex_dump(KERN_DEBUG, "middle: ",
  2261. DUMP_PREFIX_OFFSET, 16, 1,
  2262. msg->middle->vec.iov_base,
  2263. msg->middle->vec.iov_len, true);
  2264. print_hex_dump(KERN_DEBUG, "footer: ",
  2265. DUMP_PREFIX_OFFSET, 16, 1,
  2266. &msg->footer, sizeof(msg->footer), true);
  2267. }
  2268. EXPORT_SYMBOL(ceph_msg_dump);