vmalloc.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. struct vm_struct *vm;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static LIST_HEAD(vmap_area_list);
  231. static struct rb_root vmap_area_root = RB_ROOT;
  232. /* The vmap cache globals are protected by vmap_area_lock */
  233. static struct rb_node *free_vmap_cache;
  234. static unsigned long cached_hole_size;
  235. static unsigned long cached_vstart;
  236. static unsigned long cached_align;
  237. static unsigned long vmap_area_pcpu_hole;
  238. static struct vmap_area *__find_vmap_area(unsigned long addr)
  239. {
  240. struct rb_node *n = vmap_area_root.rb_node;
  241. while (n) {
  242. struct vmap_area *va;
  243. va = rb_entry(n, struct vmap_area, rb_node);
  244. if (addr < va->va_start)
  245. n = n->rb_left;
  246. else if (addr > va->va_start)
  247. n = n->rb_right;
  248. else
  249. return va;
  250. }
  251. return NULL;
  252. }
  253. static void __insert_vmap_area(struct vmap_area *va)
  254. {
  255. struct rb_node **p = &vmap_area_root.rb_node;
  256. struct rb_node *parent = NULL;
  257. struct rb_node *tmp;
  258. while (*p) {
  259. struct vmap_area *tmp_va;
  260. parent = *p;
  261. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  262. if (va->va_start < tmp_va->va_end)
  263. p = &(*p)->rb_left;
  264. else if (va->va_end > tmp_va->va_start)
  265. p = &(*p)->rb_right;
  266. else
  267. BUG();
  268. }
  269. rb_link_node(&va->rb_node, parent, p);
  270. rb_insert_color(&va->rb_node, &vmap_area_root);
  271. /* address-sort this list so it is usable like the vmlist */
  272. tmp = rb_prev(&va->rb_node);
  273. if (tmp) {
  274. struct vmap_area *prev;
  275. prev = rb_entry(tmp, struct vmap_area, rb_node);
  276. list_add_rcu(&va->list, &prev->list);
  277. } else
  278. list_add_rcu(&va->list, &vmap_area_list);
  279. }
  280. static void purge_vmap_area_lazy(void);
  281. /*
  282. * Allocate a region of KVA of the specified size and alignment, within the
  283. * vstart and vend.
  284. */
  285. static struct vmap_area *alloc_vmap_area(unsigned long size,
  286. unsigned long align,
  287. unsigned long vstart, unsigned long vend,
  288. int node, gfp_t gfp_mask)
  289. {
  290. struct vmap_area *va;
  291. struct rb_node *n;
  292. unsigned long addr;
  293. int purged = 0;
  294. struct vmap_area *first;
  295. BUG_ON(!size);
  296. BUG_ON(size & ~PAGE_MASK);
  297. BUG_ON(!is_power_of_2(align));
  298. va = kmalloc_node(sizeof(struct vmap_area),
  299. gfp_mask & GFP_RECLAIM_MASK, node);
  300. if (unlikely(!va))
  301. return ERR_PTR(-ENOMEM);
  302. retry:
  303. spin_lock(&vmap_area_lock);
  304. /*
  305. * Invalidate cache if we have more permissive parameters.
  306. * cached_hole_size notes the largest hole noticed _below_
  307. * the vmap_area cached in free_vmap_cache: if size fits
  308. * into that hole, we want to scan from vstart to reuse
  309. * the hole instead of allocating above free_vmap_cache.
  310. * Note that __free_vmap_area may update free_vmap_cache
  311. * without updating cached_hole_size or cached_align.
  312. */
  313. if (!free_vmap_cache ||
  314. size < cached_hole_size ||
  315. vstart < cached_vstart ||
  316. align < cached_align) {
  317. nocache:
  318. cached_hole_size = 0;
  319. free_vmap_cache = NULL;
  320. }
  321. /* record if we encounter less permissive parameters */
  322. cached_vstart = vstart;
  323. cached_align = align;
  324. /* find starting point for our search */
  325. if (free_vmap_cache) {
  326. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  327. addr = ALIGN(first->va_end, align);
  328. if (addr < vstart)
  329. goto nocache;
  330. if (addr + size - 1 < addr)
  331. goto overflow;
  332. } else {
  333. addr = ALIGN(vstart, align);
  334. if (addr + size - 1 < addr)
  335. goto overflow;
  336. n = vmap_area_root.rb_node;
  337. first = NULL;
  338. while (n) {
  339. struct vmap_area *tmp;
  340. tmp = rb_entry(n, struct vmap_area, rb_node);
  341. if (tmp->va_end >= addr) {
  342. first = tmp;
  343. if (tmp->va_start <= addr)
  344. break;
  345. n = n->rb_left;
  346. } else
  347. n = n->rb_right;
  348. }
  349. if (!first)
  350. goto found;
  351. }
  352. /* from the starting point, walk areas until a suitable hole is found */
  353. while (addr + size > first->va_start && addr + size <= vend) {
  354. if (addr + cached_hole_size < first->va_start)
  355. cached_hole_size = first->va_start - addr;
  356. addr = ALIGN(first->va_end, align);
  357. if (addr + size - 1 < addr)
  358. goto overflow;
  359. n = rb_next(&first->rb_node);
  360. if (n)
  361. first = rb_entry(n, struct vmap_area, rb_node);
  362. else
  363. goto found;
  364. }
  365. found:
  366. if (addr + size > vend)
  367. goto overflow;
  368. va->va_start = addr;
  369. va->va_end = addr + size;
  370. va->flags = 0;
  371. __insert_vmap_area(va);
  372. free_vmap_cache = &va->rb_node;
  373. spin_unlock(&vmap_area_lock);
  374. BUG_ON(va->va_start & (align-1));
  375. BUG_ON(va->va_start < vstart);
  376. BUG_ON(va->va_end > vend);
  377. return va;
  378. overflow:
  379. spin_unlock(&vmap_area_lock);
  380. if (!purged) {
  381. purge_vmap_area_lazy();
  382. purged = 1;
  383. goto retry;
  384. }
  385. if (printk_ratelimit())
  386. printk(KERN_WARNING
  387. "vmap allocation for size %lu failed: "
  388. "use vmalloc=<size> to increase size.\n", size);
  389. kfree(va);
  390. return ERR_PTR(-EBUSY);
  391. }
  392. static void __free_vmap_area(struct vmap_area *va)
  393. {
  394. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  395. if (free_vmap_cache) {
  396. if (va->va_end < cached_vstart) {
  397. free_vmap_cache = NULL;
  398. } else {
  399. struct vmap_area *cache;
  400. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  401. if (va->va_start <= cache->va_start) {
  402. free_vmap_cache = rb_prev(&va->rb_node);
  403. /*
  404. * We don't try to update cached_hole_size or
  405. * cached_align, but it won't go very wrong.
  406. */
  407. }
  408. }
  409. }
  410. rb_erase(&va->rb_node, &vmap_area_root);
  411. RB_CLEAR_NODE(&va->rb_node);
  412. list_del_rcu(&va->list);
  413. /*
  414. * Track the highest possible candidate for pcpu area
  415. * allocation. Areas outside of vmalloc area can be returned
  416. * here too, consider only end addresses which fall inside
  417. * vmalloc area proper.
  418. */
  419. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  420. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  421. kfree_rcu(va, rcu_head);
  422. }
  423. /*
  424. * Free a region of KVA allocated by alloc_vmap_area
  425. */
  426. static void free_vmap_area(struct vmap_area *va)
  427. {
  428. spin_lock(&vmap_area_lock);
  429. __free_vmap_area(va);
  430. spin_unlock(&vmap_area_lock);
  431. }
  432. /*
  433. * Clear the pagetable entries of a given vmap_area
  434. */
  435. static void unmap_vmap_area(struct vmap_area *va)
  436. {
  437. vunmap_page_range(va->va_start, va->va_end);
  438. }
  439. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  440. {
  441. /*
  442. * Unmap page tables and force a TLB flush immediately if
  443. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  444. * bugs similarly to those in linear kernel virtual address
  445. * space after a page has been freed.
  446. *
  447. * All the lazy freeing logic is still retained, in order to
  448. * minimise intrusiveness of this debugging feature.
  449. *
  450. * This is going to be *slow* (linear kernel virtual address
  451. * debugging doesn't do a broadcast TLB flush so it is a lot
  452. * faster).
  453. */
  454. #ifdef CONFIG_DEBUG_PAGEALLOC
  455. vunmap_page_range(start, end);
  456. flush_tlb_kernel_range(start, end);
  457. #endif
  458. }
  459. /*
  460. * lazy_max_pages is the maximum amount of virtual address space we gather up
  461. * before attempting to purge with a TLB flush.
  462. *
  463. * There is a tradeoff here: a larger number will cover more kernel page tables
  464. * and take slightly longer to purge, but it will linearly reduce the number of
  465. * global TLB flushes that must be performed. It would seem natural to scale
  466. * this number up linearly with the number of CPUs (because vmapping activity
  467. * could also scale linearly with the number of CPUs), however it is likely
  468. * that in practice, workloads might be constrained in other ways that mean
  469. * vmap activity will not scale linearly with CPUs. Also, I want to be
  470. * conservative and not introduce a big latency on huge systems, so go with
  471. * a less aggressive log scale. It will still be an improvement over the old
  472. * code, and it will be simple to change the scale factor if we find that it
  473. * becomes a problem on bigger systems.
  474. */
  475. static unsigned long lazy_max_pages(void)
  476. {
  477. unsigned int log;
  478. log = fls(num_online_cpus());
  479. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  480. }
  481. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  482. /* for per-CPU blocks */
  483. static void purge_fragmented_blocks_allcpus(void);
  484. /*
  485. * called before a call to iounmap() if the caller wants vm_area_struct's
  486. * immediately freed.
  487. */
  488. void set_iounmap_nonlazy(void)
  489. {
  490. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  491. }
  492. /*
  493. * Purges all lazily-freed vmap areas.
  494. *
  495. * If sync is 0 then don't purge if there is already a purge in progress.
  496. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  497. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  498. * their own TLB flushing).
  499. * Returns with *start = min(*start, lowest purged address)
  500. * *end = max(*end, highest purged address)
  501. */
  502. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  503. int sync, int force_flush)
  504. {
  505. static DEFINE_SPINLOCK(purge_lock);
  506. LIST_HEAD(valist);
  507. struct vmap_area *va;
  508. struct vmap_area *n_va;
  509. int nr = 0;
  510. /*
  511. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  512. * should not expect such behaviour. This just simplifies locking for
  513. * the case that isn't actually used at the moment anyway.
  514. */
  515. if (!sync && !force_flush) {
  516. if (!spin_trylock(&purge_lock))
  517. return;
  518. } else
  519. spin_lock(&purge_lock);
  520. if (sync)
  521. purge_fragmented_blocks_allcpus();
  522. rcu_read_lock();
  523. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  524. if (va->flags & VM_LAZY_FREE) {
  525. if (va->va_start < *start)
  526. *start = va->va_start;
  527. if (va->va_end > *end)
  528. *end = va->va_end;
  529. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  530. list_add_tail(&va->purge_list, &valist);
  531. va->flags |= VM_LAZY_FREEING;
  532. va->flags &= ~VM_LAZY_FREE;
  533. }
  534. }
  535. rcu_read_unlock();
  536. if (nr)
  537. atomic_sub(nr, &vmap_lazy_nr);
  538. if (nr || force_flush)
  539. flush_tlb_kernel_range(*start, *end);
  540. if (nr) {
  541. spin_lock(&vmap_area_lock);
  542. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  543. __free_vmap_area(va);
  544. spin_unlock(&vmap_area_lock);
  545. }
  546. spin_unlock(&purge_lock);
  547. }
  548. /*
  549. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  550. * is already purging.
  551. */
  552. static void try_purge_vmap_area_lazy(void)
  553. {
  554. unsigned long start = ULONG_MAX, end = 0;
  555. __purge_vmap_area_lazy(&start, &end, 0, 0);
  556. }
  557. /*
  558. * Kick off a purge of the outstanding lazy areas.
  559. */
  560. static void purge_vmap_area_lazy(void)
  561. {
  562. unsigned long start = ULONG_MAX, end = 0;
  563. __purge_vmap_area_lazy(&start, &end, 1, 0);
  564. }
  565. /*
  566. * Free a vmap area, caller ensuring that the area has been unmapped
  567. * and flush_cache_vunmap had been called for the correct range
  568. * previously.
  569. */
  570. static void free_vmap_area_noflush(struct vmap_area *va)
  571. {
  572. va->flags |= VM_LAZY_FREE;
  573. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  574. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  575. try_purge_vmap_area_lazy();
  576. }
  577. /*
  578. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  579. * called for the correct range previously.
  580. */
  581. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  582. {
  583. unmap_vmap_area(va);
  584. free_vmap_area_noflush(va);
  585. }
  586. /*
  587. * Free and unmap a vmap area
  588. */
  589. static void free_unmap_vmap_area(struct vmap_area *va)
  590. {
  591. flush_cache_vunmap(va->va_start, va->va_end);
  592. free_unmap_vmap_area_noflush(va);
  593. }
  594. static struct vmap_area *find_vmap_area(unsigned long addr)
  595. {
  596. struct vmap_area *va;
  597. spin_lock(&vmap_area_lock);
  598. va = __find_vmap_area(addr);
  599. spin_unlock(&vmap_area_lock);
  600. return va;
  601. }
  602. static void free_unmap_vmap_area_addr(unsigned long addr)
  603. {
  604. struct vmap_area *va;
  605. va = find_vmap_area(addr);
  606. BUG_ON(!va);
  607. free_unmap_vmap_area(va);
  608. }
  609. /*** Per cpu kva allocator ***/
  610. /*
  611. * vmap space is limited especially on 32 bit architectures. Ensure there is
  612. * room for at least 16 percpu vmap blocks per CPU.
  613. */
  614. /*
  615. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  616. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  617. * instead (we just need a rough idea)
  618. */
  619. #if BITS_PER_LONG == 32
  620. #define VMALLOC_SPACE (128UL*1024*1024)
  621. #else
  622. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  623. #endif
  624. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  625. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  626. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  627. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  628. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  629. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  630. #define VMAP_BBMAP_BITS \
  631. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  632. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  633. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  634. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  635. static bool vmap_initialized __read_mostly = false;
  636. struct vmap_block_queue {
  637. spinlock_t lock;
  638. struct list_head free;
  639. };
  640. struct vmap_block {
  641. spinlock_t lock;
  642. struct vmap_area *va;
  643. struct vmap_block_queue *vbq;
  644. unsigned long free, dirty;
  645. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  646. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  647. struct list_head free_list;
  648. struct rcu_head rcu_head;
  649. struct list_head purge;
  650. };
  651. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  652. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  653. /*
  654. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  655. * in the free path. Could get rid of this if we change the API to return a
  656. * "cookie" from alloc, to be passed to free. But no big deal yet.
  657. */
  658. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  659. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  660. /*
  661. * We should probably have a fallback mechanism to allocate virtual memory
  662. * out of partially filled vmap blocks. However vmap block sizing should be
  663. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  664. * big problem.
  665. */
  666. static unsigned long addr_to_vb_idx(unsigned long addr)
  667. {
  668. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  669. addr /= VMAP_BLOCK_SIZE;
  670. return addr;
  671. }
  672. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  673. {
  674. struct vmap_block_queue *vbq;
  675. struct vmap_block *vb;
  676. struct vmap_area *va;
  677. unsigned long vb_idx;
  678. int node, err;
  679. node = numa_node_id();
  680. vb = kmalloc_node(sizeof(struct vmap_block),
  681. gfp_mask & GFP_RECLAIM_MASK, node);
  682. if (unlikely(!vb))
  683. return ERR_PTR(-ENOMEM);
  684. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  685. VMALLOC_START, VMALLOC_END,
  686. node, gfp_mask);
  687. if (IS_ERR(va)) {
  688. kfree(vb);
  689. return ERR_CAST(va);
  690. }
  691. err = radix_tree_preload(gfp_mask);
  692. if (unlikely(err)) {
  693. kfree(vb);
  694. free_vmap_area(va);
  695. return ERR_PTR(err);
  696. }
  697. spin_lock_init(&vb->lock);
  698. vb->va = va;
  699. vb->free = VMAP_BBMAP_BITS;
  700. vb->dirty = 0;
  701. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  702. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  703. INIT_LIST_HEAD(&vb->free_list);
  704. vb_idx = addr_to_vb_idx(va->va_start);
  705. spin_lock(&vmap_block_tree_lock);
  706. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  707. spin_unlock(&vmap_block_tree_lock);
  708. BUG_ON(err);
  709. radix_tree_preload_end();
  710. vbq = &get_cpu_var(vmap_block_queue);
  711. vb->vbq = vbq;
  712. spin_lock(&vbq->lock);
  713. list_add_rcu(&vb->free_list, &vbq->free);
  714. spin_unlock(&vbq->lock);
  715. put_cpu_var(vmap_block_queue);
  716. return vb;
  717. }
  718. static void free_vmap_block(struct vmap_block *vb)
  719. {
  720. struct vmap_block *tmp;
  721. unsigned long vb_idx;
  722. vb_idx = addr_to_vb_idx(vb->va->va_start);
  723. spin_lock(&vmap_block_tree_lock);
  724. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  725. spin_unlock(&vmap_block_tree_lock);
  726. BUG_ON(tmp != vb);
  727. free_vmap_area_noflush(vb->va);
  728. kfree_rcu(vb, rcu_head);
  729. }
  730. static void purge_fragmented_blocks(int cpu)
  731. {
  732. LIST_HEAD(purge);
  733. struct vmap_block *vb;
  734. struct vmap_block *n_vb;
  735. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  736. rcu_read_lock();
  737. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  738. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  739. continue;
  740. spin_lock(&vb->lock);
  741. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  742. vb->free = 0; /* prevent further allocs after releasing lock */
  743. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  744. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  745. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  746. spin_lock(&vbq->lock);
  747. list_del_rcu(&vb->free_list);
  748. spin_unlock(&vbq->lock);
  749. spin_unlock(&vb->lock);
  750. list_add_tail(&vb->purge, &purge);
  751. } else
  752. spin_unlock(&vb->lock);
  753. }
  754. rcu_read_unlock();
  755. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  756. list_del(&vb->purge);
  757. free_vmap_block(vb);
  758. }
  759. }
  760. static void purge_fragmented_blocks_thiscpu(void)
  761. {
  762. purge_fragmented_blocks(smp_processor_id());
  763. }
  764. static void purge_fragmented_blocks_allcpus(void)
  765. {
  766. int cpu;
  767. for_each_possible_cpu(cpu)
  768. purge_fragmented_blocks(cpu);
  769. }
  770. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  771. {
  772. struct vmap_block_queue *vbq;
  773. struct vmap_block *vb;
  774. unsigned long addr = 0;
  775. unsigned int order;
  776. int purge = 0;
  777. BUG_ON(size & ~PAGE_MASK);
  778. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  779. order = get_order(size);
  780. again:
  781. rcu_read_lock();
  782. vbq = &get_cpu_var(vmap_block_queue);
  783. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  784. int i;
  785. spin_lock(&vb->lock);
  786. if (vb->free < 1UL << order)
  787. goto next;
  788. i = bitmap_find_free_region(vb->alloc_map,
  789. VMAP_BBMAP_BITS, order);
  790. if (i < 0) {
  791. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  792. /* fragmented and no outstanding allocations */
  793. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  794. purge = 1;
  795. }
  796. goto next;
  797. }
  798. addr = vb->va->va_start + (i << PAGE_SHIFT);
  799. BUG_ON(addr_to_vb_idx(addr) !=
  800. addr_to_vb_idx(vb->va->va_start));
  801. vb->free -= 1UL << order;
  802. if (vb->free == 0) {
  803. spin_lock(&vbq->lock);
  804. list_del_rcu(&vb->free_list);
  805. spin_unlock(&vbq->lock);
  806. }
  807. spin_unlock(&vb->lock);
  808. break;
  809. next:
  810. spin_unlock(&vb->lock);
  811. }
  812. if (purge)
  813. purge_fragmented_blocks_thiscpu();
  814. put_cpu_var(vmap_block_queue);
  815. rcu_read_unlock();
  816. if (!addr) {
  817. vb = new_vmap_block(gfp_mask);
  818. if (IS_ERR(vb))
  819. return vb;
  820. goto again;
  821. }
  822. return (void *)addr;
  823. }
  824. static void vb_free(const void *addr, unsigned long size)
  825. {
  826. unsigned long offset;
  827. unsigned long vb_idx;
  828. unsigned int order;
  829. struct vmap_block *vb;
  830. BUG_ON(size & ~PAGE_MASK);
  831. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  832. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  833. order = get_order(size);
  834. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  835. vb_idx = addr_to_vb_idx((unsigned long)addr);
  836. rcu_read_lock();
  837. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  838. rcu_read_unlock();
  839. BUG_ON(!vb);
  840. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  841. spin_lock(&vb->lock);
  842. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  843. vb->dirty += 1UL << order;
  844. if (vb->dirty == VMAP_BBMAP_BITS) {
  845. BUG_ON(vb->free);
  846. spin_unlock(&vb->lock);
  847. free_vmap_block(vb);
  848. } else
  849. spin_unlock(&vb->lock);
  850. }
  851. /**
  852. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  853. *
  854. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  855. * to amortize TLB flushing overheads. What this means is that any page you
  856. * have now, may, in a former life, have been mapped into kernel virtual
  857. * address by the vmap layer and so there might be some CPUs with TLB entries
  858. * still referencing that page (additional to the regular 1:1 kernel mapping).
  859. *
  860. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  861. * be sure that none of the pages we have control over will have any aliases
  862. * from the vmap layer.
  863. */
  864. void vm_unmap_aliases(void)
  865. {
  866. unsigned long start = ULONG_MAX, end = 0;
  867. int cpu;
  868. int flush = 0;
  869. if (unlikely(!vmap_initialized))
  870. return;
  871. for_each_possible_cpu(cpu) {
  872. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  873. struct vmap_block *vb;
  874. rcu_read_lock();
  875. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  876. int i;
  877. spin_lock(&vb->lock);
  878. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  879. while (i < VMAP_BBMAP_BITS) {
  880. unsigned long s, e;
  881. int j;
  882. j = find_next_zero_bit(vb->dirty_map,
  883. VMAP_BBMAP_BITS, i);
  884. s = vb->va->va_start + (i << PAGE_SHIFT);
  885. e = vb->va->va_start + (j << PAGE_SHIFT);
  886. flush = 1;
  887. if (s < start)
  888. start = s;
  889. if (e > end)
  890. end = e;
  891. i = j;
  892. i = find_next_bit(vb->dirty_map,
  893. VMAP_BBMAP_BITS, i);
  894. }
  895. spin_unlock(&vb->lock);
  896. }
  897. rcu_read_unlock();
  898. }
  899. __purge_vmap_area_lazy(&start, &end, 1, flush);
  900. }
  901. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  902. /**
  903. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  904. * @mem: the pointer returned by vm_map_ram
  905. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  906. */
  907. void vm_unmap_ram(const void *mem, unsigned int count)
  908. {
  909. unsigned long size = count << PAGE_SHIFT;
  910. unsigned long addr = (unsigned long)mem;
  911. BUG_ON(!addr);
  912. BUG_ON(addr < VMALLOC_START);
  913. BUG_ON(addr > VMALLOC_END);
  914. BUG_ON(addr & (PAGE_SIZE-1));
  915. debug_check_no_locks_freed(mem, size);
  916. vmap_debug_free_range(addr, addr+size);
  917. if (likely(count <= VMAP_MAX_ALLOC))
  918. vb_free(mem, size);
  919. else
  920. free_unmap_vmap_area_addr(addr);
  921. }
  922. EXPORT_SYMBOL(vm_unmap_ram);
  923. /**
  924. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  925. * @pages: an array of pointers to the pages to be mapped
  926. * @count: number of pages
  927. * @node: prefer to allocate data structures on this node
  928. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  929. *
  930. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  931. */
  932. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  933. {
  934. unsigned long size = count << PAGE_SHIFT;
  935. unsigned long addr;
  936. void *mem;
  937. if (likely(count <= VMAP_MAX_ALLOC)) {
  938. mem = vb_alloc(size, GFP_KERNEL);
  939. if (IS_ERR(mem))
  940. return NULL;
  941. addr = (unsigned long)mem;
  942. } else {
  943. struct vmap_area *va;
  944. va = alloc_vmap_area(size, PAGE_SIZE,
  945. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  946. if (IS_ERR(va))
  947. return NULL;
  948. addr = va->va_start;
  949. mem = (void *)addr;
  950. }
  951. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  952. vm_unmap_ram(mem, count);
  953. return NULL;
  954. }
  955. return mem;
  956. }
  957. EXPORT_SYMBOL(vm_map_ram);
  958. /**
  959. * vm_area_add_early - add vmap area early during boot
  960. * @vm: vm_struct to add
  961. *
  962. * This function is used to add fixed kernel vm area to vmlist before
  963. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  964. * should contain proper values and the other fields should be zero.
  965. *
  966. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  967. */
  968. void __init vm_area_add_early(struct vm_struct *vm)
  969. {
  970. struct vm_struct *tmp, **p;
  971. BUG_ON(vmap_initialized);
  972. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  973. if (tmp->addr >= vm->addr) {
  974. BUG_ON(tmp->addr < vm->addr + vm->size);
  975. break;
  976. } else
  977. BUG_ON(tmp->addr + tmp->size > vm->addr);
  978. }
  979. vm->next = *p;
  980. *p = vm;
  981. }
  982. /**
  983. * vm_area_register_early - register vmap area early during boot
  984. * @vm: vm_struct to register
  985. * @align: requested alignment
  986. *
  987. * This function is used to register kernel vm area before
  988. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  989. * proper values on entry and other fields should be zero. On return,
  990. * vm->addr contains the allocated address.
  991. *
  992. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  993. */
  994. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  995. {
  996. static size_t vm_init_off __initdata;
  997. unsigned long addr;
  998. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  999. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1000. vm->addr = (void *)addr;
  1001. vm_area_add_early(vm);
  1002. }
  1003. void __init vmalloc_init(void)
  1004. {
  1005. struct vmap_area *va;
  1006. struct vm_struct *tmp;
  1007. int i;
  1008. for_each_possible_cpu(i) {
  1009. struct vmap_block_queue *vbq;
  1010. vbq = &per_cpu(vmap_block_queue, i);
  1011. spin_lock_init(&vbq->lock);
  1012. INIT_LIST_HEAD(&vbq->free);
  1013. }
  1014. /* Import existing vmlist entries. */
  1015. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1016. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1017. va->flags = VM_VM_AREA;
  1018. va->va_start = (unsigned long)tmp->addr;
  1019. va->va_end = va->va_start + tmp->size;
  1020. va->vm = tmp;
  1021. __insert_vmap_area(va);
  1022. }
  1023. vmap_area_pcpu_hole = VMALLOC_END;
  1024. vmap_initialized = true;
  1025. }
  1026. /**
  1027. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1028. * @addr: start of the VM area to map
  1029. * @size: size of the VM area to map
  1030. * @prot: page protection flags to use
  1031. * @pages: pages to map
  1032. *
  1033. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1034. * specify should have been allocated using get_vm_area() and its
  1035. * friends.
  1036. *
  1037. * NOTE:
  1038. * This function does NOT do any cache flushing. The caller is
  1039. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1040. * before calling this function.
  1041. *
  1042. * RETURNS:
  1043. * The number of pages mapped on success, -errno on failure.
  1044. */
  1045. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1046. pgprot_t prot, struct page **pages)
  1047. {
  1048. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1049. }
  1050. /**
  1051. * unmap_kernel_range_noflush - unmap kernel VM area
  1052. * @addr: start of the VM area to unmap
  1053. * @size: size of the VM area to unmap
  1054. *
  1055. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1056. * specify should have been allocated using get_vm_area() and its
  1057. * friends.
  1058. *
  1059. * NOTE:
  1060. * This function does NOT do any cache flushing. The caller is
  1061. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1062. * before calling this function and flush_tlb_kernel_range() after.
  1063. */
  1064. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1065. {
  1066. vunmap_page_range(addr, addr + size);
  1067. }
  1068. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1069. /**
  1070. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1071. * @addr: start of the VM area to unmap
  1072. * @size: size of the VM area to unmap
  1073. *
  1074. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1075. * the unmapping and tlb after.
  1076. */
  1077. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1078. {
  1079. unsigned long end = addr + size;
  1080. flush_cache_vunmap(addr, end);
  1081. vunmap_page_range(addr, end);
  1082. flush_tlb_kernel_range(addr, end);
  1083. }
  1084. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1085. {
  1086. unsigned long addr = (unsigned long)area->addr;
  1087. unsigned long end = addr + area->size - PAGE_SIZE;
  1088. int err;
  1089. err = vmap_page_range(addr, end, prot, *pages);
  1090. if (err > 0) {
  1091. *pages += err;
  1092. err = 0;
  1093. }
  1094. return err;
  1095. }
  1096. EXPORT_SYMBOL_GPL(map_vm_area);
  1097. /*** Old vmalloc interfaces ***/
  1098. DEFINE_RWLOCK(vmlist_lock);
  1099. struct vm_struct *vmlist;
  1100. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1101. unsigned long flags, void *caller)
  1102. {
  1103. vm->flags = flags;
  1104. vm->addr = (void *)va->va_start;
  1105. vm->size = va->va_end - va->va_start;
  1106. vm->caller = caller;
  1107. va->vm = vm;
  1108. va->flags |= VM_VM_AREA;
  1109. }
  1110. static void insert_vmalloc_vmlist(struct vm_struct *vm)
  1111. {
  1112. struct vm_struct *tmp, **p;
  1113. vm->flags &= ~VM_UNLIST;
  1114. write_lock(&vmlist_lock);
  1115. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1116. if (tmp->addr >= vm->addr)
  1117. break;
  1118. }
  1119. vm->next = *p;
  1120. *p = vm;
  1121. write_unlock(&vmlist_lock);
  1122. }
  1123. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1124. unsigned long flags, void *caller)
  1125. {
  1126. setup_vmalloc_vm(vm, va, flags, caller);
  1127. insert_vmalloc_vmlist(vm);
  1128. }
  1129. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1130. unsigned long align, unsigned long flags, unsigned long start,
  1131. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  1132. {
  1133. struct vmap_area *va;
  1134. struct vm_struct *area;
  1135. BUG_ON(in_interrupt());
  1136. if (flags & VM_IOREMAP) {
  1137. int bit = fls(size);
  1138. if (bit > IOREMAP_MAX_ORDER)
  1139. bit = IOREMAP_MAX_ORDER;
  1140. else if (bit < PAGE_SHIFT)
  1141. bit = PAGE_SHIFT;
  1142. align = 1ul << bit;
  1143. }
  1144. size = PAGE_ALIGN(size);
  1145. if (unlikely(!size))
  1146. return NULL;
  1147. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1148. if (unlikely(!area))
  1149. return NULL;
  1150. /*
  1151. * We always allocate a guard page.
  1152. */
  1153. size += PAGE_SIZE;
  1154. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1155. if (IS_ERR(va)) {
  1156. kfree(area);
  1157. return NULL;
  1158. }
  1159. /*
  1160. * When this function is called from __vmalloc_node_range,
  1161. * we do not add vm_struct to vmlist here to avoid
  1162. * accessing uninitialized members of vm_struct such as
  1163. * pages and nr_pages fields. They will be set later.
  1164. * To distinguish it from others, we use a VM_UNLIST flag.
  1165. */
  1166. if (flags & VM_UNLIST)
  1167. setup_vmalloc_vm(area, va, flags, caller);
  1168. else
  1169. insert_vmalloc_vm(area, va, flags, caller);
  1170. return area;
  1171. }
  1172. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1173. unsigned long start, unsigned long end)
  1174. {
  1175. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1176. __builtin_return_address(0));
  1177. }
  1178. EXPORT_SYMBOL_GPL(__get_vm_area);
  1179. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1180. unsigned long start, unsigned long end,
  1181. void *caller)
  1182. {
  1183. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1184. caller);
  1185. }
  1186. /**
  1187. * get_vm_area - reserve a contiguous kernel virtual area
  1188. * @size: size of the area
  1189. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1190. *
  1191. * Search an area of @size in the kernel virtual mapping area,
  1192. * and reserved it for out purposes. Returns the area descriptor
  1193. * on success or %NULL on failure.
  1194. */
  1195. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1196. {
  1197. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1198. -1, GFP_KERNEL, __builtin_return_address(0));
  1199. }
  1200. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1201. void *caller)
  1202. {
  1203. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1204. -1, GFP_KERNEL, caller);
  1205. }
  1206. static struct vm_struct *find_vm_area(const void *addr)
  1207. {
  1208. struct vmap_area *va;
  1209. va = find_vmap_area((unsigned long)addr);
  1210. if (va && va->flags & VM_VM_AREA)
  1211. return va->vm;
  1212. return NULL;
  1213. }
  1214. /**
  1215. * remove_vm_area - find and remove a continuous kernel virtual area
  1216. * @addr: base address
  1217. *
  1218. * Search for the kernel VM area starting at @addr, and remove it.
  1219. * This function returns the found VM area, but using it is NOT safe
  1220. * on SMP machines, except for its size or flags.
  1221. */
  1222. struct vm_struct *remove_vm_area(const void *addr)
  1223. {
  1224. struct vmap_area *va;
  1225. va = find_vmap_area((unsigned long)addr);
  1226. if (va && va->flags & VM_VM_AREA) {
  1227. struct vm_struct *vm = va->vm;
  1228. if (!(vm->flags & VM_UNLIST)) {
  1229. struct vm_struct *tmp, **p;
  1230. /*
  1231. * remove from list and disallow access to
  1232. * this vm_struct before unmap. (address range
  1233. * confliction is maintained by vmap.)
  1234. */
  1235. write_lock(&vmlist_lock);
  1236. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1237. ;
  1238. *p = tmp->next;
  1239. write_unlock(&vmlist_lock);
  1240. }
  1241. vmap_debug_free_range(va->va_start, va->va_end);
  1242. free_unmap_vmap_area(va);
  1243. vm->size -= PAGE_SIZE;
  1244. return vm;
  1245. }
  1246. return NULL;
  1247. }
  1248. static void __vunmap(const void *addr, int deallocate_pages)
  1249. {
  1250. struct vm_struct *area;
  1251. if (!addr)
  1252. return;
  1253. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1254. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1255. return;
  1256. }
  1257. area = remove_vm_area(addr);
  1258. if (unlikely(!area)) {
  1259. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1260. addr);
  1261. return;
  1262. }
  1263. debug_check_no_locks_freed(addr, area->size);
  1264. debug_check_no_obj_freed(addr, area->size);
  1265. if (deallocate_pages) {
  1266. int i;
  1267. for (i = 0; i < area->nr_pages; i++) {
  1268. struct page *page = area->pages[i];
  1269. BUG_ON(!page);
  1270. __free_page(page);
  1271. }
  1272. if (area->flags & VM_VPAGES)
  1273. vfree(area->pages);
  1274. else
  1275. kfree(area->pages);
  1276. }
  1277. kfree(area);
  1278. return;
  1279. }
  1280. /**
  1281. * vfree - release memory allocated by vmalloc()
  1282. * @addr: memory base address
  1283. *
  1284. * Free the virtually continuous memory area starting at @addr, as
  1285. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1286. * NULL, no operation is performed.
  1287. *
  1288. * Must not be called in interrupt context.
  1289. */
  1290. void vfree(const void *addr)
  1291. {
  1292. BUG_ON(in_interrupt());
  1293. kmemleak_free(addr);
  1294. __vunmap(addr, 1);
  1295. }
  1296. EXPORT_SYMBOL(vfree);
  1297. /**
  1298. * vunmap - release virtual mapping obtained by vmap()
  1299. * @addr: memory base address
  1300. *
  1301. * Free the virtually contiguous memory area starting at @addr,
  1302. * which was created from the page array passed to vmap().
  1303. *
  1304. * Must not be called in interrupt context.
  1305. */
  1306. void vunmap(const void *addr)
  1307. {
  1308. BUG_ON(in_interrupt());
  1309. might_sleep();
  1310. __vunmap(addr, 0);
  1311. }
  1312. EXPORT_SYMBOL(vunmap);
  1313. /**
  1314. * vmap - map an array of pages into virtually contiguous space
  1315. * @pages: array of page pointers
  1316. * @count: number of pages to map
  1317. * @flags: vm_area->flags
  1318. * @prot: page protection for the mapping
  1319. *
  1320. * Maps @count pages from @pages into contiguous kernel virtual
  1321. * space.
  1322. */
  1323. void *vmap(struct page **pages, unsigned int count,
  1324. unsigned long flags, pgprot_t prot)
  1325. {
  1326. struct vm_struct *area;
  1327. might_sleep();
  1328. if (count > totalram_pages)
  1329. return NULL;
  1330. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1331. __builtin_return_address(0));
  1332. if (!area)
  1333. return NULL;
  1334. if (map_vm_area(area, prot, &pages)) {
  1335. vunmap(area->addr);
  1336. return NULL;
  1337. }
  1338. return area->addr;
  1339. }
  1340. EXPORT_SYMBOL(vmap);
  1341. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1342. gfp_t gfp_mask, pgprot_t prot,
  1343. int node, void *caller);
  1344. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1345. pgprot_t prot, int node, void *caller)
  1346. {
  1347. const int order = 0;
  1348. struct page **pages;
  1349. unsigned int nr_pages, array_size, i;
  1350. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1351. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1352. array_size = (nr_pages * sizeof(struct page *));
  1353. area->nr_pages = nr_pages;
  1354. /* Please note that the recursion is strictly bounded. */
  1355. if (array_size > PAGE_SIZE) {
  1356. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1357. PAGE_KERNEL, node, caller);
  1358. area->flags |= VM_VPAGES;
  1359. } else {
  1360. pages = kmalloc_node(array_size, nested_gfp, node);
  1361. }
  1362. area->pages = pages;
  1363. area->caller = caller;
  1364. if (!area->pages) {
  1365. remove_vm_area(area->addr);
  1366. kfree(area);
  1367. return NULL;
  1368. }
  1369. for (i = 0; i < area->nr_pages; i++) {
  1370. struct page *page;
  1371. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1372. if (node < 0)
  1373. page = alloc_page(tmp_mask);
  1374. else
  1375. page = alloc_pages_node(node, tmp_mask, order);
  1376. if (unlikely(!page)) {
  1377. /* Successfully allocated i pages, free them in __vunmap() */
  1378. area->nr_pages = i;
  1379. goto fail;
  1380. }
  1381. area->pages[i] = page;
  1382. }
  1383. if (map_vm_area(area, prot, &pages))
  1384. goto fail;
  1385. return area->addr;
  1386. fail:
  1387. warn_alloc_failed(gfp_mask, order,
  1388. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1389. (area->nr_pages*PAGE_SIZE), area->size);
  1390. vfree(area->addr);
  1391. return NULL;
  1392. }
  1393. /**
  1394. * __vmalloc_node_range - allocate virtually contiguous memory
  1395. * @size: allocation size
  1396. * @align: desired alignment
  1397. * @start: vm area range start
  1398. * @end: vm area range end
  1399. * @gfp_mask: flags for the page level allocator
  1400. * @prot: protection mask for the allocated pages
  1401. * @node: node to use for allocation or -1
  1402. * @caller: caller's return address
  1403. *
  1404. * Allocate enough pages to cover @size from the page level
  1405. * allocator with @gfp_mask flags. Map them into contiguous
  1406. * kernel virtual space, using a pagetable protection of @prot.
  1407. */
  1408. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1409. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1410. pgprot_t prot, int node, void *caller)
  1411. {
  1412. struct vm_struct *area;
  1413. void *addr;
  1414. unsigned long real_size = size;
  1415. size = PAGE_ALIGN(size);
  1416. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1417. goto fail;
  1418. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
  1419. start, end, node, gfp_mask, caller);
  1420. if (!area)
  1421. goto fail;
  1422. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1423. if (!addr)
  1424. return NULL;
  1425. /*
  1426. * In this function, newly allocated vm_struct is not added
  1427. * to vmlist at __get_vm_area_node(). so, it is added here.
  1428. */
  1429. insert_vmalloc_vmlist(area);
  1430. /*
  1431. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1432. * structures allocated in the __get_vm_area_node() function contain
  1433. * references to the virtual address of the vmalloc'ed block.
  1434. */
  1435. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1436. return addr;
  1437. fail:
  1438. warn_alloc_failed(gfp_mask, 0,
  1439. "vmalloc: allocation failure: %lu bytes\n",
  1440. real_size);
  1441. return NULL;
  1442. }
  1443. /**
  1444. * __vmalloc_node - allocate virtually contiguous memory
  1445. * @size: allocation size
  1446. * @align: desired alignment
  1447. * @gfp_mask: flags for the page level allocator
  1448. * @prot: protection mask for the allocated pages
  1449. * @node: node to use for allocation or -1
  1450. * @caller: caller's return address
  1451. *
  1452. * Allocate enough pages to cover @size from the page level
  1453. * allocator with @gfp_mask flags. Map them into contiguous
  1454. * kernel virtual space, using a pagetable protection of @prot.
  1455. */
  1456. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1457. gfp_t gfp_mask, pgprot_t prot,
  1458. int node, void *caller)
  1459. {
  1460. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1461. gfp_mask, prot, node, caller);
  1462. }
  1463. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1464. {
  1465. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1466. __builtin_return_address(0));
  1467. }
  1468. EXPORT_SYMBOL(__vmalloc);
  1469. static inline void *__vmalloc_node_flags(unsigned long size,
  1470. int node, gfp_t flags)
  1471. {
  1472. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1473. node, __builtin_return_address(0));
  1474. }
  1475. /**
  1476. * vmalloc - allocate virtually contiguous memory
  1477. * @size: allocation size
  1478. * Allocate enough pages to cover @size from the page level
  1479. * allocator and map them into contiguous kernel virtual space.
  1480. *
  1481. * For tight control over page level allocator and protection flags
  1482. * use __vmalloc() instead.
  1483. */
  1484. void *vmalloc(unsigned long size)
  1485. {
  1486. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1487. }
  1488. EXPORT_SYMBOL(vmalloc);
  1489. /**
  1490. * vzalloc - allocate virtually contiguous memory with zero fill
  1491. * @size: allocation size
  1492. * Allocate enough pages to cover @size from the page level
  1493. * allocator and map them into contiguous kernel virtual space.
  1494. * The memory allocated is set to zero.
  1495. *
  1496. * For tight control over page level allocator and protection flags
  1497. * use __vmalloc() instead.
  1498. */
  1499. void *vzalloc(unsigned long size)
  1500. {
  1501. return __vmalloc_node_flags(size, -1,
  1502. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1503. }
  1504. EXPORT_SYMBOL(vzalloc);
  1505. /**
  1506. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1507. * @size: allocation size
  1508. *
  1509. * The resulting memory area is zeroed so it can be mapped to userspace
  1510. * without leaking data.
  1511. */
  1512. void *vmalloc_user(unsigned long size)
  1513. {
  1514. struct vm_struct *area;
  1515. void *ret;
  1516. ret = __vmalloc_node(size, SHMLBA,
  1517. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1518. PAGE_KERNEL, -1, __builtin_return_address(0));
  1519. if (ret) {
  1520. area = find_vm_area(ret);
  1521. area->flags |= VM_USERMAP;
  1522. }
  1523. return ret;
  1524. }
  1525. EXPORT_SYMBOL(vmalloc_user);
  1526. /**
  1527. * vmalloc_node - allocate memory on a specific node
  1528. * @size: allocation size
  1529. * @node: numa node
  1530. *
  1531. * Allocate enough pages to cover @size from the page level
  1532. * allocator and map them into contiguous kernel virtual space.
  1533. *
  1534. * For tight control over page level allocator and protection flags
  1535. * use __vmalloc() instead.
  1536. */
  1537. void *vmalloc_node(unsigned long size, int node)
  1538. {
  1539. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1540. node, __builtin_return_address(0));
  1541. }
  1542. EXPORT_SYMBOL(vmalloc_node);
  1543. /**
  1544. * vzalloc_node - allocate memory on a specific node with zero fill
  1545. * @size: allocation size
  1546. * @node: numa node
  1547. *
  1548. * Allocate enough pages to cover @size from the page level
  1549. * allocator and map them into contiguous kernel virtual space.
  1550. * The memory allocated is set to zero.
  1551. *
  1552. * For tight control over page level allocator and protection flags
  1553. * use __vmalloc_node() instead.
  1554. */
  1555. void *vzalloc_node(unsigned long size, int node)
  1556. {
  1557. return __vmalloc_node_flags(size, node,
  1558. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1559. }
  1560. EXPORT_SYMBOL(vzalloc_node);
  1561. #ifndef PAGE_KERNEL_EXEC
  1562. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1563. #endif
  1564. /**
  1565. * vmalloc_exec - allocate virtually contiguous, executable memory
  1566. * @size: allocation size
  1567. *
  1568. * Kernel-internal function to allocate enough pages to cover @size
  1569. * the page level allocator and map them into contiguous and
  1570. * executable kernel virtual space.
  1571. *
  1572. * For tight control over page level allocator and protection flags
  1573. * use __vmalloc() instead.
  1574. */
  1575. void *vmalloc_exec(unsigned long size)
  1576. {
  1577. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1578. -1, __builtin_return_address(0));
  1579. }
  1580. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1581. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1582. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1583. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1584. #else
  1585. #define GFP_VMALLOC32 GFP_KERNEL
  1586. #endif
  1587. /**
  1588. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1589. * @size: allocation size
  1590. *
  1591. * Allocate enough 32bit PA addressable pages to cover @size from the
  1592. * page level allocator and map them into contiguous kernel virtual space.
  1593. */
  1594. void *vmalloc_32(unsigned long size)
  1595. {
  1596. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1597. -1, __builtin_return_address(0));
  1598. }
  1599. EXPORT_SYMBOL(vmalloc_32);
  1600. /**
  1601. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1602. * @size: allocation size
  1603. *
  1604. * The resulting memory area is 32bit addressable and zeroed so it can be
  1605. * mapped to userspace without leaking data.
  1606. */
  1607. void *vmalloc_32_user(unsigned long size)
  1608. {
  1609. struct vm_struct *area;
  1610. void *ret;
  1611. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1612. -1, __builtin_return_address(0));
  1613. if (ret) {
  1614. area = find_vm_area(ret);
  1615. area->flags |= VM_USERMAP;
  1616. }
  1617. return ret;
  1618. }
  1619. EXPORT_SYMBOL(vmalloc_32_user);
  1620. /*
  1621. * small helper routine , copy contents to buf from addr.
  1622. * If the page is not present, fill zero.
  1623. */
  1624. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1625. {
  1626. struct page *p;
  1627. int copied = 0;
  1628. while (count) {
  1629. unsigned long offset, length;
  1630. offset = (unsigned long)addr & ~PAGE_MASK;
  1631. length = PAGE_SIZE - offset;
  1632. if (length > count)
  1633. length = count;
  1634. p = vmalloc_to_page(addr);
  1635. /*
  1636. * To do safe access to this _mapped_ area, we need
  1637. * lock. But adding lock here means that we need to add
  1638. * overhead of vmalloc()/vfree() calles for this _debug_
  1639. * interface, rarely used. Instead of that, we'll use
  1640. * kmap() and get small overhead in this access function.
  1641. */
  1642. if (p) {
  1643. /*
  1644. * we can expect USER0 is not used (see vread/vwrite's
  1645. * function description)
  1646. */
  1647. void *map = kmap_atomic(p);
  1648. memcpy(buf, map + offset, length);
  1649. kunmap_atomic(map);
  1650. } else
  1651. memset(buf, 0, length);
  1652. addr += length;
  1653. buf += length;
  1654. copied += length;
  1655. count -= length;
  1656. }
  1657. return copied;
  1658. }
  1659. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1660. {
  1661. struct page *p;
  1662. int copied = 0;
  1663. while (count) {
  1664. unsigned long offset, length;
  1665. offset = (unsigned long)addr & ~PAGE_MASK;
  1666. length = PAGE_SIZE - offset;
  1667. if (length > count)
  1668. length = count;
  1669. p = vmalloc_to_page(addr);
  1670. /*
  1671. * To do safe access to this _mapped_ area, we need
  1672. * lock. But adding lock here means that we need to add
  1673. * overhead of vmalloc()/vfree() calles for this _debug_
  1674. * interface, rarely used. Instead of that, we'll use
  1675. * kmap() and get small overhead in this access function.
  1676. */
  1677. if (p) {
  1678. /*
  1679. * we can expect USER0 is not used (see vread/vwrite's
  1680. * function description)
  1681. */
  1682. void *map = kmap_atomic(p);
  1683. memcpy(map + offset, buf, length);
  1684. kunmap_atomic(map);
  1685. }
  1686. addr += length;
  1687. buf += length;
  1688. copied += length;
  1689. count -= length;
  1690. }
  1691. return copied;
  1692. }
  1693. /**
  1694. * vread() - read vmalloc area in a safe way.
  1695. * @buf: buffer for reading data
  1696. * @addr: vm address.
  1697. * @count: number of bytes to be read.
  1698. *
  1699. * Returns # of bytes which addr and buf should be increased.
  1700. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1701. * includes any intersect with alive vmalloc area.
  1702. *
  1703. * This function checks that addr is a valid vmalloc'ed area, and
  1704. * copy data from that area to a given buffer. If the given memory range
  1705. * of [addr...addr+count) includes some valid address, data is copied to
  1706. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1707. * IOREMAP area is treated as memory hole and no copy is done.
  1708. *
  1709. * If [addr...addr+count) doesn't includes any intersects with alive
  1710. * vm_struct area, returns 0.
  1711. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1712. * the caller should guarantee KM_USER0 is not used.
  1713. *
  1714. * Note: In usual ops, vread() is never necessary because the caller
  1715. * should know vmalloc() area is valid and can use memcpy().
  1716. * This is for routines which have to access vmalloc area without
  1717. * any informaion, as /dev/kmem.
  1718. *
  1719. */
  1720. long vread(char *buf, char *addr, unsigned long count)
  1721. {
  1722. struct vm_struct *tmp;
  1723. char *vaddr, *buf_start = buf;
  1724. unsigned long buflen = count;
  1725. unsigned long n;
  1726. /* Don't allow overflow */
  1727. if ((unsigned long) addr + count < count)
  1728. count = -(unsigned long) addr;
  1729. read_lock(&vmlist_lock);
  1730. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1731. vaddr = (char *) tmp->addr;
  1732. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1733. continue;
  1734. while (addr < vaddr) {
  1735. if (count == 0)
  1736. goto finished;
  1737. *buf = '\0';
  1738. buf++;
  1739. addr++;
  1740. count--;
  1741. }
  1742. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1743. if (n > count)
  1744. n = count;
  1745. if (!(tmp->flags & VM_IOREMAP))
  1746. aligned_vread(buf, addr, n);
  1747. else /* IOREMAP area is treated as memory hole */
  1748. memset(buf, 0, n);
  1749. buf += n;
  1750. addr += n;
  1751. count -= n;
  1752. }
  1753. finished:
  1754. read_unlock(&vmlist_lock);
  1755. if (buf == buf_start)
  1756. return 0;
  1757. /* zero-fill memory holes */
  1758. if (buf != buf_start + buflen)
  1759. memset(buf, 0, buflen - (buf - buf_start));
  1760. return buflen;
  1761. }
  1762. /**
  1763. * vwrite() - write vmalloc area in a safe way.
  1764. * @buf: buffer for source data
  1765. * @addr: vm address.
  1766. * @count: number of bytes to be read.
  1767. *
  1768. * Returns # of bytes which addr and buf should be incresed.
  1769. * (same number to @count).
  1770. * If [addr...addr+count) doesn't includes any intersect with valid
  1771. * vmalloc area, returns 0.
  1772. *
  1773. * This function checks that addr is a valid vmalloc'ed area, and
  1774. * copy data from a buffer to the given addr. If specified range of
  1775. * [addr...addr+count) includes some valid address, data is copied from
  1776. * proper area of @buf. If there are memory holes, no copy to hole.
  1777. * IOREMAP area is treated as memory hole and no copy is done.
  1778. *
  1779. * If [addr...addr+count) doesn't includes any intersects with alive
  1780. * vm_struct area, returns 0.
  1781. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1782. * the caller should guarantee KM_USER0 is not used.
  1783. *
  1784. * Note: In usual ops, vwrite() is never necessary because the caller
  1785. * should know vmalloc() area is valid and can use memcpy().
  1786. * This is for routines which have to access vmalloc area without
  1787. * any informaion, as /dev/kmem.
  1788. */
  1789. long vwrite(char *buf, char *addr, unsigned long count)
  1790. {
  1791. struct vm_struct *tmp;
  1792. char *vaddr;
  1793. unsigned long n, buflen;
  1794. int copied = 0;
  1795. /* Don't allow overflow */
  1796. if ((unsigned long) addr + count < count)
  1797. count = -(unsigned long) addr;
  1798. buflen = count;
  1799. read_lock(&vmlist_lock);
  1800. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1801. vaddr = (char *) tmp->addr;
  1802. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1803. continue;
  1804. while (addr < vaddr) {
  1805. if (count == 0)
  1806. goto finished;
  1807. buf++;
  1808. addr++;
  1809. count--;
  1810. }
  1811. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1812. if (n > count)
  1813. n = count;
  1814. if (!(tmp->flags & VM_IOREMAP)) {
  1815. aligned_vwrite(buf, addr, n);
  1816. copied++;
  1817. }
  1818. buf += n;
  1819. addr += n;
  1820. count -= n;
  1821. }
  1822. finished:
  1823. read_unlock(&vmlist_lock);
  1824. if (!copied)
  1825. return 0;
  1826. return buflen;
  1827. }
  1828. /**
  1829. * remap_vmalloc_range - map vmalloc pages to userspace
  1830. * @vma: vma to cover (map full range of vma)
  1831. * @addr: vmalloc memory
  1832. * @pgoff: number of pages into addr before first page to map
  1833. *
  1834. * Returns: 0 for success, -Exxx on failure
  1835. *
  1836. * This function checks that addr is a valid vmalloc'ed area, and
  1837. * that it is big enough to cover the vma. Will return failure if
  1838. * that criteria isn't met.
  1839. *
  1840. * Similar to remap_pfn_range() (see mm/memory.c)
  1841. */
  1842. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1843. unsigned long pgoff)
  1844. {
  1845. struct vm_struct *area;
  1846. unsigned long uaddr = vma->vm_start;
  1847. unsigned long usize = vma->vm_end - vma->vm_start;
  1848. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1849. return -EINVAL;
  1850. area = find_vm_area(addr);
  1851. if (!area)
  1852. return -EINVAL;
  1853. if (!(area->flags & VM_USERMAP))
  1854. return -EINVAL;
  1855. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1856. return -EINVAL;
  1857. addr += pgoff << PAGE_SHIFT;
  1858. do {
  1859. struct page *page = vmalloc_to_page(addr);
  1860. int ret;
  1861. ret = vm_insert_page(vma, uaddr, page);
  1862. if (ret)
  1863. return ret;
  1864. uaddr += PAGE_SIZE;
  1865. addr += PAGE_SIZE;
  1866. usize -= PAGE_SIZE;
  1867. } while (usize > 0);
  1868. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1869. vma->vm_flags |= VM_RESERVED;
  1870. return 0;
  1871. }
  1872. EXPORT_SYMBOL(remap_vmalloc_range);
  1873. /*
  1874. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1875. * have one.
  1876. */
  1877. void __attribute__((weak)) vmalloc_sync_all(void)
  1878. {
  1879. }
  1880. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1881. {
  1882. pte_t ***p = data;
  1883. if (p) {
  1884. *(*p) = pte;
  1885. (*p)++;
  1886. }
  1887. return 0;
  1888. }
  1889. /**
  1890. * alloc_vm_area - allocate a range of kernel address space
  1891. * @size: size of the area
  1892. * @ptes: returns the PTEs for the address space
  1893. *
  1894. * Returns: NULL on failure, vm_struct on success
  1895. *
  1896. * This function reserves a range of kernel address space, and
  1897. * allocates pagetables to map that range. No actual mappings
  1898. * are created.
  1899. *
  1900. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1901. * allocated for the VM area are returned.
  1902. */
  1903. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1904. {
  1905. struct vm_struct *area;
  1906. area = get_vm_area_caller(size, VM_IOREMAP,
  1907. __builtin_return_address(0));
  1908. if (area == NULL)
  1909. return NULL;
  1910. /*
  1911. * This ensures that page tables are constructed for this region
  1912. * of kernel virtual address space and mapped into init_mm.
  1913. */
  1914. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1915. size, f, ptes ? &ptes : NULL)) {
  1916. free_vm_area(area);
  1917. return NULL;
  1918. }
  1919. return area;
  1920. }
  1921. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1922. void free_vm_area(struct vm_struct *area)
  1923. {
  1924. struct vm_struct *ret;
  1925. ret = remove_vm_area(area->addr);
  1926. BUG_ON(ret != area);
  1927. kfree(area);
  1928. }
  1929. EXPORT_SYMBOL_GPL(free_vm_area);
  1930. #ifdef CONFIG_SMP
  1931. static struct vmap_area *node_to_va(struct rb_node *n)
  1932. {
  1933. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1934. }
  1935. /**
  1936. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1937. * @end: target address
  1938. * @pnext: out arg for the next vmap_area
  1939. * @pprev: out arg for the previous vmap_area
  1940. *
  1941. * Returns: %true if either or both of next and prev are found,
  1942. * %false if no vmap_area exists
  1943. *
  1944. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1945. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1946. */
  1947. static bool pvm_find_next_prev(unsigned long end,
  1948. struct vmap_area **pnext,
  1949. struct vmap_area **pprev)
  1950. {
  1951. struct rb_node *n = vmap_area_root.rb_node;
  1952. struct vmap_area *va = NULL;
  1953. while (n) {
  1954. va = rb_entry(n, struct vmap_area, rb_node);
  1955. if (end < va->va_end)
  1956. n = n->rb_left;
  1957. else if (end > va->va_end)
  1958. n = n->rb_right;
  1959. else
  1960. break;
  1961. }
  1962. if (!va)
  1963. return false;
  1964. if (va->va_end > end) {
  1965. *pnext = va;
  1966. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1967. } else {
  1968. *pprev = va;
  1969. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1970. }
  1971. return true;
  1972. }
  1973. /**
  1974. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1975. * @pnext: in/out arg for the next vmap_area
  1976. * @pprev: in/out arg for the previous vmap_area
  1977. * @align: alignment
  1978. *
  1979. * Returns: determined end address
  1980. *
  1981. * Find the highest aligned address between *@pnext and *@pprev below
  1982. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1983. * down address is between the end addresses of the two vmap_areas.
  1984. *
  1985. * Please note that the address returned by this function may fall
  1986. * inside *@pnext vmap_area. The caller is responsible for checking
  1987. * that.
  1988. */
  1989. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1990. struct vmap_area **pprev,
  1991. unsigned long align)
  1992. {
  1993. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1994. unsigned long addr;
  1995. if (*pnext)
  1996. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1997. else
  1998. addr = vmalloc_end;
  1999. while (*pprev && (*pprev)->va_end > addr) {
  2000. *pnext = *pprev;
  2001. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2002. }
  2003. return addr;
  2004. }
  2005. /**
  2006. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2007. * @offsets: array containing offset of each area
  2008. * @sizes: array containing size of each area
  2009. * @nr_vms: the number of areas to allocate
  2010. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2011. *
  2012. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2013. * vm_structs on success, %NULL on failure
  2014. *
  2015. * Percpu allocator wants to use congruent vm areas so that it can
  2016. * maintain the offsets among percpu areas. This function allocates
  2017. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2018. * be scattered pretty far, distance between two areas easily going up
  2019. * to gigabytes. To avoid interacting with regular vmallocs, these
  2020. * areas are allocated from top.
  2021. *
  2022. * Despite its complicated look, this allocator is rather simple. It
  2023. * does everything top-down and scans areas from the end looking for
  2024. * matching slot. While scanning, if any of the areas overlaps with
  2025. * existing vmap_area, the base address is pulled down to fit the
  2026. * area. Scanning is repeated till all the areas fit and then all
  2027. * necessary data structres are inserted and the result is returned.
  2028. */
  2029. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2030. const size_t *sizes, int nr_vms,
  2031. size_t align)
  2032. {
  2033. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2034. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2035. struct vmap_area **vas, *prev, *next;
  2036. struct vm_struct **vms;
  2037. int area, area2, last_area, term_area;
  2038. unsigned long base, start, end, last_end;
  2039. bool purged = false;
  2040. /* verify parameters and allocate data structures */
  2041. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2042. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2043. start = offsets[area];
  2044. end = start + sizes[area];
  2045. /* is everything aligned properly? */
  2046. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2047. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2048. /* detect the area with the highest address */
  2049. if (start > offsets[last_area])
  2050. last_area = area;
  2051. for (area2 = 0; area2 < nr_vms; area2++) {
  2052. unsigned long start2 = offsets[area2];
  2053. unsigned long end2 = start2 + sizes[area2];
  2054. if (area2 == area)
  2055. continue;
  2056. BUG_ON(start2 >= start && start2 < end);
  2057. BUG_ON(end2 <= end && end2 > start);
  2058. }
  2059. }
  2060. last_end = offsets[last_area] + sizes[last_area];
  2061. if (vmalloc_end - vmalloc_start < last_end) {
  2062. WARN_ON(true);
  2063. return NULL;
  2064. }
  2065. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2066. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2067. if (!vas || !vms)
  2068. goto err_free2;
  2069. for (area = 0; area < nr_vms; area++) {
  2070. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2071. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2072. if (!vas[area] || !vms[area])
  2073. goto err_free;
  2074. }
  2075. retry:
  2076. spin_lock(&vmap_area_lock);
  2077. /* start scanning - we scan from the top, begin with the last area */
  2078. area = term_area = last_area;
  2079. start = offsets[area];
  2080. end = start + sizes[area];
  2081. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2082. base = vmalloc_end - last_end;
  2083. goto found;
  2084. }
  2085. base = pvm_determine_end(&next, &prev, align) - end;
  2086. while (true) {
  2087. BUG_ON(next && next->va_end <= base + end);
  2088. BUG_ON(prev && prev->va_end > base + end);
  2089. /*
  2090. * base might have underflowed, add last_end before
  2091. * comparing.
  2092. */
  2093. if (base + last_end < vmalloc_start + last_end) {
  2094. spin_unlock(&vmap_area_lock);
  2095. if (!purged) {
  2096. purge_vmap_area_lazy();
  2097. purged = true;
  2098. goto retry;
  2099. }
  2100. goto err_free;
  2101. }
  2102. /*
  2103. * If next overlaps, move base downwards so that it's
  2104. * right below next and then recheck.
  2105. */
  2106. if (next && next->va_start < base + end) {
  2107. base = pvm_determine_end(&next, &prev, align) - end;
  2108. term_area = area;
  2109. continue;
  2110. }
  2111. /*
  2112. * If prev overlaps, shift down next and prev and move
  2113. * base so that it's right below new next and then
  2114. * recheck.
  2115. */
  2116. if (prev && prev->va_end > base + start) {
  2117. next = prev;
  2118. prev = node_to_va(rb_prev(&next->rb_node));
  2119. base = pvm_determine_end(&next, &prev, align) - end;
  2120. term_area = area;
  2121. continue;
  2122. }
  2123. /*
  2124. * This area fits, move on to the previous one. If
  2125. * the previous one is the terminal one, we're done.
  2126. */
  2127. area = (area + nr_vms - 1) % nr_vms;
  2128. if (area == term_area)
  2129. break;
  2130. start = offsets[area];
  2131. end = start + sizes[area];
  2132. pvm_find_next_prev(base + end, &next, &prev);
  2133. }
  2134. found:
  2135. /* we've found a fitting base, insert all va's */
  2136. for (area = 0; area < nr_vms; area++) {
  2137. struct vmap_area *va = vas[area];
  2138. va->va_start = base + offsets[area];
  2139. va->va_end = va->va_start + sizes[area];
  2140. __insert_vmap_area(va);
  2141. }
  2142. vmap_area_pcpu_hole = base + offsets[last_area];
  2143. spin_unlock(&vmap_area_lock);
  2144. /* insert all vm's */
  2145. for (area = 0; area < nr_vms; area++)
  2146. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2147. pcpu_get_vm_areas);
  2148. kfree(vas);
  2149. return vms;
  2150. err_free:
  2151. for (area = 0; area < nr_vms; area++) {
  2152. kfree(vas[area]);
  2153. kfree(vms[area]);
  2154. }
  2155. err_free2:
  2156. kfree(vas);
  2157. kfree(vms);
  2158. return NULL;
  2159. }
  2160. /**
  2161. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2162. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2163. * @nr_vms: the number of allocated areas
  2164. *
  2165. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2166. */
  2167. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2168. {
  2169. int i;
  2170. for (i = 0; i < nr_vms; i++)
  2171. free_vm_area(vms[i]);
  2172. kfree(vms);
  2173. }
  2174. #endif /* CONFIG_SMP */
  2175. #ifdef CONFIG_PROC_FS
  2176. static void *s_start(struct seq_file *m, loff_t *pos)
  2177. __acquires(&vmlist_lock)
  2178. {
  2179. loff_t n = *pos;
  2180. struct vm_struct *v;
  2181. read_lock(&vmlist_lock);
  2182. v = vmlist;
  2183. while (n > 0 && v) {
  2184. n--;
  2185. v = v->next;
  2186. }
  2187. if (!n)
  2188. return v;
  2189. return NULL;
  2190. }
  2191. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2192. {
  2193. struct vm_struct *v = p;
  2194. ++*pos;
  2195. return v->next;
  2196. }
  2197. static void s_stop(struct seq_file *m, void *p)
  2198. __releases(&vmlist_lock)
  2199. {
  2200. read_unlock(&vmlist_lock);
  2201. }
  2202. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2203. {
  2204. if (NUMA_BUILD) {
  2205. unsigned int nr, *counters = m->private;
  2206. if (!counters)
  2207. return;
  2208. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2209. for (nr = 0; nr < v->nr_pages; nr++)
  2210. counters[page_to_nid(v->pages[nr])]++;
  2211. for_each_node_state(nr, N_HIGH_MEMORY)
  2212. if (counters[nr])
  2213. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2214. }
  2215. }
  2216. static int s_show(struct seq_file *m, void *p)
  2217. {
  2218. struct vm_struct *v = p;
  2219. seq_printf(m, "0x%p-0x%p %7ld",
  2220. v->addr, v->addr + v->size, v->size);
  2221. if (v->caller)
  2222. seq_printf(m, " %pS", v->caller);
  2223. if (v->nr_pages)
  2224. seq_printf(m, " pages=%d", v->nr_pages);
  2225. if (v->phys_addr)
  2226. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2227. if (v->flags & VM_IOREMAP)
  2228. seq_printf(m, " ioremap");
  2229. if (v->flags & VM_ALLOC)
  2230. seq_printf(m, " vmalloc");
  2231. if (v->flags & VM_MAP)
  2232. seq_printf(m, " vmap");
  2233. if (v->flags & VM_USERMAP)
  2234. seq_printf(m, " user");
  2235. if (v->flags & VM_VPAGES)
  2236. seq_printf(m, " vpages");
  2237. show_numa_info(m, v);
  2238. seq_putc(m, '\n');
  2239. return 0;
  2240. }
  2241. static const struct seq_operations vmalloc_op = {
  2242. .start = s_start,
  2243. .next = s_next,
  2244. .stop = s_stop,
  2245. .show = s_show,
  2246. };
  2247. static int vmalloc_open(struct inode *inode, struct file *file)
  2248. {
  2249. unsigned int *ptr = NULL;
  2250. int ret;
  2251. if (NUMA_BUILD) {
  2252. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2253. if (ptr == NULL)
  2254. return -ENOMEM;
  2255. }
  2256. ret = seq_open(file, &vmalloc_op);
  2257. if (!ret) {
  2258. struct seq_file *m = file->private_data;
  2259. m->private = ptr;
  2260. } else
  2261. kfree(ptr);
  2262. return ret;
  2263. }
  2264. static const struct file_operations proc_vmalloc_operations = {
  2265. .open = vmalloc_open,
  2266. .read = seq_read,
  2267. .llseek = seq_lseek,
  2268. .release = seq_release_private,
  2269. };
  2270. static int __init proc_vmalloc_init(void)
  2271. {
  2272. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2273. return 0;
  2274. }
  2275. module_init(proc_vmalloc_init);
  2276. #endif