huge_memory.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  96. &transparent_hugepage_flags) &&
  97. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  98. &transparent_hugepage_flags))
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. int wakeup;
  127. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  128. err = -ENOMEM;
  129. goto out;
  130. }
  131. mutex_lock(&khugepaged_mutex);
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. printk(KERN_ERR
  137. "khugepaged: kthread_run(khugepaged) failed\n");
  138. err = PTR_ERR(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. wakeup = !list_empty(&khugepaged_scan.mm_head);
  142. mutex_unlock(&khugepaged_mutex);
  143. if (wakeup)
  144. wake_up_interruptible(&khugepaged_wait);
  145. set_recommended_min_free_kbytes();
  146. } else
  147. /* wakeup to exit */
  148. wake_up_interruptible(&khugepaged_wait);
  149. out:
  150. return err;
  151. }
  152. #ifdef CONFIG_SYSFS
  153. static ssize_t double_flag_show(struct kobject *kobj,
  154. struct kobj_attribute *attr, char *buf,
  155. enum transparent_hugepage_flag enabled,
  156. enum transparent_hugepage_flag req_madv)
  157. {
  158. if (test_bit(enabled, &transparent_hugepage_flags)) {
  159. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  160. return sprintf(buf, "[always] madvise never\n");
  161. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  162. return sprintf(buf, "always [madvise] never\n");
  163. else
  164. return sprintf(buf, "always madvise [never]\n");
  165. }
  166. static ssize_t double_flag_store(struct kobject *kobj,
  167. struct kobj_attribute *attr,
  168. const char *buf, size_t count,
  169. enum transparent_hugepage_flag enabled,
  170. enum transparent_hugepage_flag req_madv)
  171. {
  172. if (!memcmp("always", buf,
  173. min(sizeof("always")-1, count))) {
  174. set_bit(enabled, &transparent_hugepage_flags);
  175. clear_bit(req_madv, &transparent_hugepage_flags);
  176. } else if (!memcmp("madvise", buf,
  177. min(sizeof("madvise")-1, count))) {
  178. clear_bit(enabled, &transparent_hugepage_flags);
  179. set_bit(req_madv, &transparent_hugepage_flags);
  180. } else if (!memcmp("never", buf,
  181. min(sizeof("never")-1, count))) {
  182. clear_bit(enabled, &transparent_hugepage_flags);
  183. clear_bit(req_madv, &transparent_hugepage_flags);
  184. } else
  185. return -EINVAL;
  186. return count;
  187. }
  188. static ssize_t enabled_show(struct kobject *kobj,
  189. struct kobj_attribute *attr, char *buf)
  190. {
  191. return double_flag_show(kobj, attr, buf,
  192. TRANSPARENT_HUGEPAGE_FLAG,
  193. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  194. }
  195. static ssize_t enabled_store(struct kobject *kobj,
  196. struct kobj_attribute *attr,
  197. const char *buf, size_t count)
  198. {
  199. ssize_t ret;
  200. ret = double_flag_store(kobj, attr, buf, count,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. if (ret > 0) {
  204. int err = start_khugepaged();
  205. if (err)
  206. ret = err;
  207. }
  208. if (ret > 0 &&
  209. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  210. &transparent_hugepage_flags) ||
  211. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  212. &transparent_hugepage_flags)))
  213. set_recommended_min_free_kbytes();
  214. return ret;
  215. }
  216. static struct kobj_attribute enabled_attr =
  217. __ATTR(enabled, 0644, enabled_show, enabled_store);
  218. static ssize_t single_flag_show(struct kobject *kobj,
  219. struct kobj_attribute *attr, char *buf,
  220. enum transparent_hugepage_flag flag)
  221. {
  222. return sprintf(buf, "%d\n",
  223. !!test_bit(flag, &transparent_hugepage_flags));
  224. }
  225. static ssize_t single_flag_store(struct kobject *kobj,
  226. struct kobj_attribute *attr,
  227. const char *buf, size_t count,
  228. enum transparent_hugepage_flag flag)
  229. {
  230. unsigned long value;
  231. int ret;
  232. ret = kstrtoul(buf, 10, &value);
  233. if (ret < 0)
  234. return ret;
  235. if (value > 1)
  236. return -EINVAL;
  237. if (value)
  238. set_bit(flag, &transparent_hugepage_flags);
  239. else
  240. clear_bit(flag, &transparent_hugepage_flags);
  241. return count;
  242. }
  243. /*
  244. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  245. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  246. * memory just to allocate one more hugepage.
  247. */
  248. static ssize_t defrag_show(struct kobject *kobj,
  249. struct kobj_attribute *attr, char *buf)
  250. {
  251. return double_flag_show(kobj, attr, buf,
  252. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  253. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  254. }
  255. static ssize_t defrag_store(struct kobject *kobj,
  256. struct kobj_attribute *attr,
  257. const char *buf, size_t count)
  258. {
  259. return double_flag_store(kobj, attr, buf, count,
  260. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  261. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  262. }
  263. static struct kobj_attribute defrag_attr =
  264. __ATTR(defrag, 0644, defrag_show, defrag_store);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. #ifdef CONFIG_DEBUG_VM
  286. &debug_cow_attr.attr,
  287. #endif
  288. NULL,
  289. };
  290. static struct attribute_group hugepage_attr_group = {
  291. .attrs = hugepage_attr,
  292. };
  293. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  294. struct kobj_attribute *attr,
  295. char *buf)
  296. {
  297. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  298. }
  299. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. const char *buf, size_t count)
  302. {
  303. unsigned long msecs;
  304. int err;
  305. err = strict_strtoul(buf, 10, &msecs);
  306. if (err || msecs > UINT_MAX)
  307. return -EINVAL;
  308. khugepaged_scan_sleep_millisecs = msecs;
  309. wake_up_interruptible(&khugepaged_wait);
  310. return count;
  311. }
  312. static struct kobj_attribute scan_sleep_millisecs_attr =
  313. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  314. scan_sleep_millisecs_store);
  315. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  316. struct kobj_attribute *attr,
  317. char *buf)
  318. {
  319. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  320. }
  321. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. const char *buf, size_t count)
  324. {
  325. unsigned long msecs;
  326. int err;
  327. err = strict_strtoul(buf, 10, &msecs);
  328. if (err || msecs > UINT_MAX)
  329. return -EINVAL;
  330. khugepaged_alloc_sleep_millisecs = msecs;
  331. wake_up_interruptible(&khugepaged_wait);
  332. return count;
  333. }
  334. static struct kobj_attribute alloc_sleep_millisecs_attr =
  335. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  336. alloc_sleep_millisecs_store);
  337. static ssize_t pages_to_scan_show(struct kobject *kobj,
  338. struct kobj_attribute *attr,
  339. char *buf)
  340. {
  341. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  342. }
  343. static ssize_t pages_to_scan_store(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. const char *buf, size_t count)
  346. {
  347. int err;
  348. unsigned long pages;
  349. err = strict_strtoul(buf, 10, &pages);
  350. if (err || !pages || pages > UINT_MAX)
  351. return -EINVAL;
  352. khugepaged_pages_to_scan = pages;
  353. return count;
  354. }
  355. static struct kobj_attribute pages_to_scan_attr =
  356. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  357. pages_to_scan_store);
  358. static ssize_t pages_collapsed_show(struct kobject *kobj,
  359. struct kobj_attribute *attr,
  360. char *buf)
  361. {
  362. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  363. }
  364. static struct kobj_attribute pages_collapsed_attr =
  365. __ATTR_RO(pages_collapsed);
  366. static ssize_t full_scans_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_full_scans);
  371. }
  372. static struct kobj_attribute full_scans_attr =
  373. __ATTR_RO(full_scans);
  374. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  375. struct kobj_attribute *attr, char *buf)
  376. {
  377. return single_flag_show(kobj, attr, buf,
  378. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  379. }
  380. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  381. struct kobj_attribute *attr,
  382. const char *buf, size_t count)
  383. {
  384. return single_flag_store(kobj, attr, buf, count,
  385. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  386. }
  387. static struct kobj_attribute khugepaged_defrag_attr =
  388. __ATTR(defrag, 0644, khugepaged_defrag_show,
  389. khugepaged_defrag_store);
  390. /*
  391. * max_ptes_none controls if khugepaged should collapse hugepages over
  392. * any unmapped ptes in turn potentially increasing the memory
  393. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  394. * reduce the available free memory in the system as it
  395. * runs. Increasing max_ptes_none will instead potentially reduce the
  396. * free memory in the system during the khugepaged scan.
  397. */
  398. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  399. struct kobj_attribute *attr,
  400. char *buf)
  401. {
  402. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  403. }
  404. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. const char *buf, size_t count)
  407. {
  408. int err;
  409. unsigned long max_ptes_none;
  410. err = strict_strtoul(buf, 10, &max_ptes_none);
  411. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  412. return -EINVAL;
  413. khugepaged_max_ptes_none = max_ptes_none;
  414. return count;
  415. }
  416. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  417. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  418. khugepaged_max_ptes_none_store);
  419. static struct attribute *khugepaged_attr[] = {
  420. &khugepaged_defrag_attr.attr,
  421. &khugepaged_max_ptes_none_attr.attr,
  422. &pages_to_scan_attr.attr,
  423. &pages_collapsed_attr.attr,
  424. &full_scans_attr.attr,
  425. &scan_sleep_millisecs_attr.attr,
  426. &alloc_sleep_millisecs_attr.attr,
  427. NULL,
  428. };
  429. static struct attribute_group khugepaged_attr_group = {
  430. .attrs = khugepaged_attr,
  431. .name = "khugepaged",
  432. };
  433. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  434. {
  435. int err;
  436. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  437. if (unlikely(!*hugepage_kobj)) {
  438. printk(KERN_ERR "hugepage: failed kobject create\n");
  439. return -ENOMEM;
  440. }
  441. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  442. if (err) {
  443. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  444. goto delete_obj;
  445. }
  446. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  447. if (err) {
  448. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  449. goto remove_hp_group;
  450. }
  451. return 0;
  452. remove_hp_group:
  453. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  454. delete_obj:
  455. kobject_put(*hugepage_kobj);
  456. return err;
  457. }
  458. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  459. {
  460. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  461. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  462. kobject_put(hugepage_kobj);
  463. }
  464. #else
  465. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  466. {
  467. return 0;
  468. }
  469. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  470. {
  471. }
  472. #endif /* CONFIG_SYSFS */
  473. static int __init hugepage_init(void)
  474. {
  475. int err;
  476. struct kobject *hugepage_kobj;
  477. if (!has_transparent_hugepage()) {
  478. transparent_hugepage_flags = 0;
  479. return -EINVAL;
  480. }
  481. err = hugepage_init_sysfs(&hugepage_kobj);
  482. if (err)
  483. return err;
  484. err = khugepaged_slab_init();
  485. if (err)
  486. goto out;
  487. err = mm_slots_hash_init();
  488. if (err) {
  489. khugepaged_slab_free();
  490. goto out;
  491. }
  492. /*
  493. * By default disable transparent hugepages on smaller systems,
  494. * where the extra memory used could hurt more than TLB overhead
  495. * is likely to save. The admin can still enable it through /sys.
  496. */
  497. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  498. transparent_hugepage_flags = 0;
  499. start_khugepaged();
  500. set_recommended_min_free_kbytes();
  501. return 0;
  502. out:
  503. hugepage_exit_sysfs(hugepage_kobj);
  504. return err;
  505. }
  506. module_init(hugepage_init)
  507. static int __init setup_transparent_hugepage(char *str)
  508. {
  509. int ret = 0;
  510. if (!str)
  511. goto out;
  512. if (!strcmp(str, "always")) {
  513. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  514. &transparent_hugepage_flags);
  515. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  516. &transparent_hugepage_flags);
  517. ret = 1;
  518. } else if (!strcmp(str, "madvise")) {
  519. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  520. &transparent_hugepage_flags);
  521. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  522. &transparent_hugepage_flags);
  523. ret = 1;
  524. } else if (!strcmp(str, "never")) {
  525. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  526. &transparent_hugepage_flags);
  527. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  528. &transparent_hugepage_flags);
  529. ret = 1;
  530. }
  531. out:
  532. if (!ret)
  533. printk(KERN_WARNING
  534. "transparent_hugepage= cannot parse, ignored\n");
  535. return ret;
  536. }
  537. __setup("transparent_hugepage=", setup_transparent_hugepage);
  538. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  539. struct mm_struct *mm)
  540. {
  541. assert_spin_locked(&mm->page_table_lock);
  542. /* FIFO */
  543. if (!mm->pmd_huge_pte)
  544. INIT_LIST_HEAD(&pgtable->lru);
  545. else
  546. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  547. mm->pmd_huge_pte = pgtable;
  548. }
  549. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  550. {
  551. if (likely(vma->vm_flags & VM_WRITE))
  552. pmd = pmd_mkwrite(pmd);
  553. return pmd;
  554. }
  555. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  556. struct vm_area_struct *vma,
  557. unsigned long haddr, pmd_t *pmd,
  558. struct page *page)
  559. {
  560. pgtable_t pgtable;
  561. VM_BUG_ON(!PageCompound(page));
  562. pgtable = pte_alloc_one(mm, haddr);
  563. if (unlikely(!pgtable))
  564. return VM_FAULT_OOM;
  565. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  566. __SetPageUptodate(page);
  567. spin_lock(&mm->page_table_lock);
  568. if (unlikely(!pmd_none(*pmd))) {
  569. spin_unlock(&mm->page_table_lock);
  570. mem_cgroup_uncharge_page(page);
  571. put_page(page);
  572. pte_free(mm, pgtable);
  573. } else {
  574. pmd_t entry;
  575. entry = mk_pmd(page, vma->vm_page_prot);
  576. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  577. entry = pmd_mkhuge(entry);
  578. /*
  579. * The spinlocking to take the lru_lock inside
  580. * page_add_new_anon_rmap() acts as a full memory
  581. * barrier to be sure clear_huge_page writes become
  582. * visible after the set_pmd_at() write.
  583. */
  584. page_add_new_anon_rmap(page, vma, haddr);
  585. set_pmd_at(mm, haddr, pmd, entry);
  586. prepare_pmd_huge_pte(pgtable, mm);
  587. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  588. mm->nr_ptes++;
  589. spin_unlock(&mm->page_table_lock);
  590. }
  591. return 0;
  592. }
  593. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  594. {
  595. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  596. }
  597. static inline struct page *alloc_hugepage_vma(int defrag,
  598. struct vm_area_struct *vma,
  599. unsigned long haddr, int nd,
  600. gfp_t extra_gfp)
  601. {
  602. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  603. HPAGE_PMD_ORDER, vma, haddr, nd);
  604. }
  605. #ifndef CONFIG_NUMA
  606. static inline struct page *alloc_hugepage(int defrag)
  607. {
  608. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  609. HPAGE_PMD_ORDER);
  610. }
  611. #endif
  612. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  613. unsigned long address, pmd_t *pmd,
  614. unsigned int flags)
  615. {
  616. struct page *page;
  617. unsigned long haddr = address & HPAGE_PMD_MASK;
  618. pte_t *pte;
  619. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  620. if (unlikely(anon_vma_prepare(vma)))
  621. return VM_FAULT_OOM;
  622. if (unlikely(khugepaged_enter(vma)))
  623. return VM_FAULT_OOM;
  624. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  625. vma, haddr, numa_node_id(), 0);
  626. if (unlikely(!page)) {
  627. count_vm_event(THP_FAULT_FALLBACK);
  628. goto out;
  629. }
  630. count_vm_event(THP_FAULT_ALLOC);
  631. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  632. put_page(page);
  633. goto out;
  634. }
  635. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  636. page))) {
  637. mem_cgroup_uncharge_page(page);
  638. put_page(page);
  639. goto out;
  640. }
  641. return 0;
  642. }
  643. out:
  644. /*
  645. * Use __pte_alloc instead of pte_alloc_map, because we can't
  646. * run pte_offset_map on the pmd, if an huge pmd could
  647. * materialize from under us from a different thread.
  648. */
  649. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  650. return VM_FAULT_OOM;
  651. /* if an huge pmd materialized from under us just retry later */
  652. if (unlikely(pmd_trans_huge(*pmd)))
  653. return 0;
  654. /*
  655. * A regular pmd is established and it can't morph into a huge pmd
  656. * from under us anymore at this point because we hold the mmap_sem
  657. * read mode and khugepaged takes it in write mode. So now it's
  658. * safe to run pte_offset_map().
  659. */
  660. pte = pte_offset_map(pmd, address);
  661. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  662. }
  663. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  664. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  665. struct vm_area_struct *vma)
  666. {
  667. struct page *src_page;
  668. pmd_t pmd;
  669. pgtable_t pgtable;
  670. int ret;
  671. ret = -ENOMEM;
  672. pgtable = pte_alloc_one(dst_mm, addr);
  673. if (unlikely(!pgtable))
  674. goto out;
  675. spin_lock(&dst_mm->page_table_lock);
  676. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  677. ret = -EAGAIN;
  678. pmd = *src_pmd;
  679. if (unlikely(!pmd_trans_huge(pmd))) {
  680. pte_free(dst_mm, pgtable);
  681. goto out_unlock;
  682. }
  683. if (unlikely(pmd_trans_splitting(pmd))) {
  684. /* split huge page running from under us */
  685. spin_unlock(&src_mm->page_table_lock);
  686. spin_unlock(&dst_mm->page_table_lock);
  687. pte_free(dst_mm, pgtable);
  688. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  689. goto out;
  690. }
  691. src_page = pmd_page(pmd);
  692. VM_BUG_ON(!PageHead(src_page));
  693. get_page(src_page);
  694. page_dup_rmap(src_page);
  695. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  696. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  697. pmd = pmd_mkold(pmd_wrprotect(pmd));
  698. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  699. prepare_pmd_huge_pte(pgtable, dst_mm);
  700. dst_mm->nr_ptes++;
  701. ret = 0;
  702. out_unlock:
  703. spin_unlock(&src_mm->page_table_lock);
  704. spin_unlock(&dst_mm->page_table_lock);
  705. out:
  706. return ret;
  707. }
  708. /* no "address" argument so destroys page coloring of some arch */
  709. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  710. {
  711. pgtable_t pgtable;
  712. assert_spin_locked(&mm->page_table_lock);
  713. /* FIFO */
  714. pgtable = mm->pmd_huge_pte;
  715. if (list_empty(&pgtable->lru))
  716. mm->pmd_huge_pte = NULL;
  717. else {
  718. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  719. struct page, lru);
  720. list_del(&pgtable->lru);
  721. }
  722. return pgtable;
  723. }
  724. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  725. struct vm_area_struct *vma,
  726. unsigned long address,
  727. pmd_t *pmd, pmd_t orig_pmd,
  728. struct page *page,
  729. unsigned long haddr)
  730. {
  731. pgtable_t pgtable;
  732. pmd_t _pmd;
  733. int ret = 0, i;
  734. struct page **pages;
  735. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  736. GFP_KERNEL);
  737. if (unlikely(!pages)) {
  738. ret |= VM_FAULT_OOM;
  739. goto out;
  740. }
  741. for (i = 0; i < HPAGE_PMD_NR; i++) {
  742. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  743. __GFP_OTHER_NODE,
  744. vma, address, page_to_nid(page));
  745. if (unlikely(!pages[i] ||
  746. mem_cgroup_newpage_charge(pages[i], mm,
  747. GFP_KERNEL))) {
  748. if (pages[i])
  749. put_page(pages[i]);
  750. mem_cgroup_uncharge_start();
  751. while (--i >= 0) {
  752. mem_cgroup_uncharge_page(pages[i]);
  753. put_page(pages[i]);
  754. }
  755. mem_cgroup_uncharge_end();
  756. kfree(pages);
  757. ret |= VM_FAULT_OOM;
  758. goto out;
  759. }
  760. }
  761. for (i = 0; i < HPAGE_PMD_NR; i++) {
  762. copy_user_highpage(pages[i], page + i,
  763. haddr + PAGE_SIZE * i, vma);
  764. __SetPageUptodate(pages[i]);
  765. cond_resched();
  766. }
  767. spin_lock(&mm->page_table_lock);
  768. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  769. goto out_free_pages;
  770. VM_BUG_ON(!PageHead(page));
  771. pmdp_clear_flush_notify(vma, haddr, pmd);
  772. /* leave pmd empty until pte is filled */
  773. pgtable = get_pmd_huge_pte(mm);
  774. pmd_populate(mm, &_pmd, pgtable);
  775. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  776. pte_t *pte, entry;
  777. entry = mk_pte(pages[i], vma->vm_page_prot);
  778. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  779. page_add_new_anon_rmap(pages[i], vma, haddr);
  780. pte = pte_offset_map(&_pmd, haddr);
  781. VM_BUG_ON(!pte_none(*pte));
  782. set_pte_at(mm, haddr, pte, entry);
  783. pte_unmap(pte);
  784. }
  785. kfree(pages);
  786. smp_wmb(); /* make pte visible before pmd */
  787. pmd_populate(mm, pmd, pgtable);
  788. page_remove_rmap(page);
  789. spin_unlock(&mm->page_table_lock);
  790. ret |= VM_FAULT_WRITE;
  791. put_page(page);
  792. out:
  793. return ret;
  794. out_free_pages:
  795. spin_unlock(&mm->page_table_lock);
  796. mem_cgroup_uncharge_start();
  797. for (i = 0; i < HPAGE_PMD_NR; i++) {
  798. mem_cgroup_uncharge_page(pages[i]);
  799. put_page(pages[i]);
  800. }
  801. mem_cgroup_uncharge_end();
  802. kfree(pages);
  803. goto out;
  804. }
  805. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  806. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  807. {
  808. int ret = 0;
  809. struct page *page, *new_page;
  810. unsigned long haddr;
  811. VM_BUG_ON(!vma->anon_vma);
  812. spin_lock(&mm->page_table_lock);
  813. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  814. goto out_unlock;
  815. page = pmd_page(orig_pmd);
  816. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  817. haddr = address & HPAGE_PMD_MASK;
  818. if (page_mapcount(page) == 1) {
  819. pmd_t entry;
  820. entry = pmd_mkyoung(orig_pmd);
  821. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  822. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  823. update_mmu_cache(vma, address, entry);
  824. ret |= VM_FAULT_WRITE;
  825. goto out_unlock;
  826. }
  827. get_page(page);
  828. spin_unlock(&mm->page_table_lock);
  829. if (transparent_hugepage_enabled(vma) &&
  830. !transparent_hugepage_debug_cow())
  831. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  832. vma, haddr, numa_node_id(), 0);
  833. else
  834. new_page = NULL;
  835. if (unlikely(!new_page)) {
  836. count_vm_event(THP_FAULT_FALLBACK);
  837. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  838. pmd, orig_pmd, page, haddr);
  839. if (ret & VM_FAULT_OOM)
  840. split_huge_page(page);
  841. put_page(page);
  842. goto out;
  843. }
  844. count_vm_event(THP_FAULT_ALLOC);
  845. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  846. put_page(new_page);
  847. split_huge_page(page);
  848. put_page(page);
  849. ret |= VM_FAULT_OOM;
  850. goto out;
  851. }
  852. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  853. __SetPageUptodate(new_page);
  854. spin_lock(&mm->page_table_lock);
  855. put_page(page);
  856. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  857. spin_unlock(&mm->page_table_lock);
  858. mem_cgroup_uncharge_page(new_page);
  859. put_page(new_page);
  860. goto out;
  861. } else {
  862. pmd_t entry;
  863. VM_BUG_ON(!PageHead(page));
  864. entry = mk_pmd(new_page, vma->vm_page_prot);
  865. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  866. entry = pmd_mkhuge(entry);
  867. pmdp_clear_flush_notify(vma, haddr, pmd);
  868. page_add_new_anon_rmap(new_page, vma, haddr);
  869. set_pmd_at(mm, haddr, pmd, entry);
  870. update_mmu_cache(vma, address, entry);
  871. page_remove_rmap(page);
  872. put_page(page);
  873. ret |= VM_FAULT_WRITE;
  874. }
  875. out_unlock:
  876. spin_unlock(&mm->page_table_lock);
  877. out:
  878. return ret;
  879. }
  880. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  881. unsigned long addr,
  882. pmd_t *pmd,
  883. unsigned int flags)
  884. {
  885. struct page *page = NULL;
  886. assert_spin_locked(&mm->page_table_lock);
  887. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  888. goto out;
  889. page = pmd_page(*pmd);
  890. VM_BUG_ON(!PageHead(page));
  891. if (flags & FOLL_TOUCH) {
  892. pmd_t _pmd;
  893. /*
  894. * We should set the dirty bit only for FOLL_WRITE but
  895. * for now the dirty bit in the pmd is meaningless.
  896. * And if the dirty bit will become meaningful and
  897. * we'll only set it with FOLL_WRITE, an atomic
  898. * set_bit will be required on the pmd to set the
  899. * young bit, instead of the current set_pmd_at.
  900. */
  901. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  902. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  903. }
  904. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  905. VM_BUG_ON(!PageCompound(page));
  906. if (flags & FOLL_GET)
  907. get_page_foll(page);
  908. out:
  909. return page;
  910. }
  911. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  912. pmd_t *pmd, unsigned long addr)
  913. {
  914. int ret = 0;
  915. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  916. struct page *page;
  917. pgtable_t pgtable;
  918. pgtable = get_pmd_huge_pte(tlb->mm);
  919. page = pmd_page(*pmd);
  920. pmd_clear(pmd);
  921. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  922. page_remove_rmap(page);
  923. VM_BUG_ON(page_mapcount(page) < 0);
  924. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  925. VM_BUG_ON(!PageHead(page));
  926. tlb->mm->nr_ptes--;
  927. spin_unlock(&tlb->mm->page_table_lock);
  928. tlb_remove_page(tlb, page);
  929. pte_free(tlb->mm, pgtable);
  930. ret = 1;
  931. }
  932. return ret;
  933. }
  934. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  935. unsigned long addr, unsigned long end,
  936. unsigned char *vec)
  937. {
  938. int ret = 0;
  939. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  940. /*
  941. * All logical pages in the range are present
  942. * if backed by a huge page.
  943. */
  944. spin_unlock(&vma->vm_mm->page_table_lock);
  945. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  946. ret = 1;
  947. }
  948. return ret;
  949. }
  950. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  951. unsigned long old_addr,
  952. unsigned long new_addr, unsigned long old_end,
  953. pmd_t *old_pmd, pmd_t *new_pmd)
  954. {
  955. int ret = 0;
  956. pmd_t pmd;
  957. struct mm_struct *mm = vma->vm_mm;
  958. if ((old_addr & ~HPAGE_PMD_MASK) ||
  959. (new_addr & ~HPAGE_PMD_MASK) ||
  960. old_end - old_addr < HPAGE_PMD_SIZE ||
  961. (new_vma->vm_flags & VM_NOHUGEPAGE))
  962. goto out;
  963. /*
  964. * The destination pmd shouldn't be established, free_pgtables()
  965. * should have release it.
  966. */
  967. if (WARN_ON(!pmd_none(*new_pmd))) {
  968. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  969. goto out;
  970. }
  971. ret = __pmd_trans_huge_lock(old_pmd, vma);
  972. if (ret == 1) {
  973. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  974. VM_BUG_ON(!pmd_none(*new_pmd));
  975. set_pmd_at(mm, new_addr, new_pmd, pmd);
  976. spin_unlock(&mm->page_table_lock);
  977. }
  978. out:
  979. return ret;
  980. }
  981. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  982. unsigned long addr, pgprot_t newprot)
  983. {
  984. struct mm_struct *mm = vma->vm_mm;
  985. int ret = 0;
  986. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  987. pmd_t entry;
  988. entry = pmdp_get_and_clear(mm, addr, pmd);
  989. entry = pmd_modify(entry, newprot);
  990. set_pmd_at(mm, addr, pmd, entry);
  991. spin_unlock(&vma->vm_mm->page_table_lock);
  992. ret = 1;
  993. }
  994. return ret;
  995. }
  996. /*
  997. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  998. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  999. *
  1000. * Note that if it returns 1, this routine returns without unlocking page
  1001. * table locks. So callers must unlock them.
  1002. */
  1003. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1004. {
  1005. spin_lock(&vma->vm_mm->page_table_lock);
  1006. if (likely(pmd_trans_huge(*pmd))) {
  1007. if (unlikely(pmd_trans_splitting(*pmd))) {
  1008. spin_unlock(&vma->vm_mm->page_table_lock);
  1009. wait_split_huge_page(vma->anon_vma, pmd);
  1010. return -1;
  1011. } else {
  1012. /* Thp mapped by 'pmd' is stable, so we can
  1013. * handle it as it is. */
  1014. return 1;
  1015. }
  1016. }
  1017. spin_unlock(&vma->vm_mm->page_table_lock);
  1018. return 0;
  1019. }
  1020. pmd_t *page_check_address_pmd(struct page *page,
  1021. struct mm_struct *mm,
  1022. unsigned long address,
  1023. enum page_check_address_pmd_flag flag)
  1024. {
  1025. pgd_t *pgd;
  1026. pud_t *pud;
  1027. pmd_t *pmd, *ret = NULL;
  1028. if (address & ~HPAGE_PMD_MASK)
  1029. goto out;
  1030. pgd = pgd_offset(mm, address);
  1031. if (!pgd_present(*pgd))
  1032. goto out;
  1033. pud = pud_offset(pgd, address);
  1034. if (!pud_present(*pud))
  1035. goto out;
  1036. pmd = pmd_offset(pud, address);
  1037. if (pmd_none(*pmd))
  1038. goto out;
  1039. if (pmd_page(*pmd) != page)
  1040. goto out;
  1041. /*
  1042. * split_vma() may create temporary aliased mappings. There is
  1043. * no risk as long as all huge pmd are found and have their
  1044. * splitting bit set before __split_huge_page_refcount
  1045. * runs. Finding the same huge pmd more than once during the
  1046. * same rmap walk is not a problem.
  1047. */
  1048. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1049. pmd_trans_splitting(*pmd))
  1050. goto out;
  1051. if (pmd_trans_huge(*pmd)) {
  1052. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1053. !pmd_trans_splitting(*pmd));
  1054. ret = pmd;
  1055. }
  1056. out:
  1057. return ret;
  1058. }
  1059. static int __split_huge_page_splitting(struct page *page,
  1060. struct vm_area_struct *vma,
  1061. unsigned long address)
  1062. {
  1063. struct mm_struct *mm = vma->vm_mm;
  1064. pmd_t *pmd;
  1065. int ret = 0;
  1066. spin_lock(&mm->page_table_lock);
  1067. pmd = page_check_address_pmd(page, mm, address,
  1068. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1069. if (pmd) {
  1070. /*
  1071. * We can't temporarily set the pmd to null in order
  1072. * to split it, the pmd must remain marked huge at all
  1073. * times or the VM won't take the pmd_trans_huge paths
  1074. * and it won't wait on the anon_vma->root->mutex to
  1075. * serialize against split_huge_page*.
  1076. */
  1077. pmdp_splitting_flush_notify(vma, address, pmd);
  1078. ret = 1;
  1079. }
  1080. spin_unlock(&mm->page_table_lock);
  1081. return ret;
  1082. }
  1083. static void __split_huge_page_refcount(struct page *page)
  1084. {
  1085. int i;
  1086. struct zone *zone = page_zone(page);
  1087. struct lruvec *lruvec;
  1088. int tail_count = 0;
  1089. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1090. spin_lock_irq(&zone->lru_lock);
  1091. lruvec = mem_cgroup_page_lruvec(page, zone);
  1092. compound_lock(page);
  1093. /* complete memcg works before add pages to LRU */
  1094. mem_cgroup_split_huge_fixup(page);
  1095. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1096. struct page *page_tail = page + i;
  1097. /* tail_page->_mapcount cannot change */
  1098. BUG_ON(page_mapcount(page_tail) < 0);
  1099. tail_count += page_mapcount(page_tail);
  1100. /* check for overflow */
  1101. BUG_ON(tail_count < 0);
  1102. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1103. /*
  1104. * tail_page->_count is zero and not changing from
  1105. * under us. But get_page_unless_zero() may be running
  1106. * from under us on the tail_page. If we used
  1107. * atomic_set() below instead of atomic_add(), we
  1108. * would then run atomic_set() concurrently with
  1109. * get_page_unless_zero(), and atomic_set() is
  1110. * implemented in C not using locked ops. spin_unlock
  1111. * on x86 sometime uses locked ops because of PPro
  1112. * errata 66, 92, so unless somebody can guarantee
  1113. * atomic_set() here would be safe on all archs (and
  1114. * not only on x86), it's safer to use atomic_add().
  1115. */
  1116. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1117. &page_tail->_count);
  1118. /* after clearing PageTail the gup refcount can be released */
  1119. smp_mb();
  1120. /*
  1121. * retain hwpoison flag of the poisoned tail page:
  1122. * fix for the unsuitable process killed on Guest Machine(KVM)
  1123. * by the memory-failure.
  1124. */
  1125. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1126. page_tail->flags |= (page->flags &
  1127. ((1L << PG_referenced) |
  1128. (1L << PG_swapbacked) |
  1129. (1L << PG_mlocked) |
  1130. (1L << PG_uptodate)));
  1131. page_tail->flags |= (1L << PG_dirty);
  1132. /* clear PageTail before overwriting first_page */
  1133. smp_wmb();
  1134. /*
  1135. * __split_huge_page_splitting() already set the
  1136. * splitting bit in all pmd that could map this
  1137. * hugepage, that will ensure no CPU can alter the
  1138. * mapcount on the head page. The mapcount is only
  1139. * accounted in the head page and it has to be
  1140. * transferred to all tail pages in the below code. So
  1141. * for this code to be safe, the split the mapcount
  1142. * can't change. But that doesn't mean userland can't
  1143. * keep changing and reading the page contents while
  1144. * we transfer the mapcount, so the pmd splitting
  1145. * status is achieved setting a reserved bit in the
  1146. * pmd, not by clearing the present bit.
  1147. */
  1148. page_tail->_mapcount = page->_mapcount;
  1149. BUG_ON(page_tail->mapping);
  1150. page_tail->mapping = page->mapping;
  1151. page_tail->index = page->index + i;
  1152. BUG_ON(!PageAnon(page_tail));
  1153. BUG_ON(!PageUptodate(page_tail));
  1154. BUG_ON(!PageDirty(page_tail));
  1155. BUG_ON(!PageSwapBacked(page_tail));
  1156. lru_add_page_tail(page, page_tail, lruvec);
  1157. }
  1158. atomic_sub(tail_count, &page->_count);
  1159. BUG_ON(atomic_read(&page->_count) <= 0);
  1160. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1161. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1162. ClearPageCompound(page);
  1163. compound_unlock(page);
  1164. spin_unlock_irq(&zone->lru_lock);
  1165. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1166. struct page *page_tail = page + i;
  1167. BUG_ON(page_count(page_tail) <= 0);
  1168. /*
  1169. * Tail pages may be freed if there wasn't any mapping
  1170. * like if add_to_swap() is running on a lru page that
  1171. * had its mapping zapped. And freeing these pages
  1172. * requires taking the lru_lock so we do the put_page
  1173. * of the tail pages after the split is complete.
  1174. */
  1175. put_page(page_tail);
  1176. }
  1177. /*
  1178. * Only the head page (now become a regular page) is required
  1179. * to be pinned by the caller.
  1180. */
  1181. BUG_ON(page_count(page) <= 0);
  1182. }
  1183. static int __split_huge_page_map(struct page *page,
  1184. struct vm_area_struct *vma,
  1185. unsigned long address)
  1186. {
  1187. struct mm_struct *mm = vma->vm_mm;
  1188. pmd_t *pmd, _pmd;
  1189. int ret = 0, i;
  1190. pgtable_t pgtable;
  1191. unsigned long haddr;
  1192. spin_lock(&mm->page_table_lock);
  1193. pmd = page_check_address_pmd(page, mm, address,
  1194. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1195. if (pmd) {
  1196. pgtable = get_pmd_huge_pte(mm);
  1197. pmd_populate(mm, &_pmd, pgtable);
  1198. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1199. i++, haddr += PAGE_SIZE) {
  1200. pte_t *pte, entry;
  1201. BUG_ON(PageCompound(page+i));
  1202. entry = mk_pte(page + i, vma->vm_page_prot);
  1203. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1204. if (!pmd_write(*pmd))
  1205. entry = pte_wrprotect(entry);
  1206. else
  1207. BUG_ON(page_mapcount(page) != 1);
  1208. if (!pmd_young(*pmd))
  1209. entry = pte_mkold(entry);
  1210. pte = pte_offset_map(&_pmd, haddr);
  1211. BUG_ON(!pte_none(*pte));
  1212. set_pte_at(mm, haddr, pte, entry);
  1213. pte_unmap(pte);
  1214. }
  1215. smp_wmb(); /* make pte visible before pmd */
  1216. /*
  1217. * Up to this point the pmd is present and huge and
  1218. * userland has the whole access to the hugepage
  1219. * during the split (which happens in place). If we
  1220. * overwrite the pmd with the not-huge version
  1221. * pointing to the pte here (which of course we could
  1222. * if all CPUs were bug free), userland could trigger
  1223. * a small page size TLB miss on the small sized TLB
  1224. * while the hugepage TLB entry is still established
  1225. * in the huge TLB. Some CPU doesn't like that. See
  1226. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1227. * Erratum 383 on page 93. Intel should be safe but is
  1228. * also warns that it's only safe if the permission
  1229. * and cache attributes of the two entries loaded in
  1230. * the two TLB is identical (which should be the case
  1231. * here). But it is generally safer to never allow
  1232. * small and huge TLB entries for the same virtual
  1233. * address to be loaded simultaneously. So instead of
  1234. * doing "pmd_populate(); flush_tlb_range();" we first
  1235. * mark the current pmd notpresent (atomically because
  1236. * here the pmd_trans_huge and pmd_trans_splitting
  1237. * must remain set at all times on the pmd until the
  1238. * split is complete for this pmd), then we flush the
  1239. * SMP TLB and finally we write the non-huge version
  1240. * of the pmd entry with pmd_populate.
  1241. */
  1242. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1243. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1244. pmd_populate(mm, pmd, pgtable);
  1245. ret = 1;
  1246. }
  1247. spin_unlock(&mm->page_table_lock);
  1248. return ret;
  1249. }
  1250. /* must be called with anon_vma->root->mutex hold */
  1251. static void __split_huge_page(struct page *page,
  1252. struct anon_vma *anon_vma)
  1253. {
  1254. int mapcount, mapcount2;
  1255. struct anon_vma_chain *avc;
  1256. BUG_ON(!PageHead(page));
  1257. BUG_ON(PageTail(page));
  1258. mapcount = 0;
  1259. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1260. struct vm_area_struct *vma = avc->vma;
  1261. unsigned long addr = vma_address(page, vma);
  1262. BUG_ON(is_vma_temporary_stack(vma));
  1263. if (addr == -EFAULT)
  1264. continue;
  1265. mapcount += __split_huge_page_splitting(page, vma, addr);
  1266. }
  1267. /*
  1268. * It is critical that new vmas are added to the tail of the
  1269. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1270. * and establishes a child pmd before
  1271. * __split_huge_page_splitting() freezes the parent pmd (so if
  1272. * we fail to prevent copy_huge_pmd() from running until the
  1273. * whole __split_huge_page() is complete), we will still see
  1274. * the newly established pmd of the child later during the
  1275. * walk, to be able to set it as pmd_trans_splitting too.
  1276. */
  1277. if (mapcount != page_mapcount(page))
  1278. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1279. mapcount, page_mapcount(page));
  1280. BUG_ON(mapcount != page_mapcount(page));
  1281. __split_huge_page_refcount(page);
  1282. mapcount2 = 0;
  1283. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1284. struct vm_area_struct *vma = avc->vma;
  1285. unsigned long addr = vma_address(page, vma);
  1286. BUG_ON(is_vma_temporary_stack(vma));
  1287. if (addr == -EFAULT)
  1288. continue;
  1289. mapcount2 += __split_huge_page_map(page, vma, addr);
  1290. }
  1291. if (mapcount != mapcount2)
  1292. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1293. mapcount, mapcount2, page_mapcount(page));
  1294. BUG_ON(mapcount != mapcount2);
  1295. }
  1296. int split_huge_page(struct page *page)
  1297. {
  1298. struct anon_vma *anon_vma;
  1299. int ret = 1;
  1300. BUG_ON(!PageAnon(page));
  1301. anon_vma = page_lock_anon_vma(page);
  1302. if (!anon_vma)
  1303. goto out;
  1304. ret = 0;
  1305. if (!PageCompound(page))
  1306. goto out_unlock;
  1307. BUG_ON(!PageSwapBacked(page));
  1308. __split_huge_page(page, anon_vma);
  1309. count_vm_event(THP_SPLIT);
  1310. BUG_ON(PageCompound(page));
  1311. out_unlock:
  1312. page_unlock_anon_vma(anon_vma);
  1313. out:
  1314. return ret;
  1315. }
  1316. #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
  1317. VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1318. int hugepage_madvise(struct vm_area_struct *vma,
  1319. unsigned long *vm_flags, int advice)
  1320. {
  1321. switch (advice) {
  1322. case MADV_HUGEPAGE:
  1323. /*
  1324. * Be somewhat over-protective like KSM for now!
  1325. */
  1326. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1327. return -EINVAL;
  1328. *vm_flags &= ~VM_NOHUGEPAGE;
  1329. *vm_flags |= VM_HUGEPAGE;
  1330. /*
  1331. * If the vma become good for khugepaged to scan,
  1332. * register it here without waiting a page fault that
  1333. * may not happen any time soon.
  1334. */
  1335. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1336. return -ENOMEM;
  1337. break;
  1338. case MADV_NOHUGEPAGE:
  1339. /*
  1340. * Be somewhat over-protective like KSM for now!
  1341. */
  1342. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1343. return -EINVAL;
  1344. *vm_flags &= ~VM_HUGEPAGE;
  1345. *vm_flags |= VM_NOHUGEPAGE;
  1346. /*
  1347. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1348. * this vma even if we leave the mm registered in khugepaged if
  1349. * it got registered before VM_NOHUGEPAGE was set.
  1350. */
  1351. break;
  1352. }
  1353. return 0;
  1354. }
  1355. static int __init khugepaged_slab_init(void)
  1356. {
  1357. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1358. sizeof(struct mm_slot),
  1359. __alignof__(struct mm_slot), 0, NULL);
  1360. if (!mm_slot_cache)
  1361. return -ENOMEM;
  1362. return 0;
  1363. }
  1364. static void __init khugepaged_slab_free(void)
  1365. {
  1366. kmem_cache_destroy(mm_slot_cache);
  1367. mm_slot_cache = NULL;
  1368. }
  1369. static inline struct mm_slot *alloc_mm_slot(void)
  1370. {
  1371. if (!mm_slot_cache) /* initialization failed */
  1372. return NULL;
  1373. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1374. }
  1375. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1376. {
  1377. kmem_cache_free(mm_slot_cache, mm_slot);
  1378. }
  1379. static int __init mm_slots_hash_init(void)
  1380. {
  1381. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1382. GFP_KERNEL);
  1383. if (!mm_slots_hash)
  1384. return -ENOMEM;
  1385. return 0;
  1386. }
  1387. #if 0
  1388. static void __init mm_slots_hash_free(void)
  1389. {
  1390. kfree(mm_slots_hash);
  1391. mm_slots_hash = NULL;
  1392. }
  1393. #endif
  1394. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1395. {
  1396. struct mm_slot *mm_slot;
  1397. struct hlist_head *bucket;
  1398. struct hlist_node *node;
  1399. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1400. % MM_SLOTS_HASH_HEADS];
  1401. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1402. if (mm == mm_slot->mm)
  1403. return mm_slot;
  1404. }
  1405. return NULL;
  1406. }
  1407. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1408. struct mm_slot *mm_slot)
  1409. {
  1410. struct hlist_head *bucket;
  1411. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1412. % MM_SLOTS_HASH_HEADS];
  1413. mm_slot->mm = mm;
  1414. hlist_add_head(&mm_slot->hash, bucket);
  1415. }
  1416. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1417. {
  1418. return atomic_read(&mm->mm_users) == 0;
  1419. }
  1420. int __khugepaged_enter(struct mm_struct *mm)
  1421. {
  1422. struct mm_slot *mm_slot;
  1423. int wakeup;
  1424. mm_slot = alloc_mm_slot();
  1425. if (!mm_slot)
  1426. return -ENOMEM;
  1427. /* __khugepaged_exit() must not run from under us */
  1428. VM_BUG_ON(khugepaged_test_exit(mm));
  1429. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1430. free_mm_slot(mm_slot);
  1431. return 0;
  1432. }
  1433. spin_lock(&khugepaged_mm_lock);
  1434. insert_to_mm_slots_hash(mm, mm_slot);
  1435. /*
  1436. * Insert just behind the scanning cursor, to let the area settle
  1437. * down a little.
  1438. */
  1439. wakeup = list_empty(&khugepaged_scan.mm_head);
  1440. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1441. spin_unlock(&khugepaged_mm_lock);
  1442. atomic_inc(&mm->mm_count);
  1443. if (wakeup)
  1444. wake_up_interruptible(&khugepaged_wait);
  1445. return 0;
  1446. }
  1447. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1448. {
  1449. unsigned long hstart, hend;
  1450. if (!vma->anon_vma)
  1451. /*
  1452. * Not yet faulted in so we will register later in the
  1453. * page fault if needed.
  1454. */
  1455. return 0;
  1456. if (vma->vm_ops)
  1457. /* khugepaged not yet working on file or special mappings */
  1458. return 0;
  1459. /*
  1460. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1461. * true too, verify it here.
  1462. */
  1463. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1464. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1465. hend = vma->vm_end & HPAGE_PMD_MASK;
  1466. if (hstart < hend)
  1467. return khugepaged_enter(vma);
  1468. return 0;
  1469. }
  1470. void __khugepaged_exit(struct mm_struct *mm)
  1471. {
  1472. struct mm_slot *mm_slot;
  1473. int free = 0;
  1474. spin_lock(&khugepaged_mm_lock);
  1475. mm_slot = get_mm_slot(mm);
  1476. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1477. hlist_del(&mm_slot->hash);
  1478. list_del(&mm_slot->mm_node);
  1479. free = 1;
  1480. }
  1481. spin_unlock(&khugepaged_mm_lock);
  1482. if (free) {
  1483. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1484. free_mm_slot(mm_slot);
  1485. mmdrop(mm);
  1486. } else if (mm_slot) {
  1487. /*
  1488. * This is required to serialize against
  1489. * khugepaged_test_exit() (which is guaranteed to run
  1490. * under mmap sem read mode). Stop here (after we
  1491. * return all pagetables will be destroyed) until
  1492. * khugepaged has finished working on the pagetables
  1493. * under the mmap_sem.
  1494. */
  1495. down_write(&mm->mmap_sem);
  1496. up_write(&mm->mmap_sem);
  1497. }
  1498. }
  1499. static void release_pte_page(struct page *page)
  1500. {
  1501. /* 0 stands for page_is_file_cache(page) == false */
  1502. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1503. unlock_page(page);
  1504. putback_lru_page(page);
  1505. }
  1506. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1507. {
  1508. while (--_pte >= pte) {
  1509. pte_t pteval = *_pte;
  1510. if (!pte_none(pteval))
  1511. release_pte_page(pte_page(pteval));
  1512. }
  1513. }
  1514. static void release_all_pte_pages(pte_t *pte)
  1515. {
  1516. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1517. }
  1518. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1519. unsigned long address,
  1520. pte_t *pte)
  1521. {
  1522. struct page *page;
  1523. pte_t *_pte;
  1524. int referenced = 0, isolated = 0, none = 0;
  1525. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1526. _pte++, address += PAGE_SIZE) {
  1527. pte_t pteval = *_pte;
  1528. if (pte_none(pteval)) {
  1529. if (++none <= khugepaged_max_ptes_none)
  1530. continue;
  1531. else {
  1532. release_pte_pages(pte, _pte);
  1533. goto out;
  1534. }
  1535. }
  1536. if (!pte_present(pteval) || !pte_write(pteval)) {
  1537. release_pte_pages(pte, _pte);
  1538. goto out;
  1539. }
  1540. page = vm_normal_page(vma, address, pteval);
  1541. if (unlikely(!page)) {
  1542. release_pte_pages(pte, _pte);
  1543. goto out;
  1544. }
  1545. VM_BUG_ON(PageCompound(page));
  1546. BUG_ON(!PageAnon(page));
  1547. VM_BUG_ON(!PageSwapBacked(page));
  1548. /* cannot use mapcount: can't collapse if there's a gup pin */
  1549. if (page_count(page) != 1) {
  1550. release_pte_pages(pte, _pte);
  1551. goto out;
  1552. }
  1553. /*
  1554. * We can do it before isolate_lru_page because the
  1555. * page can't be freed from under us. NOTE: PG_lock
  1556. * is needed to serialize against split_huge_page
  1557. * when invoked from the VM.
  1558. */
  1559. if (!trylock_page(page)) {
  1560. release_pte_pages(pte, _pte);
  1561. goto out;
  1562. }
  1563. /*
  1564. * Isolate the page to avoid collapsing an hugepage
  1565. * currently in use by the VM.
  1566. */
  1567. if (isolate_lru_page(page)) {
  1568. unlock_page(page);
  1569. release_pte_pages(pte, _pte);
  1570. goto out;
  1571. }
  1572. /* 0 stands for page_is_file_cache(page) == false */
  1573. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1574. VM_BUG_ON(!PageLocked(page));
  1575. VM_BUG_ON(PageLRU(page));
  1576. /* If there is no mapped pte young don't collapse the page */
  1577. if (pte_young(pteval) || PageReferenced(page) ||
  1578. mmu_notifier_test_young(vma->vm_mm, address))
  1579. referenced = 1;
  1580. }
  1581. if (unlikely(!referenced))
  1582. release_all_pte_pages(pte);
  1583. else
  1584. isolated = 1;
  1585. out:
  1586. return isolated;
  1587. }
  1588. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1589. struct vm_area_struct *vma,
  1590. unsigned long address,
  1591. spinlock_t *ptl)
  1592. {
  1593. pte_t *_pte;
  1594. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1595. pte_t pteval = *_pte;
  1596. struct page *src_page;
  1597. if (pte_none(pteval)) {
  1598. clear_user_highpage(page, address);
  1599. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1600. } else {
  1601. src_page = pte_page(pteval);
  1602. copy_user_highpage(page, src_page, address, vma);
  1603. VM_BUG_ON(page_mapcount(src_page) != 1);
  1604. VM_BUG_ON(page_count(src_page) != 2);
  1605. release_pte_page(src_page);
  1606. /*
  1607. * ptl mostly unnecessary, but preempt has to
  1608. * be disabled to update the per-cpu stats
  1609. * inside page_remove_rmap().
  1610. */
  1611. spin_lock(ptl);
  1612. /*
  1613. * paravirt calls inside pte_clear here are
  1614. * superfluous.
  1615. */
  1616. pte_clear(vma->vm_mm, address, _pte);
  1617. page_remove_rmap(src_page);
  1618. spin_unlock(ptl);
  1619. free_page_and_swap_cache(src_page);
  1620. }
  1621. address += PAGE_SIZE;
  1622. page++;
  1623. }
  1624. }
  1625. static void collapse_huge_page(struct mm_struct *mm,
  1626. unsigned long address,
  1627. struct page **hpage,
  1628. struct vm_area_struct *vma,
  1629. int node)
  1630. {
  1631. pgd_t *pgd;
  1632. pud_t *pud;
  1633. pmd_t *pmd, _pmd;
  1634. pte_t *pte;
  1635. pgtable_t pgtable;
  1636. struct page *new_page;
  1637. spinlock_t *ptl;
  1638. int isolated;
  1639. unsigned long hstart, hend;
  1640. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1641. #ifndef CONFIG_NUMA
  1642. up_read(&mm->mmap_sem);
  1643. VM_BUG_ON(!*hpage);
  1644. new_page = *hpage;
  1645. #else
  1646. VM_BUG_ON(*hpage);
  1647. /*
  1648. * Allocate the page while the vma is still valid and under
  1649. * the mmap_sem read mode so there is no memory allocation
  1650. * later when we take the mmap_sem in write mode. This is more
  1651. * friendly behavior (OTOH it may actually hide bugs) to
  1652. * filesystems in userland with daemons allocating memory in
  1653. * the userland I/O paths. Allocating memory with the
  1654. * mmap_sem in read mode is good idea also to allow greater
  1655. * scalability.
  1656. */
  1657. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1658. node, __GFP_OTHER_NODE);
  1659. /*
  1660. * After allocating the hugepage, release the mmap_sem read lock in
  1661. * preparation for taking it in write mode.
  1662. */
  1663. up_read(&mm->mmap_sem);
  1664. if (unlikely(!new_page)) {
  1665. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1666. *hpage = ERR_PTR(-ENOMEM);
  1667. return;
  1668. }
  1669. #endif
  1670. count_vm_event(THP_COLLAPSE_ALLOC);
  1671. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1672. #ifdef CONFIG_NUMA
  1673. put_page(new_page);
  1674. #endif
  1675. return;
  1676. }
  1677. /*
  1678. * Prevent all access to pagetables with the exception of
  1679. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1680. * handled by the anon_vma lock + PG_lock.
  1681. */
  1682. down_write(&mm->mmap_sem);
  1683. if (unlikely(khugepaged_test_exit(mm)))
  1684. goto out;
  1685. vma = find_vma(mm, address);
  1686. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1687. hend = vma->vm_end & HPAGE_PMD_MASK;
  1688. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1689. goto out;
  1690. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1691. (vma->vm_flags & VM_NOHUGEPAGE))
  1692. goto out;
  1693. if (!vma->anon_vma || vma->vm_ops)
  1694. goto out;
  1695. if (is_vma_temporary_stack(vma))
  1696. goto out;
  1697. /*
  1698. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1699. * true too, verify it here.
  1700. */
  1701. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1702. pgd = pgd_offset(mm, address);
  1703. if (!pgd_present(*pgd))
  1704. goto out;
  1705. pud = pud_offset(pgd, address);
  1706. if (!pud_present(*pud))
  1707. goto out;
  1708. pmd = pmd_offset(pud, address);
  1709. /* pmd can't go away or become huge under us */
  1710. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1711. goto out;
  1712. anon_vma_lock(vma->anon_vma);
  1713. pte = pte_offset_map(pmd, address);
  1714. ptl = pte_lockptr(mm, pmd);
  1715. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1716. /*
  1717. * After this gup_fast can't run anymore. This also removes
  1718. * any huge TLB entry from the CPU so we won't allow
  1719. * huge and small TLB entries for the same virtual address
  1720. * to avoid the risk of CPU bugs in that area.
  1721. */
  1722. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1723. spin_unlock(&mm->page_table_lock);
  1724. spin_lock(ptl);
  1725. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1726. spin_unlock(ptl);
  1727. if (unlikely(!isolated)) {
  1728. pte_unmap(pte);
  1729. spin_lock(&mm->page_table_lock);
  1730. BUG_ON(!pmd_none(*pmd));
  1731. set_pmd_at(mm, address, pmd, _pmd);
  1732. spin_unlock(&mm->page_table_lock);
  1733. anon_vma_unlock(vma->anon_vma);
  1734. goto out;
  1735. }
  1736. /*
  1737. * All pages are isolated and locked so anon_vma rmap
  1738. * can't run anymore.
  1739. */
  1740. anon_vma_unlock(vma->anon_vma);
  1741. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1742. pte_unmap(pte);
  1743. __SetPageUptodate(new_page);
  1744. pgtable = pmd_pgtable(_pmd);
  1745. VM_BUG_ON(page_count(pgtable) != 1);
  1746. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1747. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1748. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1749. _pmd = pmd_mkhuge(_pmd);
  1750. /*
  1751. * spin_lock() below is not the equivalent of smp_wmb(), so
  1752. * this is needed to avoid the copy_huge_page writes to become
  1753. * visible after the set_pmd_at() write.
  1754. */
  1755. smp_wmb();
  1756. spin_lock(&mm->page_table_lock);
  1757. BUG_ON(!pmd_none(*pmd));
  1758. page_add_new_anon_rmap(new_page, vma, address);
  1759. set_pmd_at(mm, address, pmd, _pmd);
  1760. update_mmu_cache(vma, address, _pmd);
  1761. prepare_pmd_huge_pte(pgtable, mm);
  1762. spin_unlock(&mm->page_table_lock);
  1763. #ifndef CONFIG_NUMA
  1764. *hpage = NULL;
  1765. #endif
  1766. khugepaged_pages_collapsed++;
  1767. out_up_write:
  1768. up_write(&mm->mmap_sem);
  1769. return;
  1770. out:
  1771. mem_cgroup_uncharge_page(new_page);
  1772. #ifdef CONFIG_NUMA
  1773. put_page(new_page);
  1774. #endif
  1775. goto out_up_write;
  1776. }
  1777. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1778. struct vm_area_struct *vma,
  1779. unsigned long address,
  1780. struct page **hpage)
  1781. {
  1782. pgd_t *pgd;
  1783. pud_t *pud;
  1784. pmd_t *pmd;
  1785. pte_t *pte, *_pte;
  1786. int ret = 0, referenced = 0, none = 0;
  1787. struct page *page;
  1788. unsigned long _address;
  1789. spinlock_t *ptl;
  1790. int node = -1;
  1791. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1792. pgd = pgd_offset(mm, address);
  1793. if (!pgd_present(*pgd))
  1794. goto out;
  1795. pud = pud_offset(pgd, address);
  1796. if (!pud_present(*pud))
  1797. goto out;
  1798. pmd = pmd_offset(pud, address);
  1799. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1800. goto out;
  1801. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1802. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1803. _pte++, _address += PAGE_SIZE) {
  1804. pte_t pteval = *_pte;
  1805. if (pte_none(pteval)) {
  1806. if (++none <= khugepaged_max_ptes_none)
  1807. continue;
  1808. else
  1809. goto out_unmap;
  1810. }
  1811. if (!pte_present(pteval) || !pte_write(pteval))
  1812. goto out_unmap;
  1813. page = vm_normal_page(vma, _address, pteval);
  1814. if (unlikely(!page))
  1815. goto out_unmap;
  1816. /*
  1817. * Chose the node of the first page. This could
  1818. * be more sophisticated and look at more pages,
  1819. * but isn't for now.
  1820. */
  1821. if (node == -1)
  1822. node = page_to_nid(page);
  1823. VM_BUG_ON(PageCompound(page));
  1824. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1825. goto out_unmap;
  1826. /* cannot use mapcount: can't collapse if there's a gup pin */
  1827. if (page_count(page) != 1)
  1828. goto out_unmap;
  1829. if (pte_young(pteval) || PageReferenced(page) ||
  1830. mmu_notifier_test_young(vma->vm_mm, address))
  1831. referenced = 1;
  1832. }
  1833. if (referenced)
  1834. ret = 1;
  1835. out_unmap:
  1836. pte_unmap_unlock(pte, ptl);
  1837. if (ret)
  1838. /* collapse_huge_page will return with the mmap_sem released */
  1839. collapse_huge_page(mm, address, hpage, vma, node);
  1840. out:
  1841. return ret;
  1842. }
  1843. static void collect_mm_slot(struct mm_slot *mm_slot)
  1844. {
  1845. struct mm_struct *mm = mm_slot->mm;
  1846. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1847. if (khugepaged_test_exit(mm)) {
  1848. /* free mm_slot */
  1849. hlist_del(&mm_slot->hash);
  1850. list_del(&mm_slot->mm_node);
  1851. /*
  1852. * Not strictly needed because the mm exited already.
  1853. *
  1854. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1855. */
  1856. /* khugepaged_mm_lock actually not necessary for the below */
  1857. free_mm_slot(mm_slot);
  1858. mmdrop(mm);
  1859. }
  1860. }
  1861. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1862. struct page **hpage)
  1863. __releases(&khugepaged_mm_lock)
  1864. __acquires(&khugepaged_mm_lock)
  1865. {
  1866. struct mm_slot *mm_slot;
  1867. struct mm_struct *mm;
  1868. struct vm_area_struct *vma;
  1869. int progress = 0;
  1870. VM_BUG_ON(!pages);
  1871. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1872. if (khugepaged_scan.mm_slot)
  1873. mm_slot = khugepaged_scan.mm_slot;
  1874. else {
  1875. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1876. struct mm_slot, mm_node);
  1877. khugepaged_scan.address = 0;
  1878. khugepaged_scan.mm_slot = mm_slot;
  1879. }
  1880. spin_unlock(&khugepaged_mm_lock);
  1881. mm = mm_slot->mm;
  1882. down_read(&mm->mmap_sem);
  1883. if (unlikely(khugepaged_test_exit(mm)))
  1884. vma = NULL;
  1885. else
  1886. vma = find_vma(mm, khugepaged_scan.address);
  1887. progress++;
  1888. for (; vma; vma = vma->vm_next) {
  1889. unsigned long hstart, hend;
  1890. cond_resched();
  1891. if (unlikely(khugepaged_test_exit(mm))) {
  1892. progress++;
  1893. break;
  1894. }
  1895. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1896. !khugepaged_always()) ||
  1897. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1898. skip:
  1899. progress++;
  1900. continue;
  1901. }
  1902. if (!vma->anon_vma || vma->vm_ops)
  1903. goto skip;
  1904. if (is_vma_temporary_stack(vma))
  1905. goto skip;
  1906. /*
  1907. * If is_pfn_mapping() is true is_learn_pfn_mapping()
  1908. * must be true too, verify it here.
  1909. */
  1910. VM_BUG_ON(is_linear_pfn_mapping(vma) ||
  1911. vma->vm_flags & VM_NO_THP);
  1912. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1913. hend = vma->vm_end & HPAGE_PMD_MASK;
  1914. if (hstart >= hend)
  1915. goto skip;
  1916. if (khugepaged_scan.address > hend)
  1917. goto skip;
  1918. if (khugepaged_scan.address < hstart)
  1919. khugepaged_scan.address = hstart;
  1920. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1921. while (khugepaged_scan.address < hend) {
  1922. int ret;
  1923. cond_resched();
  1924. if (unlikely(khugepaged_test_exit(mm)))
  1925. goto breakouterloop;
  1926. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1927. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1928. hend);
  1929. ret = khugepaged_scan_pmd(mm, vma,
  1930. khugepaged_scan.address,
  1931. hpage);
  1932. /* move to next address */
  1933. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1934. progress += HPAGE_PMD_NR;
  1935. if (ret)
  1936. /* we released mmap_sem so break loop */
  1937. goto breakouterloop_mmap_sem;
  1938. if (progress >= pages)
  1939. goto breakouterloop;
  1940. }
  1941. }
  1942. breakouterloop:
  1943. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1944. breakouterloop_mmap_sem:
  1945. spin_lock(&khugepaged_mm_lock);
  1946. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1947. /*
  1948. * Release the current mm_slot if this mm is about to die, or
  1949. * if we scanned all vmas of this mm.
  1950. */
  1951. if (khugepaged_test_exit(mm) || !vma) {
  1952. /*
  1953. * Make sure that if mm_users is reaching zero while
  1954. * khugepaged runs here, khugepaged_exit will find
  1955. * mm_slot not pointing to the exiting mm.
  1956. */
  1957. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1958. khugepaged_scan.mm_slot = list_entry(
  1959. mm_slot->mm_node.next,
  1960. struct mm_slot, mm_node);
  1961. khugepaged_scan.address = 0;
  1962. } else {
  1963. khugepaged_scan.mm_slot = NULL;
  1964. khugepaged_full_scans++;
  1965. }
  1966. collect_mm_slot(mm_slot);
  1967. }
  1968. return progress;
  1969. }
  1970. static int khugepaged_has_work(void)
  1971. {
  1972. return !list_empty(&khugepaged_scan.mm_head) &&
  1973. khugepaged_enabled();
  1974. }
  1975. static int khugepaged_wait_event(void)
  1976. {
  1977. return !list_empty(&khugepaged_scan.mm_head) ||
  1978. !khugepaged_enabled();
  1979. }
  1980. static void khugepaged_do_scan(struct page **hpage)
  1981. {
  1982. unsigned int progress = 0, pass_through_head = 0;
  1983. unsigned int pages = khugepaged_pages_to_scan;
  1984. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1985. while (progress < pages) {
  1986. cond_resched();
  1987. #ifndef CONFIG_NUMA
  1988. if (!*hpage) {
  1989. *hpage = alloc_hugepage(khugepaged_defrag());
  1990. if (unlikely(!*hpage)) {
  1991. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1992. break;
  1993. }
  1994. count_vm_event(THP_COLLAPSE_ALLOC);
  1995. }
  1996. #else
  1997. if (IS_ERR(*hpage))
  1998. break;
  1999. #endif
  2000. if (unlikely(kthread_should_stop() || freezing(current)))
  2001. break;
  2002. spin_lock(&khugepaged_mm_lock);
  2003. if (!khugepaged_scan.mm_slot)
  2004. pass_through_head++;
  2005. if (khugepaged_has_work() &&
  2006. pass_through_head < 2)
  2007. progress += khugepaged_scan_mm_slot(pages - progress,
  2008. hpage);
  2009. else
  2010. progress = pages;
  2011. spin_unlock(&khugepaged_mm_lock);
  2012. }
  2013. }
  2014. static void khugepaged_alloc_sleep(void)
  2015. {
  2016. wait_event_freezable_timeout(khugepaged_wait, false,
  2017. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2018. }
  2019. #ifndef CONFIG_NUMA
  2020. static struct page *khugepaged_alloc_hugepage(void)
  2021. {
  2022. struct page *hpage;
  2023. do {
  2024. hpage = alloc_hugepage(khugepaged_defrag());
  2025. if (!hpage) {
  2026. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2027. khugepaged_alloc_sleep();
  2028. } else
  2029. count_vm_event(THP_COLLAPSE_ALLOC);
  2030. } while (unlikely(!hpage) &&
  2031. likely(khugepaged_enabled()));
  2032. return hpage;
  2033. }
  2034. #endif
  2035. static void khugepaged_loop(void)
  2036. {
  2037. struct page *hpage;
  2038. #ifdef CONFIG_NUMA
  2039. hpage = NULL;
  2040. #endif
  2041. while (likely(khugepaged_enabled())) {
  2042. #ifndef CONFIG_NUMA
  2043. hpage = khugepaged_alloc_hugepage();
  2044. if (unlikely(!hpage))
  2045. break;
  2046. #else
  2047. if (IS_ERR(hpage)) {
  2048. khugepaged_alloc_sleep();
  2049. hpage = NULL;
  2050. }
  2051. #endif
  2052. khugepaged_do_scan(&hpage);
  2053. #ifndef CONFIG_NUMA
  2054. if (hpage)
  2055. put_page(hpage);
  2056. #endif
  2057. try_to_freeze();
  2058. if (unlikely(kthread_should_stop()))
  2059. break;
  2060. if (khugepaged_has_work()) {
  2061. if (!khugepaged_scan_sleep_millisecs)
  2062. continue;
  2063. wait_event_freezable_timeout(khugepaged_wait, false,
  2064. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2065. } else if (khugepaged_enabled())
  2066. wait_event_freezable(khugepaged_wait,
  2067. khugepaged_wait_event());
  2068. }
  2069. }
  2070. static int khugepaged(void *none)
  2071. {
  2072. struct mm_slot *mm_slot;
  2073. set_freezable();
  2074. set_user_nice(current, 19);
  2075. /* serialize with start_khugepaged() */
  2076. mutex_lock(&khugepaged_mutex);
  2077. for (;;) {
  2078. mutex_unlock(&khugepaged_mutex);
  2079. VM_BUG_ON(khugepaged_thread != current);
  2080. khugepaged_loop();
  2081. VM_BUG_ON(khugepaged_thread != current);
  2082. mutex_lock(&khugepaged_mutex);
  2083. if (!khugepaged_enabled())
  2084. break;
  2085. if (unlikely(kthread_should_stop()))
  2086. break;
  2087. }
  2088. spin_lock(&khugepaged_mm_lock);
  2089. mm_slot = khugepaged_scan.mm_slot;
  2090. khugepaged_scan.mm_slot = NULL;
  2091. if (mm_slot)
  2092. collect_mm_slot(mm_slot);
  2093. spin_unlock(&khugepaged_mm_lock);
  2094. khugepaged_thread = NULL;
  2095. mutex_unlock(&khugepaged_mutex);
  2096. return 0;
  2097. }
  2098. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2099. {
  2100. struct page *page;
  2101. spin_lock(&mm->page_table_lock);
  2102. if (unlikely(!pmd_trans_huge(*pmd))) {
  2103. spin_unlock(&mm->page_table_lock);
  2104. return;
  2105. }
  2106. page = pmd_page(*pmd);
  2107. VM_BUG_ON(!page_count(page));
  2108. get_page(page);
  2109. spin_unlock(&mm->page_table_lock);
  2110. split_huge_page(page);
  2111. put_page(page);
  2112. BUG_ON(pmd_trans_huge(*pmd));
  2113. }
  2114. static void split_huge_page_address(struct mm_struct *mm,
  2115. unsigned long address)
  2116. {
  2117. pgd_t *pgd;
  2118. pud_t *pud;
  2119. pmd_t *pmd;
  2120. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2121. pgd = pgd_offset(mm, address);
  2122. if (!pgd_present(*pgd))
  2123. return;
  2124. pud = pud_offset(pgd, address);
  2125. if (!pud_present(*pud))
  2126. return;
  2127. pmd = pmd_offset(pud, address);
  2128. if (!pmd_present(*pmd))
  2129. return;
  2130. /*
  2131. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2132. * materialize from under us.
  2133. */
  2134. split_huge_page_pmd(mm, pmd);
  2135. }
  2136. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2137. unsigned long start,
  2138. unsigned long end,
  2139. long adjust_next)
  2140. {
  2141. /*
  2142. * If the new start address isn't hpage aligned and it could
  2143. * previously contain an hugepage: check if we need to split
  2144. * an huge pmd.
  2145. */
  2146. if (start & ~HPAGE_PMD_MASK &&
  2147. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2148. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2149. split_huge_page_address(vma->vm_mm, start);
  2150. /*
  2151. * If the new end address isn't hpage aligned and it could
  2152. * previously contain an hugepage: check if we need to split
  2153. * an huge pmd.
  2154. */
  2155. if (end & ~HPAGE_PMD_MASK &&
  2156. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2157. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2158. split_huge_page_address(vma->vm_mm, end);
  2159. /*
  2160. * If we're also updating the vma->vm_next->vm_start, if the new
  2161. * vm_next->vm_start isn't page aligned and it could previously
  2162. * contain an hugepage: check if we need to split an huge pmd.
  2163. */
  2164. if (adjust_next > 0) {
  2165. struct vm_area_struct *next = vma->vm_next;
  2166. unsigned long nstart = next->vm_start;
  2167. nstart += adjust_next << PAGE_SHIFT;
  2168. if (nstart & ~HPAGE_PMD_MASK &&
  2169. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2170. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2171. split_huge_page_address(next->vm_mm, nstart);
  2172. }
  2173. }